
Anonymous Credentials Light

Foteini Baldimtsi, Anna Lysyanskaya

{foteini, anna}@cs.brown.edu

Abstract. We define and propose an efficient and provably secure construction of blind sig-
natures with attributes. Prior notions of blind signatures did not yield themselves to the con-
struction of anonymous credential systems, not even if we drop the unlinkability requirement of
anonymous credentials. Our new notion in contrast is a convenient building block for anonymous
credential systems. The construction we propose is efficient: it requires just a few exponentia-
tions in a prime-order group in which the decisional Diffie-Hellman problem is hard. Thus, for
the first time, we give a provably secure construction of anonymous credentials that can work in
the elliptic group setting without bilinear pairings. In contrast, prior provably secure construc-
tions were based on the RSA group or on groups with pairings, which made them prohibitively
inefficient for mobile devices, RFIDs and smartcards. The only prior efficient construction that
could work in such elliptic curve groups, due to Brands, does not have a proof of security.

Keywords: Anonymous credentials, attributes, blind signatures, lightweight devices, pri-
vate identity management.

1 Introduction

Anonymous credentials, envisioned by David Chaum [12], and first fully realized by Ca-
menisch and Lysyanskaya [8], have proved to be a centrally important building block in
privacy-minded identity management systems currently under development [34, 27, 10]. They
allow users to prove possession of credentials without revealing any other information about
themselves; when such a proof is carried out, it cannot be linked to previous uses of the same
credential, or to any other identifying information about the user. Additionally, they give the
users the ability to privately obtain credentials. The reason that they have become so popular
is that they strictly adhere to data minimization principles [24]: no electronic transaction
should require its participants to needlessly reveal private information. These principles are
at the core of European privacy standards [28, 2] and also the National Strategy for Trusted
Identities in Cyberspace (NSTIC) published by the U.S. government [14].

Efficiency considerations are important when deploying these algorithms in practice.
While on a PC, the Camenisch-Lysyanskaya credentials [8] and follow-up work [7, 5, 11, 1]
take only a fraction of a second of CPU time, in mobile devices, smartcards and RFID cards,
they are not yet practical. The issue is that all existing anonymous credential systems use
either the RSA group, or groups that admit bilinear pairings, and the security parameter
choice needed to guarantee the required assumptions in these groups makes these systems too
expensive for smartcards and mobile devices. Specifically, the original CL credentials require
an RSA group with bitlength 2048, and exponentiation in such groups takes about 43 seconds
on even the most advanced RFID cards [30]; while a bilinear pairing takes approximately 14
seconds (for a pairing with 128 bits of security) [21] (those results are a highly related to the
specific microcontroller the RFID card uses as well as the frequency in which operates).

From the efficiency point of view, therefore, the UProve credential system [27] (based on
Brands’ work [6], acquired and implemented by Microsoft) seems attractive. UProve does
not allow unlinkable reuse of credentials: in order to unlinkably use a credential again, a
user must get it reissued. Yet, the credential issuing protocol, as well as the algorithm for
verifying a credential, are practical enough for the more advanced end of RFID technology,

since they can work in any group where the discrete logarithm problem is hard, and require
just a few exponentiations in this group. We currently have RFID chips that can compute
exponentiations in elliptic curve groups in less than a second with security parameters that
provide a good level of security [35]. So perhaps one could use these linkable anonymous
credentials and just have them reissued as many times as needed. However, UProve is not
provably secure! No proof of security has been given under any reasonable assumption; and in
fact, recently, Baldimtsi and Lysyanskaya [4] showed that all known approaches for proving
security in the random oracle model will fail for the Brands blind signature scheme on which
UProve is based, under essentially any assumption.

One might ask what happens if, instead of the Brands blind signature, one tries to
construct linkable anonymous credentials from a provably secure blind signature scheme.
Unfortunately, blind signatures as traditionally defined [32, 31, 23, 3] do not give any consid-
eration to users’ attributes. In a blind signature, a user is free to choose whichever message
he wants signed. In a credential scheme, a user should be able to get his particular attribute
set signed by the signer. The signers can verify that what they are signing is the correct
attribute set, even though they cannot see exactly what they are signing. For example, a
signer might want to sign a user’s secret key, his age, and his citizenship information, and
wants to be able to verify that this is indeed what she is signing. Attributes are, in fact,
essential: without them, it is impossible to tie a credential to a particular user’s identity, and
so users would be able to just pool each others’ credentials as desired, instead of tying them
to a particular secret key. Moreover, giving the user the ability to choose any message means
that the content of the signed messages has not been vetted by the signer at all.

Thus, a better question is: how do we extend the notion of a blind signature so that it
can efficiently accommodate anonymous credentials — if not full anonymous credentials a-la
Camenisch and Lysyanskaya, then at least linkable lightweight anonymous credentials a-la
Brands?

In this paper, we define and give an efficient construction of blind signatures with at-
tributes. In such a blind signature scheme, the signer and the user both get as input a
cryptographic commitment C to the user’s attributes; this way, the user can prove that the
commitment contains the correct attributes via a separate zero-knowledge proof. As output,
the user obtains another, unlinkable, commitment C̃ to the same attributes, and a signature
on this commitment and a message of the user’s choice. Blindness ensures that, even upon
seeing two signatures obtained this way on commitments of his own choice, the signer cannot
link a signature to its issuing. Unforgeability ensures that a user cannot produce more signa-
tures than he was issued, and also that the multiset of openings to the input commitments
is the same as the multiset of openings to the output commitments. It is easy to see that
this is the right building block for linkable anonymous credentials: a user with a particular
set of attributes can form a commitment C to these attributes, prove in zero-knowledge
that he has committed to the correct attributes, and then obtain a credential by running a
blind signature with attributes on input this commitment. He can then prove that he has a
credential with the desired attributes by revealing his signature and the output commitment
C̃, and proving in zero knowledge that C̃ corresponds to the needed attributes.

For example, suppose that we allow users to obtain and anonymously show age creden-
tials. Then Alice will form a commitment C to her secret key sk and her age age, prove to the
signer who serves as an identity validator that she has committed to sk that corresponds to
her pk , and to the correct age, and run a blind signature with attributes protocol to obtain
a fresh commitment C̃ on the same sk and age, and a signature σ. Then, when she needs
to prove her age, she can reveal (C̃, σ) and prove that the age inside commitment C̃ allows
her entry to some age-restricted resource, for example a video store that requires viewers to
be over 13. If she wants to do it again, she needs to run the blind signature with attributes

2

protocol with the signer again. She can further anonymously obtain credentials that are con-
nected to her identity: let’s say that the video store wants to give her a credential for a free
movie; she can obtain it by running a blind signature with attributes with the video store.
She will form her input commitment C ′ by committing to the same sk and age as in C̃ and
proving to the video store that she did so; once she runs the protocol with the video store,
she receives an output (C̃ ′, σ), which is a credential from the video store (and not from the
original signer) on her (sk , age) — even though the video store never saw the public key at
all. More interestingly, we can require the free movie to be a single-use credential, by addi-
tional clever use of attributes (see Section 4), so that Alice can be traced if she tries to get
two free movies using the same single-use credential more than once. Thus we see that blind
signatures with attributes are the right building block for linkable anonymous credentials.

In addition to the definition, we give a lightweight construction of blind signatures with
attributes; because of the connection to anonymous credentials we call our construction
“anonymous credentials light” (ACL). In the random-oracle model, our construction is un-
linkable under the decisional Diffie-Hellman assumption, and unforgeable under the discrete-
logarithm assumption for sequential composition (we leave extending it to concurrent self-
composition as an open problem). Our construction is inspired by the Abe blind signature [3].
It can be instantiated in elliptic-curve groups, in which exponentiation, for the security pa-
rameters that are currently considered reasonable, is, in general, almost a hundred times
more efficient than in the RSA group; it also does not require expensive pairings (a pairing
is also at least ten times the cost of exponentiation); thus it is much more usable on mobile
devices than CL anonymous credentials. Specifically, the signing protocol in our ACL con-
struction consists of three phases: registration, preparation and validation. Registration is
the most expensive phase, but it need not be repeated for the same user/signer pair should
the user need his credential reissued (as long as his attribute set is the same). Preparation
and validation require the signer to perform 7 exponentiations, while the user performs 13;
verification requires 8 exponentiations. These numbers are essentially the same as Abe’s blind
signature; UProve requires essentially the same number of exponentiations for signature is-
sue, and 4 for verification. Thus, we get comparable efficiency to the most efficient examples
of protocols that either lack essential features (such as Abe’s blind signatures) or provable
security (such as UProve). See Table 1 for a comparison of the above mentioned schemes.

Brands Abe ACL CL credentials [7]
[6] [3] Scheme Rsa Pairings

Efficiency S1 U2 S U S U S U S U
Signing3 2 13 6 12 7 13 10 8 15 14p

Reveal 7 0 11 1 11 1 NC4 5+6p 9+6p

Signature size 6 elem. 9 elem. 9 elem. ∼ 05 ∼ 05

Blindness 3 3 3 3 3

Provable Unforg. 7 3 3 3 3

Attributes 3 7 3 3 3

1 Signer, 2 User, 3 In number of exponentiations
4 Non-comparable, 5 it can be used multiple times

Table 1. Comparison of anonymous credentials schemes

3

2 Preliminaries

2.1 Basic Assumptions

We start by describing two standard cryptographic assumptions useful in the rest of the
paper.

Definition 1 (Discrete Logarithm Assumption). Let k be the security parameter. Let
Gk be a set of groups such that Gk is a group of order q (k-bit prime) and generator g. Then,
for every polynomial time algorithm A it holds that:

Pr[h← G;x← A(h) : x = logg h] ≤ ν(k)

where ν(k) is a negligible function.

Definition 2 (Decisional Diffie-Hellman Assumption [26]). Let DH be an instance
generator that, on input the security parameter 1k outputs (G, q, g, A,B,C) where G is a
cyclic group of order q (k-bit prime) with generator g, and, for randomly chosen a, b ∈ Zq,
A = ga, B = gb and C = gab. Let Rand be an instance generator that, on input 1k outputs
(G, q, g, A,B,C) where G,q,g,A and B are as above, while C = gc for a random c ∈ Zq. We
assume that DH and Rand are computationally indistinguishable.

2.2 The OR-proof technique

Let P be a Σ-protocol for a relation RL, (h0, h1) be a common input to (P, V) and P knows
a x such that hb, x ∈ RL for b ∈ {0, 1} (for definitions of witness relations and Σ-protocols
please refer to Appendices A, B). An OR-proof protocol POR is a Σ-protocol for proving
that either (h0, x) ∈ RL or (h1, x) ∈ RL [16]1.

The main idea of an OR-proof is that P will complete two Σ protocols Σ0, Σ1, one for h0

and one for h1 in such a way that the verifier will not be able to tell for which of the two P
knows the corresponding witness. For hb the prover can actually follow the real Σ protocol
while for hb−1 he will have to use a simulator M to create his answers. A POR protocol works
as follows:

1. P computes the first message of Σb, ab, using (hb, x) as input. P randomly chooses
c1−b and runs the simulator M on input (h1−b, c1−b) and receives (a1−b, c1−b, r1−b) as an
output. Then, P sends a0, a1 to V .

2. V chooses a random string e and sends it to P .

3. P sets cb = e⊕cb−1 and computes the answer rb to challenge cb using hb, ab, cb, x as input.
He sends c0, c1, r0, r1 to V .

4. V checks that e = c0 ⊕ c1 and that both (a0, c0, r0) and (a1, c1, r1) are accepting conver-
sations.

Let ROR = {((h0, h1), x)|(h0, x) ∈ RL or (h1, x) ∈ RL}. Then:

Theorem 1 ([16]). The POR protocol is a Σ-protocol for ROR. Moreover, for any verifier
V ∗, the probability distribution of conversations between P and V ∗, where x is such that
(hb, x) ∈ RL, is independent of b.

1 This is based on a more general result due to Cramer et. al. [13] where they present a protocol in which the
prover demonstrates knowledge of the solution to some subset of n problem instances out of a collection
of subsets.

4

2.3 Generalized Pedersen Commitment

A non-interactive commitment takes as input a message (or set of messages) m and ran-
domness R and outputs a value that, on the one hand, reveals no information about the
message but, on the other hand, it is hard to find a (m′, R′) such that Commit(m;R) =
Commit(m′, R′) but m 6= m′ (see[25] for a standard definition and treatment). The Pedersen
commitment is a commitment scheme based on the discrete logarithm assumption [29]. Here
we give a generalized version that allows a commitment to a set of messages (L1, . . . , Ln)
The scheme is defined as follows:

1. Setup: On input the security parameter 1k, pick a group G of prime order q = Θ(2k)
with generators h0, h1, . . . , hn.

2. Commit(L1, . . . , Ln;R) = hR0
∏n
i=1 h

Li
i ; note that Li ∈ Zq.

The Pedersen commitment scheme (constructed from a corresponding Σ-protocol) is infor-
mation theoretically hiding and computationally binding. It is also important to note that
there are efficient zero-knowledge proof protocols for proving that a commitment C is to a
particular set of values; or to a set of values that satisfy a rich class of relations [6, 9, 15].

2.4 Generalized Commitment Scheme

Let Commit1 be a commitment scheme that takes as input its parameters params1, n at-
tributes, (L1, . . . , Ln), and randomness R1 and outputs a commitment C1. Let Commit2 be a
commitment scheme that takes as input its parameters params2, an attribute L0 and random-
ness R2 and outputs a commitment C2. Suppose that another commitment scheme, Commit ,
is a combination of these two commitments; i.e., on input C1 and C2 it produces a commit-
ment to the combined attributes (L0, L1, . . . , Ln) with combined randomness R = R1 +R2.

For example, this can be instantiated by a generalized Pedersen commitment scheme: the
parameters for the combined scheme are generators (g0, . . . , gn, h), Commit1(L1, . . . , Ln;R1) =
(
∏n
i=1 g

Li
i)hR1 , Commit2(L0;R2) = gL0

0 hR2 , and a combined commitment can be obtained
either by multiplying together the two component commitments, or by computing it from
scratch as Commit(L0, L1, . . . , Ln;R) = (

∏n
i=0 g

Li
i)hR.

2.5 Blinded Pedersen Commitment Scheme

Here, we note that the Pedersen commitment scheme can be further extended. Let (h, h1, . . . , hn)
be the parameters of the Pedersen commitment. Consider an additional parameter z ∈
G, where z 6= 1. Let C = Commit(L1, . . . , Ln;R). Then the values (zγ , Cγ) can also be
viewed as a commitment to the same (L1, . . . , Ln) with randomness (R, γ). Let us define
a new commitment scheme, which we will call the blinded Pedersen commitment scheme:
CommitB(L1, . . . , Ln;R, γ) = (zγ ,Commit(L1, . . . , Ln;R)γ), where Commit is the Pedersen
commitment. It is easy to see that this commitment is unconditionally hiding, same as Ped-
ersen. It is also easy to see that it is binding: given (zγ , Cγ), γ is uniquely defined, and
therefore so is C, which is binding. Finally, using well-known Σ-protocols, it is easy to see
that the same set of relations that can be proven about values inside a Pedersen commitment
can be proven about values inside a blinded Pedersen commitment.

3 Definition of Secure Blind Signatures with Attributes

In this section we are first going to define what a blind signature scheme with attributes
is and then we will show how we can construct the first lightweight e-cash that allows for
attributes and is still efficient and provable secure using Abe’s [3] scheme as a building block.
For definitions of standard (without attributes) blind signatures please refer to Appendix D.

5

Definition 3 (Blind Signatures with attributes). Let Commit(x; r) be a non-interactive
commitment scheme. A blind signature scheme with n attributes, for this commitment scheme,
consists of three algorithms: KeyGen,BlindSign, Verify where BlindSign is a protocol between
the Signer(S) and the User(U).

– KeyGen(1 k): is a probabilistic polynomial time key generation algorithm. It takes a se-
curity parameter k as input and outputs a pair (pk, sk) of public and secret keys for the
system. sk is the secret key of the Signer.

– BlindSign: is an interactive, probabilistic polynomial time protocol between S and U .
The public parameters are pk, the public parameters of the commitment scheme and
C = Commit(L1, . . . , Ln;R) where (L1, . . . , Ln) is the set of attributes and R is some
randomness. The Signer’s private input is sk and User’s private input is (L1, . . . , Ln, R)
and the message, m, that he wishes to have signed. The User’s output in the proto-
col is a pair (R̃, σ), where σ = σ(m, C̃) is the Signer’s signature on (m, C̃), and C̃ =
Commit(L1, . . . , Ln; R̃) ; the Signer’s output is “completed”.

– Verify(PK,m, C̃, σ): is the signature verification algorithm; i.e. a deterministic polyno-
mial time algorithm that gets as input the public key, the message, a commitment to the
attributes and the blind signature on the message and attributes and checks the validity
of the signature σ. If it is valid the algorithm outputs “1”, otherwise outputs “0”.

A blind signature scheme with attributes is secure if it is both blind and unforgeable. Blind-
ness is defined in a similar way as in blind signature schemes without attributes: the Signer
is unable to view the messages and the attributes he signs (protection for the User). A ma-
licious Signer, A, cannot link a (m, C̃ ′, σ) tuple to any particular execution of the protocol,
even if A chooses m,L1, . . . , Ln.

Definition 4 (Blindness for blind signatures with attributes). Let A be a malicious
Signer and b ∈ {0, 1} be a randomly chosen bit which is kept secret from A. A will try to
guess the value b by performing the following steps:

1. (pk, sk)← Gen(1k)

2. {m0,m1,
−→
L0,
−→
L1, R0, R1} ← A(1k, pk, sk) (i.e. A produces two messages {m0,m1}, poly-

nomial in 1k, and two attribute vectors
−→
L0,
−→
L1 with the corresponding randomness).

3. A(1k, pk, sk,m0,m1,
−→
L0,
−→
L1, R0, R1) engages in two parallel (and arbitrarily interleaved

as desired by A) interactive protocols, the first with U(pk, {mb,
−→
L0, R0}) and the second

with U(pk, {m1−b,
−→
L1, R1}).

4. If neither of the User instances failed, then A gets two signatures and the corresponding
blinded commitments: σ(m0, C̃b), C̃b and σ(m1, C̃1−b), C̃1−b.

5. A outputs a bit b′.

Then the probability, taken over the choice of b, over coin-flips of the key-generation algo-
rithm, the coin-flips of A, and (private) coin-flips of both users (from step 3), that b′ = b is
at most 1

2 + ν(k), where ν(k) is a negligible function.

We give the definition of one-more unforgeability for the sequential composition case.

Definition 5 (Sequential one-more unforgeability for blind signatures with at-
tributes). (KeyGen, BlindSign, Verify) is a one-more unforgeable blind signature scheme
with respect to Commit if ∀ ppt A, the probability that A wins in the following game is
negligible:

1. (pk, sk)← Gen(1k)

6

2. A(pk,Ci,mi) engages in polynomially many (in k) adaptive, sequential interactive proto-
cols with polynomially many copies of S(pk, sk), where A decides in an adaptive fashion
when to stop. Let ` be the number of executions, where the Signer output “completed” in
the end of the protocol.

3. A outputs a collection {(C̃1,m1, σ1), . . . , (C̃j ,mj , σj)} where (C̃i,mi, σi) for 1 ≤ i ≤ j are
all accepted by V erify(pk, C̃i,mi, σi), and all (C̃i,mi)’s are distinct.

We say that A wins the game if either:

1. j > ` (i.e A outputs more (C̃,m, σ) tuples than he received).
2. A opens the sets of commitments {Ci} and {C̃i} and the resulting multisets do not match.

4 From Blind Signatures with Attributes to Single-Use Credentials

Single-use anonymous credentials ensure that a credential cannot be used more than once:
if used more than once, the user’s identity can be discovered, and the user can be penalized.
This is a generalization of off-line electronic cash [12], in that such a credential can also
contain attributes, while e-cash does not necessarily have any connection to a user’s identity.
Here we construct single-use anonymous credentials from blind signatures with attributes
using standard techniques [12, 6, 7].

Recall our definition of generalized commitment schemes (Commit1,Commit2,Commit)
from Section 2.4. Consider the following construction of a single-use credential with n at-
tributes from a blind signature scheme with n+1 attributes. The common inputs to the User
and Signer are the Signer’s public key for verifying signatures, and a commitment C1 to the
User’s attributes (L1, . . . , Ln). We assume that the attribute L1 contains the user’s identity,
so that learning that attribute will allow one to trace the user. The Signer’s private input is
its signing key, while the User’s private input is the message m that the user wants signed
(m will serve as the serial number for this credential, so the user needs to have chosen it at
random during the signing protocol) and the opening to C1, (L1, . . . , Ln;R1). The commit-
ment C1 corresponds to this user’s identity and never changes; each time this user obtains a
signature, they input the same C1.

First, the User forms a commitment C2 = Commit2(L0;R2) for random (L0, R2); this
commitment is specific to this credential, and the value L0 will be used in the double-spending
equation, below. Next, the user submits C2 to the signer and provides a zero-knowledge proof
of knowledge of its opening.

Next, the User and the Signer carry out the blind signature protocol relative to the
combined commitment scheme Commit , whereby the User’s output is a fresh commitment
C̃ to the values (L0, . . . , Ln) and randomness R̃, and the signature σ on (m, C̃).

To use this credential to a verifier V , the User reveals (m, C̃, σ), obtains from V a challenge
c, and reveals the double-spending equation cL1 + L0 (the multiplication and addition is in
whatever ring the committed values belong to) and whatever other attributes are needed
for the transaction; the User then provides a zero-knowledge proof that these values were
revealed correctly, relative to commitment C̃.

To trace a user who spent a single-use credential twice, it is sufficient to examine two
double-spending equations for the same credential. If double spending occurred, then the
attribute L1, which encodes the User’s identity, will be revealed.

The following theorem is stated informally because we omitted a formal definition of
single-use anonymous credentials.

Theorem 2. (Informal) Let KeyGen,BlindSign,Verify be a blind signature scheme with
n + 1 attributes, associated with the commitment scheme Commit which is a combination
of Commit1 and Commit2 as explained above. Then the above construction is a single-use
credential scheme with n attributes.

7

5 Our Construction: ACL

Let’s now describe our proposed construction of a blind signature scheme with attributes,
called “Anonymous Credentials Light” (ACL). ACL is based on Abe’s blind signature scheme
[3] which has been modified appropriately so that it will also allow the users to be able to
provably encode attributes in the signatures they get. Abe’s scheme is a witness indistin-
guishable variant of the Schnorr signature scheme where the Signer owns a real public key
y = gx and a tag public key z = gw. The idea is that the signature can be issued only with
the real secret key x but no one can distinguish which of the two (real or tag) secret keys
was used (remember the OR-proof technique presented above).

Although the modification seems straightforward, proving the security of the resulting
scheme turns out to be challenging as we will see later in the next section.

5.1 Setup

let G be a group of order q and g is a generator of this group. Let H : {0, 1}∗ → Zq be
a hash function. We assume the existence of a trusted party, TP , which chooses G, g and
outputs params = (q,G, g, z, h, h0, . . . , h1) where z, h, h0, . . . , hn ∈ G and n is the maximum
number of attributes a User can possibly have. We will use (h0, . . . , hn) as parameters of the
generalized Pedersen commitment scheme Commit ; we will use (z, h0, . . . , hn) as parameters
for the blinded Pedersen commitment scheme CommitB.

The Signer picks his secret key x ∈ Zq and computes his public key y = gx mod q. y is
Signer’s real public key while z (output by TP) can be used as his tag public key.

The Signer selects h ∈R 〈g〉 and x ∈R Zq and computes his real public-key to be y =
gx mod p. The TP given (p, q, g, h, y) outputs z which is the tag public key of the Signer.
The public key of the Signer is (p, q, g, h, y, z), and the private key is x.

5.2 Signature Issuing

The signature issuing protocol will be described in three phases: registration, preparation
and validation. The registration phase actually only needs to happen once for each user/set
of attributes and also, preparation and validation phases can happen simultaneously (we
choose to present them separately in order to describe the construction in a more modular
way).

The signature issuing protocol is basically a POR-protocol for proving knowledge of one
of the following:

– y-side: proof of knowledge x of y = gx

– z-side: proof of knowledge (w1, w2) of z1 = gw1 , z2 = hw2 (where z1, z2 are the so called
“one-time” tag keys that the signer creates).

Notice that the z-side witness in not known to the Signer, so the z-side proof will be done
by simulation following the OR-proof technique paradigm described in Section 2.2.

Registration The User’s input includes the system parameters params, the signer’s real
public key y, the message m to be signed and (L1, . . . , Ln;R) where L1, . . . , Ln is a set of
attributes and R is some randomness. The Signer also gets as input the system parameters
params, a commitment C = Commit(L1, . . . , Ln;R) and his secret key x. During registration
the User and the Signer carry out a standard interactive zero-knowledge proof of knowledge
protocol where the User creates a proof π1 to convince the Signer that he knows an opening
of the commitment C.

8

Preparation The Signer prepares z1 and z2 (the z-side proof). He first picks rnd ∈ Zq and
creates the “one-time” tag keys: z1 = Cgrnd and z2 = z/z1. The Signer sends rnd to the
User in order to convince him that logg z1 is not known to him. The User computes himself

z1 = Cgrnd and then picks γ ∈ Z∗q and blinds z, z1, z2 into ζ = zγ , ζ = zγ , ζ1 = zγ1 so that
logz z1 = logζ ζ1 holds. Finally, the User picks τ ∈ Zq and computes η = zτ (this will serve as
an element of an additional Schnorr signature that proves knowledge of γ such that ζ = zγ).

Validation In this phase two Σ protocols are going to take place and combined according
to the OR-proof. By (a, c, r) we are going to denote the transcript of Σy and by (a′, c′, r′) we
will denote the transcript of Σz. The Signer will compute Σz himself and Σy in interaction
with the user.

1. The Signer begins by creating a for Σy by picking a random u ∈ Zq and computing a = gu.
Then, for Σz, following the OR-proof he picks random c′ ∈ Zq and r′ = {r′1, r′2 ∈ Zq}.
and sets a′1 = gr

′
1zc

′
1 and a′2 = hr

′
2zc

′
2 . Finally he sends to the User a, a′ = {a′1, a′2}.

2. The User checks whether a, a′1, a
′
2 ∈ G and then picks blinding factors t1, t2, t3, t4, t5 ∈R Zq

and blinds a into α = agt1yt2 and a′1, a′2 into α′1 = a
′γ
1 g

t3ζt41 and α′2 = a
′γ
2 h

t5ζt42 . We
denote α′ = {α′1, α′2}. Then, computes ε = H(ζ, ζ1, α, α

′, η,m) where m is the message
to be signed. The User sends to the Signer e = (ε− t2 − t4) mod q.

3. The Signer, according to the OR-proof technique, computes c = e − c′ mod q and r =
u− cx mod q. Then, sends (c, r, c′, r′) to the User.

4. Finally, the User “unblinds” the received values and gets: ρ = r+t1 mod q, ω = c+t2 mod
q, ρ′1 = γr′1 + t3 mod q, ρ′2 = γr′2 + t5 mod q, ω′ = c′ + t4 mod q, µ = τ − ω′γ mod q.

A signature is a 8-tuple σ = (m, (ζ, ζ1, ρ, ω, ρ
′ = {ρ′1, ρ′2}, ω′, µ)) where ζ1 encodes the

attributes of the User ((ζ, ζ1) corresponds to C̃, which is a blinded Pedersen commitment to
(L1, . . . , Ln) with randomness (R, γ)).

The complete signature issuing protocol is also described in Appendix E.

Verification A signature tuple (m, ζ1, σ) (where ζ1 corresponds to C̃) verifies if ζ 6= 1 and

ω + ω′ = H(ζ, ζ1, g
ρyω, gρ

′
1ζω

′
1 , hρ

′
2ζω

′
2 , zµζω

′
,m) mod q.

5.3 Discussion

As briefly mentioned in the description of our construction there are certain “tricks” we
can do to improve its efficiency. First of all notice that the Registration phase only needs
to happen once for each User and a corresponding set of attributes. The Signer stores the
attribute commitment C together with some identification information asked from the User
(e.g. passport, ID).Then, it is sufficient if every time in the beginning of the Signature Issuing
protocol the User identifies himself to the Signer in order to prove ownership of his account.
Moreover, notice that Preparation and Validation phases can be combined and executed
simultaneously. As a result, the whole signing protocol consists of three rounds.

Let’s now discuss the differences between our ACL construction and the blind signature
protocol described by Abe [3]. The basic advantage of ACL is that allows for the encoding of
users’ attributes in the signatures they receive from the Signer. In order for this to happen
we need the Registration phase during which the User commits to his set of attributes. Those
attributes are then encoded in the signature in ζ1. The crucial difference from Abe’s approach
is that z1 can no longer be computed as the result of some hash function given a random
input rnd. In ACL z1 needs to include the attribute commitment C so z1 = Cgrnd (we need
the grnd factor so that two different signature issuings with the same user cannot be linked to

9

each other). The fact that z1 is no longer the result of a hash function H′ makes our security
analysis challenging. We can no longer define H′ so that it will return the output we need,
instead we will have to make use of ZK extractors. The formal analysis follows in the next
section.

6 Proof of Security

The correctness of the scheme is straightforward, see Appendix F.

6.1 Blindness

Theorem 3. The proposed scheme satisfies blindness under the Decisional Diffie-Hellman
assumption in the random oracle model.

Proof. We wish to show that, when interacting with a challenger as described in the definition
of blindness, the adversary cannot guess which signature is which (i.e. the adversary should
not be able to tell which signature corresponds to each instance and each attribute set).
We distinguish between two types of signatures that a challenger might output: a signature
σ = (m, (ζ, ζ1, ρ, ω, ρ

′
1, ρ
′
2, ω
′, µ)) is correct for a particular interaction with the signer if there

exists a value γ such that ζ = zγ and ζ1 = zγ1 where z1 is the value corresponding to this
interaction with the signer, and the signature verifies. A signature is fake if no such γ exists.
Note that it is easy for a challenger to generate both kinds of signatures: a correct signature
can simply be output by correctly following the user’s side of the protocol. With control of
the random oracle, a fake signature is computed as follows: first, the challenger picks ζ and
ζ1 at random from G, and let ζ2 = ζ/ζ1. Next, it picks random ρ, ω, ρ′1, ρ

′
2, ω
′, µ from Zq

and sets the random oracle such that ω + ω′ = H(ζ, ζ1, g
ρyω, gρ

′
1ζω

′
1 , hρ

′
2ζω

′
2 , zµζω

′
,m), which

ensures that the fake signature verifies.

We will prove the theorem by a hybrid argument. Consider the following three games
in which the adversarial signer engages in two signature issuing instances with a challenger
who outputs two signatures:

1. Real: The challenger outputs two correct signatures, σ1, σ2, in random order by honestly
following the protocol. A correct signature is one that is honestly generated by interacting
with the signer. Thus, in a correct signature the user blinds z, z1 by the same γ so that
logz(z1) = logζ(ζ1).

2. Hybrid: The challenger’s output consists of a randomly picked correct signature and a
fake signature, in random order. In a fake signature the challenger doesn’t use the same
random γ to blind z and z1 so that logz(z1) 6= logζ(ζ1) except for negligible probability.
Above, we explained how a fake signature can be generated, assuming that the challenger
controls the random oracle.

3. Fake: The challenger outputs two fake signatures.

What we need to prove is that Real≈Hybrid and then that Hybrid≈Fake (we show
this in Appendix G). Then, it holds that Real ≈ Fake. This proves the blindness of the
ACL scheme since the view of the adversary is indistinguishable no matter if he receives two
correct or two fake signatures. ut

6.2 Unforgeability

Theorem 4. The signature issuing protocol is (`, `+1)−unforgeable for polynomially bounded
` if the discrete logarithm problem is intractable and H is a random oracle.

10

Outline of the proof Our proof follows Abe’s results [3]. We first discuss the witness indistin-
guishability of the protocol (Lemma 1), which allows us to to simulate the Signer with either
y-side or z-side witness(es) to extract the witness of the other side. Then, in Lemma 2 we
prove that in order for the User to get a valid signature, he has to blind (z, z1) into (ζ, ζ1)
only in such a way that logz ζ = logz1 ζ1. In Lemma 3 we prove that is infeasible to create
a valid signature without engaging in the issuing protocol with the legitimate Signer. From
Lemmas 2 and 3 we see that if a User engages in the signature issuing protocol ` times and
outputs `+ 1 signatures, then, there exist at least two valid signatures linked to a particular
run of the issuing protocol. Finally, it needs to be proven that a forger who manages to pro-
duce two signatures from a single protocol run can be used to solve the discrete logarithm
problem.

We will denote the i-th execution of the issuing protocol by runi. Recall that a transcript
of runi of the issuing protocol contains values (z1,i, z2,i); by the z-side witness of runi we
denote (w1,i, w2,i) such that z1,i = gw1,i and z2,i = hw2,i .

Consider an alternative signing algorithm that, instead of using the y-side witness in
the issuing protocol, uses the z-side witness. Let params = (q,G, h, z, {hj}) be the public
parameters, and y be the public key of the Signer. Suppose that the registration and the
preparation phases of the signing protocol for runi resulted in the signer and the user setting
up the values z1,i = gw1,i , z2,i = hw2,i . The alternative signing algorithm takes as input the
public parameters params, the public key y, the preparation phase output (z1, z2) and the
values (w1,i, w2,i) instead of the secret key x, and works as follows:

1. Generate ci, ri ∈U Zq and set ai := griyci .
2. Compute a′1,i := gu1,i and a′2,i := hu2,i with u1,i, u2,i ∈U Zq.
3. Sends ai, a

′
1,i, a

′
2,i to the user.

4. Given ei from user, compute c′i := ei − ci mod q, r′1,i := u1,i − c′iw1,i mod q and r′2,i :=
u2,i − c′iw2,i mod q.

5. Send ri, ci, r
′
1,i, r

′
2,i, c

′
i to the user.

Definition 6. The signing protocol described above is called the z-side signer.

Lemma 1. The signer’s output is perfectly indistinguishable from the output of a z-side
signer.

Proof. Lemma 1 follows from the result of Cramer [13].
ut

Note that, in order to run the z-side signer, it is necessary to somehow get the corresponding
witness. We will see later that, with black-box access to an adversarial user in the registration
phase, a reduction can use standard Σ-protocol extraction techniques in order to learn the
representations of C; if the reduction is, in addition, given the discrete logarithms of all the
public parameters to the base g, it will be able to compute the z-side witness, and so, inside
a reduction, the z-side signer can be invoked.

Lemma 2. (Restrictive Blinding [3]) Let A be a User that engages in the signature issuing
protocol ` times, and outputs a valid signature σ = (m, (ζ, ζ1, ρ, ω, ρ

′
1, ρ
′
2, ω
′, µ)). Let runi

denote the i-th execution of the protocol and z1i denote z1 used by the signer S in runi. For
polynomially bounded ` and for all polynomial-time A, the probability that logz ζ 6= logz1i ζ1

holds for all i, is negligible if the discrete logarithm problem is intractable and H is a random
oracle.

Proof. Following Abe [3], assume that, A having at most qh accesses to H and asking at
most ` signatures to B, outputs a signature σ = (m, (ζ, ζ1, ρ, ω, ρ

′
1, ρ
′
2, ω
′, µ)) that satisfies

11

logz ζ 6= logz1i ζ1 for all i with probability ε0 which is not negligible in n. Here, qh and ` are
bounded by a polynomial of security parameter n. We randomly fix an index Q ∈ {1, . . . , qh}
and regard A as successful only if the resulting signature corresponds to the Q-th query to
H. (If it does not correspond to any query, A is successful only with negligible probability
due to the randomness of H.) Accordingly, it is equivalent to assuming an adversary, we
will call it A∗, that asks H only once and succeeds with probability ε1 ≥ ε0/qh [3]. Given
this modified A∗ we construct the reduction B that solves the discrete logarithm problem by
simulating the interaction. Let (p; q; g; Y) be an instance of the DL problem.

Reduction Algorithm: B first sets (p, q, g) := (p,q,g). Then, it flips a coin χ ∈U {0, 1} to
either select y := Y (case χ = 0), or h := Y (case χ = 1).

Case y = Y: (extracting y-side witness)

1. Key Generation: B selects k, k′, {kj} ∈U Zq and sets h := gk and hj := gkj , z = gk
′
.

As a result of setting the parameters this way, B will always be able to compute z-side
witnesses, as long as B can successfully extract the user’s attributes and randomness in
the registration phase.

2. Registration B extracts values (L1, . . . , Ln;R) using a knowledge extractor for proof π1

(since we only worry about sequential composition the extractor may rewind) and defines
K = k0R+

∑n
i=1 kiLi (so that C = gK).

3. Preparation B selects w1,i ∈ Zq and sets rnd = w1,i −K. Then, computes w2,i = (k′ −
w1,i)/k mod q (so we have z1,i = gw1,i , z2,i = hw2,i). B sends rnd to A.

4. Validation B runs A∗ using the z-side signer described above. At the end of each runi the
z-side signer sends: ri, ci, r

′
1,i, r

′
2,i, c

′
i to A∗. B simulates H by returning ε ∈U Zq to the

random oracle query issued by A∗. A∗ outputs a signature σ = (ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′, µ),

that corresponds to ε.

5. Rewinding : Reset and restart A∗ with the same setting. B simulates H with ε̃ ∈U Zq. A∗

outputs a signature, say σ̃ = (ζ, ζ1, ρ̃, ω̃, ρ̃′1, ρ̃
′
2, ω̃
′, µ̃), that corresponds to ε̃.

If ω 6= ω̃, B outputs x := (ρ− ρ̃)/(ω̃ − ω) mod q. The simulation fails, otherwise.

Case h = Y: (extracting z-side witness)

1. Key generation: B selects x, {kj} ∈U Zq and sets y := gx and hj := gkj . It also selects
w1, w2 ∈U Zq and sets z := gw1hw2 . B selects I ∈U {0, . . . , `} and J ∈U {1, . . . , `}.

2. Signature Issuing : B runs A∗ simulating the signer as follows.

(a) For i 6= J , B follows the protocol with y-side witness, x.

(b) For i = J , B engages in the issuing protocol using both y-side witness x and z-side
witness (w1, w2) as follows.

i. Registration Extract values (L1, . . . , Ln;R) using a ZK extractor and define K =
k0R+

∑n
i=1 kiLi (so that C = gK).

ii. Preparation Set rnd = w1 −K (so we have z1,J = gw1 , z2,J = hw2). B sends rnd
to A.

iii. Validation Compute aJ = guJ , a′1J = gu1J , a′2J = hu2J with uJ , u1J , u2J ∈U Zq.
iv. Send (aJ , a

′
1J , a

′
2J) to A∗.

v. Given eJ from A∗, choose c′J ∈U Zq and compute cJ := eJ − c′J mod q, rJ :=
uJ − cJx mod q, r′1J := u1J − c′Jw1 mod q, and r′2J := u2J − c′Jw2 mod q.

vi. Send (rJ , cJ , r
′
1J , r

′
2J , c

′
J) to A∗.

B simulates H by returning ε ∈U Zq.
3. A∗ outputs a signature, say σ = (ζ, ζ1, ρ, ω, ρ

′
1, ρ
′
2, ω
′, µ), that corresponds to ε.

4. Rewind : Rewind and restart A∗ with the same setting.

– If I = 0, B simulates H by returning ε̃ ∈U Zq. Otherwise, set ε̃ = ε.

12

– If I 6= 0 and runJ has not yet been completed before the query to H3 is sent, B
simulates the execution by using both y-side and z-side witnesses as above choosing
c̃′J ∈U Zq. Otherwise, B simulates only with y-side witness choosing c̃′J = c′J .

A∗ outputs a signature, say σ̃ = (ζ, ζ1, ρ̃, ω̃, ρ̃′1, ρ̃
′
2, ω̃
′, µ̃), that corresponds to ε̃. If ω′ 6=

˜omega′, B computes w′1 = (ρ′1 − ρ̃′1)/(µ− µ̃) mod q, w′2 = (ρ′2 − ρ̃′2)/(µ− µ̃) mod q, and
outputs w = (w1 − w′1)/(w′2 − w2) mod q. Simulation fails otherwise.

Evaluation of success probability Similarly to Abe [3], we need to make sure that the
adversary can’t defeat the reduction all the time, so that at least one of the following state-
ments is true: (1) when χ = 0, ω 6= ω̃ with non-negligible probability; (2) when χ = 1,
ω′ 6= ω̃′ with non-negligible probability.

Consider fixing the adversary’s view before the RO query. Consider, also, that the values
(ai, a

′
i) that the adversary receives after the RO query are fixed; consider fixing the ad-

versary’s random tape as well. The forgery that the adversary outputs still depends on the
output of the random oracle, and on the reduction’s responses (ci, ri, c

′
i, r
′
i) that the adversary

receives after the RO query.
Suppose that there exists some value δ such that with non-negligible probability, the

adversary’s signature σ = (ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′, µ) contains ω′ = δ. In that case, (1) above

happens with non-negligible probability: with non-negligible probability, we have δ = ω′ = ω̃′

which implies that ω 6= ω̃.
So, consider the case when no such δ exists and the reduction fails when χ = 0. In this

case, the value ω′ output by the adversary is sensitive to the values (ci, ri, c
′
i, r
′
i) that the

adversary receives after the RO query; thus when we run the adversary the second time
around with access to the z-side witness, we send him the values (ci, ri, c̃

′
i, r̃
′
i), and get two

signatures from him where ω = ω̃, and so ω′ 6= ω̃′.
What we would like to show is that this implies also that, when we run the adversary with

the y-side witness, we will get ω′ 6= ω̃′. However, with the y-side witness, the second time
around the values we send will be (c̃i, r̃i, c

′
i, r
′
i), which is not what will produce the desired

effect of obtaining ω′ 6= ω̃′: to get this effect, we need fresh (c̃′i, r̃
′
i) instead of fresh (c̃i, r̃i).

Luckily, by the Splitting Lemma due to Pointcheval and Stern [32, 31] in order to get
ω′ 6= ω̃′ with non-negligible probability, it is sufficient to produce fresh (c̃′J , r̃

′
J) for just one

randomly chosen run J , which is what the reduction does for χ = 1.
The rest of the analysis is identical to Abe’s.

ut

Lemma 3. Any poly-time adversary A∗ outputs a valid signature without interacting with
the Signer only with negligible probability if the discrete logarithm problem is intractable and
H is a random oracle.

Proof. We present the proof in Appendix H.
ut

Proof. (Theorem 4). Suppose that there exists adversary A that outputs `+1 valid signatures
with probability ε not negligible after interacting with the Signer at most ` times. The case
` = 0 has been ruled out by Lemma 3. We consider ` ≥ 1.

By Lemmas 2 and 3, among the ` + 1 signatures, there exist at least two signature-
message pairs which contains (ζ, ζ1) and ζ̄, ζ̄1 such that logζ ζ1 = logζ̄ ζ̄1 = logz z1I holds for
z1I used in runI for some I in {1, . . . , `}. Now, there exist two queries to H that correspond
to those signatures. In a similar way as in the proof of Lemma 2, we guess the indices of these
queries and regard A as being successful only when the guess is correct. Accordingly this
is equivalent to an adversary, say A∗ that asks H only twice and succeeds with probability
ε∗ = ε/

(
qh
2

)
in producing two signatures in the expected relation.

13

We construct a reduction B that, given (p,q,g,Y), solves logg Y in Zq by using A∗.
Reduction Algorithm: B sets (p, q, g) := (p,q,g). It then flips a coin, χ ∈U {0, 1}, to
select either y := Y (case χ = 0), or y := gx with randomly chosen x (case χ = 1). It also
chooses a random J ∈ {1, 2} which determines whether A∗ is rewound to its first or second
RO query.

1. Setup If χ = 0, set up and use the z-side signer. Set h, h0, . . . , hn such that their discrete
logarithm base g is known. Else, set up the y-side signer by letting y = gx for a randomly
chosen x; set up h, h0, . . . , hn such that their discrete logarithm base Y is known.

2. Registration If χ = 0, extract (R,L0, . . . , Ln). Else follow the protocol.

3. Preparation Follow the protocol.

4. Validation If χ = 0, use the z-side signer, else follow the protocol.

5. Responding to the RO queries B simulates H by returning random values, say ε1 and ε2,
to the two RO queries.

6. Rewinding WhenA∗ outputs two signatures (σ(1) = (ζ(1), ζ
(1)
1 , ρ(1), ω(1), ρ′

(1)
1 , ρ′

(1)
2 , ω′(1), µ(1)))

and (σ(2) = (ζ(2), ζ
(2)
1 , ρ(2), ω(2), ρ′

(2)
1 , ρ′

(2)
2 , ω′(2), µ(2))) corresponding to ε1 and ε2, B re-

sets it to its J ’th random oracle query; this time it responds to the two RO queries with
ε̃1 and ε̃2 (although ε1 = ε̃1 if J = 2).

7. Interacting with A∗ after rewinding is the same as before, according to the value of χ.

8. Extracting When A∗ again outputs two signatures (σ̃(1) = (ζ(1), ζ
(1)
1 , ρ̃(1), ω̃(1), ρ̃′

(1)
1 ,

ρ̃′
(1)
2 , ω̃′

(1)
, µ̃(1)) and (σ̃(2) = (ζ(2), ζ

(2)
1 , ρ̃(2), ω̃(2), ρ̃′

(2)
1 , ρ̃′

(2)
2 , ω̃′

(2)
, µ̃(2)) corresponding to ε̃1

and ε̃2, do: if χ = 0 and ωJ 6= ω̃J , then extract the y-side witness as described in the
proof of Lemma 2; else if χ = 1 and ω′J 6= ω̃′J , then extract the z-side witness as described
in Lemma 2.

Evaluation of Success probability The analysis of the success probability is similar to
Abe, except for several crucial differences. Abe’s reduction uses the z-side witness for each
run except run I independently of χ. This is possible because Abe’s z1 is determined by a
random oracle query, and so he can embed the instance Y in z1 specifically for run I, and
choose it such that its discrete logarithm is known for every other run. As a result, when
we look at the transcripts with the adversary, both the first time the adversary is run and
after the adversary is rewound, only the transcripts corresponding to run I may potentially
depend on χ.

Why doesn’t our reduction do the same? The problem is that, in the case when χ = 1,
the setup is such that it is impossible for our reduction to know the z-side witness in any
run. One could consider changing the setup somehow; the problem is that, if Y is embedded
anywhere in the public parameters, then the reduction cannot know the z-side witness for
any run at all: z1’s representation in h, h0 . . . , hn, g is known to the reduction, so if in
addition it also knows its discrete logarithm, then it can compute the discrete logarithm of
the challenge Y from those.

Thus, we need pairs of transcripts (transcript before rewinding, transcript after rewind-
ing) for runs other than I to be independent of χ without guaranteeing that the reduction
always knows a z-side witness for runs other than I. If we limit our attention to sequential
composition only (see Definition 5), we get this for free, just by witness indistinguishability
(Lemma 1).

The rest of the analysis of the success of the reduction is identical to Abe’s [3].

Thus the only thing left to prove is that an adversary cannot open the sets of commit-

ments {C(i)} and {ζ(i), ζ
(i)
1 } to two different multisets. Note that ζ(i) uniquely determines γ(i),

and by Lemma 2, it follows that for every i, there exists some z
(i′)
1 such that ζ

(i)
1 = (z

(i′)
1)γ

(i)
.

14

Thus, an alternative opening of the commitment {ζ(i), ζ
(i)
1 } gives rise to an alternative rep-

resentation of z
(i′)
1 in bases h, h1, . . . , hn, g. In turn, by standard techniques, this breaks the

discrete logarithm assumption. (The reduction will just honestly emulate the signer, and
embed the DL instance into the parameters h, h1, . . . , hn, g.)

ut

Aknowledgements The authors wish to thank their collaborators at the Pay-As-You-Go
project for helpful discussions on the use of anonymous credential systems in lightweigh
devices and especially Gesine Hinterwalder for providing us the references on the cost of
cryptographic operations listed in the introduction. This work was supported by NSF grant
0964379.

References

1. Efficient attributes for anonymous credentials, CCS ’08, 2008.
2. REGULATION (EC) 45/2001. European parliament and council of the european union. In Official

Journal of the European Union, 2001.
3. Masayuki Abe. A secure three-move blind signature scheme for polynomially many signatures. In EU-

ROCRYPT 2001: International Conference on the Theory and Application of Cryptographic Techniques,
Innsbruck, Austria, May 6-10, 2001, pages 136–151, 2001.

4. Foteini Baldimtsi and Anna Lysyanskaya. On the security of one-witness blind signature schemes. 2012.
5. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Compact e-cash and simulat-

able vrfs revisited. In Pairing ’09, pages 114–131, 2009.
6. Stefan Brands. Untraceable off-line cash in wallets with observers. In CRYPTO ’93: 13th Annual Inter-

national Cryptology Conference, pages 302–318. Springer-Verlag, 1993.
7. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In In EUROCRYPT ’05,

volume 3494 of LNCS, pages 302–321. Springer-Verlag, 2005.
8. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous creden-

tials with optional anonymity revocation. In Proceedings of the International Conference on the Theory
and Application of Cryptographic Techniques: Advances in Cryptology, EUROCRYPT ’01, pages 93–118,
London, UK, 2001. Springer-Verlag.

9. Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is the product of two safe
primes. EUROCRYPT’99. Springer-Verlag, 1999.

10. Jan Camenisch, Fischer-Hbner Simone, and Kai Rannenberg. Privacy and identity management for life.
Springer, 2012.

11. Agnes Chan, Yair Frankel, and Yiannis Tsiounis. Easy come : Easy go divisible cash. In Advances
in Cryptology EUROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 561–575.
Springer Berlin / Heidelberg, 1998.

12. David Chaum. Blind signatures for untraceable payment. In Advances in cryptology,Crypto’82, Lect.
Notes Computer Science, pages 199–203, 1982.

13. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In CRYPTO ’94, pages 174–187. Springer-Verlag, 1994.

14. Howard A. Schmidt (National cybersecurity coordinator). In Cyberwar Resources Guide, Item 163.
15. Ivan Damg̊ard. Commitment schemes and zero-knowledge protocols. In Lectures on Data Security,

Modern Cryptology in Theory and Practice, Summer School, Aarhus, Denmark, July 1998. Springer-
Verlag, 1999.

16. Ivan Damg̊ard. On σ- protocols. 2002.
17. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature

problems. In Advances in Cryptology CRYPTO ’86, pages 186–194. Springer-Verlag, 1986.
18. O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University Press, 2001.
19. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM

J. Comput., 18:186–208, February 1989.
20. Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir paradigm. In FOCS,

pages 102–113, 2003.
21. Conrado Porto Lopes Gouvêa and Julio López. Software implementation of pairing-based cryptography

on sensor networks using the msp430 microcontroller. In INDOCRYPT, pages 248–262, 2009.
22. Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge protocol fitted to security

microprocessor minimizing both transmission and memory. In Advances in Cryptology - EUROCRYPT
’88, Workshop on the Theory and Application of of Cryptographic Techniques, Davos, Switzerland, May
25-27, 1988, Proceedings, pages 123–128, 1988.

15

23. Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended abstract). In
Crypto’97: Proceedings of the 17th annual international cryptology conference on advances in cryptology,
pages 150–164. Springer-Verlag, 1997.

24. Marc Langheinrich. Privacy by design principles of privacy-aware ubiquitous systems. In Ubicomp 2001:
Ubiquitous Computing, volume 2201, pages 273–291. Springer Berlin, Heidelberg, 2001.

25. Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of applied cryptography,
1997.

26. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions. In
In 38th Annual Symposium on Foundations of Computer Science, pages 458–467, 1997.

27. Christian Paquin. U-prove cryptographic specification v1.1. In Microsoft Technical Report,
http://connect.microsoft.com/site1188, February 2011.

28. European Parliament and Council of the European Union. Directive 2009/136/ec. In Official Journal of
the European Union, 2009.

29. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Pro-
ceedings of the 11th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO
’91. Springer-Verlag.

30. Steffen Peter, Peter Langendorfer, and Krzysztof Piotrowski. Public key cryptography empowered smart
dust is affordable. Int. J. Sen. Netw., 4(1/2):130–143, July 2008.

31. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
volume 13, pages 361–396, 2000.

32. David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In Asiacrypt ’96, LNCS
1163, pages 252–265. Springer-Verlag, Feb 2011.

33. Claus P. Schnorr. Efficient identification and signatures for smart cards. In Proceedings on Advances in
cryptology, CRYPTO ’89, pages 239–252. Springer-Verlag New York, Inc., 1989.

34. IBM Security Team. Specification of the identity mixer cryptographic library, version 2.3.0. In IBM
Research Report, 2010.

35. Gummeson J. Ransford B. Zhang, H. and K. Fu. Moo: A batteryless computational rfid and sensing
platform. In Tech. Rep. UM-CS-2011-020, UMass Amherst Department of Computer Science, 2011.

A Witness Relations and Interactive Proofs

A witness relation for a language L ∈ NP is defined as [18]:

Definition 7 (Witness relation). A witness relation for a language L ∈ NP is a bi-
nary relation RL that is polynomially bounded (i.e., (h, x) ∈ RL implies |x| ≤ poly(|h|)), is
polynomial-time-recognizable and characterizes L by

L = {h : ∃x s.t. (h, x) ∈ RL}

For h ∈ L, any x satisfying (h, x) ∈ RL is called a witness (for the membership h ∈ L).
By RL(h) we denote the set of witnesses for the membership h ∈ L; that is, RL(h) = {x :
(h, x) ∈ RL}.

A relation RL is said to be “hard”, if one can efficiently generate (h, x)’s such that, when
given h it is hard to find the witness x.

Definition 8 (Interactive Proof System [19]). An interactive proof system with sound-
ness error s ∈ [0, 1] for a language L with witness relation RL is a pair of algorithms (P, V)
where v is probabilistic polynomial time and the following properties hold:

1. Completeness. For every h ∈ L and every x ∈ RL(h),

Pr[〈P (x), VL〉(h) = 1] = 1.

2. s-Soundness. For every h 6∈ L, every z ∈ {0, 1}∗ and every interactive algorithm P ∗

Pr[〈P ∗(z), V 〉(h) = 0] ≥ 1− s.

16

A useful property in the above setting would be if the verifier V wouldn’t learn anything
useful from P about the witness x besides the fact that P knows x. This property is called
zero knowledge. If soundness error s is negligible, then this interactive proof system has strong
soundness.

Definition 9 (Honest Verifiable Zero Knowledge (HVZK)). An interactive proof sys-
tem (P, V) for a language L is said to be honest verifiable zero knowledge if there exists a
probabilistic polynomial time algorithm S (the Simulator) such that for all h ∈ L:

viewV [P (h)↔ V (h)] ≈ S(h),

where viewV is the view of the honest verifier V of the interaction between V and P on input
h.

B Σ-Protocols

Σ-protocols are a class of interactive proofs where (P, V) have a common input h and an
x such that (h, x) ∈ RL is P ’s private input. Their main characteristic is that they have
exactly 3 rounds of the following type: (1) P sends a message a to V , (2) V responds with a
random challenge c chosen from a domain of size Θ(k) and (3) P resents a reply r. V decides
whether to accept or not given the information he has seen: (h, a, c, r). Formally:

Definition 10 (Σ-Protocol). A protocol P is said to be a Σ-protocol for a relation RL if:

– P is of the above three rounds form, and if (P, V) follow the protocol, the verifier always
accepts.

– From any h and any pair of accepting conversations on input h, (a, c, r), (a, c′, r′) where
c 6= c′, one can efficiently compute x such that (h, x) ∈ RL (special soundness).

– There exists a polynomial-time simulator S, which on input h and a random c outputs
an accepting conversation of the form (a, c, r), with the same probability distribution as
conversations between the honest P, V on input h (special honest-verifier zero-knowledge).

An example of a Σ-protocol is the Schnorr Identification scheme [33]. Let G be a group of
prime order q with generator g, and let Zq denote the field of integers modulo q. Schnorr’s
identification scheme works as follows:

Prover(q, g, h = gx) Verifier(q, g, h)

y ← Zq, a = gy a−−−→
c←−−− c← Zq

r = y + cx mod q r−−−→ gr
?
= ahc

Σ-protocols are an essential building block for blind signatures and anonymous credentials.
For example Brands’ [6] and Abe’s [3] schemes are based on a Σ-protocol, while CL anony-
mous credentials [8] uses ZK proofs which are based on Σ-protocols.

C Fiat-Shamir Heuristic

Fiat and Shamir [17] proposed a method to transform any three-round interactive proof
system with negligible soundness error, such as Σ-protocols, into a digital signature scheme
using a hash function, modeled as a random oracle.

To transform a three-round proof system into a signature scheme, one could, instead
of a random c, compute c = H(a,m), where H → {0, 1}∗ is a hash function. Then, the
Fiat-Shamir transformation uses c to create a signature σ(m) = (a, r). Specifically:

17

– Gen(1k) : (h, x)← RL, SK = x,PK = (h,H).
– Sig(m): produce a honestly using x, set c = H(m, a), produce r honestly for this c, output
σ(m) = (a, r).

– Ver(m, (a, r)): c = H(a,m) and check if (a, c, r) is valid.

Famous digital signatures that have been constructed fromΣ-protocols using the Fiat-Shamir
heuristic include Schnorr’s [33] and GQ signatures [22] and they have been proven secure in
the RO model [31]. Note that, it has also been shown that the digital signatures produced
by the Fiat-Shamir heuristic are not secure in the standard model [20].

D Blind Signatures Definitions

Blind signatures are a special case of digital signatures. They have a blind signature issuing
protocol in which the signer doesn’t learn anything about the message he is signing. We
present the formal definitions for blind signatures as they were described in [23]. A blind
signature scheme is a four-tuple consisting of two interactive Turing machines, the Signer
and the User, (S,U) and two algorithms (Gen,Verify).

– Gen(1k): is a probabilistic polynomial time key-generation algorithm which takes as an
input a security parameter 1k and outputs a pair (pk, sk) of public and secret keys.

– S(pk, sk), U(pk,m): are polynomially- bounded probabilistic Interactive Turing machines
who have the following (separate) tapes: read-only input tape, write-only output tape, a
read/write work tape, a read-only random tape, and two communication tapes, a read-
only and a write-only tape. They are both given (on their input tapes) as a common
input a pk produced by a key generation algorithm. Additionally, S is given on her input
tape a corresponding private key sk and U is given on her input tape a message m,
where the length of all inputs must be polynomial in the security parameter 1k of the key
generation algorithm. Both S and U engage in an interactive protocol of some polynomial
(in the security parameter) number of rounds. At the end of this protocol S outputs either
“completed” or “not-completed” and U outputs either “fail” or σ(m).

– Verify(pk,m, σ(m)): is a deterministic polynomial-time algorithm, which outputs “ac-
cept”/“reject” with the requirement that for any message m, and for all random choices
of key generation algorithm, if both S and U follow the protocol then S always outputs
“completed”, and the output of U is always accepted by the verification algorithm.

A blind digital signature scheme is secure if for all the probabilistic polynomial time
algorithms A there exists a security parameter kA such that for all k > kA the following two
properties hold [23]:

- Blindness: the signer is unable to view the messages he signs (protection for the user).
Furthermore, a malicious signer cannot link a (m,σ(m)) pair to any particular execution of
the protocol. In order to define blindness formally consider the following experiment. Let A
control the signer but not the user and b ∈ {0, 1} is a randomly chosen bit which is kept
secret from A. A will try to guess the value of b by performing the following steps:

1. (pk, sk)← Gen(1k)
2. {m0,m1} ← A(1k, pk, sk) (i.e. A produces two documents, polynomial in 1k, where
{m0,m1} are by convention lexicographically ordered and may even depend on pk and
sk).

3. We denote by {mb,m1−b} the same two documents {m0,m1}, ordered according to the
value of bit b, where the value of b is hidden from A. A(1k, pk, sk,m0,m1) engages in
two parallel (and arbitrarily interleaved) interactive protocols, the first with U(pk,mb)
and the second with U(pk,m1−b).

18

4. If the fist User outputs on her private tape σ(mb) (i.e. does not output fail) and the
second user outputs on her private tape σ(m1−b) (i.e., also does not output fail) then A
is given as an additional input {σ(m0), σ(m1)}.(We remark that we do not insist that
this happens, and either one or both users may output fail).

5. A outputs a bit b′ (given her view of steps 1 through 3, and if conditions are satisfied on
step 4 as well).

Then the probability, taken over the choice of b, over coin-flips of the key-generation algo-
rithm, the coin-flips of A, and (private) coin-flips of both users (from step 3), that b′ = b is
at most 1

2 + ν(k), where ν(k) is a negligible function.

-One-more Unforgeability: a user interacting with a signer S cannot output an additional,
valid message/signature pair (m,σ(m)) no matter how many pairs of messages/ signatures
of S he has seen (protection for the signer). To define that formally, consider an adversary
A who controls the user but not the signer and executes the following experiment in order
to get “one-more” signature (this is also called “one-more” forgery).

1. (pk, sk)← Gen(1k)
2. A(pk) engages in polynomially many (in k) adaptive, parallel and arbitrarily interleaved

interactive protocols with polynomially many copies of S(pk, sk), where A decides in
an adaptive fashion when to stop. Let ` be the number of executions, where the Signer
outputted “completed” in the end of Step 2.

3. A outputs a collection {(m1, σ(m1)), . . . , (mj , σ(mj))} subject to the constraint that
(mi, σ(mi)) for 1 ≤ i ≤ j are all accepted by V erify(pk,mi, σ(mi)), and all mi’s are
distinct.

Then the probability, taken over coin-flips of key-generation algorithm, the coin-flips of A,
and over the (private) coin-flips of the Signer, that j > ` is at most ν(k).

E The Complete ACL Scheme

In Figure 1 we describe all the phases of our ACL construction.

F Correctness

The correctness of the new scheme is easily verified:

ω + ω′ = c+ t2 + c′ + t4 = e+ t2 + t4 = ε mod q

gρyω = gr+t1yc+t2 = gr+cxgt1yt2 = α

gρ
′
1ζω

′
1 = gγr

′
1+t3ζc

′+t4
1 = (a′1z

−ω′

1)γgt3ζc
′+t4

1 = a
′γ
1 g

t3ζt41 = α′1

gρ
′
2ζω

′
2 = hγr

′
2+t5ζc

′+t4
2 = (a′2z

−ω′

2)γht5ζc
′+t4

2 = a
′γ
2 h

t5ζt42 = α′2

zµζω
′
= zτ−ω

′γζω
′

= ζγ = η.

G Blindness

In order to conclude the proof of Theorem 3 we will first show that Real≈Hybrid and then
that Hybrid≈Fake.

Proof. (contin.) Case 1: Real≈Hybrid

Suppose that there exists a poly-time adversary A who is successful in distinguishing between
Real and Hybrid with probability 1/2 + ε, where the advantage ε is not negligible. We then

19

Fig. 1. Proposed ACL Construction

20

show that there exists a poly-time algorithm B that solves the DDH problem with non-
negligible advantage.

The reduction B gets as input an instance (g,A,B,D) where (g,A,B,D) is a DDH
instance. B first fixes z = A and then sets h0 = ge0 , and h1, . . . , hn to Ae0 , . . . , Aen for
randomly chosen ei ∈ Zq. B sends the parameters to A. The adversary A creates his public
key y and sends y to B along with messages m0,m1, commitments C0, C1 and openings

(
−→
L0,
−→
L1) which are two attributes vectors of size n. A and B engage in two interleaving

registration and signature issuing instances. During the registration phase we have: C(j) =

Ak
(j)
1 , (k

(j)
1 = e0R+e1Lj,1 + · · ·+enLj,n) honestly created, for j ∈ {0, 1}. Note that the value

k
(j)
1 is known to the reduction B.

Then, during the two signature issuing instances, A computes z
(j)
1 = Ak

(j)
1 grnd

(j)
where

rnd(j) was sent to B. B responds with random e(j) and then computes two signatures σ1, σ2

in the following way:

B flips two random coins: coin, b ∈ {0, 1}. Then, lets σ2−coin be the correct signature
on (m0, C̃b) (where C̃ is denoted as ζ1 in our ACL scheme) for the corresponding instance,
and σcoin+1 be a signature on (m1, C̃1−b) generated from the input to B, as follows: set

ζ(j) = D and ζ
(j)
1 = Dk

(j)
1 Brnd(j) ; let ζ

(j)
2 = ζ(j)/ζ

(j)
1 , randomly choose ρ, ω, ρ′1, ρ

′
2, ω
′, µ, and

then define H so that the signature verifies.

After receiving the signatures, A outputs Real or Hybrid. If A outputs Real then B
outputs “DH” or B outputs “random” otherwise.

Let us analyze the success of B in distinguishing Diffie-Hellman tuples from random
tuples. If the input (g,A,B,D) is a DH tuple, then: ζ(j) = D = gab = Ab = zb and

ζ
(j)
1 = Dk

(j)
1 Brnd(j) = gabk

(j)
1 gbrnd

(j)
= (gak

(j)
1 grnd

(j)
)b = (Ak

(j)
1 grnd

(j)
)b = zb1 so, the signature

σcoin+1 is distributed identically to a correct signature, and this is precisely the Real game.
Similarly, if the input is not a DH tuple then it is the Hybrid game. Therefore, B will be
correct exactly when A is and will distinguish a DH tuple with probability 1/2 + ε, which
contradicts to the DDH assumption.

Case 2: Hybrid≈Fake
Similarly, we build a reduction B which given an adversary A, who distinguishes between
Hybrid and Fake with probability 1/2 + ε, solves the DDH problem.

Working in a similar way we did before, B will now create a fake signature and one using
the input tuple. If A outputs Hybrid then B will output “DH” or “not DH” otherwise. If
the input is a DH instance then the output will correspond to the Hybrid game and to the
Fake otherwise. So, B will be successful whenever A is and will break the DDH assumption
with non-negligible advantage ε which is a contradiction.

Finally, since Real≈Hybrid and Hybrid≈Fake it follows that Real≈Fake.

ut

H Unforgeability: Proof of Lemma 3

Proof. (sketch) In order to prove this we are going to use the oracle replay attack suggested
by Pointcheval and Stern to prove unforgeability of blind signatures [32]. First, we consider
as we did in the proof of Lemma 2 that A∗ only makes one RO query. Given Y ∈ G, we
construct a reduction B that finds logg Y in Zq. During key generation, B first selects ω, ξ, {ki}
randomly and sets y = Y, h = gw, hi = gkiz = Ygξ. (B does not need to simulate the signer,
so it can put Y in both y and z.) Then, B invokes A∗ twice with the same initial settings and
different ε and ε̃ as answers of H. The resulting signatures are σ = (ζ, ζ1, ρ, ω, ρ

′
1, ρ
′
2, ω
′, µ)

21

and σ̃ = (ζ, ζ1, ρ̃, ω̃, ρ̃′1, ρ̃
′
2, ω̃
′, µ̃). Since ω + ω′ = ε 6= ε̃ = ω̃ + ω̃′, at least one of ω 6= ω̃ or

ω′ 6= ω̃′ happens.
In the case that ω 6= ω̃, B computes logg Y = (ρ− ρ̃)/(ω̃−ω) mod q. For the case ω′ 6= ω̃′,

B computes γ = logz ζ = (µ− µ̃)/(ω′ − ω̃′) mod q, w1 = logg ζ1 = (ρ′1 − ρ̃′1)/(ω′ − ω̃′) mod q,

w2 = logg ζ2 = (ρ′2− ρ̃′2)/(ω′− ω̃′) mod q, and logg Y = logg z−ξ = (w1 +w2/w)/γ−ξ mod q.
ut

22

