
Tightly Secure Signatures and Public-Key Encryption

Dennis Hofheinz and Tibor Jager

Karlsruhe Institute of Technology, Germany
{dennis.hofheinz,tibor.jager}@kit.edu

Abstract

We construct the first public-key encryption scheme whose chosen-ciphertext (i.e., IND-
CCA) security can be proved under a standard assumption and does not degrade in either the
number of users or the number of ciphertexts. In particular, our scheme can be safely deployed
in unknown settings in which no a-priori bound on the number of encryptions and/or users is
known.

As a central technical building block, we devise the first structure-preserving signature
scheme with a tight security reduction. (This signature scheme may be of independent interest.)
Combining this scheme with Groth-Sahai proofs yields a tightly simulation-sound non-interactive
zero-knowledge proof system for group equations. If we use this proof system in the Naor-Yung
double encryption scheme, we obtain a tightly IND-CCA secure public-key encryption scheme
from the Decision Linear assumption.

We point out that our techniques are not specific to public-key encryption security. Rather,
we view our signature scheme and proof system as general building blocks that can help to
achieve a tight security reduction.

Keywords: Tight security proofs, structure-preserving signatures, public-key encryption, Groth-
Sahai proofs.

1

Contents

1 Introduction 3

2 Preliminaries 6
2.1 Digital Signatures . 6
2.2 Complexity Assumptions . 7

3 Structure-Preserving Signatures 7
3.1 Structure-Preserving One-Time Signatures for Single Group Elements 8
3.2 Structure-Preserving One-Time Signatures for Vectors of Group Elements 10
3.3 Structure-Preserving Signatures Secure Against Non-adaptive Adversaries 12
3.4 Structure-Preserving Signatures Secure Against Adaptive Adversaries 16

4 Tightly Simulation-Sound NIZK Proofs for Pairing Product Equations 17
4.1 Non-Interactive Zero-Knowledge Proofs . 17
4.2 Building Blocks . 18
4.3 Our Simulation-Sound NIZK Proof System . 20

5 Tight IND-CCA Security in the Multi-User Setting 22
5.1 Generic Construction . 23
5.2 Public-Key Encryption with Tight IND-CPA Security from DLIN 25

6 Tight EUF-CMA Security in the Multi-User Setting 28

A Illustrations 34
A.1 Illustration of the Tree-based Signature Scheme . 34
A.2 Illustration of the Definition of Sets Nleaves, Ndir, Nout 35

2

1 Introduction

Security reductions. Many interesting cryptographic primitives (such as public-key encryption
and signature schemes) cannot be proven secure with current techniques, as their security would
imply P 6= NP . Instead, we usually provide a proof of security under a suitable (computational)
assumption (such as the hardness of factoring large integers). Concretely, a security reduction shows
that any successful adversary A on the scheme’s security can be converted into a successful solver
B of the underlying computational problem. Naturally, we would desire that B’s success εB is at
least as large as A’s success εA in attacking the system. However, security reductions often suffer
from a nontrivial multiplicative security loss L (such that only εA ≤ L · εB can be guaranteed).

Cryptography in a multi-user setting. The issue of a nontrivial security loss becomes partic-
ularly problematic, e.g., in the case of a realistic public-key encryption (PKE) scenario with many
users who encrypt and send many ciphertexts. Standard security notions for PKE schemes (such
as IND-CCA security [50, 22]) only consider one user and one ciphertext. In particular, with very
few exceptions ([10, 36]), most security proofs of encryption schemes only prove security in this
simplified scenario. This can be justified with general results ([9, 10]) that show that one-user, one-
ciphertext PKE security implies security in the much more realistic multi-user, multi-ciphertext
case. However, this generic reduction suffers from a reduction loss of L = nU · nC , where nU is the
number of users, and nC is the number of ciphertexts per user.

That is, even if a PKE scheme reaches a certain level of security in the commonly considered
one-user, one-ciphertext setting, its security level may be significantly lower in a realistic setting.
(In fact, Bellare et al. [8] give a concrete example of such a scheme in the symmetric-key setting.)
This is particularly problematic, since it may not be clear at deployment time for how many users
and encryptions a PKE scheme will be used. We thus note that the analysis of cryptographic
primitives in the multi-user setting is necessary to derive concrete security guarantees for realistic
settings.

The difficulty in constructing tightly secure schemes. Let us say that a security reduction
(in the multi-user setting) is tight if the corresponding reduction loss L is a (preferably small)
constant. In particular, the security of a tightly secure scheme does not deteriorate in the number
of users (or encryptions). For some security notions and constructions, tightly secure reductions
can be constructed relatively painlessly. For instance, the random self-reducibility of the Decisional
Diffie-Hellman problem allows to tightly prove the IND-CPA security of ElGamal encryption [23]
even with many users and ciphertexts [10]. However, for other security notions, it seems inherently
difficult to derive a tight security reduction.

For instance, there is no known PKE scheme with a tight (IND-CCA) security reduction from a
standard assumption.1 Diving into the technical details for a moment, one reason for this apparent
difficulty is that an IND-CCA security reduction must be able to decrypt all of A’s decryption
queries, but must not be able to decrypt its own IND-CCA challenge. One way to resolve this
dilemma is to partition the set of ciphertexts into those that can be decrypted, and those that

1Bellare, Boldyreva, and Micali [10] show that the security loss of Cramer-Shoup encryption [19] does not depend
on the number of users; however, their reduction loss still grows linearly in the number of ciphertexts per user. The
identity-based encryption schemes [28, 29] enjoy a tight reduction, and can be generically converted into tightly
IND-CCA secure PKE schemes [15]; however, they rely on a non-standard multi-challenge assumption. A similar
argument holds for the tightly IND-SO-CCA secure PKE scheme of Hofheinz [36].

3

cannot. (For instance, one can set up the proof simulation for A such that the reduction can
decrypt all ciphertexts except for one single challenge ciphertext; examples of this approach are
[12, 38, 39].) This proof technique can only argue about a small number of ciphertexts at a time,
and a hybrid argument is required to show security in the multi-ciphertexts case. Such a hybrid
argument results again in a reduction loss that is linear in the number of ciphertexts.

Another way to show IND-CCA security is to argue with the information the adversary has
about the secret key. (Examples of this approach are [19, 20, 43].) Since the size of the secret
key is limited, its entropy can only be used to argue about the security of a limited number of
ciphertexts at a time. Again a hybrid argument (entailing a linear reduction loss) is required
to argue about the security of many ciphertexts. One could hope that the described inherent
hybrid arguments of partitioning and entropy-based strategies to show IND-CCA security can be
circumvented using dual system (identity-based) encryption techniques [54, 45]. In a nutshell, dual
system encryption provides a way to subtly and gradually randomize the distribution of challenge
ciphertexts (and user secret keys in an IBE scheme) without explicitly partitioning the set of
ciphertexts into decryptable and non-decryptable ones. However, while dual system techniques
rely on re-randomizable computational problems (such as the Decision Linear problem), and thus
in principle should not suffer from the described problems, all known dual systems schemes still
have to use a hybrid argument and do not achieve a tight security reduction.

Note that one can construct IND-CCA-secure public-key encryption schemes with tight reduc-
tion in the random oracle model [5], for instance by applying the Fujisaki-Okamoto transform [26]
to the tightly IND-CPA-secure schemes from [10].

Our contribution. In this paper, we present a general technique to construct tightly secure
cryptographic primitives. As an example, we construct the first PKE scheme that is tightly IND-
CCA secure under a simple assumption. Concretely, all the constructions in this paper build on
the Decision Linear (DLIN) assumption.2

Our main technical building block is a structure-preserving signature scheme with a tight secu-
rity reduction.3 Loosely speaking, a structure-preserving signature scheme is one in which verifica-
tion can be expressed as a sequence of group equations. In particular, structure-preserving schemes
are amenable to Groth-Sahai (GS) proofs [35], which are efficient non-interactive proof systems for
sets of equations over a group. Following a known paradigm [46, 34, 17], we then turn our signature
scheme into a simulation-sound non-interactive zero-knowledge proof system for group equations.4

Since our signature is tightly secure, so is the proof system.
This tightly secure and simulation-sound proof system offers the technical means to achieve

tight security. We exemplify this by implementing the Naor-Yung paradigm [48, 46, 14] with our
proof system to obtain a tightly IND-CCA secure PKE scheme.

2However, we expect that our constructions also naturally generalize to the — potentially weaker — K-Linear
assumption and to suitable subgroup decision assumptions.

3We construct tightly secure structure-preserving signatures. (In fact, our schemes can sign their own public key;
such signature schemes are commonly also referred to as automorphic.) While there exist tightly secure signature
schemes (e.g., [27, 13, 18, 11, 40, 52]), and structure-preserving signature schemes (e.g., [25, 3, 17]), our scheme seems
to be the first to achieve both properties. This combination of properties is crucial for our applications.

4By a simulation-sound zero-knowledge proof system, we mean one in which it is infeasible to generate valid proofs
for false statements, even when already having observed many simulated proofs for possibly false statements.

4

Some technical details. Our signature scheme is tree-based and inspired by the scheme of
Boneh, Mironov, and Shoup [13]. However, their scheme is not structure-preserving, as it uses the
hash of group elements as an exponent. To avoid this kind of “domain translation,” we construct a
one-time signature scheme in which signatures and messages are vectors of group elements. (Since
we want to implement a tree-based many-time signature scheme, we require, however, that messages
can be longer than public verification keys.) To describe our (one-time) scheme, assume groups
G,GT with pairing e : G × G → GT . Write E : G3 × G → G3

T for component-wise pairing.
(That is, E((u1, u2, u3), v) = (e(u1, v), e(u2, v), e(u3, v).) In a nutshell, a signature for a message
m = (mi)

n
i=1 ∈ Gn is of the form (s, t) ∈ G2 and satisfies(

n∏
i=1

E(Ui,mi)

)
· E(G, s) · E(H, t) = E(X, z), (1)

where the G,H,X,U1, . . . , Un ∈ G3, and z ∈ G are part of the public verification key.5 This
means that mi, s, t, z act as coefficients in a linear equation (in the G-exponent) for the vectors
Ui, G,H,X. Now if all the vectors Ui, G,H,X are DLIN-tuples of the form (gx, hy, kx+y) (for fixed
g, h, k), then any message can be signed when knowing all Ui, G,H,X-exponents. Now consider
a setup in which one Ui (say, Uj) and X are non-DLIN-tuples, and the other Ui and G,H are
DLIN-tuples. Then, only messages with a specific mj-component can be signed. (This is easiest
seen by thinking of DLIN-elements as linearly dependent vectors in the exponent; with this view,
X and Uj are the only vectors outside the vector space generated by DLIN-tuples. We note that
this idea of “unique signatures” already appears in the ROM-based signature scheme of Katz and
Wang [41].) In the proof of (non-adaptive) one-time security, this mj will be set up as the message
signed for the adversary A. Furthermore, if the adversary forges a message, we know that this
message must have mj in its j-th component. Since a forged signature must refer to a message M∗

that is different from the message M signed for A, there must be an j with m∗j 6= mj . A small
hybrid argument over j ∈ [n] thus shows security. (We stress that we employ a hybrid argument
only over a small set [n] that will not depend on the number of users or ciphertexts. Specifically,
our scheme can be implemented with n = 8.) From this one-time secure scheme, we will construct
a tree-based many-time secure scheme following ideas from [13]; in particular, we will re-use the Ui
for many instances of the one-time scheme. (Such a re-use of public key parts has also been used
and made explicit [7].) This will finally yield an adaptively secure structure-preserving signature
scheme with a tight security reduction. The remaining steps that lead to a tightly simulation-sound
proof system and tightly IND-CCA secure public-key encryption follow existing ideas [34, 14], so
we will not outline them here. (Details follow inside.)

Further applications. We note that plugging our tightly simulation-sound proof system into
the construction of [14] yields a PKE scheme that is tightly chosen-ciphertext secure even under
key-dependent message attacks. Similarly, we expect that proofs of chosen-ciphertext security for
identity-based encryption schemes can be made independent of the number of challenge ciphertexts.
(However, here we do not expect to obtain independence from the number of users, i.e., identities.)
Besides, structure-preserving signatures have found applications in several areas (e.g., [16, 25, 33]).

5We highlight that (1) actually consists of three pairing product equations. This can in part be justified by [3,
Theorem 2], which states that already any secure structure-preserving two-time signature scheme must have at least
two verification equations.

5

We expect that tightly secure structure-preserving signature schemes lead to tighter security proofs
in these applications.

Differences to conference version. This paper constitutes the full version of [37]. Apart from
full proofs and additional explanations, like the construction of a suitable IND-CPA secure en-
cryption scheme which is suitable for our CCA-secure construction, this full version contains a
description of an adaptively secure (EUF-CMA) structure-preserving signature scheme. See Sec-
tion 3.4 for details.

Note on further related work. In [2, Appendix C] (the full version of [1]), Abe et al. describe
a DLIN-based structure-preserving one-time signature scheme that is more efficient than ours and
has subsequently also been proven compatible with our tree-based approach [4]. In particular,
together with our work, their scheme yields a more efficient tightly IND-CCA-secure encryption
scheme. (We were not aware of their one-time signature scheme when designing ours.)

2 Preliminaries

Notation. If A is a set, then a
$← A denotes that a is distributed uniformly over A. If A is a

probabilistic algorithm, then a
$← A denotes that a is computed by A using fresh random coins.

For n ∈ N we write [n] to denote the set [n] = {1, . . . , n}. For j ∈ [n] we write [n \ j] to denote the
set {1, . . . , n} \ {j}.

2.1 Digital Signatures

Syntax. Generally, we assume a parameter generation algorithm Sig.Param which takes as input

the security parameter κ and generates public parameters Π
$← Sig.Param(κ). A digital signature

scheme Sig = (Sig.Gen, Sig.Sign, Sig.Vfy) consists of three algorithms. Key generation algorithm

Sig.Gen generates, on input parameters Π, a keypair (vk , sk)
$← Sig.Gen(Π) consisting of a secret

signing key sk and a public verification key vk . The signing algorithm Sig.Sign inputs a message and

the secret signing key, and returns a signature σ
$← Sig.Sign(sk ,m) of the message. The verification

algorithm Sig.Vfy takes a verification key and a message with corresponding signature as input,
and returns b← Sig.Vfy(vk ,m, σ) where b ∈ {0, 1}. We require the usual correctness properties.

Security. Let us recall the existential unforgeability against chosen message attacks (EUF-CMA)
security experiment [32], played between a challenger and a forger A.

1. The forger, on input public parameters Π, may ask a non-adaptive chosen-message query. To
this end, it submits a list of messages M (1), . . . ,M (q0) to the challenger.

2. The challenger runs Sig.Gen(Π) to generate a keypair (vk , sk). The forger receives vk and a
signature σ(i) for each chosen message M (i), i ∈ [q0].

3. Now the forger may ask adaptive chosen-message queries. Each query consists of a message
M (i), i ∈ [q0 + 1, q], and is answered by the challenger with a signature σ(i) under sk for
message M (i).

6

4. Finally the forger outputs a message M ∗ and signature σ∗.

Definition 1. An adversary is adaptive, if it asks at least one adaptive chosen-message query.
Otherwise it is non-adaptive. Let A be an adversary (adaptive or non-adaptive) that runs in time
t, makes q chosen-message queries (in total), and outputs (M ∗, σ∗). We say that A (ε, t, q)-breaks
the EUF-CMA security of Sig if

Pr[Sig.Vfy(vk ,M ∗, σ∗) = 1 ∧M ∗ 6∈ {M (1), . . . ,M (q)}] ≥ ε.

We say that A (ε, t, q)-breaks the strong EUF-CMA security of Sig if

Pr[Sig.Vfy(vk ,M ∗, σ∗) = 1 ∧ (M ∗, σ∗) 6∈ {(M (1), σ(1)), . . . , (M (q), σ(q))}] ≥ ε.

Accordingly, a signature scheme Sig is (ε, t, q)-secure against adaptive (non-adaptive) EUF-CMA
attacks, if there exists no adaptive (non-adaptive) adversary that (ε, t, q)-breaks Sig.

2.2 Complexity Assumptions

In the following, let G be a group of prime order p. For a generator g ∈ G and arbitrary h ∈ G, let
logg(h) ∈ Zp be the discrete logarithm of h (to base g), such that glogg(h) = h.

Definition 2. Let g, h ∈ G be random generators of G. We say that an adversary A (ε, t)-breaks
the Discrete Logarithm (DLOG) assumption in G, if A runs in time t and

Pr[A(g, h) = logg(h)] ≥ ε.

Furthermore, for generators g, h, k ∈ G let DLIN(g, h, k) denote the set

DLIN(g, h, k) = {(gu, hv, ku+v) : u, v ∈ Zp}

Let G = (g, 1, k) ∈ G3 and H = (1, h, k) ∈ G3. For two vectors V = (v1, v2, v3) and W =
(w1, w2, w3) in G3 and u ∈ Zp let V ·W := (v1 ·w1, v2 ·w2, v3 ·w3) and let V u := (vu1 , v

u
2 , v

u
3). Then

we can write the set DLIN(g, h, k) equivalently as

DLIN(g, h, k) = {U : U = Gu ·Hv, u, v ∈ Zp}.

Definition 3. Let g, h, k
$← G be random generators of G, and let U

$← DLIN(g, h, k) and V
$← G3.

We say that an adversary B (ε, t)-breaks the Decision Linear (DLIN) assumption in G, if B runs
in time t and

Pr[B(g, h, k, U) = 1]− Pr[B(g, h, k, V) = 1] ≥ ε.

3 Structure-Preserving Signatures

In the sequel let G,GT be groups of prime order p with bilinear map e : G × G → GT , and let
g, h, k be random generators of G. For a vector V = (v0, v1, v2) ∈ G3 and a group element w ∈ G,
we write E(V,w) to denote the vector

E(V,w) = (e(v0, w), e(v1, w), e(v2, w)).

For two vectors V = (v0, v1, v2) and W = (w0, w1, w2) we denote with V ·W the component-wise
product

V ·W = (v0 · w0, v1 · w1, v2 · w2).

For w ∈ Zp we write V w to denote V w = (vw0 , v
w
1 , v

w
2).

7

3.1 Structure-Preserving One-Time Signatures for Single Group Elements

Let OTSig = (OTSig.Gen,OTSig.Sign,OTSig.Vfy) be the following signature scheme.

OTSig.Gen(g, h, k): Given random generators g, h, k ∈ G, choose a random generator z
$← G

and integers u, v, x, y
$← Zp. Set U := (gu, hv, ku+v) and X := (gx, hy, kx+y). Set vk :=

(g, h, k, U,X, z) and sk := (u, v, x, y) and return (vk , sk).

OTSig.Sign(sk ,m): Given a message m ∈ G and a secret key sk = (u, v, x, y), compute s := zxm−u

and t := zym−v and return σ = (s, t).

OTSig.Vfy(vk ,m, σ): Given a public key vk = (g, h, k, U,X, z), message m, and signature σ = (s, t),
let G := (g, 1, k) and H = (1, h, k). Return 1 if equation

E(U,m) · E(G, s) · E(H, t) = E(X, z)

holds. Otherwise return 0.

It is a straightforward calculation to verify the correctness of this scheme. Before we prove
security, let us state a technical lemma which will simplify the proof.

Lemma 1. Let g, h, k ∈ G be generators, G := (g, 1, k) and H := (1, h, k). There exists an
algorithm T which takes as input G,H,U ∈ G3 and m ∈ G, and outputs X ∈ G3 and z, s, t ∈ G
such that

(i) If U ∈ DLIN(g, h, k), then X is distributed uniformly over DLIN(g, h, k) and z is uniform over
G.

(ii) (s, t) satisfy the equation

E(U,m) · E(G, s) · E(H, t) = E(X, z). (2)

(iii) If U 6∈ DLIN(g, h, k) then (2) has a unique solution (m, s, t).

(iv) If U ∈ DLIN(g, h, k) then for each m there exist unique (s, t) such that (m, s, t) satisfies (2).

The running time of T is dominated by 7 exponentiations in G.

The proof is given at the end of this section.

Theorem 1. Suppose there exists a non-adaptive adversary A that (ε, t, 1)-breaks the EUF-CMA
security of OTSig. Then there exists an adversary B that (ε′, t′)-breaks the DLIN assumption in G,
where t′ is roughly the runtime of the EUF-CMA experiment with A, and ε′ ≥ ε− 1/p.

Proof. We construct adversary B as follows. B receives as input a DLIN challenge (g, h, k, U),

where either U
$← DLIN(g, h, k) or U

$← G3. It starts A, and receives a chosen-message m ∈ G.

Then B runs algorithm T from Lemma 1 to obtain (X, z, s, t)
$← T (G,H,U,m). It defines vk :=

(g, h, k, U,X, z) and returns vk and signature (s, t) to A.
If A outputs (m′, (s′, t′)) such that

E(U,m′) · E(G, s′) · E(H, t′) = E(X, z)

is satisfied and m′ 6= m, then B outputs 1. Otherwise it outputs 0.

8

Analysis. If U ∈ DLIN(g, h, k), then by Property (i) of Lemma 1 vk is a correctly distributed
public key. By Property (ii) (s, t) is a valid signature for m under vk , and by Property (iv) (s, t)
is unique, thus correctly distributed. Therefore in this case A outputs a forgery (m′, σ′) with

probability ε by assumption. Thus, if U
$← DLIN(g, h, k) then B outputs 1 with probability ε.

If U
$← G3 then we have U 6∈ DLIN(g, h, k) with probability 1 − 1/p. Moreover, if indeed

U 6∈ DLIN(g, h, k) then by Property (iii) of Lemma 1 the solution (m, s, t) is unique, in which case

B outputs 1 with probability 0. Thus, if U
$← G3 then B outputs 1 with probability at most 1/p.

Proof of Lemma 1. Algorithm T chooses random integers ẑ, ŝ, t̂
$← Zp, and proceeds as follows.

• If m 6= 1, then T sets z = mẑ, s := mŝ, t := mt̂, and X := (U ·Gŝ ·H t̂)1/ẑ.

• If m = 1, then T sets z = gẑ, s := gŝ, t := gt̂, and X := (Gŝ ·H t̂)1/ẑ.

Note that in each case z is distributed uniformly over G. If m 6= 1, then X is uniform over
DLIN(g, h, k) if U ∈ DLIN(g, h, k). If m = 1, then X is uniform over DLIN(g, h, k), regardless of U .
This yields (i). A straightforward calculation shows that in each case the values (s, t) are defined
such that the equation in (ii) is satisfied. Computing

• mẑ, mŝ, mt̂, Gŝ = (gŝ, 1, kŝ), and H t̂ = (1, ht̂, kt̂) (in case m 6= 1), or

• gẑ, gŝ, gt̂, Gŝ = (gŝ, 1, kŝ), and H t̂ = (1, ht̂, kt̂) (in case m = 1)

takes seven exponentiations in G.
In order to prove (iii), let us write U = (gu, hv, kw) and X = (x0, x1, x2). Then we can view

Equation 2 as a system of equations

e(gu,m) · e(g, s) · e(1, t) = e(x0, z)

e(hv,m) · e(1, s) · e(h, t) = e(x1, z)

e(kw,m) · e(k, s) · e(k, t) = e(x2, z)

Taking discrete logarithms to base g, the above system of equations is equivalent to u 1 0
v log h 0 log h
w log k log k log k

logm
log s
log t

 =

log x0 log z
log x1 log z
log x2 log z

The determinant of the 3× 3 matrix is equal to

w log h log k − u log h log k − v log h log k,

which equals 0 if and only if w = u + v (note that h and k are generators, therefore we have
log h 6= 0 6= log k). Since U 6∈ DLIN(g, h, k) implies w 6= u + v, the solution (m, s, t) to the system
of equations is unique, which proves (iii). Finally, if we fix logm then (iv) follows from the fact
that log h 6= 0.

9

3.2 Structure-Preserving One-Time Signatures for Vectors of Group Elements

In this section we extend the message space of OTSig from the previous section to vectors M =
(m1, . . . ,mn) of n elements of G. The scheme is very similar, except that now the public key and
the verification equation contain n elements U1, . . . , Un instead of a single element U .

Scheme OTSign = (OTSig.Genn,OTSig.Signn,OTSig.Vfyn) works as follows.

OTSig.Genn(g, h, k): Given a generators g, h, k ∈ G, choose a random generator z
$← G and

2(n + 1) integers u1, v1, . . . , un, vn, x, y
$← Zp. Set Ui := (gui , hvi , kui+vi) for i ∈ [n] and

X := (gx, hy, kx+y). Set vk := (g, h, k, U1, . . . , Un, X, z) and sk := (u1, v1, . . . , un, vn, x, y) and
return (vk , sk).

OTSig.Signn(sk ,M): Given a message vector M = (m1, . . . ,mn) ∈ Gn and secret key sk , compute
s := zx

∏n
i=1m

−ui
i and t := zy

∏n
i=1m

−vi
i and return σ = (s, t).

OTSig.Vfyn(vk ,M, σ): Given a public key vk , message vector M = (m1, . . . ,mn), and signature
σ = (s, t), let G := (g, 1, k) and H = (1, h, k). Return 1 if equation

n∏
i=1

E(Ui,mi) · E(G, s) · E(H, t) = E(X, z)

holds. Otherwise return 0.

Again it is a simple calculation to verify the correctness of this scheme.
The following lemma generalizes Lemma 1, and will be useful to prove the above theorem as

well as for the security proof of our tree-based signature scheme in the following section.

Lemma 2. Let g, h, k ∈ G be generators, G := (g, 1, k) and H := (1, h, k). There exists an
algorithm Tn which takes as input an index j ∈ [n], G,H,Uj ∈ G3, (ui, vi) ∈ Zp for i ∈ [n \ j] and
M = (m1, . . . ,mn) ∈ Gn, and outputs X ∈ G3 and z, s, t ∈ G such that

(i) If Uj ∈ DLIN(g, h, k), then X is distributed uniformly over DLIN(g, h, k) and z is uniform over
G.

(ii) (s, t) satisfy the equation

n∏
i=1

E(Ui,mi) · E(G, s) · E(H, t) = E(X, z). (3)

where Ui := (gui , hvi , kui+vi) for i ∈ [n \ j].

(iii) If Uj 6∈ DLIN(g, h, k) then for each ((m∗1, . . . ,m
∗
n), s∗, t∗) satisfying (3) we have m∗j = mj.

(iv) If Uj ∈ DLIN(g, h, k) then for each M = (m1, . . . ,mn) ∈ Gn there exist unique (s, t) such that
(M, s, t) satisfy (3).

The running time of Tn is dominated by one execution of Algorithm T from Lemma 1 plus 2(n−1)
exponentiations in G.

The proof is a simple extension of the proof of Lemma 1, and deferred to the end of this section.

10

Theorem 2. Suppose there exists a non-adaptive adversary A that (ε, t, 1)-breaks the EUF-CMA
security of OTSign. Then there exists an adversary B that (ε′, t′)-breaks the DLIN assumption in
G, where t′ is roughly with runtime of the EUF-CMA experiment with A, and ε′ ≥ ε/n− 1/p.

Proof. We construct adversary B as follows. B receives as input a DLIN challenge (g, h, k, U),

where either U
$← DLIN(g, h, k) or U

$← G3. It picks a random index j ∈ [n], starts A, and

receives a chosen-message vecor M = (m1, . . . ,mn) ∈ G. Then it chooses ui, vi
$← Zp and

sets Ui = (gui , hvi , kui+vi) for each i ∈ [n \ j], and runs algorithm Tn from Lemma 2 on input

(j,G,H,Uj , (ui, vi)i∈[n]\{j},M) to obtain (X, z, s, t)
$← Tn. Then it sets vk = (g, h, k, U1, . . . , Un, X, z)

and returns vk and signature σ = (s, t) for M to A.
If A outputs (M∗, s∗, t∗) , M∗ = (m∗1, . . . ,m

∗
n), such that m∗j 6= mj and equation

n∏
i=1

E(Ui,m
∗
i) · E(G, s∗) · E(H, t∗) = E(X, z).

is satisfied, then B outputs 1. Otherwise it outputs 0.

Analysis. If U ∈ DLIN(g, h, k), then by Property (i) of Lemma 2 vk is a correctly distributed
public key. By Property (ii) (s, t) is a valid signature for m under vk , and by Property (iv) (s, t)
is unique, thus correctly distributed. Therefore in this case A outputs a forgery (M∗, s∗, t∗) with
probability ε by assumption. Since M 6= M∗ we have mj 6= m∗j with probability at least 1/n. Thus,

if U
$← DLIN(g, h, k) then B outputs 1 with probability ε/n.

If U
$← G3 then we have U ∈ DLIN(g, h, k) with probability 1/p. Moreover, if U 6∈ DLIN(g, h, k)

then by Property (iii) of Lemma 2 there exists no M∗ that satisfies the verification equation with

m∗j 6= mj . Thus, if U
$← G3 then B outputs 1 with probability 1/p.

Proof of Lemma 2. Algorithm Tn runs Algorithm T from Lemma 1 to compute (X, z, sj , tj)
$←

T (G,H,U,Uj ,mj), which yields a solution to the equation

E(Uj ,mj) · E(G, sj) · E(H, tj) = E(X, z).

Clearly Property (i) of Tn follows from Property (i) of T .
Then Tn sets s := sj ·

∏
i∈[n\j]m

−ui
i and t := tj ·

∏
i∈[n\j]m

−vi
i . Note that

n∏
i=1

E(Ui,mi) · E(G, s) · E(H, t) =

n∏
i=1

E(Ui,mi) · E(G, sj) · E(H, tj) ·
∏

i∈[n\j]

E(Ui,mi)
−1

= E(Uj ,mj) · E(G, sj) · E(H, tj) = E(X, z),

which proves Property (ii) of Tn.
To prove Property (iii), suppose (for contradiction) that there exists ((m∗1, . . . ,m

∗
n), s∗, t∗) with

m∗j 6= mj that satisfies Equation (3). Let

s∗j := s∗ ·
∏

i∈[n\j]

mui
i and t∗j := t∗ ·

∏
i∈[n\j]

mvi
i .

11

Then, as above, we have

n∏
i=1

E(Ui,m
∗
i) · E(G, s∗) · E(H, t∗) =

n∏
i=1

E(Ui,m
∗
i) · E(G, s∗j) · E(H, t∗j) ·

∏
i∈[n\j]

E(Ui,m
′
i)
−1

= E(Uj ,m
∗
j) · E(G, s∗j) · E(H, t∗j) = E(X, z).

By Property (iii) of Algorithm T the latter is impossible, unless m∗j = mj , contradiction.
Property (iv) of Algorithm Tn follows from Property (iv) of Algorithm T , and the observation

that each Ui, i ∈ [n \ j], can be written uniquely as Ui = Gui ·Hvi .

3.3 Structure-Preserving Signatures Secure Against Non-adaptive Adversaries

Now we construct a signature scheme based on a binary tree of depth d. The scheme has message
space G8, allows us to issue up to 2d signatures (where d may be large enough such that 2d is
virtually unbounded, e.g. d = 80), and is provably secure against non-adaptive adversaries under
the DLIN assumption.

Basic Idea. The construction is based on binary Merkle trees [47], instantiated such that all
nodes except for the root can be generated “on the fly.” In particular, not the complete tree must
be stored (which would clearly be infeasible for large d). Each node of the tree consists of a key
pair (vk , sk) of our one-time signature scheme from Section 3.2. The two children of this node are
authenticated by a signature over their respective public keys that verifies under vk . The key-pairs
corresponding to tree leaves are used to sign actual messages.

Recall that a public key consists of a vector (g, h, k, U1, . . . , Un, X, z), where n is the number of
group elements to be signed. In order to obtain a tight security reduction, we re-use the public-key
components (g, h, k, U1, . . . , Un) for all nodes of the tree. Only the (X, z)-components are unique
for each node. The tight reduction is inspired by the proof of the tree-based signature scheme of
Boneh et al. [13]. Let us give some more details on an informal level.

• The tree is parametrized by (g, h, k) ∈ G3 and U1, . . . , U8 ∈ DLIN(g, h, k), where for each

i ∈ [8] we have Ui = (gui , hvi , kui+vi) for random ui, vi
$← Zp. (It will later become clear that

we will sign vectors of group elements, where each consists of 8 group elements. This is the
reason why we choose n = 8 here).

• Each tree node N is identified by a four-tuple of group elements N = (X, z) ∈ G4, where

z
$← G is random and X = (gx, hy, kx+y) for random x, y

$← Zp.

• To each node N = (X, z) of the tree we assign the public key vk = (g, h, k, U1, . . . , U8, X, z)
with corresponding secret key skN = (u1, v1, . . . , u8, v8, x, y). Note that this is a valid key
pair for the one-time signature scheme from Section 3.2, instantiated such that vectors of 8
group elements can be signed. Note also that each node is identified by (X, z) ∈ G4, so that
we can sign two child nodes with each public key.

• The tree is constructed — on the fly — as follows. Let NL = (XL, zL) and NR = (XR, zR)
be the two children of node N = (X, z). Then a signature of the message M = (NL, NR) =
(XL, zL, XR, zR) ∈ G8 under secret key skN authenticates NL and NR as children of N . (This
is why we chose n = 8).

12

• This gives the following signature scheme, which can be used to sign 8-tuples of elements of
G:

– The public key of the signature scheme consists of (g, h, k, U1, . . . , U8) and the root node
N0 = (X0, z0), the secret key consists of the discrete logarithms (u1, v1, . . . , u8, v8, x0, y0).

– In order to sign a message M = Md ∈ G8, select a leaf node Nd which has not been
used before. Let Nd−1, . . . , N0 denote the path from Nd to the root N0, and for all Ni

(i ∈ {1, . . . , d− 1}), let N co
i denote the sibling of Ni. Let

Mi−1 :=

{
(Ni, N

co
i), if N co

i is the right-hand sibling of Ni,

(N co
i , Ni), if N co

i is the left-hand sibling of Ni.
(4)

A signature for Md consists of all pairs Md−1, . . . ,M0 and signatures (σd, . . . , σ0) such
that each signature σi authenticates Mi as child of node Ni−1.

See Figure 1 in Appendix A.1 for an illustration.

We note that, strictly speaking, the described scheme is not structure-preserving. (The reason
is the case distinction (4).) We will show in Section 4.2 how to implement our scheme in a structure-
preserving way.

Full Scheme Description. The tree-based scheme TSig = (TSig.Gen,TSig.Sign,TSig.Vfy) is
defined as follows.

TSig.Gen(g, h, k): Given generators g, h, k ∈ G, choose integers u1, v1, . . . , u8, v8, x0, y0
$← Zp and a

random generator z0
$← G. Set Ui := (gui , hvi , kui+vi) for i ∈ [n] and X0 := (gx0 , hy0 , kx0+y0).

Set
vk = (g, h, k, U1, . . . , U8, X0, z0) and sk = (u1, v1, . . . , u8, v8, x0, y0)

and return (vk , sk). This defines the root of the tree as N0 = (X0, z0).

TSig.Sign(sk ,M): To sign a message M = Md = (m1, . . . ,m8) ∈ Gn,

1. generate the leftmost unused leaf Nd = (Xd, zd) of the tree by choosing zd
$← G, xd, yd

$←
Zp, and setting Xd = (gxd , hyd , kxd+yd). This defines the key pair associated to Nd as
vkd = (g, h, k, U1, . . . , U8, Xd, zd) and skd = (u1, v1, . . . , u8, v8, xd, zd).

2. Then compute all nodes Ni of the tree from Nd up to the root that have not been

visited before by choosing xi, yi
$← Zp and zi

$← G and setting Xi = (gxi , hyi , kxi+yi) and
Ni = (Xi, zi). This defines the keys associated to Ni as vk i = (g, h, k, U1, . . . , U8, Xi, zi)
and sk i = (u1, v1, . . . , u8, v8, xi, zi).

For each node Ni the sibling N co
i is generated the same way, if it has not been visited

before.

Each node Ni and its sibling N co
i and their respective key pairs (vk i, sk i) are stored as

long as they are an ancestor or the sibling of an ancestor of the current signing leaf.

3. The message Md is authenticated by a signature σd over Md under secret key skd

13

4. For each pair of siblings Ni, N
co
i , i ∈ 1, . . . , d, let Mi−1 ∈ G8 denote the tuple

Mi−1 :=

{
(Ni, N

co
i), if N co

i is the right-hand sibling of Ni,

(N co
i , Ni), if N co

i is the left-hand sibling of Ni.

The pair of siblings Mi−1 is authenticated with respect to ancestor Ni−1 by a signature
σi−1 under key sk i−1 of node Ni−1.

5. The resulting signature over message Md is consists of σ = (Md−1, . . . ,M0, σd, . . . , σ0) ∈
G10d+2.

TSig.Vfy(vk ,Md, σ): A given signature σ of message vector Md verified by checking that σi is a
valid one-time signature over Mi for all i ∈ [d].

More precisely, note that each node Mi = (XL, zL, XR, zr) induces two verification keys,
namely vk i,L = (g, h, k, U1, . . . , U8, XL, zL) and vk i,R = (g, h, k, U1, . . . , U8, XR, zR). There-
fore, for each i ∈ [d] the verification algorithm tests whether σi is a valid one-time signature
over Mi under either key vk i,L or vk i,R. If this is true for all i, then it outputs 1, otherwise 0.

We note that using the technique of Goldreich [30] the above scheme can be made stateless
by using a pseudo-random function to derive the randomness x, y ∈ Zp and z ∈ G of each node
X = ((gx, hy, kx+y), z) and to determine the leaf used to sign a given message.

In this section we prove that this scheme is secure against non-adaptive attacks, which suffices
for our main application. In addition, we describe in Section 3.4 how to combine the non-adaptively
secure scheme with the algorithm from Lemma 1 to obtain an adaptively-secure scheme with tight
reduction.

Theorem 3. Suppose there exists a non-adaptive adversary A that (ε, t, q)-breaks the EUF-CMA
security of TSig. Then there exists an adversary B that (ε′, t′)-breaks the DLIN assumption in G,
where t′ is roughly the runtime of the EUF-CMA experiment with A, and ε′ = ε/8.

Note that the success probability ε′ of the DLIN-breaker B is independent of the number q of
chosen-message queries issued by A.

Proof. Let us fix some notation. In the sequel we will say that note Nj is a direct ancestor of leaf
Nd, if Nj lies on the path from Nd to the root N0. We say that N co

j is an indirect ancestor of leaf
Nd, if it is a sibling of a direct ancestor of Nd.

We will denote with Nd,1, . . . , Nd,q the q leaves of the tree that are used to sign the chosen-
messages of A, where Nd,i is used to sign message m(i). Note that these nodes are the q “leftmost”
nodes of the tree, since they are used from left to right (this is the stateful case, which is simpler
to analyze; in the stateless variant the proof idea will be the same, but the description will be
more complicated). We denote with Nleaves := {Nd,1, . . . , Nd,q} the set of all these leaves, with
Ndir denote the set of all direct ancestors of nodes in Nleaves, and with Nout the set of all indirect
ancestors of nodes in Nleaves which are not a direct ancestor of any Ni ∈ Nleaves. See Figure 2 in
Appendix A.2 for an illustration.

Let N := Nleaves ∪Ndir ∪Nout. Note also that the set of all tree nodes which the adversary ever
sees throughout the security experiment is identical to N .

We proceed in a sequence of games. Let Xi denote the event that A wins in Game i.

14

Game 0. This is the original (non-adaptive) security experiment. Recall that the adversary has
to select a list of messages M (1), . . . ,M (q) ∈ G8 to be signed at the beginning of the game, before
seeing the public key. By assumption we have Pr[X0] = ε.

Game 1. Now we change the way the tree is set up. In the sequel let T8 denote the algorithm
Tn from Lemma 2 instantiated with n = 8. Moreover, to abbreviate notation let us write T8(j,m)
shorthand for T8(j,G,H,Uj , (ui, vi)i∈[8\j],m).

The challenger in this game chooses a random dummy message M̃
$← G8 and an index j

$← [8] at
the beginning of the game. It constructs the tree from bottom up, by proceeding as follows. Given

the list of chosen-messages M (1), . . . ,M (q), each node N
(i)
d ∈ Nleaves is determined by computing

(X
(i)
d , z

(i)
d , s

(i)
d , t

(i)
d)

$← T8(j,M (i))

and setting N
(i)
d := (X

(i)
d , z

(i)
d). Note that (s(i), t(i)) is a valid signature that authenticates M (i) as

child of N
(i)
d .

Each node N ∈ Nout is computed by running

(X, z, s, t)
$← T8(j, M̃).

and setting N := (X, z). The tuple (s, t), which is a valid signature that authenticates the dummy
message M̃ as a child of N , is discarded, since the challenger does not need it.

Each ancestor N ∈ Ndir of two nodes (NL, NR) is computed, from the leaves up to the root, by
running

(X, z, s, t)
$← T8(j, (NL, NR)).

Again (s, t) is a valid signature authenticating (NL, NR) as children of N .
Note that Uj ∈ DLIN(g, h, k), thus, due to the properties of algorithm Tn from Lemma 2, Game 1

is perfectly indistinguishable from Game 0 for the adversary, which implies Pr[X1] = Pr[X0].

Game 2. Now we are ready to construct our DLIN distinguisher B. B receives as input a DLIN
challenge (g, h, k, U), and proceeds identical to the challenger in Game 1, except that it defines Uj
as Uj := U . Note that B is able to set-up the tree and compute all signatures as before, by running
Algorithm T8(j,G,H,Uj , (ui, vi)i∈[8\j],m).

If A outputs a forgery (M∗d , σ
∗), consisting of a signature σ = (M∗d−1, . . . ,M

∗
0 , σ

∗
d, . . . , σ

∗
0) and

message M∗d ∈ G8, let N∗d , . . . , N
∗
1 , N0 denote the path from M∗d to the root N0 given by signature

σ.
B determines δ ∈ {0, . . . , d} with δ the largest index such that N∗δ ∈ N . Recall that N∗δ was

previously computed by B by running (X, z, s, t)
$← T8(j,M ′) for some input M ′ = (m′1, . . . ,m

′
8)

and setting N∗δ := (X, z). So in particular equation

8∏
i=1

E(Ui,m
′
i) · E(G, s) · E(H, t) = E(X, z)

is satisfied. Moreover, since σ∗δ = (s∗δ , t
∗
δ) is a valid signature over message M∗δ = (m∗δ,1, . . . ,m

∗
δ,8),

equation

8∏
i=1

E(Ui,m
∗
δ,i) · E(G, s∗δ) · E(H, t∗δ) = E(X, z) (5)

15

is satisfied, too. Note also that we must have M∗δ 6= M , as otherwise this is not a valid forgery or
δ is not the largest index such that N∗δ ∈ N . B outputs 1 if m∗δ,j 6= m′j holds (and 0 else).

Analysis. If U ∈ DLIN(g, h, k), then by Property (i) and (ii) of Lemma 2, Game 2 is perfectly
indistinguishable from Game 1. Therefore in this case A outputs a forgery with probability ε
by assumption. Since Mδ 6= M ′ we have m∗δ,j 6= m′j with probability at least 1/8. Thus, if

U
$← DLIN(g, h, k) then B outputs 1 with probability ε/8.

If U
$← G3 then we have U ∈ DLIN(g, h, k) with probability 1/p. Moreover, if U 6∈ DLIN(g, h, k)

then by Property (iii) of Lemma 2 there exists no M∗δ such that Equation (5) is satisfied and

m∗δ,j 6= m′j . Thus, if U
$← G3 then B outputs 1 with probability 1/p.

3.4 Structure-Preserving Signatures Secure Against Adaptive Adversaries

It is well-known that one can combine a non-adaptively secure signature scheme with a non-
adaptively secure one-time signature scheme to obtain an adaptively secure signature scheme [24].
Thus, by combining our one-time signature scheme from Section 3.1 (or the one-time signature
scheme for vectors from Section 3.2) with our tree-based signature scheme from Section 3.3 we
obtain an adaptively secure structure-preserving signature scheme.

The generic reduction from [24] loses a factor of q, where q is the number of signatures issued.
We would like to note that we can also obtain an adaptively secure scheme with tight security
reduction. Consider the following signature scheme Sig = (Sig.Gen,Sig.Sign,Sig.Vfy).

Sig.Gen(g, h, k): Run (vkT , skT)
$← TSig.Gen(g, h, k) and choose U

$← DLIN(g, h, k). Set vk :=
(vkT , U) and sk := skT .

Sig.Sign(sk ,m): Let G := (g, 1, k) and H := (1, h, k). Compute (X, z, s, t)
$← T (G,H,U,m),

where T is the algorithm from Lemma 1. Set M := (X, z, g, g, g, g) ∈ G8 (the four g
elements are a simple padding to obtain the correct message size for TSig) and compute

σT
$← TSig.Sign(skT ,M). The resulting signature is σ = (σT , X, z, s, t).

Sig.Vfy(vk ,m, σ): Parse σ = (σT , X, z, s, t). Set M := (X, z, g, g, g, g) and output 1 if

TSig.Vfy(vkT ,M, σT) = 1 and E(U,m) · E(G, s) · E(H, t) = E(X, z).

Otherwise output 0.

The security proof is rather simple and along the lines of [24], therefore we only sketch it. For i ∈
[q] let m(i) denote the i-th message chosen by the adversary, and let σ(i) = (σ

(i)
T , X(i), z(i), s(i), t(i))

denote the corresponding signature. In the security proof we consider two types of adversaries.

Type I. A Type-I adversary outputs a message-signature pair (m, (σT , X, z, s, t)) such that there
exists σ(i) with (X(i), z(i)) = (X, z). Since this is impossible if U 6∈ DLIN(g, h, k), due to
Property (iii) of Lemma 1, this allows us to distinguish whether U ∈ DLIN(g, h, k) or not.

Type II. A Type-II adversary outputs a message-signature pair (m, (σT , X, z, s, t)) such that there
exists no σ(i) with (X(i), z(i)) = (X, z). In this case the adversary has to compute a new
signature for TSig. In order to reduce to the non-adaptive security of TSig, we generate

16

U := Gu · Hv and all X(i) = Gxi · Hyi for random integers u, v, xi, yi
$← Zp, i ∈ [q], at the

beginning of the game, and use the integers u, v, (xi, yi)i∈[q] as a trapdoor to sign messages,
similar to the signing algorithm of OTSig.

Besides the one-time signature based construction of [24] there is also a construction based on
chameleon hashes [42], which offers a tight reduction. We are not aware of any suitable chameleon
hash functions which are structure-preserving, but we would like to note that our use of algorithm
T in the above construction is very similar — except that it does not meet the syntactic definition
of a chameleon hash.

4 Tightly Simulation-Sound NIZK Proofs for Pairing Product
Equations

In this section we use the signature scheme from Section 3.3 to construct a NIZK proof for satisfia-
bility of pairing product equations whose security reduces tightly to the DLIN assumption. “Tight”
means here that the success probability of the reduction is independent of the number of simulated
proofs the adversary sees. The construction is a special case of Groth-Sahai (GS) proofs [35], and
uses a trick from [34, Section 4] to express the disjunction of two sets of pairing product equations
as one set.

4.1 Non-Interactive Zero-Knowledge Proofs

Let R be a binary relation and let L := {x : ∃w s.t. R(x,w) = 1} be the language defined by R.
A non-interactive zero-knowledge proof system NIZK = (NIZK.Gen,NIZK.Prove,NIZK.Vfy) for L
consists of three algorithms. The common reference string generation algorithm crs

$← NIZK.Gen(κ)
takes as input a security parameter κ and outputs a common reference string crs. Algorithm

π
$← NIZK.Prove(crs, x, w) takes as input crs, statement x, and a witness w that x ∈ L, and

outputs a proof π. The verification algorithm NIZK.Vfy(crs, π, x) ∈ {0, 1} takes as input proof π
and statement x. We say that NIZK.Vfy accepts if NIZK.Vfy(crs, π, x) = 1. We say that NIZK.Vfy
rejects if NIZK.Vfy(crs, π, x) = 0.

NIZK is (εZK, εsnd, εsimsnd, t, Q)-secure, if the following holds.

Perfect completeness. For each (x,w) ∈ R, each parameter κ, and each crs
$← NIZK.Gen(κ)

holds that
Pr[NIZK.Vfy(crs, π, x) = 1 : π

$← NIZK.Prove(crs, x, w)] = 1.

Soundness. For all adversaries A running in time t holds that

Pr[A(crs) = (x, π) : x 6∈ L ∧ NIZK.Vfy(crs, π, x) = 1] ≤ εsnd

Zero knowledge. There exists a simulator S = (S0,S1), such that (crs, td)
$← S0(κ) generates a

common reference string and trapdoor information td, and π
$← S1(crssim, td, x) generates a

simulated proof π for statement x (where not necessarily x ∈ L).

Let crs real
$← NIZK.Gen(κ) and let Oreal denote an oracle that takes as input (x,w) ∈ R and

returns NIZK.Prove(crs real, x, w). Let (crssim, td)
$← S0(κ) and let Osim return S1(crssim, td, x)

on input (x,w) ∈ R.

17

We require that
Pr[AOreal(crs real) = 1]− Pr[AOsim(crssim) = 1] ≤ εZK

for all A running in time at most t that issue at most Q oracle queries.

Simulation soundness. For crs
$← S0(κ) and for all adversaries A running in time t that may

query S1 at most Q times for simulated proofs π1, . . . , πQ of arbitrary statements x1, . . . , xQ
(where possibly xi 6∈ L for some or all i ∈ [Q]) holds that

Pr[AS1(crs) = (x, π) : x 6∈ L ∧ (x, π) 6= (xi, πi)∀i ∈ [Q] ∧ NIZK.Vfy(crs, π, x) = 1] ≤ εsimsnd

We will also use a variant of NIZK proof systems as a technical building block. Namely, a
(perfectly) non-interactive witness-indistinguishable (NIWI) proof system is defined
like a NIZK proof system above, with the following difference. Instead of the zero-knowledge and
simulation-soundness properties, we require (perfect) witness-indistinguishability: for all crs in the
image of NIZK.Gen, and all (x,w1), (x,w2) ∈ R (for the same x), we require that the distributions
induced by NIZK.Prove(crs, x, w1) and NIZK.Prove(crs, x, w2) are identical.

4.2 Building Blocks

Pairing Product Equations. Following [34, 35], a pairing product equation (PPE) s of length
` over G is an equation of the form

∏̀
j=1

e(Qj,0, Qj,1) = 1 with Qj,b = Aj,b ·
ν∏
i=1

X
αj,b,i

i (6)

where the Ai ∈ G and αj,b,i ∈ Zp are constants, and the Xi ∈ G are variables. We say that a vector
~x = (x1, . . . , xν) ∈ Gν satisfies the equation, if Equation 6 holds when setting Xi = xi. A set S of
pairing product equations is satisfiable, if there exists a vector ~x that satisfies all equations s ∈ S
simultaneously. In the following, we will consider sets of satisfiable PPEs as languages for NIZK
proof systems.

Disjunctions of Pairing Product Equations. Groth [34, Section 4.8] shows how to express
the disjunction of several sets of PPEs through one set. Concretely, given n sets S1, . . . , Sn of PPEs,
he constructs a set S := OR(S1, . . . , Sn) of PPEs such that

• every solution ~x that satisfies S allows to efficiently derive a solution ~xi of at least one Si,

• every solution ~xi of some Si allows to efficiently derive a solution ~x of S,

• if Si has νi variables Xi and consists of equations of total length `i, then S has total length
2`+ 1 for ` =

∑n
i=1 `i, and (

∑n
i=1 νi) + n+ ` variables.

NIWI Proofs for a Set of Pairing Product Equations. Groth and Sahai [35] present an
efficient non-interactive witness-indistinguishable proof system for arbitrary sets of PPEs. Their
system features a CRS crs that can be chosen either to be hiding or to be binding. If crs is hiding,
then the resulting proofs are perfectly witness-indistinguishable. If crs is binding, the resulting
proofs enjoy perfect soundness, and become extractable: a special trapdoor to crs allows to extract

18

a witness ~x from a valid proof. Hiding and binding CRSs are computationally indistinguishable
under the DLIN assumption in the underlying group G. When implemented over a DLIN-group
(as will be the case in our setting), their system has the following efficiency properties (cf. Figure 2
in [35]):

• the CRS contains 6 G-elements,

• each used variable Xi results in 3 G-elements in the proof,

• each PPE incurs 9 G-elements in the proof.

TSig-Verification as a Set of Pairing Product Equations. The verification algorithm of
our weakly-secure DLIN-based signature scheme TSig from Section 3 can be expressed as a set
of PPEs. Concretely, assume a verification key vk = (g, h, k, U1, . . . , U8, X0, z0) for TSig, and a
message M = (md,1, . . . ,md,8) ∈ G8. Recall that a TSig-signature Σ ∈ G10d+2 determines OTSig-
verification-keys vk i, messages Mi, and signatures Σ(i) such that Σ is valid iff Σ(i) is a valid OTSig-
signature of Mi = (mi,j)

8
j=1 under vk i−1 for all i ∈ [d]. Hence, verification amounts to checking a

set STSig
vk ,M = {OR(SL,i, SR,i)}i∈[d] , where SD,i (for i ∈ [d] and D ∈ {L,R}) is given by

SD,i =

 8∏
j=1

E(Ui,mi,j)

 · E(G, si) · E(H, ti) = E(XD,i, zD,i)

of PPEs, where G,H,U1, . . . , U8 ∈ G3 and the md,j ∈ G are constants, and the mi,j ∈ G (for
i ∈ [d− 1]), XL,i, XR,i ∈ G3, and zL,i, zR,i, si, ti ∈ G (for i ∈ [d]) are variables.

Tightly Secure One-Time Signatures. As a final preparation, we require a means to secure
proofs from tampering. Typically, this is done via a one-time signature scheme (as, e.g., in [46]).
For our purposes, however, we require tightly secure (but not necessarily structure-preserving) one-
time signatures. To enable a tight reduction, we will consider signature schemes with an algorithm
TOTS.Param that outputs common system parameters parstots.

Definition 4. The security experiment for strong n-fold one-time EUF-CMA security is identical
to the strong one-time EUF-CMA experiment (see Section 2), except that the adversary A gets the
scheme’s public parameters and n verification keys pk i (i ∈ [n]) as input. A may request (up to)
one signature for each pk i, and may finally output a forged signature under exactly one pk i. We
say that a signature scheme TOTS is strongly n-fold one-time (ε, t, q)-secure if there is no A that
(ε, t, q)-breaks the strong EUF-CMA security of TOTS.

We now construct a signature scheme TOTS whose n-fold one-time EUF-CMA security exper-
iment reduces to the discrete logarithm problem in G. The corresponding reduction loses only a
factor of 2, independently of n.

TOTS.Param(κ): The common parameters parstots are a two generators g, h0 and a collision-
resistant hash function H : {0, 1}∗ → Zp.

TOTS.Gen(parstots, parstots): Uniformly choose exponents ω1, s1 ∈ Zp and output vk tots := (h1, c1) :=
(gω1 , gs1) and sk tots := (ω1, s1).

19

TOTS.Sign(parstots, sk tots,m): Uniformly choose r0 ∈ Zp and compute c0 := gH(m)hr00 and r1 =
(s1 − H(c0))/ω1 mod p, such that c1 = gH(c0)hr11 . Output σ = (r0, r1).

TOTS.Vfy(parstots, vk tots,m, σ): Parse σ =: (r0, r1), and set c0 := gH(m)hr00 . If c1 = gH(c0)hr11 ,
output 1, else 0.

Note that TOTS essentially consists of a two-fold application of Pedersen commitments [49], inter-
preted as one-time signatures.

Lemma 3. Let n ∈ N. Then scheme TOTS above is strongly n-fold one-time EUF-CMA secure
assuming H is collision-resistant and the discrete logarithm assumption in G holds. Concretely,
εn-cma ≤ 2εdlog + εcrhf for the advantage εn-cma of an arbitrary n-fold one-time EUF-CMA adversary
A, and the advantages εdlog of a corresponding DLOG-solver B and εcrhf of a H-collision-finder C.

The proof is fairly standard, therefore we only sketch it.

Proof sketch. Let m∗ and σ∗ = (r∗0, r
∗
1) denote forged message and signature; let vk∗tots = (h∗1, c

∗
1)

be the corresponding verification key. Let m be the message signed for A under vk∗tots, and let
σ = (r0, r1) be the corresponding signature. Write c∗0 = gH(m∗)hr

∗
0 and c0 = gH(m)hr0 . We can

assume (m∗, σ∗) 6= (m,σ) and TOTS.Vfy(parstots, vk∗tots,m
∗, σ∗) = 1. Distinguish the following

cases:

H-collisions: If m∗ 6= m and H(m∗) = H(m), or if c∗0 6= c0 and H(c∗0) = H(c0), then A has found a
H-collision. The probability for a H-collision can be bounded by εdlog using a straightforward
reduction. In the following we silently assume that no H-collision took place.

c∗0 = c0: We can assume m∗ 6= m, since m∗ = m would imply r∗0 = r0 and r∗1 = r1. Hence, we have

found two different decompositions gH(m∗)h
r∗0
0 = c0 = gH(m)hr00 of c0, which allows to deduce

logg(h0). A straightforward reduction to the DLOG assumption bounds this event with εdlog.

c∗0 6= c0: In this case, we have found two different decompositions gH(c∗0)h
r∗1
1 = c1 = gH(m)hr11 of

c1, from which we can derive logg(h1). A reduction B to the DLOG problem can proceed
as follows, given input (g, h). First, B sets up h0 = gω0 for known ω0; all verification keys
are generated as (h1, c1) = (hα, gH(c0)hαr1) for c0 = gs0 ∈ G and uniform α, r1, s ∈ Zp
(chosen fresh for each key of course). This allows to generate signatures by setting r0 :=
(s0 − H(m))/ω0 mod p and σ = (r0, r1). Finally, any forged signature with c∗0 6= c0 can then
be used to derive logg(h1) = logg(h

α) for some known α, from which logg(h) follows. Thus,
c∗0 6= c0 can occur with probability at most εdlog.

Taking things together yields the claim. Note that the derived bound for εn-cma does not depend
on n.

4.3 Our Simulation-Sound NIZK Proof System

We are now ready to describe our proof system for a set S of PPEs. Intuitively, we will prove,
using GS NIWI proofs, that either S is satisfiable, or that we know a TSig-signature for a “suitably
unique” value (or both). The “suitably unique” value will be a verification key for a strongly (and
tightly) secure one-time signature scheme. Simulated proofs prove the “or” branch of the statement,
using TSig’s signing key. Simulation-soundness (and also soundness) follows from the existential

20

unforgeability of TSig, and from the soundness of GS proofs. A bit more formally, consider the
following non-interactive proof system:

NIZK.Gen(G) outputs a CRS crs = (crsGS, vk , parstots), where (a) crsGS is a binding CRS for DLIN-
based GS proofs over G, (b) vk is a verification key for TSig, (c) parstots are parameters for a
strongly n-fold EUF-CMA secure one-time signature scheme TOTS, whose security reduction
does not depend on n.

NIZK.Prove(crs, S, ~x) takes as input a CRS crs = (crsGS, vk), a set S of PPEs, and a satisfying
assignment ~x = (x1, . . . , xν) ∈ Zνp . Then, NIZK.Prove samples a TOTS keypair (vk tots, sk tots)
and outputs the tuple π = (πGS, vk tots, σtots). Here, πGS is a GS proof (using CRS crsGS) for

the set OR(S, STSig
vk ,vk tots

) of PPEs (as described above), and σtots is a TOTS-signature under
vk tots of (S, πGS).

NIZK.Vfy(crs, S, π) takes a CRS crs = (crsGS, vk), a set S of PPEs, and a proof π as above, verifies

σtots, and then checks π as a GS proof for the set OR(S, STSig
vk ,vk tots

) of PPEs.

Theorem 4. The proof system NIZK just described is (εZK, εsnd, εsimsnd, t, Q)-secure, where εZK ≤
2|εGS| and εsnd, εsimsnd ≤ εtots + εtsig for the advantages of suitable adversaries on the indistinguisha-
bility of hiding and binding GS CRSs, the strong Q-fold one-time EUF-CMA security of TOTS,
and the weak EUF-CMA security of TSig. All constructed adversaries have roughly the same run-
time as the zero-knowledge, soundness, resp. simulation-soundness experiments (with adversaries
of runtime t).

Proof sketch. Before we go through the properties necessary for a simulation-sound NIZK proof
system, we describe a simulator S. Initially, S samples a CRS crs = (crsGS, vk , pkCH, G,H) exactly
like NIZK.Gen(G), but remembers the signing key sk to vk . When asked to generate a proof for

some set S of PPEs, S proceeds like NIZK.Prove, but generates a proof πGS for OR(S, STSig
vk ,vk tots

)
using a TSig-signature Σ for vk tots as witness.

We now check the properties of our proof system:

Completeness. Perfect completeness follows from the perfect completeness of GS proofs.

Soundness. Assume an adversary A who generates an unsatisfiable set S of PPEs, along with a
(TOTS-signed) GS proof πGS for OR(S, STSig

vk ,vk tots
). By the strong one-time EUF-CMA security

of TOTS, we have that vk tots has not been TSig-signed before. (Note that here, a tight
reduction to TOTS’s strong n-fold one-time EUF-CMA security is possible.) By the perfect
soundness of GS proofs, this implies that A has proven knowledge of a TSig-signature Σ for
a fresh message vk tots. Since crsGS is binding, we can extract that signature using the GS
witness-extraction trapdoor and break the weak existential unforgeability of TSig. We obtain
that the soundness error εsnd is at most εtots + εtsig for the advantages of suitable TOTS- and
TSig-forgers.6

Zero-knowledge. First note that simulated and real CRSs are identically distributed. Further-
more, simulated proofs differ from real proofs only by their GS-witness. A straightforward

6We note that perfect soundness (i.e., εsnd = 0) can be achieved as in [34, Section 6] with a slightly more complicated
setup. In a nutshell, we could add a non-DLIN-tuple T ∈ G6 to CRS and prove that either S is satisfiable, or T
is a DLIN-tuple and we know a TSig-signature for vk tots (or both). A simulator S would of course change T to a
DLIN-tuple in simulated CRSs. We omit the details.

21

reduction to the witness-indistinguishability of GS proofs shows that an adversary’s advan-
tage εZK in distinguishing real from simulated CRSs and proofs is bounded by 2|εGS| for the
distinguishing advantage εGS between hiding and binding GS CRSs.

Simulation-soundness. A similar argument as for soundness shows that the simulation-soundness
error εsimsnd is at most εtots + εtsig for the advantages of suitable TOTS- and TSig-forgers.

We stress that all the reductions just sketched are tight. In particular, the (simulation-) sound-
ness and zero-knowledge errors do not depend on the number of simulated proofs.

On the extractability of our proof system. The proof system we have just described inherits
a useful feature from GS proofs. Namely, when operated with a binding CRS, a special trapdoor
td allows to efficiently extract witnesses from valid proofs. This trapdoor works even in a setting
in which an adversary has access to simulated proofs; but obviously, td cannot be used to extract
witnesses from the simulated proofs themselves. However, care must be taken when using td : for
instance, td allows to distinguish between simulated and non-simulated proofs. Consequently, the
Zero-Knowledge property only holds in the absence of td . This “incompatibility” between the
Zero-Knowledge and extraction properties is the main reason why we have chosen not to formalize
extraction. (For our purposes, an explicit extraction provided by the NIZK proof system will not
be necessary.) However, we note that a suitable formalization of “simulation-extractability” can be
very useful, see, e.g., Dodis et al. [21].

5 Tight IND-CCA Security in the Multi-User Setting

Syntax. A public-key encryption scheme PKE = (PKE.Param,PKE.Gen,PKE.Enc,PKE.Dec) con-

sists of four algorithms. The parameter generation algorithm Π
$← PKE.Param(κ) takes as input

a security parameter κ and outputs parameters Π. The key generation algorithm (pk , sk)
$←

PKE.Gen(Π) generates, on input Π, a public encryption key pk and a secret decryption key sk . The

probabilistic encryption algorithm c
$← PKE.Enc(pk ,m) takes as input a public key pk and a message

m, and outputs a ciphertext c. The deterministic decryption algorithm PKE.Dec(sk , c) ∈ {m,⊥}
takes as input a secret key sk and a ciphertext c, and outputs a message m or an error symbol ⊥.
We require the usual correctness properties.

Security. The following security experiment, played between a challenger and an adversary A,
is based on the multi-user security definition from [10]. The experiment is parametrized by two
integers µ, q ∈ N.

1. The challenger runs Π
$← PKE.Param(κ) once and then PKE.Gen(Π) µ times to generate µ

key pairs (pk (i), sk (i)), i ∈ [µ]. Then it tosses a coin b
$← {0, 1}, initializes a list Clist := ∅ to

the empty list, and defines a counter ji := 0 for each i ∈ [µ].

2. The adversary receives the public keys pk (1), . . . , pk (µ) as input. It may query the challenger
for two types of operations.

Encryption queries. The adversary submits two messages m0,m1 and an index i ∈ [µ]. If
ji ≥ q then the challenger returns ⊥. Otherwise it encrypts mb under public key pk (i)

22

by computing c = PKE.Enc(pk (i),mb). Then it appends (c, i) to Clist, updates counter
ji as ji := ji + 1, and returns c.

Decryption queries. The adversary submits a ciphertext c and an index i ∈ [µ]. If (c, i) ∈
Clist then the challenger returns ⊥. Otherwise it returns whatever PKE.Dec(sk (i), c)
returns.

3. Eventually the adversary A outputs a bit b′. We say that the adversary wins the game, if
b = b′.

Definition 5. Let A be an adversary that runs in time t and wins with probability 1/2 + ε. Then
A (ε, t)-breaks the (µ, q)-IND-CCA security of PKE. If A never asks any decryption query, then
A (ε, t)-breaks the (µ, q)-IND-CPA security of PKE. For ATK ∈ {CPA,CCA} we say that PKE
is (ε, t, µ, q)-IND-ATK secure, if there exists no adversary that (ε, t)-breaks the (µ, q)-IND-ATK
security of PKE.

Note that for ATK ∈ {CPA,CCA} the classical definitions of IND-ATK security [31, 50] are
identical to (1, 1)-IND-ATK security in the above sense. Moreover, the generic reduction from [10]
shows that an adversary A that (ε, t)-breaks the (µ, q)-IND-ATK security of public-key encryption
scheme PKE implies an adversary A′ that (ε′, t′)-breaks the (1, 1)-IND-ATK security of PKE with
t′ ≈ t and ε′ ≥ ε/(qµ). Thus, the generic reduction loses a factor of qµ.

5.1 Generic Construction

The construction of the public-key encryption scheme EncCCA with tight security reduction follows
the Naor-Yung paradigm [48, 51, 46]. It uses as building blocks an (IND-CPA secure) public-key
encryption scheme EncCPA = (CPA.Param,CPA.Gen,CPA.Enc,CPA.Dec) and a (simulation-sound)
non-interactive zero-knowledge proof system NIZK = (NIZK.Gen,NIZK.Prove,NIZK.Vfy).

We define scheme EncCCA = (CCA.Param,CCA.Gen,CCA.Enc,CCA.Dec) as follows.

CCA.Param(κ) generates a common reference string for the NIZK proof system crs
$← NIZK.Gen(κ)

for the language
L := {(pk0, pk1, c0, c1)}

such that (pk0, pk1, c0, c1) ∈ L if and only if

c0 = CPA.Enc(pk0,m) ∧ c1 = CPA.Enc(pk1,m).

That is, we have (pk0, pk1, vkots, c0, c1, cΠ) ∈ L iff c0 and c1 encrypt the same message m.

CCA.Gen(Π) generates two key pairs (pk0, sk0), (pk1, sk1)
$← CPA.Gen of the public-key encryption

scheme. The resulting public key is pk = (pk0, pk1,Π), the secret key is sk = sk0.

CCA.Enc(pk,m) encrypts a message m by computing c0 = CPA.Enc(pk0,m), c1 = CPA.Enc(pk1,m),
and a proof π that (pk0, pk1, c0, c1) ∈ L, using the encryption randomness of c0 and c1 as
witness. The resulting ciphertext is

c = (c0, c1, π)

23

CCA.Dec(sk, c) decrypts a given ciphertext as follows. First it checks whether (pk0, pk1, c0, c1) ∈ L
by verifying the proof π. If false, then it returns ⊥. Otherwise it computes and returns
m = CPA.Dec(sk0, c0).

It is a classical result [51] that the above encryption scheme is (1, 1)-IND-CCA secure, if EncCPA
is (1, 1)-IND-CPA secure and NIZK is one-time simulation sound. In the sequel we generalize this
to showing that the (µ, q)-IND-CCA security of EncCCA reduces tightly (i.e., independent of µ and
q) to the (µ, q)-IND-CPA security of EncCPA and the µq-security of NIZK.

We remark that our NIZK proof system from Section 4 inherits a certain form of (witness-
)extractability from GS proofs. (See also the comment at the end of Section 4.3.) Hence, one
could think of treating the NIZK system NIZK as one instance of an IND-CPA secure PKE scheme
(with the extraction trapdoor as decryption key). It would seem natural to expect that a variant of
scheme EncCCA above with only one EncCPA instance might be IND-CCA secure. We do not know
if this holds, however: concretely, to show witness-indistinguishability of our proof system NIZK,
we will at some point need to switch NIZK into hiding mode. In this mode, no extraction trapdoor
exists, and it is unclear how to go answer decryption queries for EncCCA.

Theorem 5. Let EncCPA be (εCPA, tCPA, µ, q)-IND-CPA secure, and let NIZK be (εZK, εsnd, εsimsnd, tNIZK, µq)-
secure. Then EncCCA is (ε, t, µ, q)-IND-CCA secure, where tNIZK and tCPA are roughly the runtime
of the IND-CCA experiment with an adversary of runtime t, and

ε ≤ 2 · (εCPA + εZK) + εsnd + εsimsnd.

Proof. The proof structure follows [51]. We proceed in a sequence of games [6, 53]. Let Wini denote
the probability that A wins in Game i.

Game 0. This is the (µ, q)-IND-CCA security experiment from Definition 5, executed with b = 0.
Thus, the challenger always returns encryptions of m0.

Game 1. This game is identical to Game 0, except that we change the way the NIZK proof is
generated. Instead of using the real proving algorithm, we compute all proofs π using the zero-
knowledge simulator of NIZK. Due to the zero-knowledge property of NIZK, we have

Pr[Win1]− Pr[Win0] ≤ εZK.

Game 2. This game is identical to Game 1, except that we change the way challenge ciphertexts
are created. For each ciphertext c = (c0, c1, π), created by the challenger under public key pk(j)

for some j ∈ [µ], the challenger computes c0 = CPA.Enc(pk
(j)
0 ,m0) and π as before, but computes

c1 = CPA.Enc(pk
(j)
1 ,m1) as an encryption of m1. Due to the (εCPA, tCPA, µ, q)-IND-CPA security of

EncCPA, we have
Pr[Win2]− Pr[Win1] ≤ εCPA.

24

Game 3. This game is identical to Game 2, except that now the key pairs (pk(j), sk(j)), j ∈ [µ],

are computed and used differently. In the previous game, the challenger computes (pk
(j)
0 , sk

(j)
0)

$←
CPA.Gen, (pk

(j)
1 , sk

(j)
1)

$← CPA.Gen, and sets pk(j) = (pk
(j)
0 , pk

(j)
1) and sk(j) = sk

(j)
0 . In this game,

the challenger sets pk(j) = (pk
(j)
0 , pk

(j)
1) as before, but sk(j) = sk

(j)
1 . Moreover, for a given ciphertext

c = (c0, c1, π) the challenger now first checks the proof π and, if the proof verifies correctly, returns

the decryption m = CPA.Dec(sk
(j)
1 , c1) of c1. Key sk

(j)
0 is never used throughout the game.

Note that an adversary cannot distinguish Game 3 from Game 2, unless it submits a ciphertext

c̃ = (c̃0, c̃1, π̃) such that proof π̃ verifies, but CPA.Dec(sk
(j)
0 , c̃0) 6= CPA.Dec(sk

(j)
1 , c̃1). Thus, the

adversary has to provide a proof π̃ for a false statement. Note that the adversary sees at most µq
simulated proofs throughout the game, thus, due to the µq-simulation-soundness of NIZK, we have

Pr[Win3]− Pr[Win2] ≤ εsimsnd.

Game 4. Again we change the way challenge ciphertexts are created. For each ciphertext c =
(c0, c1, π), created by the challenger under pk(j) for some j ∈ [µ], the challenger computes c1 =

CPA.Enc(pk
(j)
1 ,m1) and π as before, but now also each c0 = CPA.Enc(pk

(j)
0 ,m1) will be an encryption

of m1. Due to the (εCPA, tCPA, µ, q)-IND-CPA security of EncCPA, we have

Pr[Win4]− Pr[Win3] ≤ εCPA.

Game 5. This game is identical to Game 4, but now the challenger uses the real proving algorithm
for NIZK, instead of using simulated proofs. Due to the zero-knowledge property of NIZK, again
we have

Pr[Win5]− Pr[Win4] ≤ εZK.

Game 6. This game is identical to Game 5, except that now we return to using sk
(j)
0 for encryp-

tion. Again an adversary cannot distinguish Game 6 from Game 5, unless it provides a proof π̃ for
a false statement. Note that the adversary does not see any simulated proofs in this game, thus
due to the soundness of NIZK we have

Pr[Win6]− Pr[Win5] ≤ εsnd.

Note that Game 6 is identical to the (µ, q)-IND-CCA security experiment from Definition 5, exe-
cuted with b = 1, and we have

Pr[Win0]− Pr[Win6] ≤ 2 · (εCPA + εZK) + εsnd + εsimsnd.

5.2 Public-Key Encryption with Tight IND-CPA Security from DLIN

In order to instantiate the CCA-secure scheme from the previous section, we finally need an IND-
CPA secure encryption scheme with tight security reduction. In this section we describe an adequate
example.

25

Random self-reducibility of DLIN. The following lemma extends [10, Lemma 5.2] from DDH
to the DLIN assumption.

Lemma 4. g, h, k ∈ G be generators. There exists a probabilistic algorithm R with the following
properties. R takes as input p, generators g, h, k ∈ G, a vector U ∈ G3, and a flag τ ∈ {0, 1},
and outputs (h′, k′) ∈ G2 and U ′ ∈ G3. The running time of algorithm R is dominated by at
most 9 exponentiations in G. The distribution of the output (h′, k′, U ′) depends on τ and whether
U ∈ DLIN(g, h, k) or not, according to the following table.

τ = 0 τ = 1

U ∈ DLIN(g, h, k) h′ = h, k′ = k h′, k′
$← G \ {1}

U ′
$← DLIN(g, h, k) U ′

$← DLIN(g, h′, k′)

U 6∈ DLIN(g, h, k) h′ = h, k′ = k h′, k′
$← G \ {1}

U ′
$← G3 U ′

$← G3

We note that a slight variant of the above Lemma was given in [44, Lemma 7]. Lemma 7 of [44]

considers an algorithm R that outputs (g′, h′, k′, U ′) with g′, h′, k′
$← G \ {1}, instead of (h′, k′, U ′)

as above, in the more general K-linear setting, but only with τ = 1.

Proof. Consider the following algorithm R = (R0,R1), which consists of two sub-algorithms R0

and R1. Given (p, g, h, k, U, τ), algorithm R runs Rτ (p, g, h, k, U) and returns whatever Rτ returns.
In the sequel let us write U = (gu, hv, kw).

Algorithm R0. Algorithm R0 chooses integers r0, r1, r2
$← Zp and computes U ′ = (u′0, u

′
1, u
′
2) as

u′0 = (gu)r0 · gr1

u′1 = (hv)r0 · hr2

u′2 = (kw)r0 · kr1 · kr2 .

Then it returns (h, k, U ′).
To show that R0 produces the correct output distribution, let us first consider the case U ∈

DLIN(g, h, k), where we have w = u + v. Note that u′0 = gur0+r1 and u′1 = hvr0+r2 are distributed
uniformly and independently over G, since r1, r2 are uniform and independent. In this case we
have u′2 = kwr0+r1+r2 = k(ur0+r1)+(vr0+r2), thus it holds that U ′ is distributed uniformly over
DLIN(g, h, k).

Now let us consider the case U 6∈ DLIN(g, h, k), which is equivalent to w 6= u + v. Taking
logarithms to base g, we havelog u′0

log u′1
log u′2

 =

 u 1 0
v log h 0 log h
w log k log k log k

 ·
r0

r1

r2

 (7)

The 3× 3 matrix is invertible, because its determinant is equal to (w− u− v) · log h · log k, and we
have w 6= u+ v and log h 6= 0 6= log k since both h and k are generators. Thus, for each (r0, r1, r2)
there exists a unique vector (u′0, u

′
1, u
′
2) that satisfies the system of equations given by (7). Since

(r0, r1, r2) is distributed uniformly over Z3
p, vector U ′ = (u′0, u

′
1, u
′
2) is distributed uniformly over

G3.

26

Algorithm R1. Algorithm R1 samples two random integers α, β
$← Z∗p, and computes h′ = hα,

k′ = kβ, and U ′′ = (gu, (hv)α, (kw)β). Then it runs R0(p, g, h′, k′, U ′′), and returns whatever R0

returns.
Note that h′ and k′ are random generators of G, and that we have U ′′ ∈ DLIN(g, h′, k′) if and

only if U ∈ DLIN(g, h, k). Thus, correctness of R1 follows from the correctness of R0.

Encryption scheme. Lemma 4 gives rise to a folklore “DLIN-based ElGamal” scheme with
tight security reduction in the multi-user setting. Let EncCPA = (CPA.Gen,CPA.Enc,CPA.Dec) be
the following encryption scheme.

CPA.Gen(Π) takes as input Π = (G, g) where G is with (description of a) group of prime order p

and g is a generator of G. It samples ĥ, k̂
$← Zp and sets h = gĥ and k = hk̂. The public key

is pk = (g, h, k), the secret key is sk = (ĥ, k̂).

CPA.Enc(pk,m) encrypts a message m ∈ G by sampling rg, rh
$← Zp and computing c0 = grg ,

c1 = hrh , c2 = m · krg+rh . The resulting ciphertext is c = (c0, c1, c2).

CPA.Dec(sk, c) decrypts a given ciphertext by computing m = c2 · c
−rg
0 · c−rh1 .

Theorem 6. Suppose there exists an adversary A that (ε, t)-breaks the (µ, q)-IND-CPA security of
EncCPA. Then there exists an adversary B that (ε′, t′)-breaks the DLIN assumption in G with t′ ≈ t
and ε′ ≥ ε− µ/p.

Note that the success probability of B contains an additive term µ/p, which however is statis-
tically small. It seems that a similar term has been overlooked in [10, Lemma 5.2].

Proof sketch. The proof is based on the random self-reducibility of the DLIN assumption, and
nearly identical to the proof of [10, Theorem 5.3]. Therefore we only sketch it here.

The DLIN distinguisher B receives as input a DLIN challenge (g, h, k, U) where U
$← DLIN(g, h, k)

or U
$← G3. It runs A as a subroutine by implementing the (µ, q)-IND-CPA challenger for A.

• At the beginning of the game, B tosses a coin b
$← {0, 1} and runs algorithm R from Lemma 4

µ times on input τ = 1 and (g, h, k, U), so that it obtains µ vectors (h(i), k(i), U (i))i∈[µ]. It

defines pk (i) = (g, h(i), k(i)) for i ∈ [µ] and provides A with (pk (i))i∈µ.

• When the adversary issues the j-th encryption query (pk (i),m
(i)
j,0,m

(i)
j,1) under pk (i), B runs R

on input τ = 0 and (g, h(i), k(i), U (i)), to obtain a vector U
(i)
j = (u

(i)
j , v

(i)
j , w

(i)
j). Then B sets

c
(i)
j := (u

(i)
j , v

(i)
j ,m

(i)
j,b · w

(i)
j)

and returns the ciphertext c
(i)
j .

Eventually A outputs a guess b′. If b = b′ then B outputs 1, otherwise it outputs 0.

27

Analysis. Suppose that U ∈ DLIN(g, h, k). In this case, by the correctness of R, all pk (i) are

correctly distributed, and all public keys, and all ciphertexts are valid encryptions of message m
(i)
j,b.

In this case B outputs 1 with probability 1/2 + ε.
If U 6∈ DLIN(g, h, k), then Ui is uniformly distributed over G3, and thus we have Ui 6∈ DLIN(g, h, k)

for all i ∈ [µ] except with probability µ/p. In this case each vector U
(i)
j = (u

(i)
j , v

(i)
j , w

(i)
j) is uni-

form over G3, and thus contains (information-theoretically) no information about b. In this case B
outputs 1 with probability 1/2 + µ/p.

6 Tight EUF-CMA Security in the Multi-User Setting

In Sections 3.3 and 3.4 we have described signature schemes with tight security proof in the single-
user setting. In this section we would like to note, that these signature schemes also have tight
security proofs in the multi-user setting.

EUF-CMA Security in the Multi-User Setting. Let us first describe the (µ, q)-existential
unforgeability under adaptive chosen-message attacks ((µ, q)-EUF-CMA) experiment. This experi-
ment is a simple adoption of the classical EUF-CMA experiment from [32] (see also Section 2.1) to
the multi-user setting. Consider the following game, played between a challenger and a forger A.

1. The forger, on input (µ, q) and public parameters Π, may ask a non-adaptive chosen-message
query. To this end it submits, for each index i ∈ [µ], a list of messages M (i,1), . . . ,M (i,qi) to
the challenger.

2. The challenger runs the key generation algorithm Sig.Gen(Π) µ times to generate keypairs
(vk1, sk1), . . . , (vkµ, skµ). The forger receives the list (vk1, . . . , vkµ) of verification keys as
input, as well as a signature σ(i,j) for each chosen message M (i,j), (i, j) ∈ [µ]× [qi].

3. Now the forger may ask adaptive chosen-message queries. Each query consists of a tuple
(i,M (i,j)), where i ∈ [µ] is an index and M (i,j) is a message, j ∈ [qi, q]. The challenger returns
a signature σ(i,j) under sk i for M (i,j). Note that the forger may ask at most q signature
queries per verification key, thus the forger asks at most µq signature queries in total.

4. Finally the forger outputs a triplet (i∗,M ∗, σ∗).

Definition 6. An adversary is adaptive, if it asks at least one adaptive chosen-message query.
Otherwise it is non-adaptive. Let A be an (adaptive or non-adaptive) adversary that runs in time
t and outputs (i∗,M ∗, σ∗). We say that A (ε, t)-breaks the (adaptive or non-adaptive) (µ, q)-EUF-
CMA security of Sig if

Pr[Sig.Vfy(vk i∗ ,M
∗, σ∗) = 1 ∧M ∗ 6∈ {M (i∗,1), . . . ,M (i∗,q)}] ≥ ε.

Tightly EUF-CMA Secure Signatures in the Multi-User Setting. One can prove that
the signature schemes from Sections 3.3 and 3.4 are tightly secure under the DLIN assumption in
the multi-user setting, too. The idea of these proofs is very simple, only a minor extension to the
proofs in the single-user setting, therefore we only sketch it.

Let us first consider the scheme from Section 3.3. Recall that in the security proof of this scheme
we constructed an algorithm B, which takes as input a vector ((g, h, k), U) ∈ G3×G3 and uses the

28

forger to decide whether U ∈ DLIN(g, h, k). In the multi-user setting, we follow exactly the same
proof strategy, except for the following. Given a single DLIN-challenge ((g, h, k), U), we proceed as
follows.

1. We first use the random self-reducibility of DLIN, by running the algorithm from Lemma 4
on input (g, h, k, U, τ) with τ = 0, to generate µ vectors U (1), . . . , U (µ), such that (with
probability negligibly close to 1) for all i ∈ [µ] holds that

U (i) ∈ DLIN(g, h, k) ⇐⇒ U ∈ DLIN(g, h, k). (8)

2. Then we run µ copies B(1), . . . ,B(µ) of algorithm B in parallel to simulate the non-adaptive
(µ, q)-EUF-CMA security experiment. When the forger outputs its forgery (i∗,M ∗, σ∗), then
B(i∗) will tell us whether U (i∗) ∈ DLIN(g, h, k), which also allows us to decide whether U ∈
DLIN(g, h, k), due to (8).

This yields the tight non-adaptive (µ, q)-EUF-CMA security of the scheme from Section 3.3. The
idea to prove that the scheme from Section 3.4 is adaptively (µ, q)-EUF-CMA secure is identical.

Acknowledgements. We would like to thank Masayuki Abe and Kristiyan Haralambiev for
pointing out a missing argument in the proof of Lemma 1, and Georg Fuchsbauer for pointing out
a mistake in Section 4.3.

References

[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Structure-preserving signatures and commitments to group elements. In Tal Rabin, editor,
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 209–236. Springer, August 2010.

[2] Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Signing on elements in bilinear
groups for modular protocol design. Cryptology ePrint Archive, Report 2010/133, 2010. http:
//eprint.iacr.org/.

[3] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Optimal structure-
preserving signatures in asymmetric bilinear groups. In Phillip Rogaway, editor, Advances
in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages
649–666. Springer, August 2011.

[4] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and
Miyako Ohkubo. Constant-size structure-preserving signatures: Generic constructions and
simple assumptions. Cryptology ePrint Archive, Report 2012/285, 2012. http://eprint.

iacr.org/.

[5] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on Computer and
Communications Security, pages 62–73. ACM Press, November 1993.

29

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[6] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology – EURO-
CRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 409–426. Springer,
May / June 2006.

[7] Mihir Bellare and Sarah Shoup. Two-tier signatures, strongly unforgeable signatures, and fiat-
shamir without random oracles. In Tatsuaki Okamoto and Xiaoyun Wang, editors, PKC 2007:
10th International Conference on Theory and Practice of Public Key Cryptography, volume
4450 of Lecture Notes in Computer Science, pages 201–216. Springer, April 2007.

[8] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security treatment
of symmetric encryption. In 38th Annual Symposium on Foundations of Computer Science,
pages 394–403. IEEE Computer Society Press, October 1997.

[9] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among no-
tions of security for public-key encryption schemes. In Hugo Krawczyk, editor, Advances in
Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 26–45.
Springer, August 1998.

[10] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Bart Preneel, editor, Advances in Cryptology
– EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 259–274.
Springer, May 2000.

[11] Daniel J. Bernstein. Proving tight security for Rabin-Williams signatures. In Nigel P. Smart,
editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Com-
puter Science, pages 70–87. Springer, April 2008.

[12] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology
– EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 223–238.
Springer, May 2004.

[13] Dan Boneh, Ilya Mironov, and Victor Shoup. A secure signature scheme from bilinear maps.
In Marc Joye, editor, Topics in Cryptology – CT-RSA 2003, volume 2612 of Lecture Notes in
Computer Science, pages 98–110. Springer, April 2003.

[14] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In Antoine
Joux, editor, Advances in Cryptology – EUROCRYPT 2009, volume 5479 of Lecture Notes in
Computer Science, pages 351–368. Springer, April 2009.

[15] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
Journal of Cryptology, 20(3):265–294, July 2007.

[16] Julien Cathalo, Benôıt Libert, and Moti Yung. Group encryption: Non-interactive real-
ization in the standard model. In Mitsuru Matsui, editor, Advances in Cryptology – ASI-
ACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 179–196. Springer,
December 2009.

30

[17] Melissa Chase and Markulf Kohlweiss. A domain transformation for structure-preserving
signatures on group elements. Cryptology ePrint Archive, Report 2011/342, 2011. http:

//eprint.iacr.org/.

[18] Benôıt Chevallier-Mames and Marc Joye. A practical and tightly secure signature scheme
without hash function. In Masayuki Abe, editor, Topics in Cryptology – CT-RSA 2007, volume
4377 of Lecture Notes in Computer Science, pages 339–356. Springer, February 2007.

[19] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology
– CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 13–25. Springer,
August 1998.

[20] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Lars R. Knudsen, editor, Advances in Cryptol-
ogy – EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 45–64.
Springer, April / May 2002.

[21] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Efficient
public-key cryptography in the presence of key leakage. In Masayuki Abe, editor, Advances in
Cryptology – ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages
613–631. Springer, December 2010.

[22] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM Journal
on Computing, 30(2):391–437, 2000.

[23] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

[24] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures. Journal
of Cryptology, 9(1):35–67, 1996.

[25] Georg Fuchsbauer. Automorphic Signatures and Applications. PhD thesis, ENS, Paris, 2010.

[26] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99,
volume 1666 of Lecture Notes in Computer Science, pages 537–554. Springer, August 1999.

[27] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures without the
random oracle. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume
1592 of Lecture Notes in Computer Science, pages 123–139. Springer, May 1999.

[28] Craig Gentry. Practical identity-based encryption without random oracles. In Serge Vaude-
nay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in
Computer Science, pages 445–464. Springer, May / June 2006.

[29] Craig Gentry and Shai Halevi. Hierarchical identity based encryption with polynomially many
levels. In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference, volume
5444 of Lecture Notes in Computer Science, pages 437–456. Springer, March 2009.

31

http://eprint.iacr.org/
http://eprint.iacr.org/

[30] Oded Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In
Andrew M. Odlyzko, editor, Advances in Cryptology – CRYPTO’86, volume 263 of Lecture
Notes in Computer Science, pages 104–110. Springer, August 1987.

[31] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984.

[32] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April
1988.

[33] Matthew Green and Susan Hohenberger. Practical adaptive oblivious transfer from simple
assumptions. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference,
volume 6597 of Lecture Notes in Computer Science, pages 347–363. Springer, March 2011.

[34] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group sig-
natures. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology – ASIACRYPT 2006,
volume 4284 of Lecture Notes in Computer Science, pages 444–459. Springer, December 2006.

[35] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture
Notes in Computer Science, pages 415–432. Springer, April 2008.

[36] Dennis Hofheinz. All-but-many lossy trapdoor functions. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 209–227. Springer, April 2012.

[37] Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key encryption. In
Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science, pages 590–607. Springer, August 2012.

[38] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation.
In Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture
Notes in Computer Science, pages 553–571. Springer, August 2007.

[39] Dennis Hofheinz and Eike Kiltz. Practical chosen ciphertext secure encryption from factoring.
In Antoine Joux, editor, Advances in Cryptology – EUROCRYPT 2009, volume 5479 of Lecture
Notes in Computer Science, pages 313–332. Springer, April 2009.

[40] Marc Joye. An efficient on-line/off-line signature scheme without random oracles. In
Matthew K. Franklin, Lucas Chi Kwong Hui, and Duncan S. Wong, editors, CANS 08: 7th
International Conference on Cryptology and Network Security, volume 5339 of Lecture Notes
in Computer Science, pages 98–107. Springer, December 2008.

[41] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight
security reductions. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM
CCS 03: 10th Conference on Computer and Communications Security, pages 155–164. ACM
Press, October 2003.

32

[42] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In ISOC Network and Distributed
System Security Symposium – NDSS 2000. The Internet Society, February 2000.

[43] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme. In Matthew
Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 426–442. Springer, August 2004.

[44] Allison B. Lewko and Brent Waters. Efficient pseudorandom functions from the decisional
linear assumption and weaker variants. In Ehab Al-Shaer, Somesh Jha, and Angelos D.
Keromytis, editors, ACM CCS 09: 16th Conference on Computer and Communications Secu-
rity, pages 112–120. ACM Press, November 2009.

[45] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC 2010: 7th Theory of
Cryptography Conference, volume 5978 of Lecture Notes in Computer Science, pages 455–479.
Springer, February 2010.

[46] Yehuda Lindell. A simpler construction of cca2-secure public-key encryption under general
assumptions. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 241–254. Springer, May 2003.

[47] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in Cryptol-
ogy – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 218–238. Springer,
August 1990.

[48] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In 22nd Annual ACM Symposium on Theory of Computing. ACM Press, May 1990.

[49] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91, volume 576 of Lecture
Notes in Computer Science, pages 129–140. Springer, August 1992.

[50] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91,
volume 576 of Lecture Notes in Computer Science, pages 433–444. Springer, August 1992.

[51] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In 40th Annual Symposium on Foundations of Computer Science, pages 543–553.
IEEE Computer Society Press, October 1999.

[52] Sven Schäge. Tight proofs for signature schemes without random oracles. In Kenneth G.
Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes
in Computer Science, pages 189–206. Springer, May 2011.

[53] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/.

[54] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume 5677
of Lecture Notes in Computer Science, pages 619–636. Springer, August 2009.

33

http://eprint.iacr.org/

A Illustrations

A.1 Illustration of the Tree-based Signature Scheme

N0

N
co
1 N1

σ0

N2

σ1

Nd−2

Nd−1

σd−2

N
co

d Nd

σd−1

Md ∈ G
8

σd

N
co

d−1

N
co
2

Figure 1: Illustration of the tree-based signature scheme. In this example we have M0 = (N co
1 , N1),

M1 = (N2, N
co
2), . . ., Md−1 = (N co

d , Nd) and Md = M .

34

A.2 Illustration of the Definition of Sets Nleaves, Ndir, Nout

Ndir

Ndir

Ndir

Ndir

Ndir

Nd,1 Nd,2

Ndir

· · · Nd,q

Nout

Nout

Nout

Figure 2: Illustration of the Definition of Sets Nleaves, Ndir, Nout.

We have

• Nleaves = {Nd,1, . . . , Nd,q}.

• Each node Ndir is a direct ancestor of a node in Nleaves, therefore we have Ndir ∈ Ndir for all
Ndir.

• Each node Nout is a sibling of a node Ndir, but not an ancestor of any node in Nleaves, thus
we have Nout ∈ Nout for all Nout.

35

	Introduction
	Preliminaries
	Digital Signatures
	Complexity Assumptions

	Structure-Preserving Signatures
	Structure-Preserving One-Time Signatures for Single Group Elements
	Structure-Preserving One-Time Signatures for Vectors of Group Elements
	Structure-Preserving Signatures Secure Against Non-adaptive Adversaries
	Structure-Preserving Signatures Secure Against Adaptive Adversaries

	Tightly Simulation-Sound NIZK Proofs for Pairing Product Equations
	Non-Interactive Zero-Knowledge Proofs
	Building Blocks
	Our Simulation-Sound NIZK Proof System

	Tight IND-CCA Security in the Multi-User Setting
	Generic Construction
	Public-Key Encryption with Tight IND-CPA Security from DLIN

	Tight EUF-CMA Security in the Multi-User Setting
	Illustrations
	Illustration of the Tree-based Signature Scheme
	Illustration of the Definition of Sets Nleaves, Ndir, Nout

