Constant-Size Structure-Preserving Signatures Generic Constructions and Simple Assumptions

Masayuki Abe* Melissa Chase ${ }^{* *} \quad$ Bernardo David ${ }^{* * *} \quad$ Markulf Kohlweiss ${ }^{\dagger}$
Ryo Nishimaki* Miyako Ohkubo ${ }^{\dagger \dagger}$
* NTT Secure Platform Laboratories, NTT Corporation, Japan
\{abe.masayuki, nishimaki.ryo\}@lab.ntt.co.jp
** Microsoft Research, Redmond, USA
melissac@microsoft.com
*** University of Brasilia, Brazil
bernardo.david@aluno.unb.br
\dagger Microsoft Research, Cambridge, UK
markulf@microsoft.com
$\dagger \dagger$ Security Architecture Laboratory, NSRI, NICT, Japan
m.ohkubo@nict.go.jp

Abstract

This paper presents efficient structure-preserving signature schemes based on assumptions as simple as Decision-Linear. We first give two general frameworks for constructing fully secure signature schemes from weaker building blocks such as two-tier signatures and random-message secure signatures. They can be seen as refinements of the Even-Goldreich-Micali framework, and preserve many desirable properties of the underlying schemes such as constant signature size and structure preservation. We then instantiate them based on simple (i.e., not q-type) assumptions over symmetric and asymmetric bilinear groups. The resulting schemes are structure-preserving and yield constant-size signatures consisting of 11 to 17 group elements, which compares favorably to existing schemes relying on q-type assumptions for their security.

Keywords: Structure-preserving signatures, One-time signatures, Groth-Sahai proof system, Random message attacks

Contents

1 Introduction 1
1.1 Our contribution (1)
1.2 Related Works 2
2 Preliminaries 2
2.1 Notation 2
2.2 Bilinear groups 2
2.3 Assumptions 3
3 Definitions 4
3.1 Common setup 4
3.2 Signature schemes 4
3.3 Partial one-time and tagged one-time signatures 5
3.4 Structure-preserving signatures 6
4 Generic Constructions 6
4.1 SIG1: Combining tagged one-time and RMA-secure signatures 6
4.2 SIG2: Combining partial one-time and XRMA-secure signatures 7
5 Instantiating SIG1 8
5.1 Setup 8
5.2 Tagged one-time signature scheme 8
5.3 RMA-secure signature scheme 11
5.4 Security and efficiency of resulting SIG1 17
6 Instantiating SIG2 17
6.1 Setup 18
6.2 Partial one-time signatures for uniliteral messages 18
6.3 Partial one-time signatures for bilateral messages 20
6.4 XRMA-secure signature scheme 20
6.5 Security and efficiency of resulting SIG2 24
7 Other Instantiation 24
7.1 Partial one-time signature scheme based on DLIN 24
8 Applications and Open Questions 27

1 Introduction

A structure-preserving signature (SPS) scheme [1] is a digital signature scheme with two structural properties (i) the verification keys, messages, and signatures are all elements of a bilinear group; and (ii) the verification algorithm checks a conjunction of pairing product equations over the key, the message and the signature. This makes them compatible with the efficient non-interactive proof system for pairing-product equations by Groth and Sahai (GS) [29]. Structure-preserving cryptographic primitives promise to combine the advantages of optimized number theoretic non-blackbox constructions with the modularity and insight of protocols that use only generic cryptographic building blocks.

Indeed the instantiation of known generic constructions with a SPS scheme and the GS proof system has led to many new and more efficient schemes: Groth [27] showed how to construct an efficient simulation-sound zero-knowledge proof systems (ss-NIZK) building on generic constructions of [15, 38, 33]. Abe et al. [4] show how to obtain efficient round-optimal blind signatures by instantiating a framework by Fischlin [18]. SPS are also important building blocks for a wide range of cryptographic functionalities such as anonymous proxy signatures [20], delegatable anonymous credentials [6], transferable e-cash [21] and compact verifiable shuffles [14]. Most recently, [30] show how to construct a structure preserving treebased signature scheme with a tight security reduction following the approach of [24, 16]. This signature scheme is then used to build a ss-NIZK which in turn is used with the Naor-Yung-Sahai [34, 37] paradigm to build the first CCA secure public-key encryption scheme with a tight security reduction. Examples for other schemes that benefit from efficient SPS are [7, 11, 8, 31, 25, 5, 36, 22, 19, 26].

Because properties (i) and (ii) are the only dependencies on the SPS scheme made by these constructions, any structurepreserving signature scheme can be used as a drop-in replacement. Unfortunately, all known efficient instantiations of SPS [4, 1. 2] are based on so-called q-type or interactive assumptions that are primarily justified based on the Generic Group model. An open question since Groth's seminal work [27] (only partially answered by [13]) is to construct a SPS scheme that is both efficient - in particular constant-size in the number of signed group elements - and that is based on assumptions that are as weak as those required by the GS proof system itself.

1.1 Our contribution

Our first contribution consists of two generic constructions for chosen message attack (CMA) secure signatures that combine variations of one-time signatures and signatures secure against random message attacks (RMA). Both constructions inherit the structure-preserving and constant-size properties from the underlying components. The second contribution consists in the concrete instantiations of these components which result in constant-size structure-preserving signature schemes that produce signatures consisting of only 11 to 17 group elements and that rely only on basic assumptions such as Decisional-Linear (DLIN) for symmetric bilinear groups and analogues of DDH and DLIN for asymmetric bilinear groups. To our knowledge, these are the first constant-size structure-preserving signature schemes that eliminate the use of q-type assumptions while achieving reasonable efficiency.

We instantiate the first generic construction for symmetric (Type-I) and the second for asymmetric (Type-III) pairing groups. See Table 1 and 2 in Section 5.4 and 6.5 . respectively, for the summary of efficiency of the resulting schemes. We give more details on our generic constructions and their instantiations:

- The first generic construction (SIG1) combines a new variation of one-time signatures which we call tagged one-time signatures and signatures secure against random message attacks (RMA). A tagged one-time signature scheme, denoted by TOS, is a signature scheme that attaches a fresh tag to a signature. It is unforgeable with respect to tags that are used only once. In our construction, a message is signed with our TOS scheme using a fresh random tag, and then the tag is signed with the second signature scheme, denoted by rSIG. Since the rSIG scheme only signs random tags, RMA-security is sufficient.
- The second generic construction (SIG2) combines partial one-time signatures and signatures secure against extended random message attacks (XRMA). The latter is a novel notion that we explain below. Partial one-time signatures, denoted by POS, are one-time signatures for which only a part of the one-time key is renewed for every signing operation. They were first introduced by Bellare and Shoup [9] under the name of two-tier signatures. In our construction, a message is signed with the POS scheme and then the random one-time public-key is certified by the second signature scheme, denoted by xSIG. The difference between a TOS scheme and a POS scheme is that a one-time public-key is associated with a one-time secret-key. Since the secret-key is needed for signing, it must be known to the reduction in the security proof. XRMA-security guarantees that x SIG is unforgeable even if the adversary is given auxiliary information associated with the randomly chosen messages. The auxiliary information facilitates access to the one-time secret-key by the reduction.
- To instantiate SIG1, we construct structure-preserving TOS and rSIG signature schemes based on DLIN over Type-I bilinear groups. Our TOS scheme yields constant-size signatures and tags. The resulting SIG1 scheme is structurepreserving, produces signatures consisting of 17 group elements, and relies solely on the DLIN assumption.
- To instantiate SIG2, we construct structure-preserving POS and xSIG signature schemes based on assumptions that are analogues of DDH and DLIN in Type-III bilinear groups. The resulting SIG2 scheme is structure-preserving, produces signatures consisting of 11 group elements for uniliteral messages in a base group or 14 group elements for biliteral messages from both base groups.

The role of partial one-time signatures is to compress a message into a constant number of random group elements. This observation is interesting in light of [3] that implies the impossibility of constructing collision resistant and shrinking structure-preserving hash functions, which could immediately yield constant-size signatures. Our (extended) RMA-secure signature schemes are structure-preserving variants of Waters' dual-signature scheme [40]. In general, the difficulty of constructing CMA-secure SPS arises from the fact that the exponents of the group elements chosen by the adversary as a message are not known to the reduction in the security proof. On the other hand, for RMA security, it is the challenger that chooses the message and therefore the exponents can be known in reductions. This is the crucial advantage for constructing (extended) RMA-secure structure-preserving signature schemes based on Waters' signature scheme.

Finally, we mention a few new applications. Among these is the achievement of a drastic performance improvement when using our partial one-time signatures in the work by Hofheinz and Jager [30] to construct CCA-secure public-key encryption schemes with a proof of security that tightly reduces to DLIN or SXDH.

1.2 Related Works

Even, Goldreich and Micali [17] proposed a generic framework (the EGM framework) that combines a one-time signature scheme and a signature scheme that is secure against non-adaptive chosen message attacks (NACMA) to construct a signature scheme that is secure against adaptive chosen message attacks (CMA).

In fact, our generic constructions can be seen as refinements of the EGM framework. There are two reasons why the original framework falls short for our purpose. The first is that relaxing to NACMA does not seem a big help in constructing efficient structure-preserving signatures since the messages are still under the control of the adversary and the exponents of the messages are not known to the reduction algorithm in the security proof. As mentioned above, resorting to (extended) RMA is a great help in this regard. In [17], they also showed that CMA-secure signatures exist iff RMA-secure signatures exist. The proof, however, does not follow their framework and their impractical construction is mainly a feasibility result. In fact, we argue that RMA-security alone is not sufficient for the original EGM framework. As mentioned above, the necessity of XRMA security arises in the reduction that uses RMA-security to argue security of the ordinary signature scheme, as the reduction not only needs to know the random one-time public-keys, but also their corresponding one-time secret keys in order to generate the one-time signature components of the signatures. The auxiliary information in the XRMA definition facilitates access to these secret keys. Similarly, tagged one-time signatures avoid this problem as tags do not have associated secret values. The second reason that the EGM approach is not quite suited to our task is that the EGM framework produces signatures that are linear in the public-key size of the one-time signature scheme. Here, tagged or partial one-time signature schemes come in handy as they allow the signature size to be only linear in the size of the part of the public key that is updated. Thus, to obtain constant-size signatures, we require the one-time part to be constant-size.

Hofheinz and Jager [30] constructed a SPS scheme by following the EGM framework. The resulting scheme allows tight security reduction to DLIN but the size of signatures depends logarithmically to the number of signing operation as their NACMA-secure scheme is tree-based like the Goldwasser-Micali-Rivest signature scheme [24]. Kohlweiss and Chase [13] construct a SPS scheme with security based on DLIN that improve the performance of Groth's scheme [27] by several orders of magnitude. The size of the resulting signatures, however, are still linear in the number of signed group elements, and an order of magnitude larger than in our constructions.

2 Preliminaries

2.1 Notation

Appending element y to a sequence $X=\left(x_{1}, \ldots, x_{n}\right)$ is denoted by (X, y), i.e., $(X, y)=\left(x_{1}, \ldots, x_{n}, y\right)$.
When algorithm A is defined for input x and output y, notation $\vec{y} \leftarrow A(\vec{x})$ for $\vec{x}:=\left\{x_{1}, \ldots, x_{n}\right\}$ means that $y_{i} \leftarrow A\left(x_{i}\right)$ is executed for $i=1, \ldots, n$ and \vec{y} is set as $\vec{y}:=\left(y_{1}, \ldots, y_{n}\right)$. For set X, notation $a \leftarrow X$ denote a uniform sampling from X. Independent multiple sampling from the same set X is denoted by $a, b, c, \ldots \leftarrow X$.

2.2 Bilinear groups

Let \mathcal{G} be a bilinear group generator that takes security parameter 1^{λ} and outputs a description of bilinear groups $\Lambda:=$ $\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e\right)$, where $\mathbb{G}_{1}, \mathbb{G}_{2}$ and \mathbb{G}_{T} are groups of prime order p, and e is an efficient and non-degenerating bilinear $\operatorname{map} \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$. Following the terminology in [23] this is a Type-III pairing. In the Type-III setting $\mathbb{G}_{1} \neq \mathbb{G}_{2}$ and there
are no efficient mapping between the groups in either direction. In the Type-III setting, we often use twin group elements, $\left(G^{a}, \hat{G}^{a}\right) \in \mathbb{G}_{1} \times \mathbb{G}_{2}$ for some bases G and \hat{G}. For X in \mathbb{G}_{1}, notation \hat{X} denotes for an element in \mathbb{G}_{2} that $\log X=\log \hat{X}$ where logarithms are with respect to default bases that are uniformly chosen once for all and implicitly associated to Λ. Should their relation be explicitly stated, we write $X \sim \hat{X}$. We count the number of group elements to measure the size of cryptographic objects such as keys, messages, and signatures. For Type-III groups, we denote the size by (x, y) when it consists of x and y elements from \mathbb{G}_{1} and \mathbb{G}_{2}, respectively.

We refer to the Type-I setting when $\mathbb{G}_{1}=\mathbb{G}_{2}$ (i.e., there are efficient mappings in both directions). This is also called the symmetric setting. In this case, we define $\Lambda:=\left(p, \mathbb{G}, \mathbb{G}_{T}, e\right)$. When we need to be specific, the group description yielded by \mathcal{G} will be written as $\Lambda_{\text {asym }}$ and $\Lambda_{\text {sym }}$.

2.3 Assumptions

We first define computational and decisional Diffie-Hellman assumptions (co-CDH, DDH_{1}) and decision linear assumption $\left(\mathrm{DLIN}_{1}\right)$ for Type-III bilinear groups. Corresponding more standard assumptions, CDH, DDH, and DLIN, in Type-I groups are obtained by setting $\mathbb{G}_{1}=\mathbb{G}_{2}$ and $G=\hat{G}$ in the respective definitions.

Definition 1 (Computation co-Diffie-Hellman Assumption: co-CDH).

The co-CDH assumption holds if, for any polynomial-time algorithm \mathcal{A}, probability $\operatorname{Adv}_{\mathcal{G}, \mathcal{A}}^{\text {co-cdh }}(\lambda):=\operatorname{Pr}\left[Z=G^{x y} \mid \Lambda \leftarrow\right.$ $\left.\mathcal{G}\left(1^{\lambda}\right) ; x, y \leftarrow \mathbb{Z}_{p} ; Z \leftarrow \mathcal{A}\left(\Lambda, G, G^{x}, G^{y}, \hat{G}, \hat{G}^{x}, \hat{G}^{y}\right)\right]$ is negligible in λ.

Definition 2 (Decisional Diffie-Hellman Assumption in $\mathbb{G}_{1}:$ DDH $_{1}$).

Let $\mathcal{G}_{\mathrm{ddh} 1}\left(1^{\lambda}\right)$ be an algorithm that, on input security parameter 1^{λ}, runs group generator $\Lambda:=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e\right) \leftarrow \mathcal{G}\left(1^{\lambda}\right)$, chooses $G \leftarrow \mathbb{G}_{1}$ and $x, y, z \leftarrow \mathbb{Z}_{p}$, and outputs $I_{\mathrm{ddh} 1}:=\left(\Lambda, G, G^{x}, G^{y}\right)$ and (x, y, z). The DDH_{1} assumption holds if for polynomial-time adversary \mathcal{A}, advantage $\operatorname{Adv}_{\mathcal{G}, \mathcal{A}}^{\text {ddh1 }}(\lambda):=\mid \operatorname{Pr}\left[1 \leftarrow \mathcal{A}\left(I_{\text {ddh } 1}, G^{x y}\right) \mid\left(I_{\text {ddh1 }}, x, y, z\right) \leftarrow \mathcal{G}_{\text {ddh1 }}\left(1^{\lambda}\right)\right]-\operatorname{Pr}[1 \leftarrow$ $\left.\mathcal{A}\left(I_{\mathrm{ddh} 1}, G^{z}\right) \mid\left(I_{\mathrm{ddh} 1}, x, y, z\right) \leftarrow \mathcal{G}_{\mathrm{ddh} 1}\left(1^{\lambda}\right)\right] \mid$ is negligible in λ.

Definition 3 (Decision Linear Assumption in \mathbb{G}_{1} : DLIN $_{1}$).
Let $\mathcal{G}_{\text {dlin1 }}\left(1^{\lambda}\right)$ be an algorithm that on input security parameter λ, runs group generator $\Lambda:=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e\right) \leftarrow \mathcal{G}\left(1^{\lambda}\right)$, selects $x, y, z \leftarrow \mathbb{Z}_{p}$ and $G_{1}, G_{2}, G_{3} \leftarrow \mathbb{G}_{1}^{*}$, and outputs $I_{\text {dlin } 1}:=\left(\Lambda, G_{1}, G_{2}, G_{3}, G_{1}^{x}, G_{2}^{y}\right)$ and (x, y, z). The DLIN 1 assumption holds if, for all polynomial-time adversary \mathcal{A}, advantage $\operatorname{Adv}_{\mathcal{G}, \mathcal{A}}^{\text {din1 }}(\lambda):=\mid \operatorname{Pr}\left[1 \leftarrow \mathcal{A}\left(I_{\text {dlin1 }}, G_{3}{ }^{x+y}\right) \mid\left(I_{\text {dlin1 }}, x, y, z\right) \leftarrow\right.$ $\left.\mathcal{G}_{\text {dlin1 }}\left(1^{\lambda}\right)\right]-\operatorname{Pr}\left[1 \leftarrow \mathcal{A}\left(I_{\mathrm{dlin} 1}, G_{3}{ }^{z}\right) \mid\left(I_{\mathrm{dlin} 1}, x, y, z\right) \leftarrow \mathcal{G}_{\text {dlin1 }}\left(1^{\lambda}\right)\right] \mid$ is negligible in λ.

For DDH_{1} and DLIN_{1}, we define an analogous assumption in $\mathbb{G}_{2}\left(\mathrm{DDH}_{2}\right)$ by swapping \mathbb{G}_{1} and \mathbb{G}_{2} in the respective definitions. In Type-III bilinear groups, it is assumed that both DDH_{1} and DDH_{2} hold simultaneously. The assumption is called the symmetric external Diffie-Hellman assumption (SXDH), and we define advantage $\operatorname{Adv}_{\mathcal{G}, \mathcal{C}}^{\text {sxdh }}$ by $\operatorname{Adv}_{\mathcal{G}, \mathcal{C}}^{\text {sxdh }}(\lambda) \stackrel{\text { def }}{=}$ $\operatorname{Adv}_{\mathcal{G}, \mathcal{A}}^{\operatorname{ddh} 1}(\lambda)+\operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\operatorname{ddd} 2}(\lambda)$. We extend DLIN in a similar manner as DDH, and SXDH.

Definition 4 (External Decision Linear Assumption in $\mathbb{G}_{1}:$ XDLIN $_{1}$).

Let $\mathcal{G}_{\text {xdlin }}\left(1^{\lambda}\right)$ be an algorithm that on input security parameter λ, runs group generator $\Lambda:=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e\right) \leftarrow \mathcal{G}\left(1^{\lambda}\right)$, selects $x, y, z \leftarrow \mathbb{Z}_{p}$ and $G_{1}, G_{2}, G_{3} \leftarrow \mathbb{G}_{1}^{*}, \hat{G}_{1}, \hat{G}_{2}, \hat{G}_{3} \in \mathbb{G}_{2}^{*}$ such that $\left(G_{1}, G_{2}, G_{3}\right) \sim\left(\hat{G}_{1}, \hat{G}_{2}, \hat{G}_{3}\right)$, and outputs $I_{\text {xdlin }}:=\left(\Lambda, G_{1}, G_{2}, G_{3}, \hat{G}_{1}, \hat{G}_{2}, \hat{G}_{3}, G_{1}^{x}, G_{2}^{y}, \hat{G}_{1}^{x}, \hat{G}_{2}^{y}\right)$ and (x, y, z). The XDLIN ${ }_{1}$ assumption holds if, for all polynomialtime adversary \mathcal{A}, advantage $\operatorname{Adv}_{\mathcal{G}, \mathcal{A}}^{\text {xdlin }}(\lambda):=\mid \operatorname{Pr}\left[1 \leftarrow \mathcal{A}\left(I_{\text {xdlin }}, G_{3}{ }^{x+y}\right) \mid\left(I_{\text {xdlin }}, x, y, z\right) \leftarrow \mathcal{G}_{\text {xdlin }}\left(1^{\lambda}\right)\right]-\operatorname{Pr}[1 \leftarrow$ $\left.\mathcal{A}\left(I_{\text {xdlin }}, G_{3}^{z}\right) \mid\left(I_{\text {xdlin }}, x, y, z\right) \leftarrow \mathcal{G}_{\text {xdlin }}\left(1^{\lambda}\right)\right] \mid$ is negligible in λ.

The XDLIN_{1} assumption is equivalent to the DLIN_{1} assumption in the generic bilinear group model [39, 10] where one can simulate the extra elements, $\hat{G}_{1}, \hat{G}_{2}, \hat{G}_{3}, \hat{G}_{1}^{x}, \hat{G}_{2}^{y}$, in XDLIN_{1} from $G_{1}, G_{2}, G_{3}, G_{1}^{x}, G_{2}^{y}$ in DLIN_{1}. We define the XDLIN_{2} assumption analogously by giving \hat{G}_{3}^{x+y}, respectively \hat{G}_{3}^{z}, to \mathcal{A} instead. Then we define the simultaneous external decision Diffie-Hellman assumption, SXDLIN, that assumes that both XDLIN $_{1}$ and XDLIN $_{2}$ hold at the same time. By $\operatorname{Adv} v_{\mathcal{G}, \mathcal{A}}^{\text {xdlin2 }}\left(\mathrm{Adv}_{\mathcal{G}, \mathcal{A}}^{\text {sxdlin }}\right.$, resp.), we denote the advantage function for XDLIN_{2} (and SXDLIN, resp.).

Finally we recall two computational assumptions (tightly) reduced from one of the above basic assumptions.

Definition 5 (Double Pairing Assumption in $\mathbb{G}_{1}\left[\overline{4]}:\right.$ DBP $_{1}$).

The DBP_{1} assumption holds if, for any polynomial-time \mathcal{A}, probability $\operatorname{Adv}_{\mathcal{G}, \mathcal{A}}^{\text {dbp }}(\lambda) \stackrel{\text { def }}{=} \operatorname{Pr}\left[1=e\left(G_{z}, Z\right) e\left(G_{r}, R\right) \wedge Z \in\right.$ $\left.\mathbb{G}_{2}^{*} \mid \Lambda \leftarrow \mathcal{G}\left(1^{\lambda}\right) ;\left(G_{z}, G_{r}\right) \leftarrow \mathbb{G}_{1}^{*} \times \mathbb{G}_{1}^{*} ;(Z, R) \leftarrow \mathcal{A}\left(\Lambda, G_{z}, G_{r}\right)\right]$ is negligible in λ.

The double pairing assumption in $\mathbb{G}_{2}\left(\mathrm{DBP}_{2}\right)$ is defined in the same manner by swapping \mathbb{G}_{1} and \mathbb{G}_{2}. It is known that $\mathrm{DBP}_{1}\left(\mathrm{DBP}_{2}\right.$, resp.) is implied by $\mathrm{DDH}_{1}\left(\mathrm{DDH}_{2}\right.$, resp.) and the reduction is tight [4]. Thus the following holds.

Lemma 1. $S X D H \Rightarrow D B P_{1} \wedge D B P_{2}$. In particular, $\operatorname{Adv}_{\mathcal{G}, \mathcal{A}}^{d b p 1}(\lambda)+\operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{d b p}(\lambda) \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{C}}^{s x d h}(\lambda)$ holds.
Note that the double pairing assumption does not hold in Type-I groups since $Z=G_{r}, R=G_{z}$ is a trivial solution. The following analogous assumption will be useful in Type-I groups.

Definition 6 (Simultaneous Double Pairing Assumption [12]: SDP).

The SDP assumption holds if, for any polynomial-time \mathcal{A}, advantage $\operatorname{Adv}_{\mathcal{G}, \mathcal{A}}^{\text {sdp }}(\lambda) \stackrel{\text { def }}{=} \operatorname{Pr}\left[1=e\left(G_{z}, Z\right) e\left(G_{r}, R\right) \wedge 1=\right.$ $\left.e\left(H_{z}, Z\right) e\left(H_{s}, S\right) \wedge Z \in \mathbb{G}^{*} \mid \Lambda \leftarrow \mathcal{G}\left(1^{\lambda}\right) ;\left(G_{z}, G_{r}, H_{z}, H_{s}\right) \leftarrow \mathbb{G}^{* 4} ;(Z, R, S) \leftarrow \mathcal{A}\left(\Lambda, G_{z}, G_{r}, H_{z}, H_{s}\right)\right]$ is negligible in λ.

As shown in [12] for the Type-I setting, the simultaneous double pairing assumption holds for \mathcal{G} if the decision linear assumption holds for \mathcal{G}.

Lemma 2. DLIN \Rightarrow SDP. In particular, $\operatorname{Adv}_{\mathcal{G}, \mathcal{A}}^{\text {sdp }}(\lambda) \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\text {dlin }}(\lambda)$ holds.

3 Definitions

3.1 Common setup

All building blocks make use of a common setup algorithm Setup that takes the security parameter 1^{λ} and outputs a global parameters $g k$ that is given to all other algorithms. Usually $g k$ consists of a description Λ of a bilinear group setup and a default generator for each group. In this paper, we include several additional generators in $g k$ for technical reasons. Note that when the resulting signature scheme is used in multi-user applications different additional generators need to be assigned to individual users or one needs to fall back on the common reference string model, whereas Λ and the default generators can be shared. Thus we count the size of $g k$ when we assess the efficiency of concrete instantiations. For ease of notation, we make $g k$ implicit except w.r.t. key generation algorithms.

3.2 Signature schemes

We use the following syntax for signature schemes suitable for the multi-user and multi-algorithm setting. The key generation function takes global parameter $g k$ generated by Setup (usually it takes security parameter 1^{λ}), and the message space \mathcal{M} is determined solely from $g k$ (usually it is determined from a public-key).

Definition 7 (Signature Scheme). A signature scheme SIG is a tuple of three polynomial-time algorithms (Key, Sign, Vrf) that;

- SIG.Key $(g k)$ is a probabilistic algorithm that generates a long-term public-key $v k$ and a secret-key $s k$.
- SIG.Sign $(s k, m s g)$ is an algorithm that takes $s k$ and message $m s g$, and outputs signature σ.
- SIG.Vrf $(v k, m s g, \sigma)$ outputs 1 for acceptance or 0 for rejection.

Correctness requires that $1=\operatorname{SIG} . \operatorname{Vrf}(v k, m s g, \sigma)$ holds for any $g k$ generated by Setup, any keys generated as $(v k, s k) \leftarrow$ $\operatorname{SIG} . \operatorname{Key}(g k)$, any message $m s g \in \mathcal{M}$, and any signature $\sigma \leftarrow \operatorname{SIG}$.Sign $(s k, m s g)$.

Definition 8 (Attack Game(ATK)). Let $\mathcal{O} \operatorname{sig}$ be an oracle and \mathcal{A} be an oracle algorithm. We define a default attack game that consists of the following sequence of algorithm calls:

$$
\operatorname{ATK}(\mathcal{A}, \lambda)=\left[\begin{array}{l}
g k \leftarrow \operatorname{Setup}\left(1^{\lambda}\right), \tag{1}\\
(v k, s k) \leftarrow \operatorname{SIG} \cdot \operatorname{Key}(g k), \\
\left(\sigma^{\dagger}, m s g^{\dagger}\right) \leftarrow \mathcal{A}^{\mathcal{O} s i g}(v k)
\end{array}\right]
$$

Let Q_{m} be messages observed by \mathcal{A}. The result of ATK is $\left(v k, \sigma^{\dagger}, m s g^{\dagger}, Q_{m}\right)$.
Definition 9 (Adaptive Chosen-Message Attack (CMA)). Adaptive chosen message attack security is defined by the attack game ATK where oracle $\mathcal{O} s i g$ is the signing oracle that, on receiving a message $m s g$, performs $\sigma \leftarrow \operatorname{SIG}$. Sign $(s k, m s g)$, and returns σ.

Definition 10 (Random Message Attack (RMA)[17]). Random message attack security is defined by the attack game ATK where oracle $\mathcal{O} \operatorname{sig}$ is as follows: on receiving a request, it chooses $m s g$ uniformly from \mathcal{M} defined by $g k$, computes $\sigma \leftarrow$ SIG.Sign $(s k, m s g)$, and returns ($\sigma, m s g$).

Let MSGGen be a uniform message generator. It is a probabilistic algorithm that takes $g k$ and outputs $m s g \in \mathcal{M}$ that distributes uniformly over \mathcal{M}. Furthermore, MSGGen outputs auxiliary information aux that may give a hint about the random coins used for selecting $m s g$.

Definition 11 (Extended Random Message Attack (XRMA)). Extended random message attack is attack game ATK where oracle \mathcal{O} sig is the following. On receiving a request, it runs $(m s g, a u x) \leftarrow \operatorname{MSGGen}(g k)$, computes $\sigma \leftarrow \operatorname{SIG}$. Sign $(s k, m s g)$, and returns ($\sigma, m s g, a u x$).

Definition 12 (Non-Adaptive Chosen-Message Attack (NACMA)). Non-adaptive chosen message attack security is defined by the following attack game:

$$
\operatorname{NACMA}(\mathcal{A}, \lambda)=\left[\begin{array}{l}
g k \leftarrow \operatorname{Setup}\left(1^{\lambda}\right) \tag{2}\\
m \vec{s} g \leftarrow \mathcal{A}(g k), \\
(v k, s k) \leftarrow \operatorname{SIG} \cdot \operatorname{Key}(g k), \vec{\sigma} \leftarrow \operatorname{SIG} \cdot \operatorname{Sign}(s k, m \vec{s} g) \\
\left(\sigma^{\dagger}, m s g^{\dagger}\right) \leftarrow \mathcal{A}(v k, \vec{\sigma})
\end{array}\right]
$$

For an attack ATK $\in\{$ CMA, NACMA, RMA, XRMA $\}$, we define unforgeability as follows.
Definition 13 (Unforgeability against ATK). Signature scheme SIG is unforgeable against attack ATK (UF-ATK), if for all polynomial-time oracle algorithm \mathcal{A} the advantage function $\operatorname{Adv}_{\mathrm{SIG}, \mathcal{A}}^{\mathrm{ut} \text {-atk }}$ is negligible in λ, where

$$
\operatorname{Adv}_{\mathrm{SIG}, \mathcal{A}}^{\mathrm{uf}-a \operatorname{}(\lambda)}(\lambda)=\operatorname{Pr}\left[\left.\begin{array}{l}
m s g^{\dagger} \notin Q_{m} \wedge \tag{3}\\
1=\operatorname{SIG} \cdot \operatorname{Vrf}\left(v k, \sigma^{\dagger}, m s g^{\dagger}\right)
\end{array} \right\rvert\,\left(v k, \sigma^{\dagger}, m s g^{\dagger}, Q_{m}\right) \leftarrow \operatorname{ATK}(\mathcal{A}, \lambda)\right]
$$

Fact 1. UF-CMA \Rightarrow UF-NACMA \Rightarrow UF-XRMA \Rightarrow UF-RMA, i.e., $\operatorname{Adv}_{\operatorname{SIG}, \mathcal{A}}^{\text {uf-cma }}(\lambda) \geq \operatorname{Adv}_{\mathrm{SIG}, \mathcal{A}}^{\text {uf-nacma }}(\lambda) \geq \operatorname{Adv}_{\mathrm{SIG}, \mathcal{A}}^{\text {uf-xra }}(\lambda)$ $\geq \operatorname{Adv}_{\text {SIG }}^{\text {uf }, \mathcal{A}}$ ((λ).

3.3 Partial one-time and tagged one-time signatures

Partial one-time signatures, also known as two-tier signatures [9], are a variation of one-time signatures where only part of the public-key must be updated for every signing, while the remaining part can be persistent.

Definition 14 (Partial One-Time Signature Scheme [9]). A partial one-time signatures scheme POS is a set of polynomialtime algorithms POS. \{Key, Update, Sign, Vrf\}.

- POS.Key $(g k)$ generates a long-term public-key $p k$ and a secret-key $s k$. The message space \mathcal{M}_{o} is associated with $p k$. (Recall however, that we require that \mathcal{M}_{o} be completely defined by $g k$.)
- POS.Update() takes $g k$ as implicit input, and outputs a pair of one-time keys (opk,osk). We denote the space for ${ }_{o p k}$ by $\mathcal{K}_{o p k}$.
- POS.Sign $(s k, m s g, o s k)$ outputs a signature σ on message $m s g$ based on secret-keys $s k$ and $o s k$.
- POS.Vrf $(p k, o p k, m s g, \sigma)$ outputs 1 for acceptance, or 0 for rejection.

For correctness, it is required that $1=\operatorname{POS} . \operatorname{Vrf}(p k, o p k, m s g, \sigma)$ holds except for negligible probability for any $g k$, $p k$, opk, σ, and $m s g \in \mathcal{M}_{o}$, such that $g k \leftarrow \operatorname{Setup}\left(1^{\lambda}\right),(p k, s k) \leftarrow \operatorname{POS} . \operatorname{Key}(g k),(o p k, o s k) \leftarrow \operatorname{POS}$.Update () , $\sigma \leftarrow$ POS.Sign $(s k, m s g, o s k)$.

A tagged one-time signature scheme is a signature scheme whose signing function in addition to the long-term secret key takes a tag as input. A tag is one-time, i.e., it must be different for every signing.

Definition 15 (Tagged One-Time Signature Scheme). A tagged one-time signature scheme TOS is a set of polynomialtime algorithms TOS. $\{$ Key, Tag, Sign, Vrf \}.

- TOS.Key $(g k)$ generates a long-term public-key $p k$ and a secret-key $s k$. The message space \mathcal{M}_{t} is associated with $p k$.
- TOS.Tag() takes $g k$ as implicit input and outputs tag. By \mathcal{T}, we denote the space for tag.
- TOS.Sign $(s k, m s g, t a g)$ outputs signature σ for message $m s g$ based on secret-key $s k$ and tag tag.
- TOS. $\operatorname{Vrf}(p k, t a g, m s g, \sigma)$ outputs 1 for acceptance, or 0 for rejection.

Correctness requires that $1=\mathrm{TOS} \cdot \operatorname{Vrf}(p k, \operatorname{tag}, m s g, \sigma)$ holds except for negligible probability for any $g k, p k, t a g, \sigma$, and $m s g \in \mathcal{M}_{t}$, such that $g k \leftarrow \operatorname{Setup}\left(1^{\lambda}\right),(p k, s k) \leftarrow \operatorname{TOS} . \operatorname{Key}(g k), t a g \leftarrow \operatorname{TOS} . \operatorname{Tag}(), \sigma \leftarrow \operatorname{TOS}$.Sign $(s k, m s g, t a g)$.

A TOS scheme is POS scheme for which $\operatorname{tag}=o s k=o p k$. We can thus give a security notion for POS schemes that also applies to TOS schemes by reading Update $=$ Tag and $t a g=o s k=o p k$.

Definition 16 (Unforgeability against One-Time Adapative Chosen-Message Attacks). A partial one-time signature scheme is unforgeable against one-time adaptive chosen message attacks (OT-CMA) if for all polynomial-time oracle algorithm \mathcal{A} the advantage function $\operatorname{Adv}_{\mathrm{POS}, \mathcal{A}}^{\mathrm{ot-cma}}$ is negligible in λ, where

$$
\operatorname{Adv}_{\mathrm{POS}, \mathcal{A}}^{\mathrm{ot-cma}}(\lambda)=\operatorname{Pr}\left[\begin{array}{l|l}
\exists(o p k, m s g) \in Q_{m} \text { s.t. } & g k \leftarrow \operatorname{Setup}\left(1^{\lambda}\right), \tag{4}\\
o p k^{\dagger}=o p k \wedge m s g^{\dagger} \neq m s g \wedge & (p k, s k) \leftarrow \operatorname{POS} . \operatorname{Key}(g k), \\
1=\operatorname{POS} . \operatorname{Vrf}\left(p k, o p k^{\dagger}, \sigma^{\dagger}, m s g^{\dagger}\right) & \left(o p k^{\dagger}, \sigma^{\dagger}, m s g^{\dagger}\right) \leftarrow \mathcal{A}^{\mathcal{O t}, \mathcal{O} s i g}(p k)
\end{array}\right] .
$$

$\mathcal{O} t$ is the one-time key generation oracle that on receiving a request invokes a fresh session j, performs $\left(o p k_{j}\right.$,osk $k_{j} \leftarrow$ POS.Update(), and returns $o p k_{j}$. \mathcal{O} sig is the signing oracle that, on receiving a message $m s g_{j}$ for session j, performs $\sigma_{j} \leftarrow \mathrm{POS} . \operatorname{Sign}\left(s k, m s g_{j}, o s k_{j}\right)$, returns σ_{j} to \mathcal{A}, and records $\left(o p k_{j}, m s g_{j}\right)$ in the list Q_{m}, which is initially empty. \mathcal{O} sig works only once for every session.

We define a non-adaptive variant (OT-NACMA) of the above notion by integrating $\mathcal{O} t$ into $\mathcal{O} \operatorname{sig}$ so that $o p k_{j}$ and σ_{j} are returned to \mathcal{A} at the same time. Namely, \mathcal{A} must submit $m s g_{j}$ before seeing $o p k_{j}$. $\operatorname{By} \operatorname{Adv} \operatorname{AOS}_{\mathrm{PO}, \mathcal{A}}^{\mathrm{ot}}(\lambda)$ we denote the advantage of \mathcal{A} in this non-adaptive case. For TOS, we use the same notations, OT-CMA and OT-NACMA, and define advantage functions $\mathrm{Adv}_{\mathrm{TOS}, \mathcal{A}}^{\mathrm{ot}-\mathrm{cma}}$ and $\operatorname{Adv} \mathrm{TOS}_{\mathrm{TO}, \mathcal{A}}^{\mathrm{ot}}, \mathcal{A}$ accordingly.

We define a condition that is relevant for coupling random message secure signature schemes with partial one-time and tagged one-time signature schemes in later sections.

Definition 17 (Tag/One-time Public-Key Uniformity). TOS is called uniform-tag if TOS.Tag outputs tag that uniformly distributes over tag space \mathcal{T}. Similarly, POS is called uniform-key if POS. Update outputs opk that uniformly distributes over key space $\mathcal{K}_{\text {opk }}$.

3.4 Structure-preserving signatures

A signature scheme is structure-preserving over a bilinear group Λ, if public-keys, signatures, and messages are all base group elements of Λ, and the verification only evaluates pairing product equations. Similarly, partial one-time signature schemes are structure-preserving if their public-keys, signatures, messages, and tags or one-time public-keys consist of base group elements and the verification only evaluates pairing product equations.

4 Generic Constructions

4.1 SIG1: Combining tagged one-time and RMA-secure signatures

Let rSIG be a signature scheme with message space \mathcal{M}_{r}, and TOS be a tagged one-time signature scheme with tag space \mathcal{T} such that $\mathcal{M}_{\mathrm{r}}=\mathcal{T}$. We construct a signature scheme SIG1 from rSIG and TOS. Let $g k$ be a global parameter generated by Setup (1^{λ}).

- SIG1.Key $(g k):$ Run $\left(p k_{t}, s k_{t}\right) \leftarrow \operatorname{TOS.Key}(g k),\left(v k_{r}, s k_{r}\right) \leftarrow \operatorname{rSIG} . \operatorname{Key}(g k)$. Output $v k:=\left(p k_{t}, v k_{r}\right)$ and $s k:=$ $\left(s k_{t}, s k_{r}\right)$.
- SIG1.Sign $(s k, m s g)$: Parse $s k$ into $\left(s k_{t}, s k_{r}\right)$. Run $t a g \leftarrow \operatorname{TOS} . \operatorname{Tag}(), \sigma_{t} \leftarrow \operatorname{TOS} . \operatorname{Sign}\left(s k_{t}, m s g, t a g\right), \sigma_{r} \leftarrow$ rSIG.Sign $\left(s k_{r}, \operatorname{tag}\right)$. Output $\sigma:=\left(\operatorname{tag}, \sigma_{t}, \sigma_{r}\right)$.
- SIG1.Vrf $(v k, \sigma, m s g)$: Parse $v k$ and σ accordingly. Output 1 , if $1=\operatorname{TOS} . \operatorname{Vrf}\left(p k_{t}, t a g, \sigma_{t}, m s g\right)$ and $1=\operatorname{rSIG} . \operatorname{Vrf}\left(v k_{r}, \sigma_{r}, t a g\right)$. Output 0, otherwise.

We prove the security of the above construction by showing a reduction to the security of each component. As our reductions are efficient in their running time, we only relate success probabilities.

Theorem 1. SIG1 is unforgeable against adaptive chosen message attacks (UF-CMA) if TOS is uniform-tag and unforgeable against one-time non-adaptive chosen message attacks (OT-NACMA), and rSIG is unforgeable against random message attacks $(U F-R M A)$. In particular, $\operatorname{Adv}_{S I G 1, \mathcal{A}}^{u f-c m a}(\lambda) \leq \operatorname{Adv}_{T O S, \mathcal{B}}^{o t-n a c m a}(\lambda)+\operatorname{Adv}_{r S I G, \mathcal{C}}^{u f-r m a}(\lambda)$.

Proof. Any signature that is accepted by the verification algorithm must either reuse an existing tag, or sign a new tag. The
 of an attacker on TOS and the success probability $\operatorname{Adv}_{\text {rSIG }, \mathcal{C}}^{\text {uffrma }}(\lambda)$ of an attacker on rSIG.

Game 0: The actual Unforgeability game. $\operatorname{Pr}[$ Game $\mathbf{0}]=\operatorname{Adv}_{\operatorname{SiG} 1, \mathcal{A}}^{\text {uf-cma }}(\lambda)$.
Game 1: The real security game except that the winning condition is changed to no longer accept repetition of tags.
Lemma 3. $\mid \operatorname{Pr}[$ Game 0 $]-\operatorname{Pr}[$ Game 1 $] \mid \leq \operatorname{Adv}_{T O S, \mathcal{B}}^{\text {ot-nacma }}(\lambda)$
Proof. Attacker \mathcal{A} wins in Game 0, but loses in Game 1, iff it produces a forgery that reuses a tag from a signing query. We describe a reduction \mathcal{B} that use such an attacker to break the OT-NACMA-security of TOS The reduction \mathcal{B} receives $g k$ and $p k_{t}$ from the challenger of TOS, sets up $v k_{r}$ and $s k_{r}$ honestly by running rSIG.Key $(g k)$, and provides $g k$ and $v k=\left(v k_{r}, p k_{t}\right)$ to \mathcal{A}.

To answer a signing query, \mathcal{B} uses the signing oracle of TOS to get tag and σ_{t}, signs tag using $s k_{r}$ to produce σ_{r}, and returns (tag, σ_{t}, σ_{r}). When \mathcal{A} produces a forgery $\left(t a g^{\dagger}, \sigma_{t}^{\dagger}, \sigma_{r}^{\dagger}\right.$) on message $m s g^{\dagger}, \mathcal{B}$ outputs ($m s g^{\dagger}, t a g^{\dagger}, \sigma_{t}^{\dagger}$) as a forgery for TOS.

Game 2: The fully idealized game. The winning condition is changed to reject all signatures.
Lemma 4. $\mid \operatorname{Pr}\left[\right.$ Game 1] $-\operatorname{Pr}[$ Game 2 $] \mid \leq \operatorname{Adv}_{r S I G, \mathcal{C}}^{u f-r m a}(\lambda)$
Proof. Attacker \mathcal{A} wins in Game 1, iff it produces a forgery with a fresh tag. We describe a reduction \mathcal{C} that use \mathcal{A} to break the UF-RMA security of rSIG. Algorithm \mathcal{C} receives $g k$ and $v k_{r}$, runs $\left(p k_{t}, s k_{t}\right) \leftarrow \operatorname{TOS}$.Key $(g k)$, and provides $g k$ and $v k=\left(v k_{r}, p k_{t}\right)$ to \mathcal{A}.
To answer signing query on message $m s g, \mathcal{C}$ consults $\mathcal{O} \operatorname{sig}$ and receives random message $m s g_{r}$ and signature σ_{r}. \mathcal{C} then uses $m s g_{r}$ as a tag, i.e., $t a g=m s g_{r}$, and create signature σ_{t} on $m s g$ by running $\operatorname{TOS} . \operatorname{Sign}\left(s k_{t}, m s g\right.$, tag $)$. It then returns $\left(t a g, \sigma_{t}, \sigma_{r}\right)$. Note that for a uniform-tag TOS scheme these tags distribute uniformly over the tag space. Thus the reduction simulation is perfect. When \mathcal{A} produces a forgery $\left(t a g^{\dagger}, \sigma_{t}^{\dagger}, \sigma_{r}^{\dagger}\right)$ on $m s g^{\dagger}$, reduction \mathcal{C} outputs $\left(t a g^{\dagger}, \sigma_{r}^{\dagger}\right)$ as a forgery.
$\operatorname{Thus} \operatorname{Adv}_{\operatorname{SIG} 1, \mathcal{A}}^{\text {uf-cma }}(\lambda)=\operatorname{Pr}[$ Game $\mathbf{0}] \leq \operatorname{Adv}_{\text {TOS }, \mathcal{B}}^{\text {ot-nacma }}(\lambda)+\operatorname{Adv}_{\mathrm{rSIG}, \mathcal{C}}^{\text {uf-rma }}(\lambda)$ as claimed.

Theorem 2. If TOS. Tag produces constant-size tags and signatures in the size of input messages, the resulting SIG1 produces constant-size signatures as well. Furthermore, if TOS and rSIG are structure-preserving, so is SIG1. (We omit the proof as it is done simply by examining the construction.)

4.2 SIG2: Combining partial one-time and XRMA-secure signatures

Let xSIG be a signature scheme with message space \mathcal{M}_{x}, and POS be a partial one-time signature scheme with one-time public-key space $\mathcal{K}_{o p k}$ such that $\mathcal{M}_{\mathrm{x}}=\mathcal{K}_{o p k}$. We construct a signature scheme SIG2 from xSIG and POS. Let $g k$ be a global parameter generated by $\operatorname{Setup}\left(1^{\lambda}\right)$.

- SIG2.Key $(g k)$: Run $\left(p k_{t}, s k_{t}\right) \leftarrow \operatorname{POS} . \operatorname{Key}(g k),\left(v k_{x}, s k_{x}\right) \leftarrow \operatorname{xSIG.Key}(g k)$. Output $v k:=\left(p k_{t}, v k_{x}\right)$ and $s k:=\left(s k_{t}, s k_{x}\right)$.
- SIG2.Sign $(s k, m s g)$: Parse $s k$ into $\left(s k_{t}, s k_{x}\right)$. Run $(o p k, o s k) \leftarrow \operatorname{POS}$.Update ()$, \sigma_{t} \leftarrow \operatorname{POS} . \operatorname{Sign}\left(s k_{t}, m s g, o s k\right)$, $\sigma_{x} \leftarrow \mathrm{xSIG} . \operatorname{Sign}\left(s k_{x}, o p k\right)$. Output $\sigma:=\left(o p k, \sigma_{t}, \sigma_{x}\right)$.
- SIG2. $\operatorname{Vrf}(v k, \sigma, m s g):$ Parse $v k$ and σ accordingly. Output 1 if $1=\operatorname{POS} . \operatorname{Vrf}\left(p k_{t}, o p k, \sigma_{t}, m s g\right)$, and $1=\mathrm{xSIG} . \operatorname{Vrf}\left(v k_{x}\right.$, $\left.\sigma_{x}, o p k\right)$. Output 0 , otherwise.

Theorem 3. SIG2 is unforgeable against adaptive chosen message attacks (UF-CMA) if POS is uniform-key and unforgeable against one-time non-adaptive chosen message attacks (OT-NACMA), and $x S I G$ is unforgeable against extended random message attacks (UF-XRMA) with respect to POS. Update as the message generator. In particular, Adv $\operatorname{Sigh2,\mathcal {A}2}(\lambda) \leq$ $\operatorname{Adv}_{P O S, \mathcal{B}}^{\text {ot-nacma }}(\lambda)+\operatorname{Adv}_{x S I G, \mathcal{C}}^{u f-x r m a}(\lambda)$.

Proof. The proof is almost the same as that for Theorem 1. The only difference appears in constructing \mathcal{C} in the second step. Since POS.Update is used as the extended random message generator, the pair ($\mathrm{msg}, a u x$) is in fact (opk, osk). Given ($o p k, o s k$), adversary \mathcal{C} can run POS.Sign $(s k, m s g$, osk) to yield legitimate signatures.

As for our first generic construction, the following theorem holds immediately from the construction.
Theorem 4. If POS produces constant-size one-time public-keys and signatures in the size of input messages, resulting SIG2 produces constant-size signatures as well. Furthermore, if POS and xSIG are structure-preserving, so is SIG2.

5 Instantiating SIG1

We instantiate the building blocks TOS and rSIG of our first generic construction to obtain our first SPS scheme. We do so in Type-I bilinear group setting. The resulting SIG1 scheme is an efficient structure-preserving signature scheme based only on the DLIN assumption.

5.1 Setup

The following setup procedure is common for all instantiations in this section. The global parameter $g k$ is given to all functions implicitly.
$\operatorname{Setup}\left(1^{\lambda}\right):$ Run $\Lambda \leftarrow \mathcal{G}\left(1^{\lambda}\right)$ and choose random generators $\left(G, C, F, U_{1}, U_{2}\right) \leftarrow \mathbb{G}^{* 5}$. Output $g k:=\left(\Lambda, G, C, F, U_{1}, U_{2}\right)$.
The parameters $g k$ also fix the message space $\mathcal{M}_{\mathrm{r}}:=\left\{\left(C^{m_{1}}, C^{m_{2}}, F^{m_{1}}, F^{m_{2}}, U_{1}^{m_{1}}, U_{2}^{m_{2}}\right) \in \mathbb{G}^{6} \mid\left(m_{1}, m_{2}\right) \in \mathbb{Z}_{p}^{2}\right\}$ for the RMA-secure signature scheme defined below. For our generic framework to work, the tagged one-time signature schemes should have the same tag space.

5.2 Tagged one-time signature scheme

Our tagged one-time scheme is inspired by the commitment scheme in [28].

[Scheme TOS]

TOS. $\operatorname{Key}(g k)$: Parse $g k=\left(\Lambda, G, C, F, U_{1}, U_{2}\right)$. Pick random $x_{r}, y_{r}, x_{s}, y_{s}, x_{t}, y_{t}, x_{1}, y_{1}, \ldots, x_{k}, y_{k}$ in \mathbb{Z}_{p} such that such that $x_{r} y_{s} \neq x_{s} y_{r}$ and compute $G_{r}:=G^{x_{r}}, H_{r}:=G^{y_{r}}, G_{s}:=G^{x_{s}}, H_{s}:=G^{y_{s}}, G_{t}:=G^{x_{t}}, H_{t}:=G^{y_{t}}, G_{0}:=$ $G^{x_{0}}, H_{0}:=G^{y_{0}}, \ldots, G_{k}:=G^{x_{k}}, H_{k}:=G^{y_{k}}$. Output $p k:=\left(G_{r}, G_{s}, G_{t}, H_{r}, H_{s}, H_{t}, G_{0}, \ldots, G_{k}, H_{0}, \ldots, H_{k}\right)$ and $s k:=\left(x_{r}, x_{s}, x_{t}, y_{r}, y_{s}, y_{t}, x_{0}, \ldots, x_{k}, y_{0}, \ldots, y_{k}\right)$

TOS.Tag(): Take generators G, C, F, U_{1}, U_{2} from $g k$. Choose $w_{1}, w_{2} \leftarrow \mathbb{Z}_{p}^{*}$ and compute tag $:=\left(C^{w_{1}}, C^{w_{2}}, F^{w_{1}}, F^{w_{2}}\right.$, $\left.U_{1}^{w_{1}}, U_{2}^{w_{2}}\right)$. Output tag.

TOS.Sign $(s k, m s g, t a g)$: Parse $m s g$ to $\left(M_{1}, \ldots, M_{k}\right)$ and tag to $\left(T_{1}, T_{2}, \ldots\right)$. Parse $s k$ accordingly. Choose random $m \leftarrow$ \mathbb{Z}_{p} and let value $M_{0}:=G^{m} \prod_{i=1}^{k} M_{i}^{-1}$. (Note that this is uniformly distributed.) Compute $A:=G^{-x_{t}} T_{1}^{-m} \prod_{i=0}^{k} M_{i}^{-x_{i}}$ and $B:=G^{-y_{t}} T_{2}^{-m} \prod_{i=0}^{k} M_{i}^{-y_{i}}$. Since $x_{r} y_{s} \neq x_{s} y_{r}$ we can compute $\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)=\left(\begin{array}{lll}x_{r} & x_{s} \\ y_{r} & y_{s}\end{array}\right)^{-1}$. (The determinant is nonzero.) Compute $Z:=A^{\alpha} B^{\beta}$ and $W:=A^{\gamma} B^{\delta}$. Output $\sigma:=\left(Z, W, M_{0}\right)$.

TOS. $\operatorname{Vrf}(p k, t a g, m s g, \sigma):$ Parse the input accordingly. Accept if the following two equalities hold:

$$
\begin{aligned}
& e\left(G_{r}, Z\right) \cdot e\left(G_{s}, W\right) \cdot e\left(G_{t}, G\right) \prod_{i=0}^{k} e\left(G_{i} T_{1}, M_{i}\right)=1 \\
& e\left(H_{r}, Z\right) \cdot e\left(H_{s}, W\right) \cdot e\left(H_{t}, G\right) \prod_{i=0}^{k} e\left(H_{i} T_{2}, M_{i}\right)=1
\end{aligned}
$$

We remark that the correctness of the extended tag $\left(T_{3}, \ldots, T_{6}\right)$ is not examined within this scheme. (We only need to show that the extended part is simulatable in the security proof.) Since the tag is given to SIGr as a message, it is the verification function of SIGr that verifies the correctness with respect to its message space, which is the same as the tag space.

The scheme is obviously structure-preserving and the correctness is verified by inspecting the following relations. First, observe that

$$
\begin{aligned}
e\left(G_{r}, Z\right) \cdot e\left(G_{s}, W\right) & =e\left(G^{x_{r}}, A^{\alpha} B^{\beta}\right) \cdot e\left(G^{x_{s}}, A^{\gamma} B^{\delta}\right) \\
& =e\left(G, A^{x_{r} \alpha+x_{s} \gamma}\right) e\left(G, B^{x_{r} \beta+x_{s} \delta}\right) \\
& =e(G, A)
\end{aligned}
$$

Second, observe that

$$
\begin{aligned}
\prod_{i=0}^{k} e\left(G_{i} T_{1}, M_{i}\right) & =e\left(T_{1}, \prod_{i=0}^{k} M_{i}\right) \prod_{i=0}^{k} e\left(G_{i}, M_{i}\right) \\
& =e\left(T_{1}, G^{m} \prod_{i=1}^{k} M_{i}^{-1} \prod_{i=1}^{k} M_{i}\right) \prod_{i=0}^{k} e\left(G_{i}, M_{i}\right) \\
& =e\left(T_{1}, G^{m}\right) \prod_{i=0}^{k} e\left(G_{i}, M_{i}\right)
\end{aligned}
$$

Third, observe that

$$
\begin{aligned}
e(G, A) & =e\left(G, G^{-x_{t}} T_{1}^{-m} \prod_{i=0}^{k} M_{i}^{-x_{i}}\right) \\
& =e\left(G_{t}, G^{-1}\right) e\left(T_{1}, G^{-m}\right) \prod_{i=0}^{k} e\left(G_{i}, M_{i}^{-1}\right)
\end{aligned}
$$

Using these three observations, one can check that

$$
\begin{aligned}
& e\left(G_{r}, Z\right) \cdot e\left(G_{s}, W\right) \cdot e\left(G_{t}, G\right) \prod_{i=0}^{k} e\left(G_{i} T_{1}, M_{i}\right) \\
& =e(G, A) \cdot e\left(G_{t}, G\right) \prod_{i=0}^{k} e\left(G_{i} T_{1}, M_{i}\right) \\
& =e(G, A) \cdot e\left(G_{t}, G\right) e\left(T_{1}, G^{m}\right) \prod_{i=0}^{k} e\left(G_{i}, M_{i}\right) \\
& =e\left(G_{t}, G^{-1}\right) e\left(T_{1}, G^{-m}\right) \prod_{i=0}^{k} e\left(G_{i}, M_{i}^{-1}\right) \cdot e\left(G_{t}, G\right) e\left(T_{1}, G^{m}\right) \prod_{i=0}^{k} e\left(G_{i}, M_{i}\right)
\end{aligned}
$$

$$
=1
$$

The second verification equation is checked analogously.
Theorem 5. The above TOS scheme is unforgeable against one-time adaptive chosen message attacks under the simultaneous double pairing assumption. In particular, for any \mathcal{A} that makes at most q_{s} signing queries, Adv TOS, $\mathcal{A}(\lambda) \leq$ $q_{s} \cdot \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\text {sdp }}(\lambda)+1 / p$ holds.
Proof. Here, we will show that the Tagged One-Time signature scheme described in section 5 satisfies one-time chosen message attack (OT-CMA) security. The reduction gets $\Lambda, G_{r}, G_{s}, H_{r}, H_{s}$, and proceeds as follows.

Setup and Key Generation It chooses ξ, η, μ and sets $G_{t}:=G_{r}^{\xi} G_{s}^{\eta}$, and $H_{t}:=H_{r}^{\xi} H_{s}^{\mu}$. It chooses $G \in \mathbb{G}$ and random $\omega, \nu, \nu_{1}, \nu_{2}$, and computes $g k=\left(\Lambda, C, F, U_{1}, U_{2}\right)=\left(\Lambda, G^{\omega}, G^{\omega \nu}, G^{\omega \nu_{1}}, G^{\omega \nu_{2}}\right)$. It chooses random $\rho_{i}, \sigma_{i}, \tau_{i}$, computes $G_{i}=G_{r}^{\rho_{i}} G_{s}^{\sigma_{i}} G_{t}^{\tau_{i}}=G_{r}^{\rho_{i}+\xi \tau_{i}} G_{s}^{\sigma_{i}+\eta \tau_{i}}$ and $H_{i}=H_{r}^{\rho_{i}} H_{s}^{\sigma_{i}} H_{t}^{\tau_{i}}=H_{r}^{\rho_{i}+\xi \tau_{i}} H_{s}^{\sigma_{i}+\mu \tau_{i}}$ for $i=0 \ldots k$, and sets $p k=\left(G, G_{r}, G_{s}, G_{t}, H_{r}, H_{s}, H_{t}, G_{0}, \ldots G_{k}, H_{0}, \ldots, H_{k}\right)$. (Note that G_{i}, H_{i} are correctly distributed and give no information about τ_{i}.) It sends $p k, g k$ to the adversary. The reduction will pick a random session j^{*}, and assume that the adversary will try to reuse tag from that session.

Queries to oracle $\mathcal{O} t \quad$ When the adversary makes a query to the tag oracle $\mathcal{O} t$, choose the next new session index j.

- For session $j \neq j^{*}$: Pick random values $\rho, \sigma, \tau \leftarrow \mathbb{Z}_{p}$. Compute $\left(T_{1}, T_{2}\right)=\left(G_{r}^{\rho} G_{s}^{\sigma} G_{t}^{\tau}, H_{r}^{\rho} H_{s}^{\sigma} H_{t}^{\tau}\right)=\left(G_{r}^{\rho+\xi \tau}\right.$ $\left.G_{s}^{\sigma+\eta \tau}, H_{r}^{\rho+\xi \tau} H_{s}^{\sigma+\mu \tau}\right)$, and set $T=\left(T_{1}, T_{2}, T_{1}^{\nu}, T_{2}^{\nu}, T_{1}^{\nu_{1}}, T_{2}^{\nu_{2}}\right)$. Store (j, ρ, σ, τ), and return T to the adversary.
- For session j^{*}. Pick random values $\rho, \sigma \leftarrow \mathbb{Z}_{p}$. Compute $\left(T_{1}, T_{2}\right)=\left(G_{r}^{\rho} G_{s}^{\sigma}, H_{r}^{\rho} H_{s}^{\sigma}\right)$. Let $T=\left(T_{1}, T_{2}, T_{1}^{\nu}, T_{2}^{\nu}\right.$, $T_{1}^{\nu_{1}}, T_{2}^{\nu_{2}}$). Store (j^{*}, ρ, σ), and return T to the adversary.
Queries to oracle $\mathcal{O} \operatorname{sig} \quad$ When the adversary queries $\mathcal{O} \operatorname{sig}$ for message $M=\left(M_{1}, \ldots, M_{k}\right) \in \mathbb{G}^{k}$ and session j, proceed as follows.
- If the $\mathcal{O} t$ has not yet produced a tag for session j, or $\mathcal{O} \operatorname{sig}$ has already been queried for session j, return \perp.
- For session $j \neq j^{*}$: Look up the stored tuple (j, ρ, σ, τ). Compute $M_{0}=\left(G \prod_{i=1}^{k} M_{i}^{\tau+\tau_{i}}\right)^{-\frac{1}{\tau_{0}+\tau}}$. Note that for this choice of M_{0}, it will be the case that

$$
e\left(G_{t}, G\right) \prod_{i=0}^{k} e\left(G_{t}^{\tau_{i}+\tau}, M_{i}\right)=e\left(G_{t}, M_{0}^{\tau_{0}+\tau} G \prod_{i=1}^{k} M_{i}^{\tau_{i}+\tau}\right)=e\left(G_{t}, M_{0}^{\tau_{0}+\tau} G \prod_{i=1}^{k} M_{i}^{\tau_{i}+\tau}\right)=1
$$

and similarly

$$
e\left(H_{t}, G\right) \prod_{i=0}^{k} e\left(H_{t}^{\tau_{i}+\tau}, M_{i}\right)=e\left(H_{t}, M_{0}^{\tau_{0}+\tau} G \prod_{i=1}^{k} M_{i}^{\tau_{i}+\tau}\right)=1 .
$$

Note also that the tag is independent of τ, and since τ is uniformly distributed, then M_{0} is independent of $\tau_{0}, \ldots, \tau_{k}$ even given tag. (To see this, let m_{0}, \ldots, m_{k} be the discrete logarithms of M_{0}, \ldots, M_{k} respectively and note that for any choice of $m_{1}, \ldots, m_{k}, \tau_{0}, \ldots, \tau_{k}$ and for any m_{0} such that $m_{0} \neq-\sum_{i=1}^{k} m_{i}$, there is a $\frac{1}{q_{s}}$ chance that we will choose $\tau=\frac{-1-\sum_{i=0}^{k} m_{i} \tau_{i}}{\sum_{i=0}^{k} m_{i}}$ which will yield $M_{0}=\left(G \prod_{i=1}^{k} M_{i}^{\tau_{i}+\tau}\right)^{-\frac{1}{\tau_{0}+\tau}}$.) Now compute

$$
Z=\prod_{i=0}^{k} M_{i}^{-\rho_{i}-\rho} \text { and } W=\prod_{i=0}^{k} M_{i}^{-\sigma_{i}-\sigma}
$$

and output the signature $\left(Z, W, M_{0}\right)$.
Note that these are the unique values such that

$$
\begin{gathered}
e\left(G_{r}, Z\right) \cdot e\left(G_{s}, W\right) \cdot e\left(G_{t}, G\right) \prod_{i=0}^{k} e\left(G_{i} T_{1}, M_{i}\right)=1 \text { and } \\
e\left(H_{r}, Z\right) \cdot e\left(H_{s}, W\right) \cdot e\left(H_{t}, G\right) \prod_{i=0}^{k} e\left(H_{i} T_{2}, M_{i}\right)=1
\end{gathered}
$$

Thus, Z, W are uniquely determined by $M_{0}, M_{1}, \ldots, M_{k}, t a g$, and $p k . M_{1}, \ldots, M_{k}$ are provided by the adversary and, as we have argued, $M_{0}, t a g, p k$ are statistically independent of $\tau_{0}, \ldots, \tau_{k}$. We conclude that Z, W reveal no additional information about $\tau_{0}, \ldots, \tau_{k}$ even given the rest of the adversary's view.

- For session j^{*} : Look up the stored tuple (j, ρ, σ). Let $\left.M_{0}=\left(G \prod_{i=1}^{k} M_{i}^{\tau_{i}}\right)^{-\frac{1}{\tau_{0}}}\right)$. Note that for this choice of M_{0}, it will be the case that

$$
e\left(G_{t}, G\right) \prod_{i=0}^{k} e\left(G_{t}^{\tau_{i}}, M_{i}\right)=e\left(G_{t}, M_{0}^{\tau_{0}} G \prod_{i=1}^{k} M_{i}^{\tau_{i}}\right)=1
$$

and

$$
e\left(H_{t}, G\right) \prod_{i=0}^{k} e\left(H_{t}^{\tau_{i}}, M_{i}\right)=e\left(H_{t}, M_{0}^{\tau_{0}} G \prod_{i=1}^{k} M_{i}^{\tau_{i}}\right)=1
$$

Note that T_{1}, T_{2} are correctly distributed, that M_{0} is statistically close to uniform since $\tau_{0}, \ldots, \tau_{k}$ are chosen at random, and furthermore that the only information revealed about $\tau_{0}, \ldots, \tau_{k}$ is that $G \prod_{i=0}^{k} M_{i}^{\tau_{i}}=1$. Now, compute

$$
Z=\prod_{i=0}^{k} M_{i}^{-\rho_{i}-\rho} \quad \text { and } \quad W=\prod_{i=0}^{k} M_{i}^{-\sigma_{i}-\sigma},
$$

and output the signature $\left(Z, W, M_{0}\right)$. Again all values are independent of $\tau_{0}, \ldots, \tau_{k}$ with the exception now of M_{0}, which is chosen so $G \prod_{i=0}^{k} M_{i}^{\tau_{i}}=1$.

Processing the adversary's forgery Now, suppose that the adversary produces $\left(M_{1}^{\dagger}, \ldots M_{k}^{\dagger}\right)$ and $\left(Z^{\dagger}, W^{\dagger}, M_{0}^{\dagger}, T\right)$ for $T=\left(T_{1}, T_{2}, \ldots\right)$ used in the j^{*} th query. Look up the stored tuple $\left(j^{*}, \rho, \sigma\right)$. Then with non-negligible probability (whenever the adversary succeeds) we have $\operatorname{TOS} . \operatorname{Vrf}\left(p k, T,\left(M_{1}^{\dagger}, \ldots, M_{k}^{\dagger}\right),\left(Z^{\dagger}, W^{\dagger}, M_{0}^{\dagger}\right)\right)=1$. This means

$$
\begin{aligned}
1 & =e\left(G_{r}, Z^{\dagger}\right) e\left(G_{s}, W^{\dagger}\right) e\left(G_{t}, G\right) \prod_{i=0}^{k} e\left(G_{i} T_{1}, M_{i}^{\dagger}\right) \\
& =e\left(G_{r}, Z^{\dagger}\right) e\left(G_{s}, W^{\dagger}\right) e\left(G_{r}^{\xi} G_{s}^{\eta}, G\right) \prod_{i=0}^{k} e\left(G_{r}^{\rho_{i}+\rho+\xi \tau_{i}} G_{s}^{\sigma_{i}+\sigma+\eta \tau_{i}}, M_{i}^{\dagger}\right) \\
& =e\left(G_{r}, Z^{\dagger} G^{\xi} \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\rho_{i}+\rho+\xi \tau_{i}}\right) e\left(G_{s}, W^{\dagger} G^{\eta} \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\sigma_{i}+\sigma+\eta \tau_{i}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
1 & =e\left(H_{r}, Z^{\dagger}\right) e\left(H_{s}, W^{\dagger}\right) e\left(H_{t}, G\right) \prod_{i=0}^{k} e\left(H_{i} T_{2}, M_{i}^{\dagger}\right) \\
& =e\left(H_{r}, Z^{\dagger}\right) e\left(H_{s}, W^{\dagger}\right) e\left(H_{r}^{\xi} H_{s}^{\mu}, G\right) \prod_{i=0}^{k} e\left(H_{r}^{\rho_{i}+\rho+\xi \tau_{i}} H_{s}^{\sigma_{i}+\sigma+\mu \tau_{i}}, M_{i}^{\dagger}\right) \\
& =e\left(H_{r}, Z^{\dagger} G^{\xi} \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\rho_{i}+\rho+\xi \tau_{i}}\right) e\left(H_{s}, W^{\dagger} G^{\mu} \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\sigma_{i}+\sigma+\mu \tau_{i}}\right)
\end{aligned}
$$

So if $Z^{\dagger} G^{\xi} \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\rho_{i}+\rho+\xi \tau_{i}} \neq 1$, then

$$
\left(Z^{\star}, R^{\star}, S^{\star}\right):=\left(Z^{\dagger} G^{\xi} \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\rho_{i}+\rho+\xi \tau_{i}}, W^{\dagger} G^{\eta} \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\sigma_{i}+\sigma+\eta \tau_{i}}, W^{\dagger} G^{\mu} \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\sigma_{i}+\sigma+\mu \tau_{i}}\right)
$$

is a valid solution for the simultaneous double pairing assumption.
$Z^{\dagger} G^{\xi} \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\rho_{i}+\rho+\xi \tau_{i}}=Z^{\dagger} \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\rho_{i}+\rho}\left(G \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\tau_{i}}\right)^{\xi}$, and a part of $Z^{\dagger} \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\rho_{i}+\rho}$ is information theoretically hiding. Note that the only information that the adversary has about $\tau_{0}, \ldots, \tau_{1}$ is that in the j^{*} th session M_{0} was chosen so that $G \prod_{i=0}^{k} M_{i}^{\tau_{i}}=1$ (where $M=\left(M_{1}, \ldots, M_{k}\right)$ is the message signed in the j^{*} th session). If $M_{i}^{\dagger} \neq M_{i}$ for at least one i, then the probability that $G \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\tau_{i}}=1$ conditioned on the fact that $G \prod_{i=0}^{k} M_{i}^{\tau_{i}}=1$ is $1 / p$. As a result, the probability that $Z^{\dagger} G^{\xi} \prod_{i=0}^{k}\left(M_{i}^{\dagger}\right)^{\rho_{i}+\rho+\xi \tau_{i}}=1$ is $1 / p$.

Thus, if the guess for j^{*} is right, we succeed with all but probability $1 / p$ whenever \mathcal{A} does. We therefore have $\operatorname{Adv}_{\mathrm{TOS}, \mathcal{A}}^{\mathrm{ot}-\mathrm{A} m a}(\lambda) \leq$ $q_{s} \cdot \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\operatorname{sdp}}(\lambda)+1 / p$.

5.3 RMA-secure signature scheme

For our random message signature scheme we will use a construction based on the dual system signature proposed in [40]. While the original scheme is CMA-secure under the DLIN assumption, the security proof makes use of a trapdoor commitment to elements in \mathbb{Z}_{p} and consequently messages are elements in \mathbb{Z}_{p} rather than \mathbb{G}. Our construction below resorts to RMA-security and removes this commitment to allows messages to be a sequence of random group elements satisfying a particular relation. As mentioned above, the message space $\mathcal{M}_{\mathrm{x}}:=\left\{\left(C^{m_{1}}, C^{m_{2}}, F^{m_{1}}, F^{m_{2}}, U_{1}^{m_{1}}, U_{2}^{m_{2}}\right) \in \mathbb{G}^{6} \mid\left(m_{1}\right.\right.$, $\left.\left.m_{2}\right) \in \mathbb{Z}_{p}^{2}\right\}$ is defined by generators $\left(C, F, U_{1}, U_{2}\right)$ in $g k$.

[Scheme rSIG]

rSIG.Key $(g k)$: Given $g k:=\left(\Lambda, G, C, F, U_{1}, U_{2}\right)$ as input, uniformly select V, V_{1}, V_{2}, H from \mathbb{G}^{*} and a_{1}, a_{2}, b, α, and ρ from \mathbb{Z}_{p}^{*}. Then compute and output $v k:=\left(B, A_{1}, A_{2}, B_{1}, B_{2}, R_{1}, R_{2}, W_{1}, W_{2}, V, V_{1}, V_{2}, H, X_{1}, X_{2}\right)$ and $s k:=$ $\left(v k, K_{1}, K_{2}\right)$ where

$$
\begin{array}{llll}
B:=G^{b}, & A_{1}:=G^{a_{1}}, & A_{2}:=G^{a_{2}}, & B_{1}:=G^{b \cdot a_{1}}, \\
R_{1}:=V V_{1}^{a_{1}}, & R_{2}:=V V_{2}^{a_{2}}, & W_{1}:=R_{1}^{b}, & W_{2}:=R_{2}^{b}, \\
X_{1}:=G^{\rho}, & X_{2}:=G^{\alpha \cdot a_{1} \cdot b / \rho}, & K_{1}:=G^{\alpha}, & K_{2}:=G^{\alpha \cdot a_{1}} .
\end{array}
$$

rSIG.Sign $(s k, m s g)$: Parse $m s g$ into $\left(M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}\right)$. Pick random $r_{1}, r_{2}, z_{1}, z_{2} \in \mathbb{Z}_{p}$. Let $r=r_{1}+r_{2}$. Compute and output signature $\sigma:=\left(S_{0}, S_{1}, \ldots S_{7}\right)$ where

$$
\begin{array}{llll}
S_{0}:=\left(M_{5} M_{6} H\right)^{r_{1}}, & S_{1}:=K_{2} V^{r}, & S_{2}:=K_{1}^{-1} V_{1}^{r} G^{z_{1}}, & S_{3}:=B^{-z_{1}} \\
S_{4}:=V_{2}^{r} G^{z_{2}}, & S_{5}:=B^{-z_{2}}, & S_{6}:=B^{r_{2}}, & S_{7}:=G^{r_{1}}
\end{array}
$$

rSIG.Vrf $(v k, \sigma, m s g)$: Parse $m s g$ into $\left(M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}\right)$ and σ into $\left(S_{0}, S_{1}, \ldots, S_{7}\right)$. Also parse $v k$ accordingly. Verify the following pairing product equations:

$$
\begin{aligned}
& e\left(S_{7}, M_{5} M_{6} H\right)=e\left(G, S_{0}\right) \\
& e\left(S_{1}, B\right) e\left(S_{2}, B_{1}\right) e\left(S_{3}, A_{1}\right)=e\left(S_{6}, R_{1}\right) e\left(S_{7}, W_{1}\right) \\
& e\left(S_{1}, B\right) e\left(S_{4}, B_{2}\right) e\left(S_{5}, A_{2}\right)=e\left(S_{6}, R_{2}\right) e\left(S_{7}, W_{2}\right) e\left(X_{1}, X_{2}\right) \\
& e\left(F, M_{1}\right)=e\left(C, M_{3}\right) \quad e\left(F, M_{2}\right)=e\left(C, M_{4}\right) \quad e\left(U_{1}, M_{1}\right)=e\left(C, M_{5}\right) \quad e\left(U_{2}, M_{2}\right)=e\left(C, M_{6}\right)
\end{aligned}
$$

The scheme is structure-preserving by construction and the correctness is verified by inspecting the following relation.

$$
\begin{aligned}
e\left(S_{1}, G^{b}\right) e\left(S_{2}, G^{b \cdot a_{1}}\right) e\left(S_{3}, G^{a_{1}}\right) & =e\left(K_{2} V^{r}, G^{b}\right) e\left(K_{1}^{-1} V_{1}^{r} G^{z_{1}}, G^{b \cdot a_{1}}\right) e\left(B^{-z_{1}}, G^{a_{1}}\right) \\
& =e\left(G^{\alpha \cdot a_{1}} V^{r}, G^{b}\right) e\left(G^{-\alpha} V_{1}^{r} G^{z_{1}}, G^{b \cdot a_{1}}\right) e\left(G^{-b \cdot z_{1}}, G^{a_{1}}\right) \\
& =e\left(G^{\alpha \cdot a_{1}} V^{r}, G^{b}\right) e\left(G^{-\alpha} V_{1}^{r}, G^{b \cdot a_{1}}\right) \\
& =e\left(G^{\alpha \cdot a_{1}} V^{r}, G^{b}\right) e\left(G^{-\alpha \cdot a_{1}} V_{1}^{r \cdot a_{1}}, G^{b}\right) \\
& =e\left(V^{r}, G^{b}\right) e\left(V_{1}^{r \cdot a_{1}}, G^{b}\right) \\
& =e\left(G, V V_{1}^{a_{1}}\right)^{b \cdot r} \\
e\left(S_{6}, V V_{1}^{a_{1}}\right) e\left(S_{7}, R_{1}^{b}\right) & =e\left(B^{r_{2}}, V V_{1}^{a_{1}}\right) e\left(G^{r_{1}}, V^{b} V_{1}^{b \cdot a_{1}}\right) \\
& =e\left(G^{b \cdot r_{2}}, V V_{1}^{a_{1}}\right) e\left(G^{r_{1}}, V^{b} V_{1}^{b \cdot a_{1}}\right) \\
& =e\left(G, V V_{1}^{a_{1}}\right)^{b \cdot r}
\end{aligned}
$$

Thus, the second equation holds since $r=r_{1}+r_{2}$. The third equation can be verified analogously, and the remaining equations are easily verified.

Theorem 6. The above rSIG scheme is secure against random message attacks under the DLIN assumption. In particular, for any polynomial-time adversary \mathcal{A} against rSIG that makes at most q_{s} signing queries, there exists polynomial-time algorithm \mathcal{B} for DLIN such that $\operatorname{Adv}_{r S I \mathcal{G}, \mathcal{A}}^{u f-r m a}(\lambda) \leq\left(q_{s}+2\right) \cdot \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\text {dlin }}(\lambda)$.

Proof. We refer to the signatures output by the signing algorithm as a normal signature. In the proof we will consider an additional type of signatures to which we refer to as simulation-type signatures that are computationally indistinguishable but easier to simulate. For $\gamma \in \mathbb{Z}_{p}$, simulation-type signatures are of the form

$$
\sigma=\left(S_{0}, S_{1}^{\prime}=S_{1} \cdot G^{-a_{1} a_{2} \gamma}, S_{2}^{\prime}=S_{2} \cdot G^{a_{2} \gamma}, S_{3}, S_{4}^{\prime}=S_{4} \cdot G^{a_{1} \gamma}, S_{5}, \ldots, S_{7}\right)
$$

We first give the outline of the proof using some lemmas. Proofs for the lemmas are given after the outline.

Lemma 5. Any signature that is accepted by the verification algorithm must be formed either as a normal signature, or a simulation-type signature.

Based on the notion of simulation-type signatures, we consider a sequence of games. Let p_{i} be the probability that the adversary succeeds in Game i, and $p_{i}^{\text {norm }}(\lambda)$ and $p_{i}^{\text {sim }}(\lambda)$ that he succeeds with a normal-type respectively simulation-type forgery. Then by Lemma 5, $p_{i}(\lambda)=p_{i}^{\text {norm }}(\lambda)+p_{i}^{\text {sim }}(\lambda)$ for all i.

Game 0: The actual Unforgeability under Random Message Attacks game.
Lemma 6. In Game 0, the adversary produces a valid forgery which is a simulation-type signature only with negligible probability $p_{0}^{\text {sim }}(\lambda)$ under the DLIN assumption. More concretely, there exists an adversary \mathcal{B}_{1} such that $p_{0}^{\text {sim }}(\lambda)=$ $\operatorname{Adv}_{\mathcal{G}, \mathcal{B}_{1}}^{\operatorname{din}}(\lambda)$.

Game i: The real security game except that the first i signing queries are answered with simulation-type signatures.
Lemma 7. The probability that \mathcal{A} outputs a normal-type forgery is the same (up to a negligible amount) in Game $i-1$ as in Game i: $p_{i-1}^{\text {norm }}(\lambda) \leq p_{i}^{\text {norm }}(\lambda)+\Delta_{i}(\lambda)$ for some negligible $\Delta_{i}(\lambda)$ under the DLIN assumption. More concretely, there exists an adversary \mathcal{B}_{2} such that $\left|p_{i-1}^{\text {norm }}(\lambda)-p_{i}^{\text {norm }}(\lambda)\right|=\operatorname{Adv}_{\mathcal{G}, \mathcal{B}_{2}}^{\text {dlin }}(\lambda)$.

Game q: All private key queries are answered with simulation-type signatures.
Lemma 8. In Game q, \mathcal{A} outputs a normal-type forgery with at most negligible probability $p_{q}^{\text {norm }}(\lambda)$ under the CDH assumption. More concretely, there exists an adversary \mathcal{B}_{3} such that $p_{q}^{n o r m}(\lambda)=\operatorname{Adv}_{\mathcal{G}, \mathcal{B}_{3}}^{\text {cdh }}(\lambda)$.

We have shown that in Game \mathbf{q}, \mathcal{A} can output a normal-type forgery with at most negligible probability. Thus, by Lemma 7 we can conclude that the same is true in Game 0. Since we have already shown that in Game $\mathbf{0}$ the adversary can output simulation-type forgeries only with negligible probability, and that any signature that is accepted by the verification algorithm is either normal or simulation-type, we conclude that the adversary can produce valid forgeries with only negligible probability

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{rSIG}, \mathcal{A}}^{\mathrm{uf}-\mathrm{Pma}}(\lambda) & =p_{0}(\lambda)=p_{0}^{\text {sim }}(\lambda)+p_{0}^{\text {norm }}(\lambda)=p_{0}^{\text {sim }}(\lambda)+\sum_{i=1}^{q}\left|p_{i-1}^{\text {norm }}(\lambda)-p_{i}^{\text {norm }}(\lambda)\right|+p_{q}^{\text {norm }}(\lambda) \\
& \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{B}_{1}}^{\text {din }}(\lambda)+q \operatorname{Adv}_{\mathcal{G}, \mathcal{B}_{2}}^{\text {din }}(\lambda)+\operatorname{Adv}_{\mathcal{G}, \mathcal{B}_{3}}^{\text {can }}(\lambda) \leq(q+2) \cdot \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\text {dlin }}(\lambda)
\end{aligned}
$$

Proof. (of Lemma 5)

We have to show that only normal and simulation-type signatures can fulfil these equations. We ignore the first row of verification equations that establish that M is well-formed. A signature has 4 random exponents, $r_{1}, r_{2}, z_{1}, z_{2}$. A simulationtype signatures has additional exponent γ.

We interpret S_{7} as $G^{r_{1}}$, and it follows from the first verification equation that S_{0} is $\left(M_{5} M_{6} H\right)^{r_{1}}$. We interpret S_{3} as $G^{-b z_{1}}, S_{5}$ as $G^{-b z_{2}}$, and S_{6} as $G^{r_{2} b}$. Now we have fixed all exponents of a normal signature. The remaining two verification equations tell us that

$$
\begin{aligned}
& e\left(G^{b}, S_{1}\right) \cdot e\left(G^{b a_{1}}, S_{2}\right)=e\left(V V_{1}^{a_{1}}, G^{r_{2} b}\right) \cdot e\left(\left(V V_{1}^{a_{1}}\right)^{b}, G^{r_{1}}\right) \cdot e\left(G^{a_{1}}, G^{b z_{1}}\right) \\
& e\left(G^{b}, S_{1}\right) \cdot e\left(G^{b a_{2}}, S_{4}\right)=e\left(V V_{2}^{a_{2}}, G^{r_{2} b}\right) \cdot e\left(\left(V V_{2}^{a_{2}}\right)^{b}, G^{r_{1}}\right) \cdot e\left(G^{a_{2}}, G^{b z_{2}}\right) \cdot e(G, G)^{\alpha a_{1} b}
\end{aligned}
$$

We interpret S_{1} as $G^{\alpha \cdot a_{1}} V^{r} G^{-a_{1} a_{2} \gamma}$. Now we have two equations and two unknowns that fix S_{2} to $G^{-\alpha} V_{1}^{r} G^{z_{1}} G^{a_{2} \gamma}$ and S_{4} to $V_{2}^{r} G^{z_{2}} G^{a_{1} \gamma}$ respectively. For $\gamma=0$ we have a normal signature otherwise a simulation-type signature.

Proof. (of Lemma 6).
Suppose for contradiction that there is an adversary \mathcal{A}, which, when playing Game Real (and thus receiving only normal signatures), produces forgeries which are formed like simulation-type signatures. Then we can create an adversary \mathcal{B} for DLIN as follows:

Let $I_{\text {dlin }}=\left(\Lambda, G_{1}, G_{2}, G_{3}, X, Y, Z\right)$ be an instance of DLIN where there exist random $x, y, z \in \mathbb{Z}_{p}$ such that $X=G_{1}^{x}$, $Y=G_{2}^{y}$ and $Z=G_{3}^{z}$ or G_{3}^{x+y}. Given $I_{\text {dlin }}$, adversary \mathcal{B} works as follows. It first sets $G:=G_{3}$, and $A_{1}:=G_{1}$ and $A_{2}:=G_{2}$. Then it chooses random $b, \alpha, \rho \in \mathbb{Z}_{p}$ and computes $B_{1}:=G_{1}^{b}$ and $B_{2}:=G_{2}^{b}, K_{1}:=G_{3}^{\alpha}, K_{2}:=G_{1}^{\alpha}$ and
$X_{1}:=G_{3}^{\rho}, X_{2}:=G_{1}^{\alpha b / \rho}$. It also chooses random v, v_{1}, v_{2} and sets $V=G_{3}^{v}, V_{1}=G_{3}^{v_{1}}$, and $V_{2}=G_{3}^{v_{2}}$. (This way we know the discrete \log of these values w.r.t. G_{3}.) \mathcal{B} further computes $R_{1}=V V_{1}^{a_{1}}=G_{3}^{v} G_{1}^{v_{1}}$ and $R_{2}:=V V_{2}^{a_{2}}=G_{3}^{v} G_{2}^{v_{2}}$. It then chooses U, H at random from \mathbb{G}. Our final public-key is

$$
v k=\left(G_{3}^{b}, G_{1}, G_{2}, G_{1}^{b}, G_{2}^{b}, G_{3}^{v} G_{1}^{v_{1}}, G_{3}^{v} G_{2}^{v_{2}}, G_{3}^{v b} G_{1}^{v_{1} b}, G_{3}^{v b} G_{2}^{v_{2} b}, G_{3}^{v}, G_{3}^{v_{1}}, G_{3}^{v_{2}}, U, H, X_{1}, X_{2}\right)
$$

and our final secret key is

$$
s k=\left(v k, G_{3}^{\alpha}, G_{1}^{\alpha}\right)
$$

Note that both the distribution of the public and secret keys is statistically close to that in the real DLIN game. Moreover, to sign random messages, \mathcal{B} can follow the real signing algorithm by using $s k$.

Suppose that \mathcal{A} produces a valid forgery σ^{\dagger} and $m s g^{\dagger}$. Then \mathcal{B} proceeds as follows: It parses σ^{\dagger} as $\left(S_{0}, \ldots, S_{7}\right)$. Recall that in Lemma 5. it is shown that if the verification equations hold, then we must have $S_{1}=G^{\alpha a_{1}} V^{r} G^{-a_{1} a_{2} \gamma}$, $S_{2}=G^{-\alpha} V_{1}^{r} G^{z_{1}} G^{a_{2} \gamma}$, and $S_{4}=V_{2}^{r} G^{z_{2}} G^{a_{1} \gamma}$. If this is a simulation-type signature, we will have $\gamma \neq 0$. Rewritten according to our choice of public-key, this means that $S_{1}=G_{1}^{\alpha} V^{r} G_{2}^{-f \gamma}, S_{2}=G_{3}^{-\alpha} V_{1}^{r} V^{z_{1}} G_{2}^{\gamma}$, and $S_{4}=V_{2}^{r} G_{3}^{z_{2}} G_{1}^{\gamma}$, where f is the discrete \log of G_{1} w.r.t. G_{3}. Thus, if we can extract $G_{2}^{-f \gamma}, G_{2}^{\gamma}, G_{1}^{\gamma}$, we can easily break the DLIN instance by testing whether $e\left(Z, G_{2}^{-f \gamma}\right)=e\left(G_{2}^{\gamma}, X\right) e\left(G_{1}^{\gamma}, Y\right)$. But, recall that the signature includes $S_{3}=G_{3}^{-b z_{1}}, S_{5}=G_{3}^{-b z_{2}}, S_{6}=G_{3}^{b r_{2}}$, and $S_{7}=G_{3}^{r_{1}}$, and we know b, α and the discrete logarithms of V, V_{1}, V_{2} w.r.t. G_{3}. Thus, it will be straightforward to extract the above values.

Proof. (of Lemma 7).

Suppose for contradiction that there exists an adversary \mathcal{A} such that the probabilities that \mathcal{A} outputs a normal-type forgery in Game i and Game $i+1$ differ by a non-negligible amount. Then we will use \mathcal{A} to construct an algorithm \mathcal{B} that breaks the DLIN assumption.

We are given an instance of DLIN; $I_{\text {dlin }}=\left(G_{1}, G_{2}, G_{3}, X, Y, Z\right)$. Note that determining whether a signature is of normaltype or simulation-type naturally corresponds to a DLIN problem: each signature contains $S_{7}=G^{r_{1}}, S_{6}=\left(G^{b}\right)^{r_{2}}$, and S_{1} which will include $V^{r_{1}+r_{2}}$ or $V^{r_{1}+r_{2}} G^{-a_{1} a_{2} \gamma}$ depending on whether this is a normal- or simulation-type signature. (Recall that we define $r=r_{1}+r_{2}$.) If we set $G=G_{2}, G^{b}=G_{1}$, and $V=G_{3}$, then it seems fairly straightforward to argue based on the DLIN assumption that it will be impossible for the adversary to distinguish normal and simulation-type signatures. However, we cannot tell whether \mathcal{A} 's forgery is normal- or simulation-type in this simulation. Thus, there will be no way for \mathcal{B} to take advantage of a change in \mathcal{A} 's success probability to solve the DLIN challenge.

The solution is to set things up so that, with high probability we can take S_{0} from the adversary's forgery and extract something that looks like $G^{r_{1}}$ (which will allow us to distinguish DLIN tuples and consequently detect simulation-type signatures), but at the same time we are guaranteed that for the i-th message, the G component of S_{0} will cancel out, leaving only an $G_{2}^{r_{1}}$ component which will not allow the challenger itself to know whether a simulated signature is normal-type or simulation-type.

More specifically, the idea will be to choose some secret values $\xi_{1}, \xi_{2}, \beta, \chi_{1}, \chi_{2}, \chi_{3}$ and embed them in the parameters so that $U_{1}^{w_{1}} U_{2}^{w_{2}} H=G_{2}^{\chi_{1} w_{1}+\chi_{2} w_{2}+\chi_{3}} G_{3}^{\xi_{1} w_{1}+\xi_{2} w_{2}+\beta}$. Then $S_{0}=\left(U_{1}^{w_{1}} U_{2}^{w_{2}} H\right)^{r_{1}}=G_{2}^{\left(\chi_{1} w_{1}+\chi_{2} w_{2}+\chi_{3}\right) r_{1}} G_{3}^{\left(\xi_{1} w_{1}+\xi_{2} w_{2}+\beta\right) r_{1}}$. If $\xi_{1} w_{1}+\xi_{2} w_{2}+\beta \neq 0$, this gives useful information on $G_{3}^{r_{1}}$ (in particular it will allow us to test candidate values), while if $\xi_{1} w_{1}+\xi_{2} w_{2}+\beta=0$, this has no G_{3} component and thus doesn't help at all with finding $G_{3}^{r_{1}}$. We choose ξ_{1}, ξ_{2}, β so that $\xi_{1} w_{1}+\xi_{2} w_{2}+\beta=0$ for the (w_{1}, w_{2}) used to generate the i th message. Furthermore, we will guarantee that ξ_{1}, ξ_{2}, β are information theoretically hidden even given this pair $\left(w_{1}, w_{2}\right)$, so the adversary has only negligible chance of producing another message with $U_{1}^{w_{1}^{*}}, U_{2}^{w_{2}^{*}}$ such that $\xi_{1} w_{1}^{*}+\xi_{2} w_{2}^{*}+\beta=0$ as well.

Message space setup and key generation: Set (C, F), used to define message space \mathcal{M}, to $\left(G_{1}^{\varphi}, G_{3}\right)$. We choose random $\xi_{1}, \xi_{2}, \beta, \chi_{1}, \chi_{2}, \chi_{3} \leftarrow \mathbb{Z}_{p}$, and compute $U_{1}=G_{2}^{\chi_{1}} G_{3}^{\xi_{1}}, U_{2}=G_{2}^{\chi_{2}} G_{3}^{\xi_{2}}$, and $H=G_{2}^{\chi_{3}} G_{3}^{\beta}$. These values will be uniformly distributed, and independent of ξ_{1}, ξ_{2}, β.

$$
g k=\left(\mathbb{G}, C, F, U_{1}, U_{2}\right)=\left(\mathbb{G}, G_{1}^{\varphi}, G_{3}, G_{2}^{\chi_{1}} G_{3}^{\xi_{1}}, G_{2}^{\chi_{2}} G_{3}^{\xi_{2}}\right)
$$

We set $G=G_{2}, B=G_{1}$. We choose random $a_{1}, a_{2}, \alpha, \rho \leftarrow \mathbb{Z}_{p}$, and compute $G^{a_{1}}, G^{a_{2}}, G^{a_{1} b}, G^{a_{2} b}, G^{\rho}$, and $G^{\alpha a_{1} b / \rho}$ using these values.
Next, we choose V, V_{1}, V_{2}. We must choose these values carefully so that we can compute both R_{i} and R_{i}^{b}, and at the same time so that the component V^{r} of a signature-value S_{1} gives us some useful information (in particular it will allow us to derive G_{3}^{r}. We do this by choosing v_{1}, v_{2}, δ, and computing $V=G_{3}^{-a_{1} a_{2} \delta}, V_{1}=G_{2}^{v_{1}} G_{3}^{a_{2} \delta}$, and $V_{2}=G_{2}^{v_{2}} G_{3}^{a_{1} \delta}$. Now, this means $R_{1}=G_{2}^{a_{1} v_{1}}$ and $R_{2}=G_{2}^{a_{2} v_{2}}$, and we can easily compute $R_{1}^{b}=G_{1}^{a_{1} v_{1}}$ and $R_{2}^{b}=G_{1}^{a_{2} v_{2}}$. At the same
time, note that these values are all distributed identically to the corresponding values in the real public and secret key. Store $a_{1}, a_{2}, \alpha, v_{1}, v_{2}, \delta$ and

$$
s k=\left(v k, G^{\alpha}, G^{\alpha a_{1}}\right)=\left(v k, G_{2}^{\alpha}, G_{2}^{\alpha a_{1}}\right)
$$

Publish

$$
\begin{aligned}
v k= & \left(G^{b}, G^{a_{1}}, G^{a_{2}}, G^{b a_{1}}, G^{b a_{2}}, R_{1}, R_{2}, R_{1}^{b}, R_{2}^{b}, V, V_{1}, V_{2}, H, G^{\rho}, G^{\alpha a_{1} b / \rho}\right) \\
= & \left(G_{1}, G_{2}^{a_{1}}, G_{2}^{a_{2}}, G_{1}^{a_{1}}, G_{1}^{a_{2}}, G_{2}^{a_{1} v_{1}}, G_{2}^{a_{2} v_{2}}, G_{1}^{a_{1} v_{1}}, G_{1}^{a_{2} v_{2}}, G_{3}^{-a_{1} a_{2} \delta}, G_{2}^{v_{1}} G_{3}^{a_{2} \delta}, G_{2}^{v_{2}} G_{3}^{a_{1} \delta},\right. \\
& \left.G_{2}^{\chi_{3}} G_{3}^{\beta}, G_{2}^{\rho}, G_{1}^{\alpha a_{1} / \rho}\right) .
\end{aligned}
$$

Note that both of these tuples are distributed statistically close to those produced by Setup and SIGr.Key.
Signatures for j-th message where $j<i$. Pick $w_{j 1}, w_{j 2}$ at random and compute $\left(M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}\right)=\left(C^{w_{j 1}}\right.$, $\left.C^{w_{j 2}}, F^{w_{j 1}}, F^{w_{j 2}}, U_{1}^{w_{j 1}}, U_{2}^{w_{j 2}}\right)$ 。 \mathcal{B} can compute a simulation-type signatures for this message since it has $s k$ and $G^{a_{1} a_{2}}=G_{2}^{a_{1} a_{2}}$.

Signatures for i-th message: Pick w_{1}, w_{2} such that $\xi_{1} w_{1}+\xi_{2} w_{2}+\beta=0$ and compute $\left(M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}\right)=$ $\left(C^{w_{1}}, C^{w_{2}}, F^{w_{1}}, F^{w_{2}}, U_{1}^{w_{1}}, U_{2}^{w_{2}}\right)$. Note that since no information about ξ_{1}, ξ_{2}, β is revealed this message will look appropriately random to the adversary. We will implicitly set $r_{1}=y$ and $r_{2}=x$. We compute $S_{6}=G^{b r_{2}}=G_{1}^{x}=X$ and $S_{7}=G^{r_{1}}=G_{2}^{y}=Y$. Recall that we chose U_{1}, U_{2}, H such that $U_{1}^{w_{1}} U_{2}^{w_{2}} H=G_{2}^{\chi_{1} w_{1}+\chi_{2} w_{2}+\chi_{3}}$. Thus, we can compute $S_{0}=\left(M_{5} M_{6} H\right)^{r_{1}}=Y^{\chi_{1} w_{1}+\chi_{2} w_{2}+\chi_{3}}$.
What remains is to compute S_{1}, S_{2}, S_{4}. Note that this involves computing V^{r}, V_{1}^{r}, and V_{2}^{r} respectively. This is where we will embed our challenge. Recall that $V=G_{3}^{-a_{1} a_{2} \delta}$. Thus, we will compute $V^{r}=\left(G_{3}^{r_{1}+r_{2}}\right)^{-a_{1} a_{2} \delta}$ as $Z^{-a_{1} a_{2} \delta}$. If $Z=G_{3}^{x+y}$ this will be correct; if $Z=G_{3}^{z}$ for random z, then there will be an extra factor of $G_{3}^{-a_{1} a_{2} \delta(z-(x+y))}$. If we let $G^{\gamma}=G_{3}^{\delta(z-(x+y))}$ (which is uniformly random from the adversary's point of view), then this is distributed exactly as it should be in a simulation-type signature. Thus, we compute S_{1} which should be either $G^{\alpha a_{1}} V^{r}$ or $G^{\alpha a_{1}} V^{r} G^{-a_{1} a_{2} \gamma}$ as $G_{2}^{\alpha a_{1}} Z^{-a_{1} a_{2} \delta}$.
We can try to apply the same approach to compute V_{1}^{r} to get S_{1}. However, recall that we set $V_{1}=G_{2}^{v_{1}} G_{3}^{a_{2} \delta}$. Thus, computing V_{1}^{r} involves computing G_{2}^{r}, which we cannot do. (If we could we could use that to break the DLIN assumption.) To get around this, we use z_{1}, z_{2} : choose random s_{1}, s_{2} and implicitly set $G^{z_{1}}=G_{2}^{-v_{1} r_{2}+s_{1}}$ and $G^{z_{2}}=G_{2}^{-v_{2} r_{2}+s_{2}}$. While we cannot compute these values, we can compute $G^{-z_{1} b}=G_{1}^{v_{1} r_{2}-s_{1}}=X^{v_{1}} G_{1}^{-s_{1}}$ and $G^{-z_{2} b}=X^{v_{2}} G_{1}^{-s_{2}}$. Then to generate S_{2}, we can compute

$$
\begin{aligned}
G_{2}^{-\alpha} Y^{v_{1}} Z^{a_{2} \delta} G_{2}^{s_{1}} & =G^{-\alpha} G_{2}^{r_{1} v_{1}} Z^{a_{2} \delta} G_{2}^{s_{1}} G_{2}^{r_{2} v_{1}} G_{2}^{-r_{2} v_{1}} \\
& =G^{-\alpha} G_{2}^{\left(r_{1}+r_{2}\right) v_{1}} Z^{a_{2} \delta} G_{2}^{s_{1}-r_{2} v_{1}} \\
& =G^{-\alpha} G_{2}^{r v_{1}} Z^{a_{2} \delta} G^{z_{1}} .
\end{aligned}
$$

If $Z=G_{3}^{x+y}=G_{3}^{r}$, then this will be

$$
\begin{aligned}
G^{-\alpha} G_{2}^{r v_{1}} G_{3}^{r a_{2} \delta} G^{z_{1}} & =G^{-\alpha}\left(G_{2}^{v_{1}} G_{3}^{a_{2} \delta}\right)^{r} G^{z_{1}} \\
& =G^{-\alpha} V_{1}^{r} G^{z_{1}}
\end{aligned}
$$

If $Z=G_{3}^{z \neq x+y}$, then this will be:

$$
\begin{aligned}
G^{-\alpha} G_{2}^{r v_{1}} G_{3}^{z a_{2} \delta} G^{z_{1}} & =G^{-\alpha} G_{2}^{r v_{1}} G_{3}^{r a_{2} \delta} G_{3}^{a_{2} \delta(z-(x+y))} G^{z_{1}} \\
& =G^{-\alpha} G_{2}^{r v_{1}} G_{3}^{r a_{2} \delta} G^{a_{2} \gamma} G^{z_{1}} \\
& =G^{-\alpha} V_{1}^{r} G^{a_{2} \gamma} G^{z_{1}}
\end{aligned}
$$

where the second to last equality follows from our choice of γ above. By a similar argument, we compute S_{4} as $Y^{v_{2}} Z^{a_{1} \delta} G_{2}^{s_{2}}$ and argue that this will be either $V_{2}^{r} G^{z_{2}}$ or $V_{2}^{r} G^{z_{2}} G^{a_{1} \gamma}$ as desired. Let $S:=\left(S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}\right)$ where

$$
\begin{aligned}
& S_{0}=Y^{\chi_{1} w_{i 1}+\chi_{2} w_{i 2}+\chi_{3}} \\
& S_{3}=X^{v_{1}} G_{1}^{-s_{1}} \\
& S_{6}=X
\end{aligned}
$$

$$
S_{1}=G_{2}^{\alpha a_{1}} Z^{-a_{1} a_{2} \delta}
$$

$$
S_{2}=G_{2}^{-\alpha} Y^{v_{1}} Z^{a_{2} \delta} G_{2}^{s_{1}}
$$

$$
S_{4}=Y^{v_{2}} Z^{a_{1} \delta} G_{2}^{s_{2}}
$$

$$
S_{5}=X^{v_{2}} G_{1}^{-s_{2}}
$$

$$
S_{7}=Y
$$

Signatures for j-th message where $j>i$: Pick w_{1}, w_{2} and compute $m_{j}=\left(M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}\right)=\left(C^{w_{1}}, C^{w_{2}}, F^{w_{1}}\right.$, $\left.F^{w_{2}}, U_{1}^{w_{1}}, U_{2}^{w_{2}}\right)$ and a signature σ according to SIGr.Sign $\left(s k, m_{j}\right)$. Output σ, m_{j}.

On receiving \mathcal{A} 's forgery: \mathcal{A} sends a signature $S=\left(S_{0}, S_{1}, \ldots, S_{7}\right)$ and $\left(M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}\right)=\left(C^{w_{1}}, C^{w_{2}}, F^{w_{1}}\right.$, $\left.F^{w_{2}}, U_{1}^{w_{1}}, U_{2}^{w_{2}}\right)$ for some message w_{1}, w_{2}. \mathcal{B} outputs 1 if and only if

$$
\begin{aligned}
& e\left(S_{0}, G_{1}\right) \cdot e\left(M_{3}^{\xi_{1}} M_{4}^{\xi_{2}} G_{3}^{\beta}, S_{6}\right) \\
& =e\left(\left(S_{1} G_{2}^{-\alpha a_{1}}\right)^{-1 /\left(-a_{1} a_{2} \delta\right)},\left(M_{1}^{1 / \varphi}\right)^{\xi_{1}}\left(M_{2}^{1 / \varphi}\right)^{\xi_{2}} G_{1}^{\beta}\right) \cdot e\left(S_{7},\left(M_{1}^{1 / \varphi}\right)^{\chi_{1}}\left(M_{2}^{1 / \varphi}\right)^{\chi_{2}} G_{1}^{\chi_{3}}\right) .
\end{aligned}
$$

By Lemma 5. we are guaranteed that if the signature S verifies, then there must exist $w_{1}, w_{2}, r_{1}, r_{2}, \gamma$ such that $S_{0}=$ $\left(U_{1}^{w_{1}} U_{2}^{w_{2}} H\right)^{r_{1}}, S_{1}=G^{\alpha a_{1}} V^{r} G^{-a_{1} a_{2} \gamma}, S_{6}=G^{b r_{2}}$, and $S_{7}=G^{r_{1}}$ where $r=r_{1}+r_{2}$. We are also guaranteed that $M_{1}=\left(G_{1}^{\varphi}\right)^{w_{1}}, M_{2}=\left(G_{1}^{\varphi}\right)^{w_{2}}$ and $M_{3}=G_{2}^{w_{1}}, M_{4}=G_{2}^{w_{2}}$.
Rephrased in terms of our parameters, this means

$$
\begin{array}{ll}
S_{0}=\left(G_{2}^{\chi_{1} w_{1}+\chi_{2} w_{2}+\chi_{3}} G_{3}^{\xi_{1} w_{1}+\xi_{2} w_{2}+\beta}\right)^{r_{1}} & S_{1}=G_{2}^{\alpha a_{1}} G_{3}^{-a_{1} a_{2} \delta r} G_{2}^{-a_{1} a_{2} \gamma} \\
S_{6}=G_{1}^{r_{2}} & S_{7}=G_{2}^{r_{1}}
\end{array}
$$

Plugging this into the above computation we get that \mathcal{B} will output 1 if and only if

$$
\begin{aligned}
& e\left(\left(G_{2}^{\chi_{1} w_{1} \chi_{2} w_{2}+\chi_{3}} G_{3}^{\xi_{1} w_{1}+\xi_{2} w_{2}+\beta}\right)^{r_{1}}, G_{1}\right) \cdot e\left(\left(G_{3}^{w_{1}}\right)^{\xi_{1}}\left(G_{3}^{w_{2}}\right)^{\xi_{2}} G_{3}^{\beta}, G_{1}^{r_{2}}\right) \\
& =e\left(\left(G_{2}^{\alpha a_{1}} G_{3}^{-a_{1} a_{2} \delta r} G_{2}^{-a_{1} a_{2} \gamma} G_{2}^{-\alpha a_{1}}\right)^{1 /\left(-a_{1} a_{2} \delta\right)},\left(G_{1}^{w_{1}}\right)^{\xi_{1}}\left(G_{1}^{w_{1}}\right)^{\xi_{2}} G_{1}^{\beta}\right) \cdot e\left(G_{2}^{r_{1}},\left(G_{1}^{w_{1}}\right)^{\chi_{1}}\left(G_{1}^{w_{2}}\right)^{\chi_{2}} G_{1}^{\chi_{3}}\right)
\end{aligned}
$$

Simplifying the left side to

$$
\begin{aligned}
& \left.e\left(G_{2}^{\chi_{1} w_{1}+\chi_{2} w_{2}+\chi_{3}} G_{3}^{\xi_{1} w_{1}+\xi_{2} w_{2}+\beta}\right)^{r_{1}}, G_{1}\right) \cdot e\left(G_{3}^{\xi_{1} w_{1}+\xi_{2} w_{2}+\beta}, G_{1}^{r_{2}}\right) \\
= & e\left(G_{2}, G_{1}\right)^{\left(\chi_{1} w_{1}+\chi_{2} w_{2}+\chi_{3}\right) r_{1}} \cdot e\left(G_{3}, G_{1}\right)^{\left(\xi_{1} w_{1}+\xi_{2} w_{2}+\beta\right) r_{1}} \cdot e\left(G_{3}, G_{1}\right)^{\left(\xi_{1} w_{1}+\xi_{2} w_{2}+\beta\right) r_{2}} \\
= & e\left(G_{2}, G_{1}\right)^{\left(\chi_{1} w_{1}+\chi_{2} w_{2}+\chi_{3}\right) r_{1}} \cdot e\left(G_{3}, G_{1}\right)^{\left(\xi_{1} w_{1}+\xi_{2} w_{2}+\beta\right) r}
\end{aligned}
$$

and the right side to

$$
\begin{aligned}
& e\left(\left(G_{3}^{-a_{1} a_{2} \delta r} G_{2}^{-a_{1} a_{2} \gamma}\right)^{1 /\left(-a_{1} a_{2} \delta\right)}, G_{1}^{\xi_{1} w_{1}+\xi_{2} w_{2}+\beta}\right) \cdot e\left(G_{2}^{r_{1}}, G_{1}^{\chi_{1} w_{1}+\chi_{2} w_{2}+\chi_{3}}\right) \\
= & e\left(G_{3}^{r} G_{2}^{\gamma / \delta}, G_{1}^{\xi_{1} w_{1}+\xi_{2} w_{2}+\beta}\right) \cdot e\left(G_{2}^{r_{1}}, G_{1}^{\chi_{1} w_{1}+\chi_{2} w_{2}+\chi_{3}}\right) \\
= & e\left(G_{2}, G_{1}\right)^{\left(\chi_{1} w_{1}+\chi_{2} w_{2}+\chi_{3}\right) r_{1}} \cdot e\left(G_{3}, G_{1}\right)^{\left(\xi_{1} w_{1}+\xi_{2} w_{2}+\beta\right) r} \cdot e\left(G_{2}, G_{1}\right)^{\gamma / \delta\left(\xi_{1} w_{1}+\xi_{2} w_{2}+\beta\right)}
\end{aligned}
$$

and by dividing out all the pairings of the left side we obtain the simplified equation

$$
1=e\left(G_{2}, G_{1}\right)^{\gamma / \delta\left(\xi_{1} w_{1}+\xi_{2} w_{2}+\beta\right)}
$$

which is true if and only if either $\xi_{1} w_{1}+\xi_{2} w_{2}+\beta=0$ or $\gamma=0$. Since the only information that the adversary has on ξ_{1}, ξ_{2}, β is that $\xi_{1} w_{i 1}+\xi_{2} w_{i 2}+\beta=0$, we are guaranteed that $\xi_{1} w_{1}+\xi_{2} w_{2}+\beta=0$ happens with negligible probability. Thus, we conclude that \mathcal{B} outputs 1 iff $\gamma=0$ and this was a normal-type signature, and \mathcal{B} outputs 0 iff $\gamma \neq 0$ and this was a simulation-type signature.

Proof. (of Lemma 8).

Suppose that there exists an adversary \mathcal{A} that outputs normal-type forgeries with non-negligible probability in Game q. Then we construct an adversary \mathcal{B} for the CDH problem as follows:
\mathcal{B} is given $X=G^{x}, Y=G^{y}$ and must compute $G^{x y} . \mathcal{B}$ will proceed as follows:
Message space setup and key generation: We will implicitly set $\alpha=x y$ and $a_{2}=y$. We choose b, a_{1} at random from \mathbb{Z}_{p}. We need to be able to compute $V_{2}^{a_{2}}$, so we choose random v_{2} and set $V_{2}=G^{v_{2}}$. We also want to know the discrete logarithm of V_{1}, so we will choose random v_{1} and set $V_{1}=G^{v_{1}}$. We choose U_{1}, U_{2}, H, V at random from \mathbb{G}. We compute $V V_{2}^{a_{2}}=V Y^{v_{2}}$ and $G^{a_{2}}=Y$. We choose random ρ^{\prime} and set $G^{\rho}=X^{\rho^{\prime}}$ and $G^{\alpha a_{1} b}=Y^{a_{1} b / \rho^{\prime}}$. The rest of the parameters can be constructed honestly.

Signature queries: On a signature query, we pick w_{1}, w_{2} at random and compute $\left(M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}\right)=\left(C^{w_{1}}\right.$, $C^{w_{2}}, F^{w_{1}}, F^{w_{2}}, U_{1}^{w_{1}}, U_{2}^{w_{2}}$) and generate a simulation-type signature as follows: Choose random $r_{1}, r_{2}, z_{1}, z_{2}$, and random s. Implicitly set $\gamma=(x-s)$.
Compute $S_{1}=Y^{s a_{1}} V^{r}=G^{y s a_{1}} V^{r}=G^{y s a_{1}+x y a_{1}-x y a_{1}} V^{r}=G^{x y a_{1}} V^{r} G^{(s-x) y a_{1}}=G^{\alpha a_{1}} V^{r} G^{-\gamma a_{2} a_{1}}$, and $S_{2}=Y^{-s} V_{1}^{r} G^{z_{1}}=G^{-y s} V_{1}^{r} G^{z_{1}}=G^{-y s+x y-x y} V_{1}^{r} G^{z_{1}}=G^{-x y} V_{1}^{r} G^{z_{1}} G^{(x-s) y}=G^{-\alpha} V_{1}^{r} G^{z_{1}} G^{\gamma a_{2}}$, and $S_{4}=$ $V_{2}^{r} G^{z_{2}} X^{a_{1}} G^{-s a_{1}}=V_{2}^{r} G^{z_{2}} G^{x a_{1}} G^{-s a_{1}}=V_{2}^{r} G^{z_{2}} G^{(x-s) a_{1}}=V_{2}^{r} G^{z_{2}} G^{a_{1} \gamma}$
The rest of the signature can be computed honestly.
Adversary's forgery: When the adversary outputs a normal-type forgery, there exists r_{1}, r_{2}, z_{1} such that $S_{2}=G^{-\alpha} V_{1}^{r_{1}+r_{2}} G^{z_{1}}$, $S_{3}=\left(G^{b}\right)^{-z_{1}}, S_{6}=G^{r_{2} b}$, and $S_{7}=G^{r_{1}}$. Thus, we can compute

$$
\begin{aligned}
S_{2}^{-1} \cdot S_{7}^{v_{1}} S_{6}^{v_{1} / b} S_{3}^{-1 / b} & =G^{\alpha} V_{1}^{-\left(r_{1}+r_{2}\right)} G^{-z_{1}} \cdot\left(G^{r_{1}}\right)^{v_{1}}\left(G^{r_{2} b}\right)^{v_{1} / b}\left(\left(G^{b}\right)^{-z_{1}}\right)^{-1 / b} \\
& =G^{\alpha} V_{1}^{-r_{1}-r_{2}} G^{-z_{1}} \cdot\left(G^{v_{1}}\right)^{r_{1}}\left(G^{v_{1}}\right)^{r_{2}} G^{z_{1}} \\
& =G^{\alpha} V_{1}^{-r_{1}-r_{2}} G^{-z_{1}} \cdot V_{1}^{r_{1}} V_{1}^{r_{2}} G^{z_{1}} \\
& =G^{\alpha} .
\end{aligned}
$$

\mathcal{B} will output this value. By our choice of parameters, $\alpha=x y$, so $G^{\alpha}=G^{x y}$ as desired.

Let MSGGen be an extended random message generator that first chooses $a u x=\left(m_{1}, m_{2}\right)$ randomly from \mathbb{Z}_{p}^{2} and then computes $m s g=\left(C^{m_{1}}, C^{m_{2}}, F^{m_{1}}, F^{m_{2}}, U_{1}^{m_{1}}, U_{2}^{m_{2}}\right)$. Note that this is what the reduction algorithm does in the proof of Theorem6. Therefore, the same reduction algorithm works for the case of extended random message attacks with respect to message generator MSGGen. We thus have the following.

Corollary 1. Under the DLIN assumption, the above rSIG scheme is secure against extended random message attacks with respect to the message generator that provides aux $=\left(m_{1}, m_{2}\right)$ for every message $m s g=\left(C^{m_{1}}, C^{m_{2}}, F^{m_{1}}, F^{m_{2}}, U_{1}^{m_{1}}, U_{2}^{m_{2}}\right)$. In particular, for any polynomial-time adversary \mathcal{A} against $r S I G$ that makes at most q_{s} signing queries, there exists polynomialtime algorithm \mathcal{B} such that $\operatorname{Adv}_{r S I G, \mathcal{A}}^{u f-\text { Prma }}(\lambda) \leq\left(q_{s}+2\right) \cdot \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\text {dim }}(\lambda)$.

5.4 Security and efficiency of resulting SIG1

Let SIG1 be the signature scheme obtained from TOS and rSIG by following the first generic construction in Section 4 From Theorem 1, 2,5,6 and Lemma2, the following is immediate.

Theorem 7. SIG1 is a structure-preserving signature scheme that yields constant-size signatures, and is unforgeable against adaptive chosen message attacks under the DLIN assumption. In particular, for any polynomial-time adversary \mathcal{A} for SIG1 making at most q_{s} signing queries, there exists polynomial-time algorithm \mathcal{B} such that $\operatorname{Adv} v_{S I G 1, \mathcal{A}}^{\text {uf-cma }}(\lambda) \leq\left(2 q_{s}+2\right) \cdot \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}(\lambda)$.

The efficiency is summarised in Table 1 and compared to the scheme in [4]. We measure efficiency by counting the number of group elements and the number of pairing product equations for verifying a singature. The figures do not count the default a generator for each group in $g k$.

Table 1: Efficiency of SIG1.

Scheme	$\|m s g\|$	$\|g k\|+\|v k\|$	$\|\sigma\|$	$\#$ (PPE)	Assmp.
AHO10	k	$2 k+12$	7	2	q-SFP
SIG1	k	$2 k+23$	17	9	DLIN

6 Instantiating SIG2

We instantiate the POS and xSIG building blocks of our second generic construction to obtain our second SPS scheme. Here we choose the Type-III bilinear group setting. The resulting SIG2 scheme is an efficient structure-preserving signature scheme based on SXDH and XDLIN.

6.1 Setup

The following setup procedure is common for all building blocks in this section. The global parameter $g k$ is given to all functions implicitly.

- $\operatorname{Setup}\left(1^{\lambda}\right):$ Run $\Lambda \leftarrow \mathcal{G}\left(1^{\lambda}\right)$ and choose generators $G \in \mathbb{G}_{1}^{*}$ and $\hat{G} \in \mathbb{G}_{2}^{*}$. Also choose u, f_{2}, f_{3} randomly from \mathbb{Z}_{p}^{*} and compute $F_{2}:=G^{f_{2}}, F_{3}:=G^{f_{3}}, \hat{F}_{2}:=\hat{G}^{f_{2}}, \hat{F}_{3}:=\hat{G}^{f_{3}}, U:=G^{u}$, and $\hat{U}:=\hat{G}^{u}$. Output $g k:=$ $\left(\Lambda, G, \hat{G}, F_{2}, F_{3}, \hat{F}_{2}, \hat{F}_{3}, U, \hat{U}\right)$.

A $g k$ defines a message space $\mathcal{M}_{\mathrm{x}}=\left\{\left(\hat{F}_{2}^{m}, \hat{F}_{3}^{m}, \hat{U}^{m}\right) \in \mathbb{G}_{2}^{*} \mid m \in \mathbb{Z}_{p}\right\}$ for the signature scheme in Section 6.4 For our generic construction to work, the partial one-time signature scheme should have the same key space.

6.2 Partial one-time signatures for uniliteral messages

We construct a partial one-time signature scheme POSu2 for messages in \mathbb{G}_{2}^{k} for $k>0$. The suffix "u2" indicates that the scheme is uniliteral and messages are taken from \mathbb{G}_{2}. Correspondingly, POSu1 refers to the scheme whose messages belong to \mathbb{G}_{1}, which is obtained by swapping \mathbb{G}_{2} and \mathbb{G}_{1} in the following description. Our POSu2 scheme is a minor refinement of the one-time signature scheme introduced in [4]. It comes, however, with a security proof for the new security model.

Basically, a one-time public-key in our scheme consists of one element in the base group \mathbb{G}_{1}^{*} that is the opposite of the group \mathbb{G}_{2}^{*} that messages belong to. This structure is very useful for constructing a POS scheme for signing bilateral messages. Just like our rSIG scheme in Section 5.3, our instantiation of xSIG signs random messages from message space \mathcal{M}_{x} consisting of several related group elements and we extend the key space of POSu2 to fit \mathcal{M}_{x}.

To be able to certify one-time public keys both using our POSu1 and xSIG schemes, we parameterize the one-time key generation function Update with a flag mode $\in\{$ normal, extended $\}$. If mode $=$ normal, it outputs a key in the original form, and if mode $=$ extended, it outputs the extended form. Although mode is given to Update as input, it should be considered as a fixed system-wide parameter that is common for every invocation of Update and the key space is fixed throughout the use of the scheme. Accordingly, this extension does not affect the security model at all.

[Scheme POSu2]

- POSu2. $\operatorname{Key}(g k)$: Take generators U and \hat{U} from $g k$. Choose w_{r} randomly from \mathbb{Z}_{p}^{*} and compute $G_{r}:=U^{w_{r}}$. For $i=1, \ldots, k$, uniformly choose χ_{i} and γ_{i} from \mathbb{Z}_{p} and compute $G_{i}:=U^{\chi_{i}} G_{r}^{\gamma_{i}}$. Output $p k:=\left(G_{r}, G_{1}, \ldots\right.$, $\left.G_{k}\right) \in \mathbb{G}_{1}^{k+1}$ and $s k:=\left(\chi_{1}, \gamma_{1}, \ldots, \chi_{k}, \gamma_{k}, w_{r}\right)$.
- POSu2.Update(mode): Take F_{2}, F_{3}, U from $g k$. Choose $a \leftarrow \mathbb{Z}_{p}$ and output opk $:=U^{a} \in \mathbb{G}_{1}$ if mode $=$ normal or opk $:=\left(F_{2}^{a}, F_{3}^{a}, U^{a}\right) \in \mathbb{G}_{1}^{3}$ if mode $=$ extended. Also output osk $:=a$.
- POSu2.Sign $(s k, m s g, o s k)$: Parse $m s g$ into $\left(\hat{M}_{1}, \ldots, \hat{M}_{k}\right) \in \mathbb{G}_{2}^{k}$. Take a and w_{r} from osk and $s k$, respectively. Choose ρ randomly from \mathbb{Z}_{p} and compute $\zeta:=a-\rho w_{r} \bmod p$. Then compute and output $\sigma:=(\hat{Z}, \hat{R}) \in \mathbb{G}_{2}^{2}$ as the signature, where

$$
\begin{equation*}
\hat{Z}:=\hat{U}^{\zeta} \prod_{i=1}^{k} \hat{M}_{i}^{-\chi_{i}} \quad \text { and } \quad \hat{R}:=\hat{U}^{\rho} \prod_{i=1}^{k} \hat{M}_{i}^{-\gamma_{i}} \tag{5}
\end{equation*}
$$

- POSu2. $\operatorname{Vrf}(p k, \sigma, m s g, o p k)$: Parse σ as $(\hat{Z}, \hat{R}) \in \mathbb{G}_{2}^{2}, m s g$ as $\left(\hat{M}_{1}, \ldots, \hat{M}_{k}\right) \in \mathbb{G}_{2}^{k}$, and opk as $\left(A_{2}, A_{3}, A\right)$ or A depending on mode. Return 1, if $e(A, \hat{U})=e(U, \hat{Z}) e\left(G_{r}, \hat{R}\right) \prod_{i=1}^{k} e\left(G_{i}, \hat{M}_{i}\right)$ holds. Return 0 , otherwise.

Scheme POSu2 is structure-preserving and has uniform one-time public-key property from the construction. It is correct as the following relation holds for the verification equation and the computed signatures:

$$
\begin{aligned}
e(U, \hat{Z}) e\left(G_{r}, \hat{R}\right) \prod_{i=1}^{k} e\left(G_{i}, \hat{M}_{i}\right) & =e\left(U, \hat{U}^{\zeta} \prod_{i=1}^{k} \hat{M}_{i}^{-\chi_{i}}\right) e\left(G_{r}, \hat{U}^{\rho} \prod_{i=1}^{k} \hat{M}_{i}^{-\gamma_{i}}\right) \prod_{i=1}^{k} e\left(U^{\chi_{i}} G_{r}^{\gamma_{i}}, \hat{M}_{i}\right) \\
& =e\left(U, \hat{U}^{\zeta}\right) e\left(U^{w_{r}}, \hat{U}^{\rho}\right)=e\left(U^{\zeta+w_{r} \rho}, \hat{U}\right)=e(A, \hat{U})
\end{aligned}
$$

Theorem 8. POSu2 is unforgeable against one-time adaptive chosen message attacks (OT-CMA) if DBP ${ }_{1}$ holds. In particular, $\operatorname{Adv}_{P O S u 2, \mathcal{A}}^{o t-c m a}(\lambda) \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{d b p}(\lambda)+1 / p$.

Proof. Making use of successful forger \mathcal{A} against POSu2 as a black-box, we construct \mathcal{B} that is successful in breaking DBP $_{1}$. We consider the case mode $=$ extended in the following. The other case, mode $=$ normal can be automatically obtained by dropping A_{2} and A_{3}. Given instance $I_{\mathrm{dbp} 1}=\left(\Lambda, G_{z}, G_{r}\right)$ of DBP_{1}, algorithm \mathcal{B} simulates the attack game against POSu2 as follows. It first build $g k$ by $U:=G_{z}, \hat{U} \leftarrow \mathbb{G}_{2}^{*}$, and $g k:=\left(\Lambda, U^{g}, \hat{U}^{g}, U^{f_{2}}, U^{f_{3}}, \hat{U}^{f_{2}}, \hat{U}^{f_{3}}, U, \hat{U}\right)$ for $g, f_{2}, f_{3} \leftarrow \mathbb{Z}_{p}^{*}$. This yields a $g k$ from the same distribution as produced by Setup. Next \mathcal{B} simulates POSu2.Key by following the original prescription except that Λ and G_{r} are taken from $I_{\mathrm{dbp} 1}$. Note that $w_{r}=\log _{U} G_{r}$ is not known to the simulator but it is not needed in the original POSu2.Key. On receiving one-time key query, algorithm \mathcal{B} simulates POSu2.Update by returning $A:=U^{\zeta} G_{r}^{\rho}, A_{2}:=A^{f_{2}}, A_{3}:=A^{f_{3}}$ for $\zeta, \rho \leftarrow \mathbb{Z}_{p}$, and f_{2} and f_{3} generated in Setup.

On receiving signing query $m s g^{(j)}$ from \mathcal{A}, algorithm \mathcal{B} simulates \mathcal{O} sig by simulating POSu2. Sign without having w_{r}. It is done by using ζ and ρ used in POSu2.Update instead of computing ζ from a. For each signing, transcript ($o p k, \sigma, m s g$) is recorded. When \mathcal{A} outputs a forgery $\left(o p k^{\dagger}, \sigma^{\dagger}, m s g^{\dagger}\right.$), algorithm \mathcal{B} searches the records for (opk, $\sigma, m s g$) such that $o p k^{\dagger}=o p k$ and $m s g^{\dagger} \neq m s g$. If no such entry exists, \mathcal{B} aborts. Otherwise, \mathcal{B} computes

$$
\begin{equation*}
\hat{Z}^{\star}:=\frac{\hat{Z}^{\dagger}}{\hat{Z}} \prod_{i=1}^{k}\left(\frac{\hat{M}_{i}^{\dagger}}{\hat{M}_{i}}\right)^{\chi_{i}}, \quad \text { and } \quad \hat{R}^{\star}:=\frac{\hat{R}^{\dagger}}{\hat{R}} \prod_{i=1}^{k}\left(\frac{\hat{M}_{i}^{\dagger}}{\hat{M}_{i}}\right)^{\gamma_{i}}, \tag{6}
\end{equation*}
$$

where $\left(\hat{Z}, \hat{R}, \hat{M}_{1}, \ldots, \hat{M}_{k}\right)$ and its dagger counterpart are taken from $(\sigma, m s g)$ and $\left(\sigma^{\dagger}, m s g^{\dagger}\right)$, respectively. \mathcal{B} finally outputs $\left(\hat{Z}^{\star}, \hat{R}^{\star}\right)$. This completes the description of \mathcal{B}.

We first claim that the simulation by \mathcal{B} is perfect; the parameters and keys generated in Setup and POSu2.Key due to the uniform choice of $I_{\mathrm{dbp} 1}=\left(\Lambda, G_{z}, G_{r}\right)$, and the distribution of (a, ζ, ρ) is uniform over \mathbb{Z}_{p}^{3} under constraint $a=\zeta+\rho w_{r}$ as well as the original procedure. Accordingly, \mathcal{A} outputs successful forgery with noticeable probability and \mathcal{B} finds a corresponding record ($o p k, \sigma, m s g$).

We next claim that each χ_{i} is independent of the view of \mathcal{A}. Concretely, we show that, if coins $\chi_{1}, \ldots, \chi_{k}$ distribute uniformly over $\left(\mathbb{Z}_{p}\right)^{k}$, other coins $\gamma_{1}, \ldots, \gamma_{k}, \zeta^{(1)}, \rho^{(1)}, \ldots, \zeta^{\left(q_{s}\right)}, \rho^{\left(q_{s}\right)}$ distribute uniformly as well retaining consistency with the view of \mathcal{A}. Observe that the view of \mathcal{A} making q signing queries consists of independent group elements (U, \hat{U}), $\left(G, F_{2}, F_{3}\right),\left(G_{r}, G_{1}, \ldots, G_{k}\right)$ and $\left(A^{(j)}, \hat{Z}^{(j)}, \hat{M}_{1}^{(j)}, \ldots, \hat{M}_{k}^{(j)}\right)$ for $j=1, \ldots, q_{s}$. (Note that $\hat{G}, \hat{F}_{2}, \hat{F}_{3}$, and $A_{1}^{(j)}, A_{2}^{(j)}$, and $\hat{R}^{(j)}$ for all j are uniquely determined from other group elements.) We represent the view by the discrete-logarithms of these group elements with respect to bases U and \hat{U} in each group. Namely, the view is $\left(g, f_{2}, f_{3}, w_{r}, w_{1}, \ldots, w_{k}\right)$ and $\left(a^{(j)}, z^{(j)}, m_{1}^{(j)}, \ldots, m_{k}^{(j)}\right)$ for $j=1, \ldots, q_{s}$. To be consistent, the view and the coins satisfy relations

$$
\begin{align*}
& w_{i}=\chi_{i}+w_{r} \gamma_{i} \quad \text { for } i=1, \ldots, k, \text { and } \tag{7}\\
& a^{(j)}=\zeta^{(j)}+w_{r} \rho^{(j)}, \quad \text { and } \quad z^{(j)}=\zeta^{(j)}-\sum_{i=1}^{k} m_{i}^{(j)} \chi_{i} \quad \text { for } j=1, \ldots, q_{s} \tag{8}
\end{align*}
$$

From relation 7 $7,\left(\gamma_{1}, \ldots, \gamma_{k}\right)$ distributes uniformly according to the uniform distribution of $\left(\chi_{1}, \ldots, \chi_{k}\right)$. From the second relation in for every j, if $\left(m_{1}, \ldots, m_{k}\right) \neq(0, \ldots, 0)$ then $\zeta^{(j)}$ distributes uniformly according to the uniform distribution of $\left(\chi_{1}, \ldots, \chi_{k}\right)$. Then, from first relation of 8 , $\rho^{(j)}$ distributes uniformly, too. If $\left(m_{1}, \ldots, m_{k}\right)=(0, \ldots, 0)$, then $\zeta^{(j)}$ and $\rho^{(j)}$ are independent of $\left(\chi_{1}, \ldots, \chi_{k}\right)$ and can be uniformly assigned by following the first relation in 8 .

Finally, we claim that $\left(\hat{Z}^{\star}, \hat{R}^{\star}\right)$ is a valid solution to the given instance of DBP_{1}. Since both forged and recorded signatures fulfill the verification equation,
dividing the equations results in

$$
\begin{aligned}
1 & =e\left(U, \frac{\hat{Z}^{\dagger}}{\hat{Z}}\right) e\left(G_{r}, \frac{\hat{R}^{\dagger}}{\hat{R}}\right) \prod_{i=1}^{k} e\left(U^{\chi_{i}} G_{r}^{\gamma_{i}}, \frac{\hat{M}_{i}^{\dagger}}{\hat{M}_{i}}\right) \\
& =e\left(U, \frac{\hat{Z}^{\dagger}}{\hat{Z}} \prod_{i=1}^{k}\left(\frac{\hat{M}_{i}^{\dagger}}{M_{i}}\right)^{\chi_{i}}\right) e\left(G_{r}, \frac{\hat{R}^{\dagger}}{\hat{R}} \prod_{i=1}^{k}\left(\frac{\hat{M}_{i}^{\dagger}}{M_{i}}\right)^{\gamma_{i}}\right) \\
& =e\left(U, \hat{Z}^{\star}\right) e\left(G_{r}, \hat{R}^{\star}\right)
\end{aligned}
$$

What remains is to prove that $\hat{Z}^{\star} \neq 1$. Since $m s g^{\dagger} \neq m s g^{(j)}$, there exists $\ell \in\{1, \ldots, k\}$ such that $\frac{\hat{M}_{\ell}^{\dagger}}{M_{\ell}} \neq 1$. As already proven, χ_{ℓ} is independent of the view of \mathcal{A}. Thus $\left(\frac{M_{\ell}^{\dagger}}{M_{\ell}}\right)^{\chi_{\ell}}$ distributes uniformly over \mathbb{G}_{2} and so does \hat{Z}^{\star}. Accordingly, $Z^{\star}=1$ holds only if $Z^{\dagger}=\hat{Z} \prod\left(M_{i}^{\dagger} / M_{i}\right)^{-\chi_{i}}$, which happens only with probability $1 / p$ over the choice of χ_{ℓ}. We thus have $\operatorname{Adv}_{\mathrm{POSu} 2, \mathcal{A}}^{\mathrm{ot}-\mathrm{cma}}(\lambda) \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\mathrm{dbp} 1}(\lambda)+1 / p$.

6.3 Partial one-time signatures for bilateral messages

Using POSu1 for $m s g \in \mathbb{G}_{1}^{k_{1}+1}$ and POSu2 for $m s g \in \mathbb{G}_{2}^{k_{2}}$, we construct a POSb scheme for signing bilateral messages $\left(m s g_{1}, m s g_{2}\right) \in \mathbb{G}_{1}^{k_{1}} \times \mathbb{G}_{2}^{k_{2}}$. The scheme is a simple two-story construction where $m s g_{2}$ is signed by POSu2 with one-time secret-key $o s k_{2} \in \mathbb{G}_{1}$ and then the one-time public-key $o p k_{2}$ is attached to $m s g_{1}$ and signed by POSu1. Public-key opk k_{2} is included in the signature, and $o p k_{1}$ is output as a one-time public-key for POSb.

[Scheme POSb]

- POSb.Key $(g k): \operatorname{Run}\left(p k_{1}, s k_{1}\right) \leftarrow \operatorname{POSu1.Key}(g k)$ and $\left(p k_{2}, s k_{2}\right) \leftarrow \operatorname{POSu2.\operatorname {Key}(gk).\operatorname {Set}pk:=(pk_{1},pk_{2})\text {and},~}$ $s k:=\left(s k_{1}, s k_{2}\right)$, and output $(p k, s k)$.
- POSb.Update (mode): Run $(o p k, o s k) \leftarrow \operatorname{POSu1}($ mode $)$ and output $(o p k, o s k)$.
- POSb.Sign $(s k, m s g, o s k)$: Parse $m s g$ into $\left(m s g_{1}, m s g_{2}\right) \in \mathbb{G}_{1}^{k_{1}} \times \mathbb{G}_{2}^{k_{2}}$, and $s k$ accordingly. Run $\left(o p k_{2}, o s k_{2}\right) \leftarrow$ POSu2.Update(normal), and compute signatures $\sigma_{2} \leftarrow \operatorname{POSu2}$.Sign $\left(s k_{2}, m s g_{2}, o s k_{2}\right)$ and $\sigma_{1} \leftarrow \operatorname{POSu} 1 . \operatorname{Sign}\left(s k_{1}\right.$, $\left(m s g_{1}, o p k_{2}\right)$, osk). Output $\sigma:=\left(\sigma_{1}, \sigma_{2}, o p k_{2}\right)$.
- POSb. $\operatorname{Vrf}(p k, o p k, \sigma, m s g)$: Parse $m s g$ into $\left(m s g_{1}, m s g_{2}\right) \in \mathbb{G}_{1}^{k_{1}} \times \mathbb{G}_{2}^{k_{2}}$, and σ into $\left(\sigma_{1}, \sigma_{2}, o p k_{2}\right)$. If $1=$ $\operatorname{POSu1} . \operatorname{Vrf}\left(p k_{1}, o p k, \sigma_{1},\left(m s g_{1}, o p k_{2}\right)\right)=\operatorname{POSu2} . \operatorname{Vrf}\left(p k_{2}, o p k_{2}, \sigma_{2}, m s g_{2}\right)$, output 1. Otherwise, output 0.

For a message in $\mathbb{G}_{1}^{k_{1}} \times \mathbb{G}_{2}^{k_{2}}$, the above POSb uses a public-key of size $(k+2, k+1)$, yields a one-time public-key of size $(0,1)$ (for mode $=$ normal) or $(0,3)$ (for mode $=$ extended), and a signature of size $(3,2)$. Verification requires 2 pairing product equations. A one-time public-key in extended mode, which is treated as a message to xSIG in Section 6.4 . is of the form opk $=\left(\hat{F}_{2}^{a}, \hat{F}_{3}^{a}, \hat{U}^{a}\right) \in \mathbb{G}_{2}^{3}$. Structure-preservance and uniform public-key property are taken over from the underlying POSu1 and POSu2.

Theorem 9. Scheme POSb is unforgeable against one-time adaptive chosen message attacks if SXDH holds. In particular, $\operatorname{Adv}_{P O S b, \mathcal{A}}^{0 t-c m a}(\lambda) \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{S X d h}(\lambda)+2 / p$.

Proof. Suppose an adversary \mathcal{A} outputs a forgery ($o p k^{\dagger}, \sigma^{\dagger}, m s g^{\dagger}$). Then there exists a triple ($\sigma, o p k, m s g$) observed by the signing oracle such that $o p k^{\dagger}=o p k$ and $m s g^{\dagger} \neq m s g$. Let $m s g^{\dagger}=\left(m s g_{1}^{\dagger}, m s g_{2}^{\dagger}\right)$ and $\sigma^{\dagger}=\left(\sigma_{1}^{\dagger}, \sigma_{2}^{\dagger}\right.$, opk $\left.k_{2}^{\dagger}\right)$. Similarly, let $m s g=\left(m s g_{1}, m s g_{2}\right)$ and $\sigma=\left(\sigma_{1}, \sigma_{2}, o p k_{2}\right)$. Then there are two cases; either $\left(m s g_{1}, o p k_{2}\right) \neq\left(m s g_{1}^{\dagger}\right.$,opk $\left.k_{2}^{\dagger}\right)$, or $\left(m s g_{1}, o p k_{2}\right)=\left(m s g_{1}^{\dagger}, o p k_{2}^{\dagger}\right)$ and $m s g_{2} \neq m s g_{2}^{\dagger}$. In the first case we have $1=\operatorname{POSu1} . \operatorname{Vrf}\left(p k_{1}, o p k, \sigma_{1},\left(m s g_{1}, o p k_{2}\right)\right)=$ $\operatorname{POSu1} . \operatorname{Vrf}\left(p k_{1}, o p k, \sigma_{1}^{\dagger},\left(m s g_{1}^{\dagger}, o p k_{2}^{\dagger}\right)\right)$, which breaks the unforgeability of POSu1 and contradicts the DBP_{2} assumption. In the second case we have $1=\operatorname{POSu2} . \operatorname{Vrf}\left(p k_{2}, o p k_{2}, \sigma_{2}, m s g_{2}\right)=\operatorname{POSu2} \operatorname{Vrf}\left(p k_{2}, o p k_{2}, \sigma_{2}, m s g_{2}^{\dagger}\right)$, which breaks the unforgeability of POSu2 and contradicts the DBP_{1} assumption. Accordingly, we have $\operatorname{Adv}_{\mathrm{POSb}, \mathcal{A}}^{\mathrm{ot} \mathrm{cma}}(\lambda) \leq \operatorname{Adv} v_{\mathcal{G}, \mathcal{A}}^{\mathrm{dbp} 1}(\lambda)+1 / p+$ $\operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\mathrm{dbp} 2}(\lambda)+1 / p \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\text {sxdh }}(\lambda)+2 / p$.

6.4 XRMA-secure signature scheme

We use a variant of Waters' dual system encryption proposed by Ramanna, Chatterjee, and Sarkar [35]. Recall that $g k=$ $\left(\Lambda, G, \hat{G}, F_{2}, F_{3}, \hat{F}_{2}, \hat{F}_{3}, U, \hat{U}\right)$ with $\Lambda=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e\right)$ is generated by Setup $\left(1^{\lambda}\right)$ in advance.

[Scheme xSIG]

\times SIG.Gen $(g k)$: On input $g k$, select generators $V, V^{\prime}, H \leftarrow \mathbb{G}_{1}, \hat{V}, \hat{V}^{\prime}, \hat{H} \in \mathbb{G}_{2}$ such that $V \sim \hat{V}, V^{\prime} \sim \hat{V}^{\prime}, H \sim \hat{H}, F_{2} \sim$ $\hat{F}_{2}, F_{3} \sim \hat{F}_{3}$ and exponent $a, b, \alpha \leftarrow \mathbb{Z}_{p}$ and $\rho \leftarrow \mathbb{Z}_{p}^{*}$, compute $R:=V\left(V^{\prime}\right)^{a}, \hat{R}:=\hat{V}\left(\hat{V}^{\prime}\right)^{a}$, and set

$$
\begin{aligned}
v k & :=\left(g k, \hat{G}^{b}, \hat{G}^{a}, \hat{G}^{b a}, \hat{R}, \hat{R}^{b}, H, \hat{H}, V, \hat{V}, V^{\prime}, \hat{V}^{\prime}, G^{\rho}, \hat{G}^{\alpha b / \rho}\right) \\
s k & :=\left(V K, G^{\alpha}, G^{a}, G^{b}\right) .
\end{aligned}
$$

$\times \operatorname{SIG} . \operatorname{Sign}(s k, m s g):$ On input message $m s g=\left(\hat{M}_{1}, \hat{M}_{2}, \hat{M}_{0}\right)=\left(\hat{F}_{2}^{m}, \hat{F}_{3}^{m}, \hat{U}^{m}\right) \in \mathbb{G}_{2}^{3} \quad\left(m \in \mathbb{Z}_{p}\right)$, select $r_{1}, r_{2} \leftarrow \mathbb{Z}_{p}$, set $r:=r_{1}+r_{2}$, compute $\sigma_{0}:=\left(\hat{M}_{0} \hat{H}\right)^{r_{1}}, \sigma_{1}:=G^{\alpha} V^{r}, \sigma_{2}:=\left(V^{\prime}\right)^{r} G^{-z}, \sigma_{3}:=\left(G^{b}\right)^{z}, \sigma_{4}:=\left(G^{b}\right)^{r_{2}}$, and $\sigma_{5}:=G^{r_{1}}$, and output $\sigma:=\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{5}\right) \in \mathbb{G}_{2} \times \mathbb{G}_{1}^{5}$.
$\mathrm{xSIG} . \operatorname{Vrfy}(v k, \sigma, m s g):$ On input $v k, m s g=\left(\hat{M}_{1}, \hat{M}_{2}, \hat{M}_{0}\right)$, and signature σ, compute

$$
\begin{aligned}
e\left(\sigma_{5}, \hat{M}_{0} \hat{H}\right) & =e\left(G, \sigma_{0}\right) \\
e\left(\sigma_{1}, \hat{G}^{b}\right) e\left(\sigma_{2}, \hat{G}^{b a}\right) e\left(\sigma_{3}, \hat{G}^{a}\right) & =e\left(\sigma_{4}, \hat{R}\right) e\left(\sigma_{5}, \hat{R}^{b}\right) e\left(G^{\rho}, \hat{G}^{\alpha b / \rho}\right) \\
e\left(F_{2}, \hat{M}_{0}\right) & =e\left(U, \hat{M}_{1}\right) \\
e\left(F_{3}, \hat{M}_{0}\right) & =e\left(U, \hat{M}_{2}\right)
\end{aligned}
$$

The scheme is structure-preserving due to the construction. It is correct as the following relations hold for the verification equation and the computed signatures.

$$
\begin{aligned}
e\left(\sigma_{1}, \hat{G}^{b}\right) e\left(\sigma_{2}, \hat{G}^{b a}\right) e\left(\sigma_{3}, \hat{G}^{a}\right) & =e\left(G^{\alpha} V^{r}, \hat{G}^{b}\right) e\left(\left(V^{\prime}\right)^{r} \hat{G}^{-z}, \hat{G}^{b a}\right) e\left(G^{b z}, \hat{G}^{a}\right) \\
& =e(G, \hat{G})^{\alpha b} e(V, \hat{G})^{b r} e\left(V^{\prime}, \hat{G}\right)^{a b r} \\
& =e(G, \hat{G})^{\alpha b} e\left(V\left(V^{\prime}\right)^{a}, \hat{G}\right)^{b r} \\
e\left(\sigma_{4}, \hat{R}\right) e\left(\sigma_{5}, \hat{R}^{b}\right) e\left(G^{\rho}, \hat{G}^{\alpha b / \rho}\right) & =e\left(G^{b r_{2}}, \hat{V}\left(\hat{V}^{\prime}\right)^{a}\right) e\left(G^{r_{1}}, \hat{V}^{b}\left(\hat{V}^{\prime}\right)^{b a}\right) e(G, \hat{G})^{\alpha b} \\
& =e\left(G, \hat{V}\left(\hat{V}^{\prime}\right)^{a}\right)^{b r_{2}} e\left(G, \hat{V}\left(\hat{V}^{\prime}\right)^{a}\right)^{b r_{1}} e(G, \hat{G})^{\alpha b} \\
& =e(G, \hat{G})^{\alpha b} e\left(G, \hat{V}\left(\hat{V}^{\prime}\right)^{a}\right)^{b r}
\end{aligned}
$$

Thus, the second euqation holds since $G \sim \hat{G}, V \sim \hat{V}, V^{\prime} \sim \hat{V}^{\prime}$, and $r=r_{1}+r_{2}$. The first, third, fourth equations are easily verified.

Theorem 10. If the DDH_{2} and $X D L I N_{1}$ assumptions hold, then our \times SIG scheme is unforgeable against extended random chosen message attacks with respect to the message generator that returns aux $=m$ for every random message $m s g=\left(\hat{F}_{2}^{m}, \hat{F}_{3}^{m}, \hat{U}^{m}\right)$. In particular for any p.p.t. adversary \mathcal{A} for \times SIG making at most q signing queries, there exist p.p.t. algorithms $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}$ such that $\operatorname{Adv}_{x S I G, \mathcal{A}}^{\text {uf-xrma }}(\lambda)<\operatorname{Adv}_{\mathcal{G}, \mathcal{B}_{1}}^{\text {ddh }}(\lambda)+q \operatorname{Adv}_{\mathcal{G}, \mathcal{B}_{2}}^{\text {xdlin }}(\lambda)+\operatorname{Adv}_{\mathcal{G}, \mathcal{B}_{3}}^{\text {colh }}(\lambda)$.

Proof. The outline of the proof follows that of Water's dual signature scheme and quite similar to the proof of Theorem 6 . We start with the following lemma.

Lemma 9. Any accepted signature by the verification algorithm must be formed either as a normal-type signature or a simulation-type signature.

Proof. (of Lemma 9) For a signature element σ_{5}, there exists some $r_{1} \in \mathbb{Z}_{p}$ such that $\sigma_{5}=G^{r_{1}}$, so the first verification equation implies that $\sigma_{0}=\left(\hat{U}^{m} \hat{H}\right)^{r_{1}}$. For fixed $b \in \mathbb{Z}_{p}\left(\hat{G}^{b}\right.$ is included in $v k$), there exists $r_{2}, z \in \mathbb{Z}_{p}$ such that $\sigma_{3}=G^{b z}$, $\sigma_{4}=G^{b r_{2}}$. If we fix $\sigma_{1}=G^{\alpha} V^{r} G^{-a \gamma}$, then a remaining unknown value is σ_{2}. The verification equation is

$$
e\left(\sigma_{1}, \hat{G}^{b}\right) e\left(\sigma_{2}, \hat{G}^{b a}\right) e\left(\sigma_{3}, \hat{G}^{a}\right)=e\left(\sigma_{4}, \hat{R}\right) e\left(\sigma_{5}, \hat{R}^{b}\right) e(G, \hat{G})^{\alpha b}
$$

so we can fix $\sigma_{2}=\left(V^{\prime}\right)^{r} G^{-z} G^{\gamma}$.
Based on the notion of simulation-type signatures, we consider a sequence of games. Let p_{i} be the probability that the adversary succeeds in Game i, and $p_{i}^{\text {norm }}(\lambda)$ and $p_{i}^{\text {sim }}(\lambda)$ that he succeeds with a normal-type respectively simulation-type forgery. Then by Lemma $9, p_{i}(\lambda)=p_{i}^{\text {norm }}(\lambda)+p_{i}^{\text {sim }}(\lambda)$ for all i.
Game 0: The actual Unforgeability under Extended Random Message Attacks game.
Lemma 10. In Game 0, the adversary produces a valid forgery which is a simulation-type signature only with negligible probability $p_{0}^{s i m}(\lambda)$ under the $D D H_{2}$ assumption. More concretely, there exists an adversary \mathcal{B}_{1} such that $p_{0}^{\text {sim }}(\lambda) \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{B}_{1}}^{\text {ddh2 }}(\lambda)$.

Game i: The real security game except that the first i signing queries are answered with simulation-type signatures.
Lemma 11. The probability that \mathcal{A} outputs a normal-type forgery is the same (up to a negligible amount) in Game $i-1$ as in Game $i: p_{i-1}^{\text {norm }}(\lambda) \leq p_{i}^{\text {norm }}(\lambda)+\Delta_{i}(\lambda)$ for some negligible $\Delta_{i}(\lambda)$ under the XDLIN N_{1} assumption. More concretely, there exists an adversary \mathcal{B}_{2} such that $\left|p_{i-1}^{\text {norm }}(\lambda)-p_{i}^{\text {norm }}(\lambda)\right| \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\text {xdlin }}(\lambda)$.

Game q: All private key queries are answered with simulation-type signatures.
Lemma 12. In Game q, \mathcal{A} outputs a normal-type forgery with at most negligible probability $p_{q}^{\text {norm }}(\lambda)$ under the coCDH assumption. More concretely, there exists an adversary \mathcal{B}_{2} such that $p_{q}^{\text {norm }}(\lambda) \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{B}_{2}}^{c-\text { cdh }}(\lambda)$.

We have shown that in Game \mathbf{q}, \mathcal{A} can output a normal-type forgery with at most negligible probability. Thus, by Lemma 11 we can conclude that the same is true in Game 0. Since we have already shown that in Game $\mathbf{0}$ the adversary can output simulation-type forgeries only with negligible probability, and that any signature that is accepted by the verification algorithm is either normal or simulation-type, we conclude that the adversary can produce valid forgeries with only negligible probability

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{xSIG}, \mathcal{A}}^{\mathrm{uffrma}}(\lambda) & =p_{0}(\lambda)=p_{0}^{\text {sim }}(\lambda)+p_{0}^{\mathrm{norm}}(\lambda)=p_{0}^{\text {sim }}(\lambda)+\sum_{i=1}^{q}\left|p_{i-1}^{\text {norm }}(\lambda)-p_{i}^{\text {norm }}(\lambda)\right|+p_{q}^{\text {norm }}(\lambda) \\
& \leq \operatorname{Adv}_{\mathcal{G}_{\mathcal{B}}, \mathcal{B}_{2}}^{\text {co-cdh }}(\lambda)+q \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\mathrm{xdlin} 1}(\lambda)+\operatorname{Adv}_{\mathcal{G}, \mathcal{B}_{1}}^{\text {ddh2 }}(\lambda)
\end{aligned}
$$

as stated.
Proof. (of Lemma 10) We show that, if adversary outputs a simulation-type forgery, then we can construct algorithm \mathcal{B}_{1} that solves the DDH_{2} problem. Algorithm \mathcal{B}_{1} is given instance $\left(\Lambda, \hat{G}, \hat{G}^{s}, \hat{G}^{a}, \hat{Z} \in \mathbb{G}_{2}\right.$) of DDH_{2}, and simulates the verification key and the signing oracle for the signature scheme (\mathcal{B}_{1} does not have value a, s).
\mathcal{B}_{1} generates $g k$ and $v k$ as follows. It selects $G \leftarrow \mathbb{G}_{1}$, and selects exponents $b, \alpha, v, v^{\prime}, u, h, f_{2}, f_{3} \leftarrow \mathbb{Z}_{p}$ and $\rho \leftarrow \mathbb{Z}_{p}^{*}$, computes $\hat{G}^{a}:=\hat{G}^{a}, \hat{G}^{b}:=\hat{G}^{b}, \hat{G}^{b a}:=\left(\hat{G}^{a}\right)^{b}, V:=G^{v}, V^{\prime}:=G^{v^{\prime}}, \hat{V}:=\hat{G}^{v}, \hat{V}^{\prime}:=\hat{G}^{v^{\prime}}, \hat{R}:=\hat{V}\left(\hat{V}^{\prime}\right)^{a}=\hat{G}^{v}\left(\hat{G}^{a}\right)^{v}$, $U:=G^{u}, H:=G^{h}, \hat{U}:=\hat{G}^{u}, \hat{H}:=\hat{G}^{h}, \hat{F}_{2}:=\hat{G}^{f_{2}}, \hat{F}_{3}:=\hat{G}^{f_{3}}, G^{\rho}:=G^{\rho}, \hat{G}^{\alpha b / \rho}:=\hat{G}^{\alpha b / \rho}$, and sets

$$
\begin{aligned}
g k & :=\left(\Lambda, G, \hat{G}, F_{2}, \hat{F}_{2}, F_{3}, \hat{F}_{3}, U, \hat{U}\right) \\
v k & :=\left(\hat{G}^{b}, \hat{G}^{a}, \hat{G}^{a b}, \hat{G}^{v} \hat{G}^{v a}, \hat{G}^{v b} \hat{G}^{v a b}, H, \hat{H}, V, \hat{V}, V^{\prime}, \hat{V}^{\prime}, G^{\rho}, \hat{G}^{\alpha b / \rho}\right), \\
s k & :=\left(V K, G^{\alpha}, G^{a}, G^{b}\right)
\end{aligned}
$$

\mathcal{B}_{1} can generate normal-type signatures by using the (normal) signing algorithm since \mathcal{B}_{1} has α, b and V, V^{\prime}.
If adversary \mathcal{A} outputs a simulation-type forgery $\sigma_{1}:=\left(G^{\alpha} V^{r}\right) \cdot G^{-a \gamma}, \sigma_{2}:=\left(\left(V^{\prime}\right)^{r} G^{-z}\right) \cdot G^{\gamma}, \sigma_{3}:=\left(G^{b}\right)^{-z}, \sigma_{4}:=$ $\left(G^{b}\right)^{r_{2}}, \sigma_{5}:=G^{r_{1}}$, and $\sigma_{0}:=\left(\hat{M}_{0} \hat{H}\right)^{r_{1}}$, for some $r_{1}, r_{2}, z, \gamma \in \mathbb{Z}_{p}\left(r=r_{1}+r_{2}\right)$ for message $F(m)=\left(\hat{F}_{2}^{m}, \hat{F}_{3}^{m}, \hat{U}^{m}\right)$, then \mathcal{B}_{1} can compute $\left(G^{a \gamma}, G^{\gamma}\right)$ from σ_{1}, σ_{2} respectively. The reason is as follows:
\mathcal{B}_{1} has b, so can compute $G^{z}, G^{r_{1}}, G^{r_{2}}$ from $\sigma_{3}=G^{b z}, \sigma_{5}=G^{r_{1}}, \sigma_{4}=G^{b r_{2}}$, respectively and obtains $G^{r}=G^{r_{1}+r_{2}}$, $V^{r}=G^{r v},\left(V^{\prime}\right)^{r}=G^{r v^{\prime}}\left(\mathcal{B}_{1}\right.$ has $\left.v, v^{\prime}\right)$. Thus, \mathcal{B}_{1} can extract $\left(G^{-a \gamma}, G^{\gamma}\right)$ from σ_{1} and σ_{2}. \mathcal{B}_{1} can solve the DDH_{2} problem by checking whether

$$
e\left(G^{\gamma}, \hat{Z}\right)=e\left(G^{a \gamma}, \hat{G}^{s}\right)
$$

or not because $e\left(G^{a \gamma}, \hat{G}^{s}\right)=e(G, \hat{G})^{a s \gamma}=e\left(G^{\gamma}, \hat{G}^{a s}\right)$. If $\hat{Z}=\hat{G}^{a s}$ (DDH tuple), then the equation holds. Thus, \mathcal{B}_{1} solves the DDH_{2} problem whenever the adversary outputs a valid simulation-type forgery, i.e., $p_{0}^{\operatorname{sim}}(\lambda) \leq \operatorname{Adv} v_{\mathcal{G}, \mathcal{B}_{1}}^{\operatorname{ddh}}(\lambda)$ as claimed.

Proof. (of Lemma 11) Given access to \mathcal{A} playing $p_{i-1}^{\text {norm }}(\lambda)$ and $p_{i}^{\text {norm }}(\lambda)$, we construct algorithm \mathcal{B}_{2} that solves the XDLIN ${ }_{1}$ problem with advantage $\left|p_{i-1}^{\text {norm }}(\lambda)-p_{i}^{\text {norm }}(\lambda)\right|$.
\mathcal{B}_{2} is given instance $\left(\Lambda, G_{1}, G_{2}, G_{3}, \hat{G}_{1}, \hat{G}_{2}, \hat{G}_{3}, X, Y, \hat{X}, \hat{Y}, Z \in \mathbb{G}_{1}\right)$ of the XDLIN 1 problem. It implicitly holds that $G_{1}=G_{3}^{b}, \hat{G}_{1}=\hat{G}_{3}^{b}, X=G_{1}^{x}, Y=G_{2}^{y}, \hat{X}=\hat{G}_{1}^{x}, \hat{Y}=\hat{G}_{2}^{y}$. \mathcal{B}_{2} generates the group elements in $g k$ and $v k$ as follows: It selects exponents $\alpha, a, v^{\prime}, u, h, \xi, \beta, \chi_{1}, \chi_{2}, \delta \leftarrow \mathbb{Z}_{p}$ and $\rho \leftarrow \mathbb{Z}_{p}^{*}$, such that $\xi m+\beta=0$ where $m \in \mathbb{Z}_{p}$ is the exponent of the i-th random message and will be used to answer i-th signature, computes $G:=G_{2}, \hat{G}:=\hat{G}_{2}, \hat{G}^{b}:=\hat{G}_{1}$, $\hat{G}^{b a}:=\hat{G}_{1}^{a}, V:=G_{3}^{-a \delta}, \hat{V}:=\hat{G}_{3}^{-a \delta}, V^{\prime}:=G_{3}^{\delta} G_{2}^{v^{\prime}}, \hat{V}^{\prime}:=\hat{G}_{3}^{\delta} \hat{G}_{2}^{v^{\prime}}, G^{\rho}:=G_{2}^{\rho}, \hat{G}^{\alpha b / \rho}:=\left(\hat{G}_{1}\right)^{\alpha / \rho}, R:=V\left(V^{\prime}\right)^{a}=G_{2}^{v^{\prime} a}$, $\hat{R}:=\hat{V}\left(\hat{V}^{\prime}\right)^{a}=\hat{G}_{2}^{v^{\prime} a}, R^{b}:=\left(V\left(V^{\prime}\right)^{a}\right)^{b}=G_{1}^{v^{\prime} a}, \hat{R}^{b}:=\left(\hat{V}\left(\hat{V}^{\prime}\right)^{a}\right)^{b}=\hat{G}_{1}^{v^{\prime} a}, U:=G_{2}^{\chi_{1}} G_{3}^{\xi}, \hat{U}:=\hat{G}_{2}^{\chi_{1}} \hat{G}_{3}^{\xi}, H:=G_{2}^{\chi_{2}} G_{3}^{\beta}$, $\hat{H}:=\hat{G}_{2}^{\chi_{2}} \hat{G}_{3}^{\beta}$.

If $\xi m+\beta=0$, then it holds that $\left(\hat{U}^{m} \hat{H}\right)=\hat{G}_{2}^{m \chi_{1}+\chi_{2}} \hat{G}_{3}^{\xi m+\beta}=\hat{G}_{2}^{m \chi_{1}+\chi_{2}}$. Note that ξ and β are information theoretically hidden even given m, so the adversary has only negligible chance of producing another message $\hat{U}^{m^{*}}$ such that $\xi m^{*}+\beta=0$. We choose $\varphi \leftarrow \mathbb{Z}_{p}$, set $F_{2}:=G_{1}^{\varphi}, F_{3}:=G_{3}, \hat{F}_{2}:=\hat{G}_{1}^{\varphi}, \hat{F}_{3}:=\hat{G}_{3}$.
\mathcal{B}_{2} sets

$$
\begin{aligned}
g k & :=\left(\Lambda, G_{2}, \hat{G}_{2}, G_{1}^{\varphi}, \hat{G}_{1}^{\varphi}, G_{3}, \hat{G}_{3}, G_{2}^{\chi_{1}} G_{3}^{\xi}, \hat{G}_{2}^{\chi_{1}} \hat{G}_{3}^{\xi}\right) \\
v k & :=\left(\hat{G}_{1}, \hat{G}^{a}, \hat{G}_{1}^{a}, G_{2}^{v^{\prime} a}, G_{1}^{v^{\prime} a}, \hat{G}_{2}^{v^{\prime} a}, \hat{G}_{1}^{v^{\prime} a}, G_{2}^{\chi_{2}} G_{3}^{\beta}, \hat{G}_{2}^{\chi_{2}} \hat{G}_{3}^{\beta}, G_{3}^{-a \delta}, \hat{G}_{3}^{-a \delta}, G_{3}^{\delta} G_{2}^{v^{\prime}}, \hat{G}_{3}^{\delta} \hat{G}_{2}^{v^{\prime}}, G_{2}^{\rho},\left(\hat{G}_{1}\right)^{\alpha / \rho}\right), \\
s k & :=\left(V K, G^{\alpha}, G^{b}=G_{1}\right)
\end{aligned}
$$

\mathcal{B}_{2} has G^{a} since it has a, thus \mathcal{B}_{2} can generate simulation-type signatures. \mathcal{B}_{2} gives signatures as follows: For the j-th random message,

Case $j>i$: Returns normal-type signature by using $S K=\left(V K, G_{2}^{\alpha}, G_{2}^{b}\right)$.
Case $j<i$: Returns simulation-type signature by using $S K$ and G_{2}^{a}.
Case $j=i$: Embeds the instance as follows. For i-th randomly chosen message m by $\mathcal{B}_{2}, \mathcal{B}_{2}$ implicitly sets $r_{1}:=y, r_{2}:=x$ and computes $\sigma_{4}:=G^{b r_{2}}=G_{1}^{x}, \sigma_{5}:=G^{r_{1}}=G_{2}^{y}$. \mathcal{B}_{2} can compute $\sigma_{0}:=\left(\hat{G}_{2}^{y}\right)^{m \chi_{1}+\chi_{2}}=\left(\hat{U}^{m} \hat{H}\right)^{r_{1}}$. Next, in order to compute V^{r} and $\left(V^{\prime}\right)^{r}, \mathcal{B}_{2}$ computes $\left(G_{3}^{r_{1}+r_{2}}\right)^{-a \delta}$ as $Z^{-a \delta}$. If $Z=G_{3}^{x+y}$, then this will be correct. If $Z=G_{3}^{\zeta}$ for $\zeta \leftarrow \mathbb{Z}_{p}$, then we let $G^{\gamma}:=G_{3}^{\delta(\zeta-(x+y))}$ and this will be a simulation-type signature. \mathcal{B}_{2} chooses $s \leftarrow \mathbb{Z}_{p}$ and implicitly sets $G^{-z}:=G_{2}^{-v^{\prime} r_{2}+s}$. These value are not computable but \mathcal{B}_{2} can compute $G^{z b}=G_{1}^{x v^{\prime}-s}$. $\sigma_{2}:=\left(G_{2}^{y}\right)^{v^{\prime}} Z^{\delta} G_{2}^{s}=G_{2}^{r_{1} v^{\prime}+r_{2} v^{\prime}} Z^{\delta} G_{2}^{s-r_{2} v^{\prime}}=G_{2}^{r v^{\prime}} Z^{\delta} G^{-z} . \mathcal{B}_{2}$ generates a signature as follows:

$$
\begin{array}{lll}
\sigma_{0}:=\left(G_{2}^{y}\right)^{m \chi_{1}+\chi_{2}} & \sigma_{1}:=G_{2}^{\alpha} Z^{-a \delta} & \sigma_{2}:=\left(G_{2}^{y}\right)^{v^{\prime}} Z^{\delta} G_{2}^{s} \\
\sigma_{3}:=\left(G_{1}^{x}\right)^{v^{\prime}} G_{1}^{-s} & \sigma_{4}:=G_{1}^{x} & \sigma_{5}:=G_{2}^{y}
\end{array}
$$

\mathcal{B}_{2} can generate σ_{0} correctly since \mathcal{B}_{2} set $\xi m+\beta=0$.

- If $Z=G_{3}^{x+y} \in \mathbb{G}_{1}$, the above signature is a normal-type with $Z=G_{3}^{r}, \sigma_{1}=G_{2}^{\alpha} G_{3}^{-a \delta r}=G_{2}^{\alpha} V^{r}$, and $\sigma_{2}=\left(G_{2}^{v^{\prime}} G_{3}^{\delta}\right)^{r} G^{-z}=\left(V^{\prime}\right)^{r} G^{-z}$.
- If $Z \leftarrow \mathbb{G}_{1}$, the above signature is a simulation-type since $Z=G_{3}^{z}$ for some $z \leftarrow \mathbb{Z}_{p}, \sigma_{1}=G_{2}^{\alpha} G_{3}^{-a \delta r} G_{3}^{-a \delta \zeta}$ $G_{3}^{a \delta r}=G_{2}^{\alpha} V^{r} G_{3}^{-a \delta(\zeta-(x+y))}=G^{\alpha} V^{r} G^{-a \gamma}$ since $G_{3}^{\delta(\zeta-(x+y))}=G^{\gamma}$, and $\sigma_{2}=G_{2}^{r v^{\prime}} G_{3}^{r \delta} G_{3}^{\delta(\zeta-(x+y))} G^{-z}$ $=\left(V^{\prime}\right)^{r} G^{\gamma} G^{-z}$.

That is, if $Z=G_{3}^{x+y}$ (linear), then \mathcal{A} is in $p_{i-1}^{\text {norm }}(\lambda)$, otherwise \mathcal{A} is in $p_{i}^{\text {norm }}(\lambda)$. For all messages, \mathcal{B}_{2} can return $\mu\left(M_{i}\right)=m_{i}$.
At some point, \mathcal{A} outputs forgery $\left(\sigma_{1}^{*}, \ldots, \sigma_{7}^{*}, \sigma_{0}^{*}\right)$ and message $F(m)=\left(\hat{Q}_{1}, \hat{Q}_{2}, \hat{Q}_{0}\right)=\left(\hat{F}_{2}^{m}, \hat{F}_{3}^{m}, \hat{U}^{m}\right)$. \mathcal{B}_{2} outputs 1 if and only if

$$
e\left(G_{1}, \sigma_{0}\right) \cdot e\left(\sigma_{6}, \hat{Q}_{2}^{\xi} \hat{G}_{3}^{\beta}\right)=e\left(\left(\sigma_{1} G_{2}^{-\alpha a_{1}}\right)^{1 /(-a \delta)},\left(\hat{Q}_{1}^{1 / \varphi}\right)^{\xi} \hat{G}_{1}^{\beta}\right) \cdot e\left(\sigma_{7},\left(\hat{Q}_{1}^{1 / \varphi}\right)^{\chi_{1}} \hat{G}_{1}^{\chi_{2}}\right)
$$

By the lemma, there exist $m^{*}, r_{1}^{*}, r_{2}^{*}, \gamma^{*}, r^{*}=r_{1}^{*}+r_{2}^{*}$ such that $\sigma_{0}=\left(\hat{U}^{m^{*}} \hat{H}\right)^{r_{1}^{*}}, \sigma_{1}=G_{2}^{\alpha} V^{r^{*}} G_{2}^{-a \gamma^{*}}, \sigma_{4}=G_{1}^{r_{2}^{*}}$, $\sigma_{5}=G_{2}^{r_{1}^{*}}, \hat{Q}_{1}=\left(\hat{G}_{1}^{\varphi}\right)^{m^{*}}, \hat{Q}_{2}=\hat{G}_{3}^{m^{*}}$. Since $\sigma_{0}=\left(\hat{G}_{2}^{m \chi_{1}+\chi_{2}} \hat{G}_{3}^{\xi x+\beta}\right)^{r_{1}^{*}}, \sigma_{1}=G_{2}^{\alpha} G_{3}^{-a \delta r^{*}} G_{2}^{-a \gamma^{*}}, \sigma_{4}=G_{1}^{r_{2}^{*}}, \sigma_{5}=G_{2}^{r_{1}^{*}}$, we have

$$
\begin{aligned}
e\left(G_{1}, \sigma_{0}\right) \cdot e\left(\sigma_{4}, \hat{Q}_{2}^{\xi} \hat{G}_{3}^{\beta}\right) & =e\left(G_{1},\left(\hat{G}_{2}^{m^{*} \chi_{1}+\chi_{2}} \hat{G}_{3}^{\xi m^{*}+\beta}\right)^{r_{1}^{*}}\right) \cdot e\left(G_{1}^{r_{2}^{*}},\left(\hat{G}_{3}^{m^{*}}\right)^{\xi} \hat{G}_{3}^{\beta}\right) \\
& =e\left(G_{1}, \hat{G}_{2}\right)^{\left(m^{*} \chi_{1}+\chi_{2}\right) r_{1}^{*}} e\left(G_{1}, \hat{G}_{3}\right)^{\left(\xi m^{*}+\beta\right) r_{1}^{*}} e\left(G_{1}, \hat{G}_{3}\right)^{\left(\xi m^{*}+\beta\right) r_{2}^{*}}
\end{aligned}
$$

and

$$
\begin{aligned}
& e\left(\left(\sigma_{1} G_{2}^{-\alpha}\right)^{1 /(-a \delta)},\left(\hat{Q}_{1}^{1 / \varphi}\right)^{\xi} \hat{G}_{1}^{\beta}\right) \cdot e\left(\sigma_{5},\left(\hat{Q}_{1}^{1 / \varphi}\right)^{\chi_{1}} \hat{G}_{1}^{\chi_{2}}\right) \\
&=e\left(G_{3}^{r^{*}} G_{2}^{\gamma^{*} / \delta}, \hat{G}_{1}^{\xi m^{*}+\beta}\right) \cdot e\left(G_{2}^{r_{1}^{*}}, \hat{G}_{1}^{m^{*} \chi_{1}+\chi_{2}}\right) \\
&=e\left(G_{3}, \hat{G}_{1}\right)^{\left(\xi m^{*}+\beta\right) r^{*}} e\left(G_{2}, \hat{G}_{1}\right)^{\gamma^{*} / \delta\left(\xi m^{*}+\beta\right)} e\left(G_{2}, \hat{G}_{1}\right)^{\left(m^{*} \chi_{1}+\chi_{2}\right) r_{1}^{*}}
\end{aligned}
$$

A simplified equation is $1=e\left(G_{2}, \hat{G}_{1}\right)^{\gamma^{*} / \delta\left(\xi m^{*}+\beta\right)}$.
Thus, the difference of \mathcal{A} 's advantage in two games gives the advantage of \mathcal{B}_{2} in solving the XDLIN $_{1}$ problem as stated.
Proof. (of Lemma 12) Observe that, in $p_{q}^{\text {norm }}(\lambda), \mathcal{A}$ is given simulation-type signatures only. We show that if \mathcal{A} outputs a normal-type forgery in $p_{q}^{\text {norm }}(\lambda)$ then we can construct algorithm \mathcal{B}_{3} that solves the co-CDH problem.
\mathcal{B}_{3} is given instance $\left(\Lambda, G, \hat{G}, G^{x}, G^{y}, \hat{G}^{x}, \hat{G}^{y}\right)$ of the co-CDH problem. \mathcal{B}_{3} generates the verification key as follows: Selects exponents $b, v, v^{\prime}, u, h, f_{2}, f_{3} \leftarrow \mathbb{Z}_{p}$ and $\rho^{\prime} \leftarrow \mathbb{Z}_{p}^{*}$, computes $\hat{G}^{b}:=\hat{G}^{b}, G^{a}:=G^{y}, \hat{G}^{y}:=\hat{G}^{a}, \hat{G}^{b a}:=\left(\hat{G}^{y}\right)^{b}$, $V:=G^{v}, \hat{V}:=\hat{G}^{v}, V^{\prime}:=G^{v^{\prime}}, \hat{V}^{\prime}:=\hat{G}^{v^{\prime}}, u:=G^{u}, \hat{U}:=\hat{G}^{u}, H:=G^{h}, \hat{H}:=\hat{G}^{h}, F_{2}:=G^{f_{2}}, \hat{F}_{2}:=\hat{G}^{f_{2}}, F_{3}:=G^{f_{3}}$, $\hat{F}_{3}:=\hat{G}^{f_{3}}, G^{\rho}:=\left(G^{x}\right)^{\rho^{\prime}}, \hat{G}^{\alpha b / \rho}:=\left(\hat{G}^{y}\right)^{b / \rho^{\prime}}$ where $\rho=\rho^{\prime} x$ (it implicitly holds $\alpha=x y$ though \mathcal{B}_{3} does not have α), $R:=V\left(G^{y}\right)^{v^{\prime}}, R^{b}, \hat{R}:=\hat{V}\left(\hat{G}^{y}\right)^{v^{\prime}}$, and \hat{R}^{b}, and sets

$$
\begin{aligned}
g k & :=\left(\Lambda, G, \hat{G}, F_{2}, \hat{F}_{2}, F_{3}, \hat{F}_{3}, U, \hat{U}\right) \\
v k & :=\left(\hat{G}^{b}, \hat{G}^{y},\left(\hat{G}^{y}\right)^{b}, V\left(G^{y}\right)^{v^{\prime}}, V^{b}\left(G^{y}\right)^{b v^{\prime}}, \hat{V}\left(\hat{G}^{y}\right)^{v^{\prime}}, \hat{V}^{b}\left(\hat{G}^{y}\right)^{b v^{\prime}}, H, \hat{H}, V, \hat{V}, V^{\prime}, \hat{V}^{\prime},\left(G^{x}\right)^{\rho^{\prime}},\left(\hat{G}^{y}\right)^{b / \rho^{\prime}}\right)
\end{aligned}
$$

Note that \mathcal{B}_{3} does not have $G^{\alpha}=G^{x y}$, so \mathcal{B}_{3} cannot compute normal-type signature. \mathcal{B}_{3} outputs simulation-type signatures for i-th random message m as follows:

Selects $r_{1}, r_{2}, z, \gamma^{\prime} \leftarrow \mathbb{Z}_{p}$, sets $r:=r_{1}+r_{2}$ (we want to set $\gamma:=x+\gamma^{\prime}$), and computes:

$$
\begin{aligned}
\sigma_{1} & :=\left(G^{y}\right)^{-\gamma^{\prime}} \cdot V^{r}=\left(G^{\alpha} V^{r}\right) \cdot G^{-a \gamma}(a=y, x y=\alpha) \\
\sigma_{2} & :=G^{\gamma^{\prime}} G^{x}\left(V^{\prime}\right)^{r} G^{-z}=\left(\left(V^{\prime}\right)^{r} G^{-z}\right) \cdot G^{\gamma} \\
\sigma_{3} & :=\left(G^{b}\right)^{z} \quad \sigma_{4}:=G^{r_{2} b} \quad \sigma_{5}:=G^{r_{1}} \quad \sigma_{0}:=\left(\hat{U}^{m} \hat{H}\right)^{r_{1}}
\end{aligned}
$$

Outputs signature $\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{5}\right)$ for $F(m)=\left(\hat{M}_{1}, \hat{M}_{2}, \hat{M}_{0}\right)=\left(\hat{F}_{2}^{m}, \hat{F}_{3}^{m}, \hat{U}^{m}\right)$.
At some point, \mathcal{A} outputs a normal-type forgery, $\sigma_{1}^{*}=G^{\alpha} V^{r^{*}}, \sigma_{2}^{*}=\left(V^{\prime}\right)^{r^{*}} G^{-z^{*}}, \sigma_{3}^{*}=\left(G^{b}\right)^{z^{*}}, \sigma_{4}^{*}=G^{r_{2}^{*} b}, \sigma_{5}^{*}=G^{r_{1}^{*}}$, and $\sigma_{0}^{*}=\left(\hat{U}^{m^{*}} \hat{H}\right)^{r_{1}^{*}}$, for some $r_{1}^{*}, r_{2}^{*}, z^{*}, \in \mathbb{Z}_{p}$ for message $F\left(m^{*}\right)=\left(\hat{F}_{2}^{m^{*}}, \hat{F}_{3}^{m^{*}}, \hat{U}^{m^{*}}\right)$.

By using these values, \mathcal{B}_{3} can compute $G^{r_{2}^{*}}=\left(\sigma_{4}^{*}\right)^{1 / b}, G^{r_{1}^{*}}=\sigma_{5}^{*}, G^{z^{*}}=\left(\sigma_{3}^{*}\right)^{1 / b}, V^{r^{*}}=\left(G^{r_{1}^{*}} \cdot G^{r_{2}^{*}}\right)^{v}$ since $V=G^{v}$. Thus, \mathcal{B}_{3} can compute $\sigma_{1}^{*} / V^{r^{*}}=G^{\alpha}=G^{x y}$. That is, \mathcal{B}_{3} can solve the co-CDH problem and it holds $p_{q}^{\text {norm }}(\lambda) \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{B}_{3}}^{\text {co-cdh }}(\lambda)$ as claimed.

6.5 Security and efficiency of resulting SIG2

Let SIG2 be the scheme obtained from POSb (with mode $=$ extended) and xSIG. SIG2 is structure-preserving as $v k, \sigma$, and $m s g$ consist of group elements from \mathbb{G}_{1} and \mathbb{G}_{2}, and SIG2.Vrf evaluates pairing product equations. From Theorem 3,9 . and 10 we obtain the following theorem.

Theorem 11. SIG2 is a structure-preserving signature scheme that is unforgeable against adaptive chosen message attacks if SXDH and XDLIN N_{1} hold for \mathcal{G}.

Table 2 summarises the efficiency of SIG2 for both uniliteral and biliteral messages. We count the number of group elements excluding a default generator for each group in $g k$, and distinguish between \mathbb{G}_{1} and \mathbb{G}_{2} and use k_{1} and k_{2} for the number of message elements in \mathbb{G}_{1} and \mathbb{G}_{2}, respectively. For comparison, we include the efficiency of the schemes in [4] and [2]. For bilateral messages, AHO10 is combined with POSb from Section 6.3 .

Table 2: Efficiency of SIG2 and comparison to other schemes with constant-size signatures. Upper half is for unilateral messages and the lower half is for bilateral messages. Notation (x, y) represents x elements in \mathbb{G}_{1} and y in \mathbb{G}_{2}.

Scheme	$\|m s g\|$	$\|g k\|+\|v k\|$	$\|\sigma\|$	$\#($ PPE $)$	Assumptions
AHO10	$\left(k_{1}, 0\right)$	$\left(4,2 k_{1}+8\right)$	$(5,2)$	2	q-SFP
AGHO11	$\left(k_{1}, 0\right)$	$\left(1, k_{1}+4\right)$	$(3,1)$	2	q-type
SIG2 : POSu1 + xSIG	$\left(k_{1}, 0\right)$	$\left(7, k_{1}+13\right)$	$(7,4)$	4	SXDH, XDLIN $_{1}$
POSb + AHO10	$\left(k_{1}, k_{2}\right)$	$\left(k_{2}+5, k_{1}+12\right)$	$(10,3)$	3	q-SFP
AGHO11	$\left(k_{1}, k_{2}\right)$	$\left(k_{2}+3, k_{1}+4\right)$	$(3,3)$	2	q-type
SIG2 : POSb + xSIG	$\left(k_{1}, k_{2}\right)$	$\left(k_{2}+8, k_{1}+14\right)$	$(8,6)$	5	SXDH, XDLIN $_{1}$

7 Other Instantiation

7.1 Partial one-time signature scheme based on DLIN

This section presents partial one-time signature scheme over Type-I bilinear groups. It is coupled with Setup in Section 5.1 , and can further be combined with XRMA-secure rSIG in Section 5.3 to instantiate SIG2 over Type-I groups.

[Scheme POS]

- POS. $\operatorname{Key}(g k)$: Parse $g k=\left(\Lambda, G, C, F, U_{1}, U_{2}\right)$ Choose τ_{1}, τ_{2} randomly from \mathbb{Z}_{p}^{*} and compute $G_{t}:=G^{\tau_{1}}$ and $H_{t}:=G^{\tau_{2}}$. Choose w_{r}, μ_{s} randomly from \mathbb{Z}_{p}^{*} and compute $G_{r}:=U_{1}^{w_{r}}$, and $H_{s}:=U_{2}^{\mu_{s}}$. For $i=1, \ldots, k$, uniformly choose $\chi_{i}, \gamma_{i}, \delta_{i}$ from \mathbb{Z}_{p} and compute

$$
\begin{equation*}
G_{i}:=U_{1}^{\chi_{i}} G_{r}^{\gamma_{i}}, \quad H_{i}:=U_{2}^{\chi_{i}} H_{s}^{\delta_{i}} \tag{9}
\end{equation*}
$$

Output $p k:=\left(G_{r}, H_{s}, G_{1}, \ldots, G_{k}, H_{1}, \ldots, H_{k}\right) \in \mathbb{G}^{2 k+2}$ and $s k:=\left(\tau_{1}, \tau_{2}, \chi_{1}, \gamma_{1}, \delta_{1}, \ldots, \chi_{k}, \gamma_{k}, \delta_{k}, w_{r}, \mu_{s}\right)$.

- POS.Update(mode): Take $\left(G, C, F, U_{1}, U_{2}\right)$ from $g k$. Choose $\left(b_{1}, b_{2}\right) \leftarrow \mathbb{Z}_{p}$ and output opk $:=\left(U_{1}^{b_{1}}, U_{2}^{b_{2}}\right)=$ $\left(B_{1}, B_{2}\right) \in \mathbb{G}^{2}$ if mode $=$ normal or opk $:=\left(C^{b_{1}}, C^{b_{2}}, F^{b_{1}}, F^{b_{2}}, U_{1}^{b_{1}}, U_{2}^{b_{2}}\right)=\left(C_{1}, C_{2}, A_{1}, A_{2}, B_{1}, B_{2}\right) \in \mathbb{G}^{6}$ if mode $=$ extended. Also output osk $:=\left(b_{1}, b_{2}\right)$.
- POS.Sign $(s k, m s g$, osk $)$: Parse $m s g$ into $\left(M_{1}, \ldots, M_{k}\right) \in \mathbb{G}^{k}$, and other inputs accordingly. Take $b_{1}, b_{2}, \tau_{1}, \tau_{2}$ and w_{r}, μ_{s} from osk and $s k$, respectively. Choose ζ randomly from \mathbb{Z}_{p} and compute

$$
\begin{equation*}
\rho:=\left(b_{1} \tau_{1}-\zeta\right) / w_{r} \bmod p \quad \text { and } \quad \varphi:=\left(b_{2} \tau_{2}-\zeta\right) / \mu_{s} \bmod p \tag{10}
\end{equation*}
$$

Then compute

$$
\begin{equation*}
Z:=G^{\zeta} \prod_{i=1}^{k} M_{i}^{-\chi_{i}} \quad \text { and } \quad R:=G^{\rho} \prod_{i=1}^{k} M_{i}^{-\gamma_{i}} \quad \text { and } \quad S:=G^{\varphi} \prod_{i=1}^{k} M_{i}^{-\delta_{i}} . \tag{11}
\end{equation*}
$$

Output $\sigma:=(Z, R, S) \in \mathbb{G}^{3}$ as a signature.

- POS. $\operatorname{Vrf}(p k, \sigma, m s g, o p k):$ Parse σ as $(Z, R, S) \in \mathbb{G}^{3}, m s g$ as $\left(M_{1}, \ldots, M_{k}\right) \in \mathbb{G}^{k}$, and opk as $\left(C_{1}, C_{2}, A_{1}, A_{2}\right.$, B_{1}, B_{2}) or (B_{1}, B_{2}) depending on mode. Return 1 if

$$
\begin{align*}
& e\left(B_{1}, G_{t}\right)=e\left(U_{1}, Z\right) e\left(G_{r}, R\right) \prod_{i=1}^{k} e\left(G_{i}, M_{i}\right) \tag{12}\\
& e\left(B_{2}, H_{t}\right)=e\left(U_{2}, Z\right) e\left(H_{s}, S\right) \prod_{i=1}^{k} e\left(H_{i}, M_{i}\right) \tag{13}
\end{align*}
$$

holds. Return 0, otherwise.
The scheme is correct as the following relation holds for the verification equation and the computed signatures.

$$
\begin{aligned}
e\left(U_{1}, Z\right) e\left(G_{r}, R\right) \prod_{i=1}^{k} e\left(G_{i}, M_{i}\right) & =e\left(U_{1}, G^{\zeta} \prod_{i=1}^{k} M_{i}^{-\chi_{i}}\right) e\left(G_{r}, G^{\rho} \prod_{i=1}^{k} M_{i}^{-\gamma_{i}}\right) \prod_{i=1}^{k} e\left(U_{1}^{\chi_{i}} G_{r}^{\gamma_{i}}, M_{i}\right) \\
& =e\left(U_{1}, G^{\zeta}\right) e\left(U_{1}^{w_{r}}, G^{\rho}\right) \\
& =e\left(U_{1}^{\zeta+w_{r} \rho}, G\right) \\
& =e\left(B_{1}, G_{t}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
e\left(U_{2}, Z\right) e\left(H_{s}, S\right) \prod_{i=1}^{k} e\left(H_{i}, M_{i}\right) & =e\left(U_{2}, G^{\zeta} \prod_{i=1}^{k} M_{i}^{-\chi_{i}}\right) e\left(H_{r}, G^{\varphi} \prod_{i=1}^{k} M_{i}^{-\delta_{i}}\right) \prod_{i=1}^{k} e\left(U_{2}^{\chi_{i}} H_{s}^{\delta_{i}}, M_{i}\right) \\
& =e\left(U_{2}, G^{\zeta}\right) e\left(U_{2}^{\mu_{s}}, G^{\varphi}\right) \\
& =e\left(U_{2}^{\zeta+\mu_{s} \varphi}, G\right) \\
& =e\left(B_{2}, H_{t}\right)
\end{aligned}
$$

Theorem 12. POS is unforgeable against one-time adaptive chosen message attacks (OT-CMA) if the SDP assumption holds. In particular, $\operatorname{Adv}_{P O S, \mathcal{A}}^{o t-c m a} \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{s d p}+1 / p$.

Proof. The following proof is almost a copy of that for Theorem 8 except for trivial modifications.
Given successful forger \mathcal{A} against POS as a black-box, we construct \mathcal{B} that is successful in breaking SDP. We consider the case mode $=$ extended in the following. The other case, mode $=$ normal can be automatically obtained by dropping $\left(C_{1}, C_{2}, A_{1}, A_{2}\right)$.

Given instance $I_{\text {sdp }}=\left(\Lambda, G_{z}, G_{r}, H_{z}, H_{s}\right)$ of SDP, algorithm \mathcal{B} simulates the attack game against POS as follows. It first build $g k$. Choose randomly G from \mathbb{G}^{*} and c, f from \mathbb{Z}_{p}^{*}, and compute $C:=G^{c}, F:=G^{f}$, then set $U_{1}:=G_{z}, U_{2}:=G_{z}$, and $g k:=\left(\Lambda, G, C, F, U_{1}, U_{2}\right)$. This yields a $g k$ from the same distribution as produced by Setup. Next \mathcal{B} simulates POS.Key by following the original prescription except that Λ and G_{r}, H_{s} are taken from $I_{\text {sdp }}$. Note that w_{r}, μ_{s}, i.e., the discrete-logs of G_{r}, H_{s} with respect to base U_{1}, U_{2}, are not known to the simulator, but they are not needed in simulating. On
receiving one-time key query, algorithm \mathcal{B} simulates POS.Update by returning $B_{1}:=U_{1}^{\zeta} G_{r}^{\rho}, B_{2}:=U_{2}^{\zeta} H_{s}^{\varphi}, C_{1}:=B_{1}^{c}$, $C_{2}:=B_{2}^{c}, A_{1}:=B_{1}^{f}, A_{2}:=B_{2}^{f}$ for $\zeta, \rho, \varphi \leftarrow \mathbb{Z}_{p}$, and c, f generated in Setup.

On receiving signing query $m s g^{(j)}$ from \mathcal{A}, algorithm \mathcal{B} simulates $\mathcal{O} \operatorname{sig}$ by simulating POS. Sign without having w_{r} and μ_{s}. It is done by using ζ, ρ, and φ used in POS.Update instead of computing ρ, φ from (b_{1}, b_{2}). For each signing, transcript (opk, $\sigma, m s g$) is recorded. When \mathcal{A} outputs a forgery $\left(o p k^{\dagger}, \sigma^{\dagger}, m s g^{\dagger}\right)$, algorithm \mathcal{B} searches the records for (opk, $\sigma, m s g$) such that $o p k^{\dagger}=o p k$ and $m s g^{\dagger} \neq m s g$. If no such entry exists, \mathcal{B} aborts. Otherwise, \mathcal{B} computes

$$
\begin{equation*}
Z^{\star}:=\frac{Z^{\dagger}}{Z} \prod_{i=1}^{k}\left(\frac{M_{i}^{\dagger}}{M_{i}}\right)^{\chi_{i}}, \quad \text { and } \quad R^{\star}:=\frac{R^{\dagger}}{R} \prod_{i=1}^{k}\left(\frac{M_{i}^{\dagger}}{M_{i}}\right)^{\gamma_{i}}, \quad \text { and } \quad S^{\star}:=\frac{S^{\dagger}}{S} \prod_{i=1}^{k}\left(\frac{M_{i}^{\dagger}}{M_{i}}\right)^{\delta_{i}} \tag{14}
\end{equation*}
$$

where $\left(Z, R, S, M_{1}, \ldots, M_{k}\right)$ and its dagger counterpart are taken from $(\sigma, m s g)$ and $\left(\sigma^{\dagger}, m s g^{\dagger}\right)$, respectively. \mathcal{B} finally outputs ($Z^{\star}, R^{\star}, S^{\star}$). This completes the description of \mathcal{B}.

We first claim that the simulation by \mathcal{B} is perfect; the parameters and keys generated in Setup and POS.Key due to the uniform choice of $I_{\mathrm{sdp}}=\left(\Lambda, G_{z}, G_{r}, H_{z}, H_{s}\right)$, and the distribution of $\left(b_{1}, b_{2}, \zeta, \rho, \varphi\right)$ is uniform over \mathbb{Z}_{p}^{5} under constraint $b_{1}=\left(\zeta+\rho w_{r}\right) / \tau_{1}$ and $b_{2}=\left(\zeta+\varphi \mu_{s}\right) / \tau_{2}$ as well as the original procedure. Accordingly, \mathcal{A} outputs successful forgery with noticeable probability and \mathcal{B} finds a corresponding record (opk, $\sigma, m s g$).

We next claim that each χ_{i} is independent of the view of \mathcal{A}. Concretely, we show that, if coins $\chi_{1}, \ldots, \chi_{k}$ distribute uniformly over $\left(\mathbb{Z}_{p}\right)^{k}$, other coins $\gamma_{1}, \ldots, \gamma_{k}, \delta_{1}, \ldots, \delta_{k},\left(\zeta^{(1)}, \rho^{(1)}, \varphi^{(1)}\right), \ldots,\left(\zeta^{\left(q_{s}\right)}, \rho^{\left(q_{s}\right)}, \varphi^{\left(q_{s}\right)}\right)$ distribute uniformly as well retaining consistency with the view of \mathcal{A}. Observe that the view of \mathcal{A} making q_{s} signing queries consists of independent group elements $\left(G, C, F, U_{1}, U_{2}, G_{r}, H_{s}, G_{t}, H_{t}, G_{1}, H_{1}, \ldots, G_{k}, H_{k}\right)$ and $\left(B_{1}^{(j)}, B_{2}^{(j)}, Z^{(j)}, M_{1}^{(j)}, \ldots, M_{k}^{(j)}\right)$ for $j=1, \ldots, q_{s}$. We represent the view by the discrete-logarithms of these group elements with respect to base G. Namely, the view is $\left(1, c, f, u_{1}, u_{2}, w_{r}, \mu_{s}, \tau_{1}, \tau_{2}, w_{1}, \mu_{1}, \ldots, w_{k}, \mu_{k}\right)$ and $\left(b_{1}^{(j)}, b_{2}^{(j)}, z^{(j)}, m_{1}^{(j)}, \ldots, m_{k}^{(j)}\right)$ for $j=1, \ldots, q_{s}$. To be consistent, the view and the coins satisfy relations

$$
\begin{align*}
& w_{i}=\chi_{i}+w_{r} \gamma_{i}, \quad \mu_{i}=\chi_{i}+\mu_{s} \delta_{i} \quad \text { for } i=1, \ldots, k, \text { and } \tag{15}\\
& b_{1}^{(j)}=\left(\zeta^{(j)}+w_{r} \rho^{(j)}\right) / \tau_{1}, \quad b_{2}^{(j)}=\left(\zeta^{(j)}+\mu_{s} \varphi^{(j)}\right) / \tau_{2}, \quad \text { and } \tag{16}\\
& z^{(j)}=\zeta^{(j)}-\sum_{i=1}^{k} m_{i}^{(j)} \chi_{i} \quad \text { for } j=1, \ldots, q_{s} . \tag{17}
\end{align*}
$$

The equation (15), (16) and (17) corresponding in (9), (10) and the first one in (11) respectively.
Consider χ_{ℓ} for fixed ℓ in $\{1, \ldots, k\}$. For every value of χ_{ℓ}, the linear equations in 15) determine $\gamma_{1}, \ldots, \gamma_{k}$ and $\delta_{1}, \ldots, \delta_{k}$. Similarly, if $m_{\ell} \neq 0$, equations in 16 , and 17) determine $\zeta^{(j)}, \rho^{(j)}$, and $\varphi^{(j)}$ for $j=1, \ldots, q_{s}$. If $m_{\ell}=0$, then χ_{ℓ} is independent of $\zeta^{(j)}, \rho^{(j)}$, and $\varphi^{(j)}$ for $j=1, \ldots, q_{s}$. The above holds for every ℓ in $\{1, \ldots, k\}$. Thus, if $\chi_{1}, \ldots, \chi_{k}$ distributes uniformly over $\left(\mathbb{Z}_{p}\right)^{k}$, then other coins distribute uniformly as well retaining consistency with the view of \mathcal{A}.

Finally, we claim that $\left(Z^{\star}, R^{\star}, S^{\star}\right)$ is a valid solution to the given instance of SDP. Since both forged and recorded signatures fulfill equation (12), dividing the equations results in

$$
\begin{align*}
1 & =e\left(U_{1}, \frac{Z^{\dagger}}{Z}\right) e\left(G_{r}, \frac{R^{\dagger}}{R}\right) \prod_{i=1}^{k} e\left(U_{1}^{\chi_{i}} G_{r}^{\gamma_{i}}, \frac{M_{i}^{\dagger}}{M_{i}}\right) \tag{18}\\
& =e\left(U_{1}, \frac{Z^{\dagger}}{Z} \prod_{i=1}^{k}\left(\frac{M_{i}^{\dagger}}{M_{i}}\right)^{\chi_{i}}\right) e\left(G_{r}, \frac{R^{\dagger}}{R} \prod_{i=1}^{k}\left(\frac{M_{i}^{\dagger}}{M_{i}}\right)^{\gamma_{i}}\right) \tag{19}\\
& =e\left(U_{1}, Z^{\star}\right) e\left(G_{r}, R^{\star}\right) \tag{20}
\end{align*}
$$

and

$$
\begin{align*}
1 & =e\left(U_{2}, \frac{Z^{\dagger}}{Z}\right) e\left(H_{s}, \frac{S^{\dagger}}{S}\right) \prod_{i=1}^{k} e\left(U_{2}^{\chi_{i}} H_{s}^{\delta_{i}}, \frac{M_{i}^{\dagger}}{M_{i}}\right) \tag{21}\\
& =e\left(U_{2}, \frac{Z^{\dagger}}{Z} \prod_{i=1}^{k}\left(\frac{M_{i}^{\dagger}}{M_{i}}\right)^{\chi_{i}}\right) e\left(H_{s}, \frac{S^{\dagger}}{S} \prod_{i=1}^{k}\left(\frac{M_{i}^{\dagger}}{M_{i}}\right)^{\delta_{i}}\right) \tag{22}\\
& =e\left(U_{2}, Z^{\star}\right) e\left(H_{s}, S^{\star}\right) \tag{23}
\end{align*}
$$

What remains is to prove that $Z^{\star} \neq 1$. Since $m s g^{\dagger} \neq m s g^{(j)}$, there exists $\ell \in\{1, \ldots, k\}$ such that $\frac{M_{\ell}^{\dagger}}{M_{\ell}} \neq 1$. As already proven, χ_{ℓ} is independent of the view of \mathcal{A}. Thus $\left(\frac{M_{\ell}^{\dagger}}{M_{\ell}}\right)^{\chi_{\ell}}$ distributes uniformly over \mathbb{G} and $Z^{\star}=1$ holds only if $Z^{\dagger}=$ $Z \prod\left(M_{i}^{\dagger} / M_{i}\right)^{-\chi_{i}}$, which happens only with probability $1 / p$ over the choice of χ_{ℓ}. We thus have $\operatorname{Adv}_{\mathrm{TOS}, \mathcal{A}}^{\mathrm{ot-cma}} \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\text {sdp }}+1 / p$. This concludes poof of Theorem 12 .

Finally, from Theorem 12 and Lemma 2 , we have $\operatorname{Adv}_{\mathrm{POS}, \mathcal{A}}^{\mathrm{ot}-\mathrm{cma}} \leq \operatorname{Adv}_{\mathcal{G}, \mathcal{B}}^{\mathrm{dlin}}+1 / p$.

8 Applications and Open Questions

Structure-preserving signatures (SPS) have become a mainstay in cryptographic protocol design in recent years. From the many applications that benefit from efficient SPS bases on simple assumptions, we list only a few recent examples. Using our SIG1 scheme from Section 5 both the construction of a group signature scheme with efficient revocation by Libert, Peters and Yung [32] and the construction of compact verifiable shuffles by Chase et al. [14] can be proven purely under the DLIN assumption. All other building blocks already have efficient instantiations based on DLIN.

Hofheinz and Jager [30] construct a structure-preserving one-time signature scheme. They use it to build a tree-based SPS scheme, denoted by tSIG, that is secure against non-adaptive chosen message attacks. Instead, we propose to use our partial one-time scheme to construct tSIG . Since the latter is secure against non-adaptive chosen message attacks, it is secure against extended random message attacks as well. We then combine the POSb scheme and the new tSIG scheme according to our second generic construction. As confirmed with the authors of [30], the resulting signature scheme is significantly more efficient than [30] and is a SPS scheme with a tight security reduction to SXDH. One can do the same in Type-I groups by using the partial one-time signature scheme in Section 7.1 whose security tightly reduced to DLIN.

As also shown by [30], SPS schemes allow to implements simulation-sound NIZK proof systems based on the Groth-Sahai proof system. Following the Naor-Yung-Sahai [34, 37] paradigm, one obtains structure-preserving CCA-secure public-key encryption in a modular fashion.

Open Questions. 1) Can we have RMA or XRMA-secure schemes with a message space that is a simple Cartesian product of groups without sacrificing on efficiency? 2) The RMA-secure signature schemes developed in this paper are in fact XRMAsecure. Can we have more efficient schemes by resorting to RMA-security? 3) Can we have tagged one-time signature scheme with tight reduction to the underlying simple assumptions? 4) What is the exact lower bound for the size of signatures under simple assumptions? Is it indeed possible to show such a bound?

References

[1] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-preserving signatures and commitments to group elements. In Advances in Cryptology - CRYPTO '10, LNCS, pages 209-237. Springer-Verlag, 2010. (Cited on page 1)
[2] M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo. Optimal structure-prserving signatures in asymmetric bilinear groups. In Advances in Cryptology - CRYPTO '11, LNCS. Springer-Verlag, 2011. (Cited on page 1, 24)
[3] M. Abe, J. Groth, and M. Ohkubo. Separating short structure preserving signatures from non-interactive assumptions. In Advances in Cryptology - Asiacrypt 2011, LNCS. Springer-Verlag, 2011. (Cited on page 2,
[4] M. Abe, K. Haralambiev, and M. Ohkubo. Signing on group elements for modular protocol designs. IACR ePrint Archive, Report 2010/133, 2010. http://eprint.iacr.org. (Cited on page 1, 3, 17, 18, 24,)
[5] M. Abe and M. Ohkubo. A framework for universally composable non-committing blind signatures. IJACT, 2(3):229249, 2012. (Cited on page 1)
[6] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham. Randomizable proofs and delegatable anonymous credentials. In S. Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 108-125. Springer, 2009. (Cited on page 1)
[7] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definitions, simplified requirements and a construction based on general assumptions. In E. Biham, editor, Advances in Cryptology - EUROCRPYT '03, volume 2656 of $L N C S$, pages 614-629. Springer-Verlag, 2003. (Cited on page 11)
[8] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic groups. IACR e-print 2004/077, 2004. (Cited on page 1.)
[9] M. Bellare and S. Shoup. Two-tier signatures, strongly unforgeable signatures, and fiat-shamir without random oracles. In Proceedings of the 10th International Conference on Theory and Practice of Public-Key Cryptography - PKC 2007, volume 4450 of $L N C S$, pages 201-216. Springer-Verlag, 2007. (Cited on page 1, 5])
[10] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, Advances in Cryptology CRYPTO '04, volume 3152 of $L N C S$, pages 41-55. Springer-Verlag, 2004. (Cited on page 3)
[11] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from bilinear maps. In E. Biham, editor, Advances in Cryptology - EUROCRYPT 2003, volume 2656 of LNCS, pages 416-432. SpringerVerlag, 2003. (Cited on page 1)
[12] J. Cathalo, B. Libert, and M. Yung. Group encryption: Non-interactive realization in the standard model. In M. Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, volume 5912 of LNCS, pages 179-196. Springer-Verlag, 2009. (Cited on page 4)
[13] M. Chase and M. Kohlweiss. A domain transformation for structure-preserving signatures on group elements. IACR ePrint Archive, Report 2011/342, 2011. (Cited on page 1.2.)
[14] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof systems and applications. In D. Pointcheval and T. Johansson, editors, EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 281-300. Springer, 2012. (Cited on page 1. 27)
[15] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Comput., 30(2):391-437, 2000. (Cited on page 1)
[16] C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme and its applications. J. Cryptology, 11(3):187-208, 1998. (Cited on page 1.)
[17] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. J. Cryptology, 9(1):35-67, 1996. (Cited on page 2. 4)
[18] M. Fischlin. Round-optimal composable blind signatures in the common reference model. In C. Dwork, editor, Advances in Cryptology - CRYPTO '06, volume 4117 of $L N C S$, pages 60-77. Springer-Verlag, 2006. (Cited on page 1.)
[19] G. Fuchsbauer. Commuting signatures and verifiable encryption. In Advances in Cryptology - Eurocrypt '11, LNCS, pages 224-245. Springer-Verlag, 2011. (Cited on page 1)
[20] G. Fuchsbauer and D. Pointcheval. Anonymous proxy signatures. In R. Ostrovsky, R. D. Prisco, and I. Visconti, editors, SCN, volume 5229 of Lecture Notes in Computer Science, pages 201-217. Springer, 2008. (Cited on page 1)
[21] G. Fuchsbauer, D. Pointcheval, and D. Vergnaud. Transferable constant-size fair e-cash. In J. A. Garay, A. Miyaji, and A. Otsuka, editors, CANS, volume 5888 of Lecture Notes in Computer Science, pages 226-247. Springer, 2009. (Cited on page 1)
[22] G. Fuchsbauer and D. Vergnaud. Fair blind signatures without random oracles. In D. J. Bernstein and T. Lange, editors, AFRICACRYPT, volume 6055 of Lecture Notes in Computer Science, pages 16-33. Springer, 2010. (Cited on page 1)
[23] S. D. Galbraith, K. G. Peterson, and N. P. Smart. Pairings for cryptographers. Discrete Applied Mathematics, 156(16):3113-3121, 12008. (Cited on page 2)
[24] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281-308, April 1988. (Cited on page 1,2.)
[25] M. Green and S. Hohenberger. Universally composable adaptive oblivious transfer. In J. Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, volume 5350 of LNCS, pages 179-197. Springer-Verlag, 2008. Preliminary version: IACR ePrint Archive 2008/163. (Cited on page 1)
[26] M. Green and S. Hohenberger. Practical adaptive oblivious transfer from simple assumptions. In Y. Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages 347-363. Springer, 2011. (Cited on page 1)
[27] J. Groth. Simulation-sound nizk proofs for a practical language and constant size group signatures. In X. Lai and K. Chen, editors, Advances in Cryptology - ASIACRYPT 2006, volume 4284 of LNCS, pages 444-459. Springer-Verlag, 2006. (Cited on page 1,2)
[28] J. Groth. Homomorphic trapdoor commitments to group elements. IACR ePrint Archive, Report 2009/007, January 2009. Update version available from the author's homepage. (Cited on page 8)
[29] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Advances in Cryptology Eurocrypt '08, volume 4965 of $L N C S$, pages 415-432. Springer-Verlag, 2008. Full version available: IACR ePrint Archive 2007/155. (Cited on page 1.)
[30] D. Hofheinz and T. Jager. Tightly secure signatures and public-key encryption. In CRYPTO. Springer, 2012. (Cited on page 1,2,27.)
[31] A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In Advances in Cryptology - Eurocrypt 2005, volume 3494 of LNCS, pages 198-214. Springer-Verlag, 2005. (Cited on page 1)
[32] B. Libert, T. Peters, and M. Yung. Scalable group signatures with revocation. In Advances in Cryptology - Eurocrypt 2012, LNCS. Springer-Verlag, 2012. (Cited on page 27.)
[33] Y. Lindell. A simpler construction of cca2-secure public-keyencryption under general assumptions. J. Cryptology, 19(3):359-377, 2006. (Cited on page 1)
[34] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In Proceedings of the 22nd Annual ACM Symposium on the Theory of Computing, pages 427-437, 1990. (Cited on page 1, 27.)
[35] S. C. Ramanna, S. Chatterjee, and P. Sarkar. Variants of waters' dual-system primitives using asymmetric pairings. IACR Cryptology ePrint Archive, 2012:24, 2012. (Cited on page 20)
[36] M. Rückert and D. Schröder. Security of verifiably encrypted signatures and a construction without random oracles. In H. Shacham and B. Waters, editors, Pairing, volume 5671 of Lecture Notes in Computer Science, pages 17-34. Springer, 2009. (Cited on page 1.)
[37] A. Sahai. Non-malleable non-interactive zero-knowledge and chosen-ciphertext security. In Proceedings of the 40th IEEE Annual Symposium on Foundations of Computer Science, pages 543-553, 1999. (Cited on page 1, 27)
[38] A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive zero knowledge. In J. Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 566-598. Springer, 2001. (Cited on page 1)
[39] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor, Advances in Cryptology EUROCRYPT '97, volume 1233 of $L N C S$, pages 256-266. Springer-Verlag, 1997. (Cited on page 3)
[40] B. Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. In Advances in Cryptology - CRYPTO 2009, pages 619-636. Springer-Verlag, 2009. (Cited on page 2, 11,)

