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Abstract

In this paper, we generalize some existing results on Boolean functions to the q-ary
functions defined over Zq, where q ≥ 2 is an integer, and obtain some new characterization
of q-ary functions based on spectral analysis. We provide a relationship between Walsh-
Hadamard spectra of two p-ary functions f and g (for p a prime) and their derivative Df,g.
We provide a relationship between the Walsh-Hadamard spectra and the decompositions of
any two p-ary functions. Further, we investigate a relationship between the Walsh-Hadamard
spectra and the autocorrelation of any two q-ary functions.
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1 Introduction

In recent years, the Walsh-Hadamard spectrum has become an important tool for research
in cryptography, especially in the design and characterization of cryptographically signifi-
cant Boolean functions used in various type of cryptosystems. Xiao and Massey [14] have
provided some results on spectrum characterization of correlation immune functions. Sarkar
and Maitra [7] have generalized these results and showed that the Walsh-Hadamard spec-
trum of an n-variable, m correlation immune function is divisible by 2m+1. Recently, Sarkar
and Maitra [8], and Zhou et al. [16] have provided some interesting results based on spectral
analysis of Boolean functions.

A function from Fn2 to F2 is called a Boolean function. Several authors have proposed
various generalizations of Boolean functions and have analyzed the effect of the Walsh-
Hadamard spectrum on them. Kumar et al. [5] have generalized the notion of classical
bent functions by considering functions from Znq to Zq, where q ≥ 2 and n are positive
integers. These functions are also known as q-ary functions [12]. The q-ary functions are of
special interest in cryptography and coding theory. According to Siegenthaler [10], it is not
possible to construct an n-variable Boolean function with algebraic degree more than one
and correlation immunity n − 1, whereas it is possible to construct such q-ary functions.
For example, the function f(x,y) = x + y3 from Z2

5 to Z5 has algebraic degree 3 and
correlation immunity 1. Thus, the q-ary functions can achieve better cryptographic bounds
than Boolean functions.

The additive group Zq, the ring of integers modulo q, is isomorphic to Uq = {1, ξ, . . . , ξq−1},
the multiplicative group of complex qth roots of unity. We denote the set of all q-ary func-
tions by Bn,q. The Walsh-Hadamard spectrum of any f ∈ Bn,q is a complex-valued function
from Znq to C, the set of complex numbers, and defined as follows

Wf (u) =
∑
x∈Zn

q

ξf(x)+<x,u>,

where < x, u > denotes the usual inner product in Znq .
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A function f ∈ Bn,q is generalized bent (or q-ary bent) if |Wf (u)| = 1 for every u ∈ Znq .
The Boolean bent functions were introduced by Rothaus [6]. It is to be noted that the
generalized bent functions exist for every value of q and n, except when n is odd and q = 2
mod 4, whereas Boolean bent functions exist only for even n [5]. For more results on q-
ary bent functions we refer to [1–4, 13]. Generalized bent functions are widely applicable in
Code-Division Multiple-Access (CDMA) communications systems [9].

The derivative of f, g ∈ Bn,q at a ∈ Znq is defined as Df,g(a) = f(x)− g(x + a), and for
f = g, Df (a) = f(x)− f(x + a) is called derivative of f at a ∈ Znq .

Let f, g ∈ Bn,q. Then the sum

Cf,g(α) =
∑
x∈Zn

q

ξf(x)−g(x+α),

is called the cross-correlation between the function f and g at α ∈ Znq . Moreover, for f = g,
the sum Cf,f (α) = Cf (α) is called the autocorrelation of f at α.

The sum-of-squares-of-modulus indicator (SSMI) [11] of f, g ∈ Bn,q is defined as

σf,g =
∑
α∈Zn

q

|Cf,g(α)|2,

and in particular, for f = g, the sum-of-squares-of-modulus indicator (SSMI) [11] of f ∈ Bn,q
is defined as

σf =
∑
α∈Zn

q

|Cf (α)|2.

The following result is an important property and is extensively used in the paper.

Lemma 1. [11, Lemma 2.1] Let α ∈ Znq . Then

∑
x∈Zn

q

ξ<α, x> =
{
qn, if α = 0,
0, otherwise . (1)

The following Lemma provides a relationship between the crosscorrelation and the au-
tocorrelation of f, g ∈ Bn,q.

Lemma 2. [11, Corollary 3] Let f, g ∈ Bn,q. Then

σf,g =
∑
α∈Zn

q

|Cf,g(α)|2 =
∑
a∈Zn

q

Cf (a)Cg(a).

2 Main Results

In the following Lemma, we generalize a result of Sarkar and Maitra [8, Corollary 3.3]
(obtained for p = 2) to the p-ary functions, where p is a prime. Further, in Theorem 1
we provide a relationship between Walsh-Hadamard spectra of the derivative Df,g(a) and
f, g ∈ Bn,p. This result is a generalization of [15, Theorem 1].

Throughout the paper p is considered to be a prime.

Lemma 3. Let f, g, h ∈ Bn,p such that h(x) = f(x)− g(x). Then

Wh(β) =
1
pn

∑
α∈Zn

p

Wf (α+ β)Wg(α), ∀ β ∈ Znp .
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Proof. Using Lemma 1, for any β ∈ Znp , we have∑
α∈Zn

p

Wf (α+ β)Wg(α) =
∑
α∈Zn

p

∑
x∈Zn

p

ξf(x)+<α+β,x>
∑
y∈Zn

p

ξ−g(y)−<α,y>

=
∑

x,y∈Zn
p

ξf(x)−g(y)+<β,x>
∑
α∈Zn

p

ξ<α,x−y>

= pn
∑
x∈Zn

p

ξf(x)−g(x)+<β,x> = pn
∑
x∈Zn

p

ξh(x)+<β,x>

= pnWh(β).

(2)

This completes the proof.

Theorem 1. Let f, g ∈ Bn,p and β ∈ Znp . Then

WDf,g(e)(β) =
1
pn

∑
α∈Zn

p

ξ<α,e>Wf (α+ β)Wg(α), and (3)

Wf (α+ β)Wg(α) =
∑
e∈Zn

p

ξ−<α,e>WDf,g(e)(β). (4)

Proof. Let ge = g(e + x). Then we have

Wge(α) = ξ−<α,e>Wg(α). (5)

From Lemma 3, replacing g by ge and h by Df,g(e), we have

WDf,g(e)(β) =
1
pn

∑
α∈Zn

p

Wf (α+ β)Wge(α) (6)

Combining equations (5) and (6), we obtain (3).
Now, from Lemma 1 and (3), we have∑

e∈Zn
p

ξ−<α,e>WDf,g(e)(β) =
∑
e∈Zn

p

ξ−<α,e>
1
pn

∑
x∈Zn

p

ξ<x,e>Wf (x + β)Wg(x)

=
1
pn

∑
x∈Zn

p

Wf (x + β)Wg(x)
∑
e∈Zn

p

ξ<e,x−α>

=Wf (α+ β)Wg(α).

(7)

In particular, if f = g and β = 0 in (3), then we have the following corollary.

Corollary 1. If f ∈ Bn,p, then the autocorrelation of f is given by

Cf (e) =
1
pn

∑
α∈Zn

p

ξ<α,e>|Wf (α)|2. (8)

By putting e = 0 in Corollary 1 we obtain∑
α∈Zn

p

|Wf (α)|2 = p2n,

which is known as Parseval’s identity in the generalized setup.
In Theorem 2 and Theorem 3 below, we generalize the results of Zhou et. al [16, Lemma

3 and Theorem 6] (obtained for p = 2) to the p-ary functions.
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Theorem 2. Let f, g ∈ Bn,p, where p is a prime, and V be a subspace of Znp with dim (V ) =
k. Then for any β ∈ Znp , we have∑

α∈V
Wf (α+ β)Wg(α) = pk

∑
e∈V ⊥

WDf,g(e)(β),

where V ⊥ denotes the dual of V , i.e., V ⊥ = {x ∈ Znp : ∀y ∈ V,x · y = 0}.

Proof. From Theorem 1, we have∑
α∈V
Wf (α+ β)Wg(α) =

∑
α∈V

∑
e∈Zn

p

ξ−<α,e>WDf,g(e)(β)

=
∑
e∈Zn

p

WDf,g(e)(β)
∑
α∈V

ξ−<α,e>

= pk
∑

e∈V ⊥
WDf,g(e)(β).

In particular, if f = g, then we have the following corollary.

Corollary 2. Let f, g ∈ Bn,p and V be the subspace of Znp with dim(V ) = k. Then∑
α∈V
|Wf (α+ β)|2 = pk

∑
e∈V ⊥

ξ<β,e>WDf (e)(0), ∀ β ∈ Znp .

Let W be a subspace of Znp with dim(W ) = k. The decomposition of f with respect to
W is the sequence {fa : a ∈ V }, where V is a subspace such that Znp is the direct sum of W
and V , and fa is the function of k variables from W to Zp, defined as fa(x) = f(a + x) for
any x ∈W [16]. In the following theorem, we investigate a relationship between the Walsh-
Hadamard spectrum of f, g ∈ Bn,p and the Walsh-Hadamard spectrum of the decompositions
of f and g with respect to a subspace V of Znp .

Theorem 3. Let W be a subspace of Znp with dim(W ) = k, and {fa : a ∈ V } and {ga : a ∈
V } be the decompositions of f and g with respect to W . Then∑

α∈W⊥
Wf (α)Wg(α) = pk

∑
a∈V
Wfa

(0)Wga
(0)

Proof. For any e ∈ Znp , we have

Cf,g(e) =
∑
z∈Zn

p

ξf(z)−g(z+e) =
∑
a∈V

∑
x∈W

ξfa(x)−ga(x+e) =
∑
a∈V

∑
x∈W

ξf(a+x)−g(a+x+e)

From Theorem 2, for β = 0, we have

∑
α∈W⊥

Wf (α)Wg(α) = pk
∑
e∈W
Cf,g(e) = pk

∑
e∈W

∑
z∈Zn

p

ξf(z)−g(z+e)


= pk

∑
e∈W

(∑
a∈V

∑
x∈W

ξf(a+x)−g(a+x+e)

)
= pk

∑
a∈V

∑
x∈W

ξf(a+x)
∑
e∈W

ξ−g(a+x+e)

= pk
∑
a∈V

∑
x∈W

ξf(a+x)
∑
y∈W

ξ−g(a+y) = pk
∑
a∈V
Wfa(0)Wga

(0).

(9)

In particular, if f = g, then we have the following corollary.
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Corollary 3. Let W be a subspace of Znp of dimension k and {fa : a ∈ V } be the decompo-
sition of f with respect to W . Then∑

α∈W⊥
|Wf (α)|2 = p

2k−n
2

∑
a∈V
|Wfa(0)|2.

For any α ∈ Znq , where q ≥ 2 is any integer, we have

|Wf (α) |2=
∑
a∈Zn

q

ξ<a,α>Cf (a) =
∑
a∈Zn

q

ξ<−a,α>Cf (a). (10)

In particular, if α = 0 then
|Wf (0) |2=

∑
a∈Zn

q

Cf (a).

In the following theorem, we provide a relationship between the Walsh-Hadamard spec-
trum and the autocorrelation of any two q-ary functions.

Theorem 4. Let f, g ∈ Bn,q. Then for any β ∈ Znq , we have∑
α∈Zn

q

|Wf (α) |2|Wg(α+ β) |2= qn
∑
a∈Zn

q

Cf (a)Cg(a)ξ<a,β>. (11)

Proof. From (10), for any β ∈ Znq , we have∑
α∈Zn

q

|Wf (α) |2|Wg(α+ β) |2 =
∑
α∈Zn

q

∑
a∈Zn

q

ξ<−a,α>Cf (a)
∑
b∈Zn

q

ξ<b,α+β>Cg(b)

=
∑
α∈Zn

q

∑
a∈Zn

q

∑
b∈Zn

q

Cf (a)Cg(b)ξ<−a+b,α>+<b,β>

=
∑
a∈Zn

q

∑
b∈Zn

q

Cf (a)Cg(b)ξ<b,β>
∑
α∈Zn

q

ξ<−a+b,α>

= qn
∑
a∈Zn

q

Cf (a)Cg(a)ξ<a,β>

In particular, if f = g, then we have the following corollary.

Corollary 4. Let f ∈ Bn,q. Then for any β ∈ Znq , we have∑
α∈Zn

q

|Wf (α) |2|Wf (α+ β) |2= qn
∑
a∈Zn

q

| Cf (a) |2 ξ<a,β>. (12)

Further, if β = 0, then ∑
α∈Zn

q

|Wf (α) |4= qn
∑
a∈Zn

q

| Cf (a) |2= qnσf .

If β = 0 in (11), then by using Lemma 2 we obtain the following corollary which appears
in [11, Theorem 6 (a)].

Corollary 5. Let f, g ∈ Bn,q. Then

σf,g =
1
qn

∑
α∈Zn

q

|Wf (α) |2|Wg(α) |2 .
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A function f ∈ Bn,q is called q-ary semi-bent if for any a ∈ Znq (i) | Wf (a) |∈ {0, q n+1
2 }

for odd n, and (ii) |Wf (a) |∈ {0, q n+2
2 } for even n.

Theorem 5. Let f1 ∈ Br,q and f2 ∈ Bs,q, where r and s are odd positive integers. Then a
function f ∈ Br+s,q expressed as

f(xr+s, . . . , xr+1, xr, . . . , x1) = f1(xr, . . . , x1) + f2(xr+s, . . . , xr+1),

is q-ary semi-bent if f1 and f2 both are q-ary semi-bent functions.

Proof. Let (u,v) ∈ Zrq × Zsq. We compute,

Wf (u,v) =
∑

(x,y)∈Zr
q×Zs

q

ξf(x,y)+<u,x>+<v,y>

=
∑
x∈Zr

q

ξf1(x)+<u,x>
∑
y∈Zs

q

ξf2(y)+<v,y> =Wf1(u)Wf2(v).
(13)

Since f1 and f2 both are q-ary semi-bent, therefore |Wf1(u)| ∈ {0, q r+1
2 } and |Wf2(v)| ∈

{0, q s+1
2 }. This implies that |Wf (u,v)| = |Wf1(u)||Wf2(v)| ∈ {0, q r+s+2

2 }, for all (u,v) ∈
Zrq × Zsq. Hence f is q-ary semi-bent.

In the following theorem, we provide a relationship on crosscorrelation between two q-ary
functions on (n+ 1)-variables in terms of their crosscorrelation on n-variables.

Theorem 6. Let f, g ∈ Bn+1,q such that

f(x, xn+1) = f1(x) + xn+1, g(x, xn+1) = g1(x) + xn+1,

where f1, g1 ∈ Bn,q. Then the crosscorrelation between f and g is

Cf,g(u, un+1) = ξ−un+1Cf1,g1(u).

Further, if f ∈ Bn,q is any bent function then the autocorrelation of f is given by

Cf (u, un+1) =
{
qn, if u = 0,
0, otherwise .

Proof. We have

Cf,g(u, un+1) =
∑

x,xn+1∈Zn
q×Zq

ξf(x,xn+1)−g(x+u,xn+1+un+1)

=
∑

x,xn+1∈Zn
q×Zq

ξf1(x)+xn+1−g1(x+u)−xn+1−un+1

= ξ−un+1
∑

x,xn+1∈Zn
q×Zq

ξf1(x)−g1(x+u)

= ξ−un+1Cf1,g1(u).

(14)

Hence, |Cf,g(u, un+1)| = |Cf1,g1(u)|. The second part follows from (14) by setting f = g
(that is, f1 = g1).
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