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Abstract

We propose a protocol to exchange Boneh-Boyen short signatures in a fair way, without
relying on a trusted third party. Our protocol is quite practical and is the first of the sort
to the best of our knowledge. Our construction uses a new non-interactive zero-knowledge
(NIZK) argument to prove that a commitment is the encryption of a bit vector. We also
design a NIZK argument to prove that a commitment to a bit vector v = (b1, b2, ..., bκ) is such
that

∑
i∈[κ] bi2

i−1 = θ where θ is the discrete logarithm of some public value D = gθ. These
arguments may be of independent interest.

Key words: Fair exchange, short signatures, gradual release of a secret.

1 Introduction

Nowadays it is more and more common to trade digital goods on the web: E-books, software
licenses, avatar-games currencies like Ultima Online1 to cite a few. Whether these goods are
exchanged on E-bay, through Paypal or bought directly to their provider Amazon or Microsoft,
the transaction to be secure, requires a trusted third party (TTP). Though it works quite well in
practice, enabling totally distributed and at the same time secure transaction systems is of clear
interest: It would avoid some security issues due to the presence of single points of failure, and also
allow smoother electronic commercial transactions that would not rely on some intermediary. A lot
of these transactions may be captured by the exchange of digital signatures. Suppose for example
you want to buy a software license to some independent developer: Indeed exchanging the software
license as well as the money transfer (digital check) can be modelled by signed messages. However
we face a non-trivial problem. Given that the transaction is made online, a malicious participant
may fool his counterpart by not sending his signature or sending some garbage information. A
protocol that prevent such a behaviour from a corrupted party is called fair : This means that at
the end of the execution of protocol either both parties obtain the signature they expected or none
does.

1http://en.wikipedia.org/wiki/Ultima Online
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There are two main approaches to solve this problem. On the one hand one can assume that
both players interact through a TTP. Though this solution does not fit our goal it is important
to note that an important line of research has focused on designing protocols where the TTP is
only required when “something goes wrong”. These protocols are said to be optimistically fair :
See [1, 19] and [17] for some recent work.

If we assume that both participants have exactly the same computational resources, then it is
impossible in general to achieve complete fairness [8]. In [2, 11] was proposed a way to relax the
notion of fairness in order to overcome Cleve’s impossibility result. The idea is to assume that both
players have roughly the same amount of time, so we can achieve partial fairness. Several secure
multi-party computations and specific protocols, like [6, 9, 10, 5, 22, 13], were built on top of this
security notion. The recurrent idea behind these constructions consists in enabling each player to
release their secret bit by bit in alternation. Thus if a player aborts, the other participant will
have “only one bit of disadvantage”. Formalizing this idea is not an easy task though, in particular
because it is hard to reason on specific amount of time for the players. This issue was noticed
in [14] where authors point that (1) assigning more time to the honest party in order to allow
him recover his value is somehow artificial as it does not depend on the participant himself, (2)
implementing such definitions seems to imply the use of strong assumptions related to the precise
time required to solve some computationally problem, (3) in practice an adversary knowing the
exact running time of the honest player may always be able to abort at the precise moment, thus
breaking fairness or at least making the recovery of the value (signed message in our case) useless,
because obtained too late.

In this work we propose a new security definition that still captures the intuition of partial
fairness for the exchange of digital signatures, but without relying on the precise running time of
the participants. With that definition in hand we can prove the security of our protocol without
having to rely on the strong assumptions mentioned above. Our protocol is designed to exchange
short signatures [4] without relying on a TTP. We use bilinear maps as the underlying signature
scheme, and also the idea of releasing gradually each bit of some secret θ that will enable to recover
the signature. The security of our construction relies on complexity assumptions for bilinear maps,
namely the κ-Strong Diffie-Hellman [4], and the κ-Bilinear Diffie-Hellman assumptions [3] and
holds in the common reference string model. As we use non-interactive zero-knowledge proofs of
knowledge (ZKPoK) in order to make the protocol simpler and more efficient, we require the use
of random oracle [12] or some non-black box assumptions [15]. If we like we can use interactive
ZKPoK at a minor expense of round efficiency.

Our contributions.

1. We propose a practical protocol for exchanging short signatures [4] without relying on a
TTP. To the best of our knowledge this is the first construction that meets such a goal. The
number of rounds of our protocol is κ + 1. The communication complexity is 16κ2 + 12κ
bits. The protocol requires a linear number of group exponentiations, group multiplications,
bilinear map applications, hash computations and also a constant number of group divisions.
See figure 1 for more details.

2. We introduce a new non-interactive zero-knowledge (NIZK) argument to prove that a com-
mitment is the encryption of a bit vector. This protocol may be of independent interest.

3. We introduce another NIZK argument to prove that a commitment to a bit vector corresponds
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Operation # Exp # Mult # BM # Div # Hash

Step 2 EncSigGen 1
Bit Vector commitment κ κ

BV-NIZK 4κ 2κ
BE-NIZK 2κ 2κ− 3 1
ZKPoK 2κ+ 1 κ κ+ 1

Check BV-NIZK κ 4κ
Check BE-NIZK 1 κ− 1 4 2
Check ZKPoK 3κ+ 2 2κ+ 1 κ+ 1

Step 7 EncSigCheck 2 2 2
KeyBitCheck κ κ
EncSigDecrypt 1

Sum 13κ+ 8 11κ− 1 4κ+ 6 3 2κ+ 2

Figure 1: Time complexities of the fair exchange protocol. This figure shows the number
of cryptographic operations performed by each participant during the whole protocol. The first
block corresponds to the algorithm EncSigGen, the second block to the algorithm EncSigCheck.
BV-NIZK stands for the NIZK argument to prove a commitment is the encryption to a bit vector
as depicted in figure 2. BE-NIZK stands for the NIZK argument to prove the equivalence between
a commitment to a bit vector and the discrete logarithm of D = gθ, as depicted in figure 3. #Exp,
#Mult, #BM, and #Div correspond respectively to the number of group exponentiations, group
multiplications, bilinear map applications and group inversions. #Hash is the number of hash
evaluations.

to the binary decomposition of some value θ which is hidden as the discrete logarithm of some
group element. We think this argument may lead to other interesting applications.

4. As stated earlier, we propose a new security definition for partial fairness in the context of
the exchange of digital signatures. This definition is simple and avoids the issue of involving
the specific running time of the participants.

We finally note that though we use our techniques to the specific scheme of [4], the proposed
approach is flexible enough to be applied to other signature constructions or more generally to
schemes that involve some value computed from a secret and which is publicly checkable using
bilinear maps.

Our approach. Let κ ∈ N be the security parameter. Let (p,G,GT , e, g) ← BMGen(1κ) be the
public parameter where p = |G| = |GT | is prime, G,GT are cyclic groups, e : G × G → GT is
the bilinear map and g is a random generator. Let s be a random element in Zp, we consider the

following common reference string: (g, gs, gs
2

, ..., gs
κ

) = (g0, g1, g2, ..., gκ).
Our construction can be summarized as follows. The prover chooses a secret θ, then commits

each bit of this secret into a pedersen [21] commitment, where the bit bi in position i with random-
ness ri ∈ Zp will be committed with respect to the base (g, gi): That is Commit(bi, ri, i) = grigbii .
Then we use a NIZK argument to prove this commitment really encrypts a bit. The next step
is to publish D = gθ and show, using another NIZK argument, that θ the discrete logarithm of
D is “equivalent” to the bit vector committed in ~C = (Commit(bi, ri, i))i∈[κ]. More precisely the
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argument proves that θ =
∑

i∈[κ] bi2
i−1. Now if we consider some signature σ, the prover will

blind it using θ to obtain σ̃ = σθ. Using bilinear maps it is straightforward to verify that σ̃ con-
tains a valid signature σ which is blinded in the exponent by θ, the discrete logarithm of D. The
other verifications will consist simply in checking the NIZK arguments. Finally we need to provide
zero-knowledge proofs of knowledge for the representation of each bit commitment in order to be
able to simulate the execution of the protocol even if the adversary aborts. By releasing each bit
in turn, both players will reconstruct their own blinding factor θ and obtain the signature.

Related Work. Among the abundant literature on the topic of gradual release and fair exchange
for digital signatures, [10] is probably the work that is the most similar to ours: It describes a
practical fair exchange protocol for digital signatures based on gradual release of a secret. The
protocol described in [10] works for Rabin, RSA and El Gamal signatures. The number of rounds
of the protocol described in [10] is roughly 2κ for RSA and Rabin signatures and κ for El Gamal
signatures.

In [14] is proposed a definition for partial fairness that may exhibit some similarities with
ours (both definitions involve a 1

P (κ) factor where P is a polynomial). However our definition

and approach differs quite from [14]. First the setting in [14] is more general than our specific
construction to exchange digital signatures. Secondly in their protocol the number of rounds is
variable and defines the level of fairness, whereas in our construction fairness only depends on the
computational power of participants.

Our NIZK argument to prove that a commitment encrypts a bit vector is inspired by [16, 15].
We remark that though [13] uses the idea of gradual release, the construction proposed is not
practical as it requires to code the functionality (signing in our case) as an arithmetic circuit.

Organization of the paper. In section 2 we introduce notations and recall some definitions
and standard techniques we use in this work. In section 3 we describe the bit vector commitment
scheme. The argument for proving the equivalence between a bit vector commitment (Ci)i∈[κ] and

the discrete logarithm θ of gθ is introduced in section 4. The fair exchange protocol is shown in
section 5. We conclude in section 6.

2 Preliminaries

2.1 Notations

For m,n ∈ N with m < n, [m..n] means the set of integers {m,m+ 1, ..., n− 1, n} and [n] means
the set of integers {1, ..., n}. If κ ∈ N is the security parameter then 1κ denotes the unary string
with κ ones. We will use p to denote a prime number of κ bits. A function ν : N → [0, 1] is said
to be negligible in κ if for every polynomial p(·) there exists κ0 such that ∀κ > κ0 : ν(κ) < 1/p(κ).
In the following, neg will denote some negligible function in κ. An algorithm is called PPT if it is

probabilistic and runs in polynomial time in κ. We write x
R
← X to denote an element x chosen

uniformly at random from a set X . x← v means that variable x is assigned value v.
A vector of n components and values vi is denoted ~v = (vi)i∈[n]. If the vector contains elements

of Zp we may also write B[·] = (B[1], B[2], ..., B[n]). Let θ ∈ Zp, we denote by θ[·] the binary
decomposition (vector) of θ. That is θ[·] = (θ[1], ..., θ[κ]) and in particular θ =

∑

i∈[κ] θ[i]2
i−1. P (·)

will stand for a formal polynomial with coefficients in Zp, and P [·] for the vector of its coefficients:
Thus if d = deg(P (·)) is the degree of polynomial P (·) then we have: P (X) =

∑

i∈[d+1] P [i]X i−1.
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2.2 Bilinear Maps

Let G,GT , be cyclic groups of prime order p. We consider a map e : G×G→ GT which is

• bilinear : ∀a, b ∈ G, x, y ∈ Zp : e(ax, by) = e(a, b)xy.

• non-degenerate: let g be a generator of G then e(g, g) also generates GT .

• efficiently computable: there exists a polynomial time algorithm BMGen with parameter 1κ

that outputs (p, Ĝ, ĜT , ê, g) where Ĝ, ĜT refer to the representation of both groups of size p
(p being a prime number of κ bits), g is a generator of G and ê is an efficient algorithm to
compute the map. For the sake of simplicity, in the following we will not distinguish between
G,GT , e and Ĝ, ĜT , ê.

For the following assumptions the common public parameter is PP =< (p,G,GT , e, g), (g0, g1, g2, · · · , gλ) >

where s is chosen randomly in Zp and gi = gs
i

for i ∈ [0..λ].

Definition 1 λ- Diffie-Hellman Inversion (λ − DHI) assumption, [20]. The λ- Diffie-

Hellman Inversion (λ−DHI) problem consists in computing g
1
s given PP. We say the λ −DHI

assumption holds if for any PPT adversary A we have

Advλ-DHI(A, κ, λ) = Pr
[

g
1
s ← A(1κ, PP)

]

= neg(κ)

The bilinear variant of the previous assumption was introduced in [3].

Definition 2 λ- Bilinear Diffie-Hellman Inversion (λ − BDHI) assumption. The λ-

Bilinear Diffie-Hellman Inversion (λ − BDHI) problem consists in computing e(g, g)
1
s given PP.

We say the λ−BDHI assumption holds if for any PPT adversary A we have

Advλ-BDHI(A, κ, λ) = Pr
[

e(g, g)
1
s ← A(1κ, PP)

]

= neg(κ)

Definition 3 λ-Strong Diffie-Hellman (λ − SDH) assumption, [4]. The λ-Strong Diffie-

Hellman (λ − SDH) problem consists in computing (c, g
1

s+c ) given PP. We say the λ − SDH
assumption holds if for any PPT adversary A we have

Advλ-SDH(A, κ, λ) = Pr
[

(c, g
1

s+c )← A(1κ, PP)
]

= neg(κ)

As mentionned in [4], the λ−SDH assumption is equivalent to the λ−DHI assumption when
c is fixed2.

The following assumption which can be considered as a particular case of the poly-Diffie-
Hellman assumption [18], or a generalization of the λ + 1-Exponent assumption introduced in
[23].

Definition 4 λ+ i Diffie-Hellman Exponent(λ+ i−DHE) assumption. The λ+ i-Diffie-

Hellman Exponent problem consists in computing gs
λ+i

, for 1 ≤ i ≤ λ given PP. We say the
λ+ i−DHE assumption holds if for any PPT adversary A we have:

Advλ+i-DHE(A, κ, λ) = Pr
[

gs
λ+i

← A(1κ, PP)
]

= neg(κ)

2In our case c = 2. See proof in section B.
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In [23], the λ −DHI was shown to be equivalent to the λ + 1-Exponent assumption (λ+ 1 −
DHE). We prove here the following implication following the idea of [23].

Proposition 1 λ−BDHI ⇒ λ+ i−DHE.

Proof. Let A be a PPT adversary that breaks the λ + i − DHE assumption. We build

the following adversary B. B receives the challenge tuple g, gs, gs
2

, ..., gs
λ

. He sets h = gs
λ

.

Then if we consider t = 1
s we have that: (h, ht, ht2 , · · · , htλ) = (gs

λ

, gs
λ−1

, gs
λ−2

, · · · , g). B sends

the tuple (h, ht, ht2 , · · · , htλ) to A who outputs h′ = htλ+i

where 1 ≤ i ≤ λ. We have that

h′ = htλ+i

= gs
λ−λ−i

= g
1

si . Finally B outputs e(h′, gs
i−1

) = e(g, g)s
−i+i−1

= e(g, g)
1
s

2.3 Boneh and Boyen signature scheme [4]

We recall here briefly the short signature scheme [4] introduced by Boneh and Boyen. The setup
algorithm BMGen(1κ) generates the public parameters of the scheme (p,G,GT , e, g)

3. The key

generation algorithm SKG(1κ) selects random integers x, y
R
← Zp and sets u = gx and v = gy. The

secret key is sk = (g, x, y) and the public key is pk = (g, u, v). Given a message m and sk, the

signing algorithm SSig(sk,m) works as follows. It selects rσ
R
← Zp such that rσ − (x + m)/y 6=

0 mod p and return the (randomized) signature σ = (g
1

x+m+yrσ , rσ) = (σ′, rσ). Finally in order
to verify a signature σ on message m, relative to the public key pk, the algorithm SVf(pk,m, σ) :
consists in checking that e(σ′, ugmvrσ) = e(g, g). The scheme is secure in the standard model
under the λ− SDH assumption.

2.4 Commitments

Let R be the space of randomness, C the set where commitments belong andM the space for mes-
sages. A trapdoor commitment scheme is composed by the following algorithms: Setup, Commit,
Verify, TCommit, TOpen. Setup(1κ) is a randomized algorithm that generates the common ref-
erence string CRS and an associated trapdoor τ . Commit(CRS,m, r) is a deterministic algorithm
that computes a commitment C to value m ∈ M using r ∈ R. Verify(CRS, C,m, r) returns 1 if
and only if C = Commit(CRS,m, r), otherwise returns 0. We will sometime use the notation open

to denote the opening of the commitment C, that is open = (m, r). TCommit(τ) is a randomized
algorithm that returns an equivocal commitment C along with an equivocation key ek given the
trapdoor τ . TOpen(ek, C,m) is a deterministic algorithm that returns the randomness r ∈ R of C
with respect to message m ∈ M. In order to simplify the notation, in the following the common
reference string CRS will be an implicit argument of algorithms Commit and Verify.

We say the commitment scheme is computationally binding if for all non-uniform stateful PPT
adversary A we have

Pr

[

(CRS, τ)← Setup(1κ); (m0,m1, r0, r1)← A(CRS) :
m0 6= m1 ∧ Commit(m0, r0) = Commit(m1, r1)

]

= neg(κ)

The scheme is said to be perfectly hiding if for all non-uniform stateful adversaries A we have

Pr [ (CRS, τ)← Setup(1κ); (m0,m1)← A(CRS); c← Commit(m0, r0) : A(c) = 1 ]
= Pr [ (CRS, τ)← Setup(1κ); (m0,m1)← A(CRS); c← Commit(m1, r1) : A(c) = 1 ]

3We use symmetric bilinear map for the sake of exposition.
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A commitment scheme is perfectly trapdoor for any stateful PPT adversary we have:

Pr













(CRS, τ)← Setup(1κ);
m← A(CRS);

r
R
←R;

C ← Commit(m, r) :
A(m, r) = 1













= Pr













(CRS, τ)← Setup(1κ);
m← A(CRS);

(C, ek)← TCommit(τ);
r← TOpen(ek, C,m) :

A(m, r) = 1













As a commitment is perfectly indistinguishable from an equivocal commitment we have that a
perfect trapdoor commitment scheme is also perfectly hiding.

Our construction relies on a slight variation of the Pedersen commitment scheme [21] which
we recall here. Let G be a cyclic group of prime order p ∈ N. We consider the common reference
string composed by g ∈ G and h ∈ G where g, h are chosen randomly and the discrete logarithm
s of h in base g remains secret. To commit to a message m ∈ Zp with randomness r ∈ Zp we
compute4 Commit(m, r) = grhm. We denote by open = (m, r) the opening of the commitment. As
shown in [21], this scheme is perfectly hiding (in fact it is a trapdoor commitment where τ = s)
and computationally binding, under the assumption that computing the discrete logarithm in G
is hard.

2.5 Non-interactive Zero-Knowledge Arguments

We are interested in statements that are efficiently verifiable5. Let R be a NP relation such that
(C,w) ∈ R means the statement is true and this can be verified with the witness w. We will
consider Rλ, the subset of R where the statements are of size λ = κO(1). For relation R we define
a non-interactive argument in the following way. An algorithm K(1κ, λ) generates the common
reference string CRS. Then the prover P given as input (CRS, C, w), checks first that (C,w) ∈ Rλ.
If this is not the case he outputs ⊥. Otherwise he outputs an argument π. The verifier V using
CRS, C and π returns 1 in case it accepts the argument and 0 otherwise.

In our case, C will be a commitment and w its opening (the message and the randomness). We
will consider non-interactive zero-knowledge (NIZK) argument (proof) systems (K,P ,V) for the
relation Rλ with the following properties.

Perfect Completeness. The argument is perfectly complete if a honest prover can convince a
honest verifier with probability 1 in case the statement is true. For any PPT adversary A we have

Pr

[

CRS← K(1κ, λ); (C,w)← A(CRS);π ← P(CRS, C, w) :
V(CRS, C, π) = 1 ∧ (C,w) ∈ Rλ

]

= 1

Computational Soundness. The argument is said to be sound if no adversary can convince a
verifier of a false statement. For any PPT adversary A we have

Pr

[

CRS← K(1κ, λ); (C, π)← A(CRS) :
V(CRS, C, π) = 1 ∧ ∄w : (C,w) ∈ Rλ

]

= neg(κ)

4Note that we change a bit the convention as the message is “stored” as the exponent of h, instead of g.
5We follow the notations of [15].
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Perfect witness indistinguishability. The argument is said to be perfectly witness-indistinguishable
if the verifier does not learn which witness was used by the prover in order to produce the proof.
For all stateful interactive PPT adversaries A we have

Pr

[

CRS← K(1κ, λ); (C,w1, w2)← A(CRS);π ← P(CRS, C, w1) :
((C,w1), (C,w2)) ∈ R2

λ ∧ A(π) = 1

]

= Pr

[

CRS← K(1κ, λ); (C,w1, w2)← A(CRS);π ← P(CRS, C, w2) :
((C,w1), (C,w2)) ∈ R2

λ ∧ A(π) = 1

]

Note that in case there is only one valid witness w for some statement C, then the argument
becomes trivially perfectly witness-indistinguishable.

Perfect Zero-Knowledge. We say an argument is zero-knowledge if the verifier learns nothing
but the truth of the statement. To formalize this idea we consider two simulators S1, S2 such that
S1 generates the CRS and a trapdoor τ . The simulator S2 uses the common reference string CRS,
the statement C and the trapdoor τ to output a simulated argument π. The argument is said to
be perfect zero-knowledge if for any stateful interactive PPT adversary A we have

Pr









CRS← K(1κ, λ);
(C,w)← A(CRS);
π ← P(CRS, C, w) :

(C,w) ∈ Rλ ∧ A(π) = 1









= Pr









(CRS, τ)← S1(1
κ, λ);

(C,w)← A(CRS);
π ← S2(CRS, C, τ) :

(C,w) ∈ Rλ ∧ A(π) = 1









2.6 Non-interactive Zero-Knowledge Proofs of Knowledge

Our protocol uses zero-knowledge proofs of knowledge relative to bit commitments. In order to
simplify the description of the fair exchange protocol we will use non-interactive zero-knowlege
proofs of knowledge. As mentioned in the introduction, we note however that interactive ZKPoK
would work as well, though adding 2 rounds to our protocol and loosing possibly security guarantees
in case the protocol is run in parallel or involves more than 2 players. The most popular way to
implement such protocols is by using the Fiat-Shamir heuristic [12], trading non-interaction for a
security proof relying on the random oracle model. We mention that our scheme could also be
adapted to fit Groth’s short non-interactive argument proof system [15]. In this case the security
of non-interactive proofs of knowledge would depend on a non-black box assumption and we would
get shorter arguments6.

Let G be a cyclic group of prime order p where the discrete logarithm is hard. Let H : G→ Zp

be a randomly chosen function from a collision-resistant hash function family. Let g, h be two
random generators of G such that the discrete logarithm of h in base g is unknown.

We will need a ZKPoK of the discrete logarithm θ of some public value D = gθ. Following the

notation of [7] we have that PK{θ : gθ} = (c = H(gr), z = r − cθ) where r
R
← Zp. The verifier

checks that c = H(Dcgz). We will also use the following ZKPoK that convinces a verifier that
the prover knows the representation of a commitment C = gαhβ in base (g, h) where α, β ∈ Zp.

PK{(α, β) : C = gαhβ} = (c = H(gr1hr2), z1 = r1 − cα, z2 = r2 − cβ) where r1, r2
R
← Zp. The

verifier checks that c = H(Ccgz1hz2).

6Note however that the common reference string would need to be of quadratic size in the size of the statements.
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3 A new argument to prove a commitment encrypts a bit

In this section we describe a commitment scheme to encrypt a vector of values in Zp and then
provide a NIZK proof that each component of this vector is a bit. Our technique borrows from
[16] in the sense we use the idea that if the value b encrypted is a bit then b(b− 1) must be equal
to 0, and also from [15] by implementing a basic form of the restriction argument.

Our commitment scheme requires to generate a common reference string CRS = (g, gs, gs
2

, ..., gs
λ

) =

(g0, g1, ..., gλ) where s
R
← Zp is the trapdoor. To commit a bit bi in position i using ran-

domness ri ∈ Zp, we compute the following slight variation of the Pedersen [21] commitment

Commit(bi, ri, i) = Ci = grigbii . The commitment to the vector ~B = (b1, b2, ..., bλ) using the ran-
domness ~r = (ri)i∈[λ] will simply be the vector formed by the commitments for each bit in position

i: ~C = (Ci)i∈[λ]. Abusing a bit our notation we will write ~C = Commit( ~B,~r).
We still need a NIZK that each commitment Ci is the encryption of a bit. The prover proceeds

as follows: He computes the “translation” of the commitment by λ − i positions to the right, by
providing the value Ai = griλ−ig

bi
λ . If we compute e(Ai, Cig

−1) and try to express this quantity as

e(Bi, g) we realize by simple inspection (see correctness proof of theorem 2) that a factor g
bi(bi−1)
λ+i

will appear. Obviously the prover does not know gλ+i so in case b /∈ {0, 1} he will not be able to
provide the second part of the proof, Bi. In case b is indeed a bit then the prover will compute
the proof π = (Ai, Bi) in order to convince the verifier that Ci is the encryption of a bit relative
to position i.

Proposition 2 The vector commitment scheme described above is perfectly hiding and computa-
tionally binding under the λ−BDHI assumption.

Proof.

Here we have that τ = s. If we define TCommit(τ) = (C = grgmi , ek = (m, r)) for m, r ∈ Zp, we
have that TOpen(C, ek,m′) will return r′ = r + si(m−m′). So the scheme is perfectly trapdoor.

Assume an adversaryA computes B[·],B′[·] ∈ Zλ
p two vectors of messages and ~r = (r1, ..., rλ), ~r′ =

(r′1, ..., r
′
λ) ∈ Zλ

p two randomness vectors such that Commit( ~B,~r) = Commit( ~B′, ~r′) and B[j] 6= B′[j]

for (at least) one j ∈ [λ]: We obtain the equation grj−r
′

jg(B[j]−B′[j])sj = 1G. If we set X = sj , we

can deduce that (rj − r′j) + (B[j] − B′[j])X = 0 and then X = sj =
r′j−rj

B[j]−B′[j] mod p. Once sj is

recovered we can compute gXλ = gλ+j and by proposition 1, the λ−BDHI assumption is broken.

Theorem 1 The protocol of figure 2 is a NIZK proof that the statement C = (Ci)i∈[λ] is such

that for every i ∈ [λ] there exists (ri, bi) ∈ (Zp × {0, 1}) with Ci = grigbii . The NIZK proof has
perfect completeness, perfect zero-knowledge and computational soundness under the λ − BDHI
assumption.

See section A for the proof.

4 Base equivalence argument

Let θ
R
← Zp. Consider the commitment to the bit vector ~C = (Ci)i∈[κ] = (grig

θ[i]
i )i∈[κ] where

ri ∈ Zp for each i ∈ [κ] and also D = gθ. In this section we introduce a NIZK proof to show
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Common reference string: Input (1κ, λ)
1. (p,G,GT , e, g) ← BMGen(1κ)

2. s
R
← Zp

3. Return CRS =< (p,G,GT , g), (g0, g1, g2, ..., gλ) > where for all i ∈ [0..λ] : gi = gsi .

Statement: The statement is formed by a vector of elements of G: (C1, C2, ..., Cλ) The claim is that for each i ∈ [λ] there

exists ri, bi such that Ci = grig
bi
i where bi ∈ {0, 1}.

Proof: Input (CRS, ~B,~r)

1. Check that ~B = (b1, ..., bλ) ∈ {0, 1}
λ. Return ⊥ if this is not the case.

2. Check that ~r = (r1, ..., rλ) ∈ Z
λ
p . Return ⊥ if this is not the case.

3. For each i ∈ [λ] compute an argument πi that Ci is the commitment to a bit in base gi: πi = (Ai, Bi) where

Ai = Csλ−i

i and Bi is such that e(Ai, Cig
−1
i ) = e(Bi, g).

4. Return π = (πi)i∈[λ]

Verification: Input (CRS, C, π)

1. Parse C as (Ci)i∈[λ]. Check that C ∈ G
λ.

2. Parse π as ((Ai, Bi))i∈[λ]. Check that π ∈ (G× G)λ.

3. For each i ∈ [λ] check that:

(a) e(Ci, gλ−i) = e(Ai, g).

(b) e(Ai, Cig
−1
i ) = e(Bi, g).

4. Return 1 if and only if all check pass, otherwise return 0.

Figure 2: NIZK proof of a commitment being the encryption of a binary vector.

that indeed each bit commitment in position i, Ci, encrypts the i-th bit of θ, which is hidden
as the discrete logarithm of D . This argument will allow us to blind the signature with some
factor θ (in the exponent) and then reveal each bit of this exponent gradually without leaking

any additional information. The idea is the following. Given θ ∈ Zp and ~C = (grig
θ[i]
i )i∈[κ], the

prover proceeds in two steps. First he computes D′ =
∏

i∈[κ] g
rig

θ[i]
i

gr where r =
∑

i∈[κ] ri. Here
the prover computes some compressed representation of the bit vector commitment and removes
the randomness. Observe however that as θ is uniformly random, thus so is D′. The prover
will need to convince the verifier that r is indeed the accumulated randomness of the bit vector
commitment. To do so he computes U = D′

1
s = (

∏

i∈[κ] g
θ[i]
i )

1
s =

∏

i∈[κ] g
θ[i]
i−1 where by convention

g0 = g. Observe that this value can be computed without knowing s. In order to verify this

proof, the verifier will check that e(
∏

i∈[κ] Ci

gr , g) = e(U, g1). Intuitively, once the randomness of
the bit vector is removed one can move the vector to the left by one position. If r would not be
equal to

∑

i∈[κ] ri this would not be possible without breaking some assumption. The second step

consists in checking that the condensed bit vector commitment U =
∏

i∈[κ] g
θ[i]
i−1 is “equivalent” to

the simple commitment gθ. This is done by noting that U =
∏

i∈[κ] g
θ[i]
i−1 = gP (s) where P (·) is the

polynomial P (X) =
∑

i∈[κ] θ[i]X
i−1. This means in particular that P (2) =

∑

i∈[κ] θ[i]2
i−1 = θ.

Thus we need to prove that P (s)−P (2) = P (s)− θ is divisible by s− 2. The prover can compute
the coefficients of the formal polynomial W (·) such that P (X)−P (2) = W (X)(X − 2), then using
the common reference string CRS the prover obtains V = gW (s). Verifying the “base equivalence”
statement consists in checking that e(UD , g) = e(V, g1g

−2) = e(V, gs−2). This means that indeed
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Common reference string: Input (1κ, κ)
1. (p,G,GT , e, g) ← BMGen(1κ).

2. s
R
← Zp.

3. Return CRS =< (p,G,GT , e), (g0, g1, g2, ..., gκ) > where for all i ∈ [0..κ] : gi = gsi .

Statement: The statement is formed by a vector of elements of G: (D,C1, C2, ..., Cκ) where (Ci)i∈[κ] is a commitment
to a bit vector as defined in section 3. The claim is that the vector formed by the binary decomposition of the discrete
logarithm of D is equal to the bit vector committed in (Ci)i∈[κ].

Proof: Input (CRS, θ, r1, ..., rκ)

1. Check that D = gθ . Return ⊥ if this is not the case.

2. Check that for every i ∈ [κ]: Ci = grig
θ[i]
i Return ⊥ if this is not the case.

3. Compute r =
∑

i∈[κ] ri.

4. Compute U = (

∏
i∈[κ] Ci

gr
)
1
s using the common reference string CRS and the bit vector θ[·].

5. Compute the formal polynomial W (·) such that P (X)−P (2) = W (X)(X − 2) where P (X) =
∑

i∈[κ] θ[i]X
i−1, and

P (2) =
∑

i∈[κ] θ[i]2
i−1 = θ. Compute V = gW (s) using the coefficients of the formal polynomial W (·) and the

common reference string CRS.

6. Return π = (r, U, V ).

Verification: Input (CRS, C, π)

1. Parse C as (D, (Ci)i∈[κ]).

2. Parse π as (r, U, V ).

3. Check that r ∈ Zp.

4. Check that (U, V,D,C1, ..., Cκ) ∈ G
κ+3.

5. Compute D′ =

∏
i∈[κ] Ci

gr
.

6. Check that e(D′, g) = e(U, g1).

7. Check that e( U
D
, g) = e(V, g1g

−2).

8. Accept if all tests pass in which case return 1 otherwise return 0.

Figure 3: NIZK proof that a basic commitment is equivalent to a bit vector commitment.

θ = P (2) and thus the coefficients of P (·) correspond to the binary decomposition of θ. The full
protocol is detailed in figure 3.

Theorem 2 The protocol in figure 3 is a NIZK proof that the bits of the discrete logarithm of D
corresponds the the bit vector committed in (Ci)i∈[κ]. The NIZK proof has perfect completeness,
perfect zero-knowledge and computational soundness under the κ− SDH assumption.

See section B for the proof.

5 Fair exchange of short signatures without TTP

Our fair exchange protocol for digital signatures works as follows. At the beginning a common
reference string CRS is generated. Then each participant runs FEKeyGen(1κ) to obtain a pair of
(public/private) keys pk, sk for the signing algorithm. At this point each participant executing
EncSigGen(CRS, sk,m) will compute an encrypted signature γ for the message m, using the signa-
ture σm blinded with some factor θ. This γ will contain also the proofs that relate the signature
σm with some bit vector commitment to θ.
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The rest is straightforward: each participant sends the encrypted signature. If all the verifica-
tions pass, the first participant PA will ask to PB to open the commitment of the first bit of θ. If
the opening is successful PB will do the same for its own blinding factor. The process is repeated
for each bit until all the bits of the blinding factors are recovered. Finally each player can compute
the signature by “cancelling out” the blinding factor θ. The abstract syntax of the protocol is
described in figure 4.

We describe now more in detail how the encrypted signature is constructed, which is the core
of our construction. The encrypted signature contains:

1. A commitment ~C to the bit string formed by the bits of θ as described in section 3.

2. σ̃, the signature of the message m blinded by θ.

3. Proofs to guarantee that the bit vector commitment encrypts the binary decomposition of
the blinding factor θ.

4. A proof in order to convince the verifier that γ is the encryption of σm under some blinding
factor θ which is hidden in the basic commitment gθ.

5. A proof of knowledge of the discrete logarithm of D and a proof of knowledge of the repre-
sentation of each bit commitment of the vector ~C. These proofs of knowledge will allow us
to keep simulating the adversary despite he aborts.

A detailed description of the concrete protocol is given in figure 5.

PA(CRS, mA,mB) PB(CRS,mA,mB)

1 (skA, pkA)← FEKeyGen(1κ)
2 pkA −→
3 (skB , pkB)← FEKeyGen(1κ)
4 ←− pkB

5 (θA, ~rA, γA)← EncSigGen(CRS, skA,mA)
6 γA −→
7 (θB, ~rB , γB)← EncSigGen(CRS, skB ,mB)
8 ←− γB

10 v ← EncSigCheck(CRS, pkB ,mB , γB)
11 if v = 0 then ABORT

12 v ← EncSigCheck(CRS, pkA,mA, γA)
13 if v = 0 then ABORT

for i = 1 to κ:
14 openA,i ← KeyBitProofGen(CRS, ~rA, θA, i)
15 openA,i −→
16 openB,i ← KeyBitProofGen(CRS, ~rB , θB , i)
17 ←− openB,i

19 vi ← KeyBitCheck(CRS, openB,i, i)
20 if vi = 0 then ABORT

21 vi ← KeyBitCheck(CRS, openA,i, i)
22 if vi = 0 then ABORT

end for

23 σmB
← EncSigDecrypt(γB , θB)

24 σmA
← EncSigDecrypt(γA, θA)

Figure 4: Abstract fair exchange protocol.
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We say that the protocol is perfectly complete7 if and only if both players PA and PB that
follow the protocol obtain respectively σA = SSig(skB ,mB), the signature of message mB and
σB = SSig(skA,mA), the signature of message mA with probability 1.

We say that the protocol is (partially) fair if at the end of the execution of the protocol (be it
normal or anticipated by the abortion of the adversary) the probability of both players to recover
their corresponding signature differs at most by a polynomial factor in the security parameter
κ. As mentioned in the introduction, the advantage of this approach is that it avoids trying to
compare the running time of the participants and thus allows to capture in a simple, but precise
manner the intuition of partial fairness.

Definition 5 (Partial fairness) We define the partial fairness of the protocol through the following
experiment: The adversary A plays the role of the corrupted player say w.l.o.g. PA. Thus PB is
honest and follows the protocol. OSSig(·) is the signing oracle for the signature scheme SSig relative
to the public key pkB of PB.

1. A asks for signature computations for arbitrary messages to OSSig(·).

2. A chooses the messages mA and mB on which the fair exchange protocol will be run, with
the restriction that mB must not have been requested before to OSSig(·).

A computes also its public key pkA and sends it to PB.

3. A then interacts in arbitrary way with PB.

4. If A has aborted before ending the protocol, then let θ∗A[1..i] (0 ≤ i ≤ κ) be the partial blinding
obtained by PB. At this point we assume that PB will try to compute SSig(skA,mA) by
choosing at random some element in the remaining space of size 2κ−i. We call this tentative
signature σB .

5. A keeps running his own algorithm and finally outputs a tentative signature σA on mB relative
to public key pkB .

The protocol is said to be partially fair if and only if

AdvFE(A, κ) =
Pr [SVf(pkB,mB, σA) = valid ]

Pr [ SVf(pkA,mA, σB) = valid ] · 2κ
= neg(κ)

where the probability is taken over the random choices of A and PB.

Theorem 3 The protocol described in figure 5 is complete. Moreover if the κ− SDH assumption
and the κ−BDHI assumption hold and the underlying signature scheme is secure, it is secure in
the random oracle model according to definition 5.

The proof is given in section C.
As the scheme presented in [4] is secure under the κ− SDH assumption, we have

Corollary 1 The protocol described in figure 5 is complete. Moreover if the κ−SDH assumption
and the κ−BDHI assumption hold it is secure in the random oracle model according to definition
5.

7Here complete does not refer to fairness.
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FESetup(1κ)
1. (p,G,GT , e, g) ← BMGen(1κ)

2. s
R
← Zp

3. Return CRS =< (p,G,GT , e, g), (g0, g1, g2, ..., gκ) > where for all i ∈ [0..κ] : gi = gsi .

FEKeyGen(1κ)

1. (sk, pk) ← SKG(1κ) where sk = (g, x, y) and pk = (g, u, v) like described in section 2.3.

2. Return (sk, pk).

EncSigGen(CRS, sk,m)

1. Compute θ
R
← Zp.

2. Compute D = gθ .

3. Compute ~C = (Ci)i∈[κ] = (grig
θ[i]
i )i∈[κ].

4. Compute π1 that shows that ~C is the encryption of a binary vector as described in figure 2.

5. Compute π2 that shows that ~C is the encryption of the bits of the binary decomposition of the blinding factor θ as
described in figure 3.

6. Compute PKθ = PK{θ : gθ} as described in section 2.6.

7. Compute ~PK, a vector where each component at position i is ZKPoK for the representation of Ci in base (g, gi).
~PK = (PK{(ri, θ[i]) : grig

θ[i]
i })i∈[κ] as described in section 2.6.

8. Parse sk as (g, x, y).

9. Set rσ
R
← Zp.

10. Compute σ = (σ′, rσ)← SSig(sk,m) where σ′ = g
1

x+m+yrσ .

11. Set σ̃ ← (σ′θ = g
θ

x+m+yrσ , rσ) = (σ̃′, rσ).

12. Set γ ← (D, ~C, π1, π2, PKθ, ~PK, σ̃).

13. Return (θ, ~r, γ).

EncSigCheck(CRS, pk,m, γ)

1. Parse γ as γ = (D, ~C, π1, π2, PK{:θ}, ~PK, σ̃).

2. Check π1 as described in figure 2.

3. Check π2 as described in figure 3.

4. Check PKθ using D and PKθ as described in section 2.6.

5. Check the zero-knowledge proof of knowledge using ~C and ~PK as described in section 2.6.

6. Parse pk as pk = (g, u, v)

7. Check that e(σ̃, ugmvr
σ) = e(D, g).

8. Return 1 if all tests pass, 0 otherwise.

KeyBitProofGen(CRS, ~r, θ, i)

1. Opens the i-th commitment of ~C, that is (θ[i], ri) such that Ci = grig
θ[i]
i .

2. Return open← (θ[i], ri).

KeyBitCheck(CRS, open, i)

1. Parse open as open = (b, r)

2. Check that Ci = grgb
i .

EncSigDecrypt(γ, θ)

1. Parse γ as γ = (D, ~C, π, PKθ, ~PK, σ̃).

2. Parse σ̃ as σ̃ = (σ̃′, rσ).

3. Compute σ′ = σ̃
1
θ .

4. Return σ = (σ′, rσ).

Figure 5: Implementation of the fair exchange protocol.
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6 Conclusion

In this work we introduced a practical protocol to exchange short signatures [4] fairly without
relying on a TTP. It seems our approach can be applicable to other signature schemes or more
generally to the exchange of values which are computed from a secret and are publicly verifiable
using bilinear maps. Thus it seems interesting to use our techniques in order to obtain a general
framework to build practical fair protocols involving bilinear maps.
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Proof.
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Completeness. Let i ∈ [λ]. It’s clear that the prover can compute Ai = Csλ−i

i . Then if
bi := B[i] ∈ {0, 1} we have bi(bi − 1) = 0 and

e(Ai, Cig
−1
i ) = e(g(ri+bis

i)sλ−i

, grig(bi−1)s
i

)

= e(g(ris
λ−i+bis

λ)(ri+(bi−1)s
i), g)

= e(gr
2
i s

λ−i+ribis
λ+ri(bi−1)s

λ+bi(bi−1)s
λ+i

, g)

= e(gr
2
i s

λ−i+sλri(2bi−1), g)
= e(Bi, g)

We can see that the prover can compute Bi as he knows ri and bi and the group elements gλ−i, gλ
are public.

Computational Soundness. Assume there exist some adversary A that breaks the sound-
ness of the scheme (that is A is able to open the commitment to some vector that does not contain
bits) for at least one i. We build the following adversary B that breaks the λ − BDHI assump-
tion. B receives the challenge tuple (g0, g1, g2, ..., gλ). B runs A using the tuple as the CRS and
obtains Ci, ri, bi such that Ci = grigbii and πi = (Ai, Bi) where e(Ci, gλ−i) = e(Ai, g) (1) and
e(Ai, Cig

−1
i ) = e(Bi, g) (2).

From (1) we can deduce that Ai = Csλ−i
i . From (2) (as seen in the correctness proof) we have

that Bi = gr
2
i s

λ−i+ri(2bi−1)s
λ+bi(bi−1)s

λ+i

= g
r2i
λ−ig

ri(2bi−1)
λ g

bi(bi−1)
λ+i

B can computeX = g
r2i
λ−ig

ri(2bi−1)
λ , so it can obtain gλ+i = (Bi ·X

−1)
1

bi(bi−1) where bi(bi−1) 6= 0
as bi /∈ {0, 1}, and thus the κ+ i−DHE assumption is broken. Using proposition 1 we have that
the λ−BDHI assumption is broken as well.

Perfect zero-knowledge. We observe first that the argument is perfectly witness-indistinguishable
because for a given commitment Ci = grigbis

i

there is only one possible argument that satisfies

equations Ai = Csλ−i
i and e(Ai, Cig

−1) = e(Bi, g).
We describe now the zero-knowledge simulator. It generates the common reference string

correctly, and also learns the trapdoor so it can create commitments that can be opened to any
value. As the commitment can be opened and the trapdoor is known it is easy to compute an
argument Ai, Bi.

Let us justify why the simulator simulates perfectly the real argument. Consider the hybrid
stateful algorithm where the simulator generates the trapdoor and the common reference string
but opens the commitment to real witness (ri, bi). As the commitment is perfectly trapdoor the
real argument is perfectly indistinguishable from the hybrid algorithm. Finally as the argument
is perfect witness-indistinguishable the hybrid is perfectly indistinguishable from the simulated
argument.

B Proof of theorem 2

Proof.

Perfect completeness. The reason why the prover can compute U = (
∏

i∈[κ] Ci

gr )
1
s without

knowing s is because U =
∏

i∈κ g
θ[i]
i−1. Indeed U corresponds to the vector (0, θ[1], ..., θ[κ]) that is

moved by one position to the left. Similarly V can be computed because the prover knows the
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coefficients W [i] of the polynomial W (·) of degree κ− 2, so we have V =
∏

i∈[κ−1] g
W [i]
i−1 . The rest

follows by simple inspection.
Computational Soundness. Let A be the PPT adversary that breaks the soundness of the

scheme. We build the following adversary B. B receives the challenge tuple (g0, g1, g2, · · · , gκ).
This challenge tuple stands for the CRS and is sent to A. A returns the following values:

• θ ∈ Zp.

• θ∗ ∈ Zp such that D = gθ
∗

.

• (ri, θ[i]) ∈ (Zp × {0, 1})
κ for i ∈ [κ] such that ~C = (Ci)i∈[κ] where Ci = grigθ[i]s

i

.

• π = (r, U, V ) ∈ Zp ×G×G.

Assume first that r 6=
∑

i∈[κ] ri mod p then we can deduce that U = (g
∑

i∈[κ] ri−rgθis
i

)1/s. As

g
θis

i

s = gθii−1 is easily computable due to the fact that θ[i] are known, B can deduce g

∑
i∈[κ] ri−r

s

and as δ =
∑

i∈[κ] ri − r 6= 0 mod p is known, B can compute g
1
s = ( U

g
θi
i−1

)
1
δ and thus the κ−DHI

assumption is broken. From now on we assume that
∑

i∈[κ] ri = r. As the adversary A wins, this

means that there exists some j ∈ [κ] such that θ[j] 6= θ∗[j]. Moreover as the verification involving V

passes we have that V = g

∑
i∈[κ] θ[i]s

i−1
−θ∗[i]2i−1

s−2 . As the decomposition in binary is unique we have

that ∆ =
∑

i∈[κ] 2
i−1(θ[i]−θ∗[i]) 6= 0 mod p. We can rewrite V as V = g

∆
s−2+

∑
i∈[κ] θ[i]s

i−1
−θ[i]2i−1

s−2 =

g
∆

s−2+

∑
i∈[κ] θ[i](si−1

−2i−1)

s−2 = g
∆

s−2+Z(s) where the coefficients of Z(·) are efficiently computable by
B because ∀i ∈ [κ] : s − 2|si−1 − 2i−1. As ∆ ∈ Zp is also known this means A can compute

g
1

s−2 = ( V
gZ(s) )

1
∆ and thus the κ− SDH assumption is broken.

Perfect zero-knowledge. The simulator works as follows. He generates the common reference
string CRS correctly and saves the trapdoor s. Given the statement D, ~C = (Ci)i∈[κ] such that ~C is

formed by Pedersen commitments to bits in positions 1, ..., κ and such that D and ~C are equivalent
with respect to bases (2, s), the simulator choose a random r′ ∈ Zp and reveals it as the randomness

of
∏

i∈[κ]Ci. Then the simulator sets D′ =
∏

i∈[κ] Ci

gr′
, U = (

∏
i∈[κ] Ci

gr′
)

1
s and V = (UD )

1
s−2 . r′, U, V

are indistinguishable from a real argument as they are all uniform.

C Proof of theorem 3

Proof.

As the underlying NIZK arguments are perfectly complete, we can see by inspection that so is
the fair exchange protocol. Let A be the adversary that breaks the fairness of our protocol. We
build the following adversary B.

We distinguish between two types of adversaries A:

• Type I : the adversaryA does not lie: That is he does not forge values for the NIZK arguments
and/or the commitments. Said differently, adversary A follows the protocol, but may abort
prematurely.
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• Type II : the adversary A lies.

Note that both adversaries may abort during the execution of the protocol. The simulator B
will choose with probability 1/2 to bet that A is of type I and with probability 1/2 that A is of
type II.

What happens in case of an adversary of type I, is that the only way for A to win his by
breaking the signature scheme (without even caring about the values sent by PB). This means
the simulator B will try to build an adversary that breaks the security of the signature scheme.
The case of adversary of type II is more straightforward: as A lies, the simulator will be able to
break the soundness of some of the arguments involved or the binding property of the commitment
scheme.

For adversary A of type I, B does the following. B generates himself the CRS, thus knowing
the trapdoor s. When A chooses the message mB to be signed, B will not compute the signature
because he wants to break the signature scheme. More concretely B will

1. Run BMGen(1κ) to obtain (p,G,GT , e, g).

2. Set s
R
← Zp.

3. Compute CRS←< (p,G,GT , e, g), (g, g
s, gs

2

, ..., gs
κ

) >=< (p,G,GT , e, g), (g0, g1, ..., gκ) >.

4. Set θB
R

← Zp.

5. Set rσ
R
← Zp.

6. Set D = (gmBuvrσ )θB .

7. Set σ̃ = (gθB , rσ).

8. Set (r1, r2, ..., rκ)
R
← Zκ

p .

9. ~C = (Ci)i∈[κ] = (grig
θ[i]
i )i∈[κ].

Note that all the proofs can be computed because B knows s. Moreover A is fooled because we
have e(σ̃, gmBuvrσ) = e((gmBuvrσ )θB , g) = e(D, g) and all values computed by the simulator B
are perfectly indistinguishable from those of a real experiment. Some subtle issue arises though:
Let us consider the case where A detects that he is inside the simulator because he does a brute
force attack on the remaining bits and realizes that B does not know the signature. In this case A
will abort the simulation (not only the protocol) and in particular he will not output the signature
and thus our reduction will fail. As the bit vector commitment scheme is perfectly hiding and
the arguments are perfectly zero-knowledge, we can deduce that this may only happen in round
j where there are κ − j (few) remaining bits. Moreover A runs in polynomial time, so we can
deduce that κ − j ≤ log(Q(κ)) where Q(·) is a polynomial. Let σB be the signature that is
output by B. As A does not lie we also have that Pr [ SVf(pkA,mA, σB) = valid ] ≥ 1

2log(Q(κ))+1 (+1
because A has got one bit of advantage). We can deduce that the advantage of A is such that

AdvFE(A, κ, λ) ≤ 1
2−(log(Q(κ)+1)2κ

= 2log(Q(κ))+1

2κ = 2Q(κ)
2κ which is still negligible, thus A did not win,

so our reduction is still valid. Consider now the case where A does not abort in the simulation.
That is he may abort the protocol but will finally output the signature σA, which is an attempt
to be a valid signature for message mB. We can deduce that AdvFE(A, κ, λ) ≥ ǫ⇒

Pr [ SVf(pkB ,mB, σA) = valid ]

Pr [ SVf(pkA,mA, σB) = valid ] 2κ
≥ ǫ⇒ Pr [ SVf(pkB ,mB, σA) = valid ] ≥ ǫ

because we trivially have that Pr [ SVf(pkA,mA, σB) ] ≥
1
2κ . Thus B has broken the signature

scheme.
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For adversary A of type II, the simulator B does the following: he asks A to compute γA which
is parsed as (DA, ~CA, πA,1, πA,2, PKθA, ~PKA, σ̃A). For the proofs of knowledge A will use H(·)
a random oracle which is controlled by B. So B will rewind A and obtain PKθ

′
A from which he

will obtain θ∗A and ~PK
′

A from which he will extract (rAi, θA[i]) for each i ∈ [κ]. As A lied, B
will be able to break the soundness of one of the NIZK argument or the binding property of the
commitment scheme.
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