
Computationally Sound Verification of the NSL Protocol
via Computationally Complete Symbolic Attacker

Gergei Bana1, Pedro Adão2, and Hideki Sakurada3

1 MSR-INRIA Joint Centre, Orsay, Francebana@math.upenn.edu
2 SQIG-IT and IST-TULisbon, Portugal,pedro.adao@ist.utl.pt
3 NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan,

sakurada.hideki@lab.ntt.co.jp

Abstract. In this paper we show that the recent technique of computationally
complete symbolic attackers proposed by Bana and Comon-Lundh [7] for com-
putationally sound verification is powerful enough to verify actual protocols, such
as the Needham-Schroeder-Lowe Protocol. In their model, one does not define
explicit Dolev-Yao adversarial capabilities but rather the limitations (axioms) of
the adversarial capabilities. In this paper we present a setof axioms sufficient to
show that no symbolic adversary compliant with these axiomscan successfully
violate secrecy or authentication in case of the NSL protocol. Hence all imple-
mentations for which these axioms are sound – namely, implementations using
CCA2 encryption, and satisfying a minimal parsing requirement for pairing –
exclude the possibility of successful computational attacks.

1 Introduction

Computational soundness has been a topic of utmost importance in the past decade.
It started with Abadi and Rogaway [1] and followed by many others, for passive ad-
versaries [16, 2] as well as for active. The aim is always thatsymbolic proofs imply
computational security. Works concerning active adversaries can be divided into two
groups. Works in one [3, 14, 4, 12] define symbolic adversaries, and soundness theo-
rems state that under certain circumstances, if there is no successful symbolic attack,
then there is no successful computational attack. The othergroup aims to work directly
in the computational model [15, 8, 11, 10].

The first group, where symbolic attacker is defined, gives hope that already existing
automated tools may be used for computationally sound verification, but these sound-
ness theorems require a large set of assumptions. Typicallythey assume that no key
cycles can ever be created, that bitstrings can be unambiguously parsed into terms, that
there is no dynamic corruption, that keys are certified (badly generated keys cannot be
used), etc. These assumptions, as well as reasons why they are not realistic are discussed
in [13].

Recently, Bana and Comon-Lundh presented in [7] (and in an improved version
[6]) a new technique to define symbolic attackers that is moresuitable for computa-
tional soundness than the usual Dolev-Yao adversary (or variations of it). They called
this new symbolic adversarycomputationally complete symbolic adversary, as it is ca-
pable of doing everything that a computational adversary iscapable of. The basic idea

1

of their technique is the following. Instead of listing every kind of move a symbolic
adversary is allowed to do, a few rules (axioms) should be listed that the symbolic ad-
versary is not allowed to violate. In other words, the symbolic adversary is allowed to
do everything that is consistent with these axioms. The axioms that are introduced must
be computationally sound with respect to a computational interpretation that they de-
fined. Their main result is that once it is shown that no successful symbolic adversary
can exist complying some set of axioms, then for any computational implementation
satisfying that set of axioms, successful computational attacks are impossible as long
as the number of sessions is bounded in the security parameter.

In their original work however, they did not show that their technique could actually
be used for practical protocol verification as they only presented the general framework
and a few computationally sound axioms as a proof of concept.To actually prove pro-
tocols, more axioms have to be introduced in order toweakenthe symbolic adversary
sufficiently close to the computational adversary (with unrealistically strong symbolic
attackers, no protocol can be verified). But they left it for future work to show that it
was possible to introduce sufficiently many axioms to prove correctness of a protocol.

In this paper, we illustrate with the Needham-Schroeder-Lowe protocol that this
technique can indeed be used for protocol verification. Namely, we introduce compu-
tationally sound axioms for implementations with CCA2 secure encryptions, and an
additional axiom that the computational implementation ofpairing must satisfy (oth-
erwise there is an attack).We show that there is no symbolic adversary for which the
violation of either secrecy or authentication (or both) is consistent with the set of axioms
we give. Applying the main theorem of [7], this means that there is no computational
adversary of the NSL protocol (in an implementation satisfying the axioms) that can
violate secrecy or authentication with non-negligible probability.

The set of axioms we give is divided into four groups. One justincludes the equa-
tions we require for function symbols. Then, one has a numberof general axioms in-
dependent of the implementation; another one has two axiomsexpressing secrecy and
non-malleability of CCA2 encryption schemes; and a fourth one with only one axiom
expresses a certain parsing unambiguity, which needs to be assumed as otherwise an
attack exists.

The technique of [7] allows to avoidall the above mentioned unnecessary assump-
tions. In particular, any number of bad keys are allowed to begenerated by the adver-
sary. Also, besides the two honest parties, any number of other corrupted, or uncor-
rupted, or dynamically corrupted parties can be present.

As for parsing of bit strings into terms, previous soundnessresults relied on un-
ambiguous parsing (even ambiguity with only negligible probability is not allowed).
Within this framework, we do not need such an assumption, becausesymbolic agents
do not do any pattern matching. If unambiguous parsing is needed for the security of
a protocol, then it is necessary to list it as a property that secure implementations need
to satisfy. The only needed assumption for proving NSL is that an honestly generated
nonceN cannot be non-negligibly parsed into a pair, such that the second part of the
pair is some (dishonest) agent name,i.e., looks like〈n,Q〉 for somen. This is a neces-
sary assumption, as the failure of it results in an attack, presented in [9]. This can easily
be achieved in an implementation by, for example, checking the length of bit strings

2

that should correspond to nonces. Other than this, no parsing hypothesis is assumed.
For example, honestly generated nonces may collide with other kinds of pairs, encryp-
tions coulda priori collide with other kinds of expressions, etc. This means that tagging
of pairs, encryption etc is not necessary for the security ofthe NSL protocol.

In fact, the security proof is long exactly because of parsing ambiguities (that is to
say, because of the lack of pattern matching). Since any termmay a priori coincide
with any other, that is, any term that was created by an honestagent or the adversary
may a priori be wrongly parsed by another agent (interpreting it as the massage of a
wrong session or a wrong massage of a given session), the factthat they do not, has to
be derived from the nature of the protocol. Had we assumed completely unambiguous
parsing (which, in fact, has always been assumed by earlier soundness results), the proof
would actually be very short.

We would like to emphasize that our aim here is to demonstratethat the technique
works, and not to provide the most general possible verification for the NSL protocol.
Further generalizations are possible at the cost of much longer proofs. For example, in
the current proof, we assume that each honest agent only executes either the initiator
or the responder role as this makes the proof much shorter andclearer. We have been
however able to complete the proof for the case when they are allowed to run both
sessions, even against themselves (with an additional parsing axiom).

A further assumption is that triples are created from pairs.It is possible to do proofs
without this assumption, and have a separate function symbol for triples (and introduce
possible necessary requirements to avoid attacks), but again, it would make the proof
far longer.

We also feel that the security proof itself is quite interesting, not just the result, as it
follows the intuitive idea why the protocol should be correct.

The contributions of this paper include some of the computationally sound general
axioms, the non-malleability axiom that is computationally sound for CCA2 security,
the additional parsing axiom needed to avoid an attack and the security proof itself.

This paper is organized as follows: we start by recalling theframework of [7] (Sec-
tion 2). In Section 3, we show how the NSL protocol and its execution can be formulated
in the proposed framework. In Section 4, we present the first contribution of this paper
introducing the set of computational sound axioms needed toshow both secrecy and
authentication of the NSL protocol. In Section 5, we show a few simples examples of
how inconsistency of certain formulas and the axioms can be proven. In Section 6, we
prove that no symbolic adversary compliant with the presented axioms can successfully
violate secrecy or authentication of the NSL protocol. In Section 7, we summarize our
results and present directions for future work.

2 Symbolic Execution

The framework used in this paper was introduced by Bana and Comon-Lundh in [7].
We resent a brief excerpt of that (with minor adjustments) and refer the reader to that
paper for further details.

3

2.1 Terms and Frames

Terms are built out of a set of function symbolsF that contains an unbounded set of
namesN and an unbounded set of handlesH. Names and handles are zero-arity func-
tion symbols. We will use names to denote items honestly generated by agents, while
handles will denote inputs of the adversary. LetX be an unbounded set of variables. A
ground term is a term without variables.Frames are sequences of terms together with
name binders: a frameφ can be written(νn).p1 7→ t1, . . . , pn 7→ tn wherep1, . . . pn
are place holders that do not occur int1, . . . , tn andn is a sequence of names.fn(φ),
thefree namesof φ are names occurring in someti and not inn. Thevariablesof φ are
the variables oft1, . . . , tn.

2.2 Formulas

Let P be a set of predicate symbols over tems.P is assumed to contain the binary
predicate= (which is interpreted as a congruence) and is used ast1 = t2, and a family
of n+1 predicates⊢n, (which is intended to model the adversary’s capability to derive
something) and is used ast1, ..., tn ⊢ t. (we drop the indexn for readability).

As for the symbolic interpretation of such predicates, weallow any that does not
contradict our axioms, which we will introduce later.

LetM be any first-order structure that interprets the function and predicate symbols
of the logic. We only require that it interprets terms and thepredicates such that=
is interpreted as the equality in the underlying domainDM (clearly,DM includes a
relation⊢M interpreting the deducibility predicate⊢ too). Given an assigmentσ of
elements inDM to the free variables of termt, we write [[t]]σ

M
for the interpretation

of tσ inM ([[]]σM is the unique extension ofσ into a homomorphism ofF -algebras).
For any first order structureM over the functionsF and predicatesP , the satisfaction
relationM, σ |= θ, whereσ is an assignment of the free variables ofθ in the domain
ofM, is defined as usual in first-order logic.

2.3 Execution of a Protocol

Definition 1. A symbolic stateof the network consists of:

– a control stateq ∈ Q together with a sequence of names (that have been generated
so far)n1, . . . , nk

– a sequence constants calledhandlesh1, . . . , hn (recording the attacker’s inputs)
– a ground frameφ (the agents outputs)
– a set of formulasΘ (the conditions that have to be satisfied in order to reach the

state).

A symbolic transition sequenceof a protocolΠ is a sequence

(q0(n0), ∅, φ0, ∅)→ . . .→ (qm(nm), 〈h1, . . . , hm〉 , φm, Θm)

if, for everym− 1 ≥ i ≥ 0, there is a transition rule

(qi(αi), qi+1(αi+1), 〈x1, . . . , xi〉 , x, ψ, s)

4

such thatn = αi+1 \αi, φi+1 = (νn).(φi ·p 7→ sρiσi+1), ni+1 = ni⊎n,Θi+1 = Θi∪
{φi ⊢ hi+1, ψρiσi+1} whereσi = {x1 7→ h1, . . . , xi 7→ hi} andρi is a renaming of
the sequenceαi into the sequenceni. We assume a renaming that ensures the freshness
of the namesn: n ∩ ni = ∅.

Definition 2. Given an interpretationM, a transition sequence ofΠ

(q0(n0), ∅, φ0, ∅)→ . . .→ (qm(nm), 〈h1, . . . , hm〉 , φm, Θm)

is valid w.r.t.M if, for everym− 1 ≥ i ≥ 0,M |= Θi+1.

Initialization. For technical purposes, we always takeφ0 = νn(), wheren contains
the honest random items to be generated, and that is followedby an empty list of terms.
φ1 will contain the output of the initialization, that is, the names and the public keys.
We will also assume for technical purposes that all honestlygenerated items (nonces,
random inputs of encryptions etc.) are generated upfront.

2.4 Satisfaction of Predicates, Constraints and FOL Formulas

Besides the predicatesx = y and φ̂, x1, ..., xm ⊢ x, we will also use the predicate
W (x), and the constraintsRandGen(x), x ⊑ φ̂,x, x 4 φ̂, andfresh(x; φ̂,x). Com-
putational semantics of these are defined in [7], so here we just briefly mention that=
refers to equality up to negligible probability, the meaning of ⊢ is that the adversary is
able to compute (with a PT algorithm) the right side given theleft,W (x) is a predicate
that tells ifx is the name of an agent, andRandGen(x) means thatxwas honestly, ran-
domly generated. We will assume that such an item can only be guessed with negligible
probability.x ⊑ φ̂,x means thatx was part of a message sent out by an agent, not just
the bit string corresponding tox, but the construction represented byx; fresh(x; φ̂,x)
is just an abbreviation defined below, andx 4 φ̂ means that the adversarial input in
x was computable from̂φ. Suppose that a first-order modelM as discussed earlier is
given. Here we define satisfaction of predicates and constraints in asymbolicexecution.

– Interpretation of predicates byM, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk), whereσ is a sub-
stitution as above,t1, ..., tm are closed terms, andn1, ..., nk are names (note that
the interpretation depends on the modelM) is defined as follows:
• M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= t = t′ if M, σ |= t = t′

• φ̂, s1, . . . , sn ⊢ t, whereφ̂ is part of the syntax of the predicate (not an input),
intuitively, it aims at ranging over frames:
M,σ,〈t1, . . . , tm〉,n |= φ̂, s1, . . . , sn ⊢ t if M, σ |= s1, . . . , sn, t1, . . . , tm ⊢ t
• M, σ, 〈t1, . . . , tm〉 , n |=W (x) if M, σ |=W (x)

– Interpretation of constraints byM, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk), whereσ is a sub-
stitution as above,t1, ..., tm are closed terms, andn1, ..., nk are names (note that
the interpretation does not depend on the modelM):
• RandGen(s) for s closed term (name):
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= RandGen(s)
if M, σ |= s = n1 ∨ . . . ∨ x = nk.

5

• t ⊑ φ̂, s1, ..., sn, wheres1, ..., sn andt are closed terms:
M, σ, 〈t1, . . . , tm〉 , n |= t ⊑ φ̂, s1, ..., sn if t is a subterm of someti or si
• t 4 φ̂, wheret is closed:
M, σ, 〈t1, . . . , tm〉 , n |= t 4 φ̂ if for every handleh of t, φ̂ ⊢ h.
• We definefresh(x; φ̂,x) = RandGen(x) ∧ x 6⊑ φ̂,x

– Interpretation byM, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk)whereσ is a substitution as above
of any FOL formula in which there are no free variables under constraints is defined
recursively:
• Interpretations ofθ1 ∧ θ2, θ1 ∨ θ2, and¬θ are defined as usual in FOL
• If x does not occur under a constraint inθ, interpretations of∀xθ and∃θ is

defined as usual in FOL.
• If x occurs under a constraint inθ, then
∗ M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= ∀xθ iff for every ground termt,
M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= θ{x 7→ t}
∗ M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= ∃xθ iff there is a ground termt,
M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= θ{x 7→ t}

– Satisfaction at stepm:

M, (q, 〈h1, . . . , hm〉 , n, φm, Θ) |= θ iff M, φm, n |= θ.

3 The NSL Protocol and Its Symbolic Execution

We now formulate the NSL protocol and its execution in the above framework. The
steps of the protocol, as usual are

1. A → B : {N1, A}eKB
2. B → A : {N1, N2, B}eKA

3. A → B : {N2}eKA

We use a randomized public-key encryption symbol:{m}reKQ
is intended to represent

the encryption of the plaintextm with the public-key of the principalQ, with a random
seedr. So, consider the a set of constructorsFc = {{ } , 〈 , 〉, e , d ,K }, and a set
of destructorsFd = {dec(,), π1 () , π2 ()}, with the following equations:

– Equations for encryption/decryption:
• Decryption of an encryption results the plaintext:dec({x}ReK , dK) = x

– Equations for pairing/projections:
• First projection:π1 (〈x, y〉) = x
• Second projection:π2 (〈x, y〉) = y

We will use pairs to construct triples:〈x, y, z〉 ≡ 〈x, 〈y, z〉〉.
We can define the action of principals as follows: the initiator, communicating with

intended partyQ, does the following sequence of steps in sessioni which we will
informally denote byInitANSL[A, i,Q,N1, h1, h3, R1, R3]:

1. (StateqA0 (n)) Receives some handleh1 from the adversary that triggers the start of
the session with intended partyQ;

2. A generates nonceN1;
3. A sends{N1, A}

R1

eKQ
(stateqA1 (n));

6

4. A receivesh2, and checks:
(a) π1 (dec(h3, dKA)) = N1;
(b) π2 (π2 (dec(h3, dKA))) = Q;

5. A sends{π1 (π2 (dec(h3, dKA)))}
R3

eKQ
;

6. A sendsci
(

A,Q,N1, π1 (π2 (dec(h3, dKA)))
)

(stateqA2 (n)).

We used notationqAi (n) to denote the reached states. For verification purposes, letci
be a special function symbol, that takes as argumentsA,B,N1, N2, respectively who
commits for whom and the corresponding nonces.ci(A,B,N1, N2) is sent along with
{N1, N2, B}A. For the responder, there is a similar commitment: at the endof the
protocol,B emits (as a last message)cr(A,B,N1, N2).

The responder does the following sequence of steps in session i′ which we will
informally denote byRespB

NSL[B, i
′, N2, h2, h4, R2]:

1. (StateqB0 (n)) B receives someh2 from the adversary and checks:
– W (π2 (dec(h2, dKB))) (Checks that it is a name of someone);

2. B generates nonceN2;
3. B sends{π1 (dec(h2, dKB)) , N2, B}

R2

eK
π2(dec(h2 ,dKB))

(stateqB1 (n));

4. B receivesh4, and checks ifdec(h4, dKB) = N2;
5. B sendscr(π2 (dec(h2, dKB)) , B, π1 (dec(h2, dKB)) , N2) (stateqB2 (n)).

3.1 Example Executions of the NSL Protocol

We now show an example of how an initial segment of the NSL execution can look like.

Example 1.We show the beginning of a possible branch in the symbolic execution of
NSL.

(q0, ∅, φ0, ∅) (q1, H1, φ1, Θ1) (q2, H2, φ2, Θ2) (q3, H3, φ3, Θ3) (q4, H4, φ4, Θ4)
• • • • •✲ ✲ ✲ ✲

wheren = N1, N2, R1, R2, R3, q0 = (qA0 , q
B
0)(n), q1 = (qA1 , q

B
0)(n), q2 = (qA1 , q

B
1)(n),

q3 = (qA2 , q
B
1)(n) andq4 = (qA2 , q

B
2)(n). In other words, we interleave the actions of

A andB, as in an expected execution and assume that the two processes were first
activated (if not, we could introduce two transitions activating the processes).

– φ0 = νKAKBAB(), Θ0 = ∅
– H1 = ∅, φ1 = νKAKBAB(p1 7→ (A,B, eKA, eKB)), Θ1 = ∅
– H2 = 〈h1〉, φ2 extendsφ1 with p1 7→ {〈N1, A〉}R1

eKB
, Θ2 = {φ1 ⊢ h1}

– H3 = 〈h1, h2〉,
φ3 extendsφ2 with p2 7→ {〈π1 (dec(h2, dKB)) , 〈N2, B〉〉}R2

eKπ2(dec(h2,dKB))
,

Θ3 = Θ2 ∪ {φ2 ⊢ h2,W (π2 (dec(h2, dKB)))}
– H4 = 〈h1, h2, h3〉,

φ4 extendsφ3 with p3 7→ {π1 (π2 (dec(h3, dKA)))}
R3
eKB

,
Θ4 = Θ3 ∪ {φ3 ⊢ h3, π1 (dec(h3, dKh)) = N1, π2 (π2 (dec(h3, dKA))) = B},

– H5 = 〈h1, h2, h3, h4〉, φ5 = φ4,
Θ5 = Θ4 ∪ {φ4 ⊢ h4, dec(h4, dKB) = N2},

7

LetM be a model such thatπ2 (dec(h2, dKB)) = A,

h2 =M {〈N1, A〉}
R1

eKB
, h3 =M {〈N1, 〈N2, B〉〉}

R2

eKA
, h4 =M {N}

R3

eKB
,

and⊢M is simply the classical Dolev-Yao deduction relation. Thenthe execution se-
quence above is valid w.r.t.M, and this corresponds to the correct execution of the NSL
protocol betweenA andB.

There are however other models in which this transition sequence is valid. For in-
stance letM′ be such thath2 =M′ N1 andφ1 ⊢M′ h2 andN1 =M′ {〈N1, A〉}

R1

eKB
,

(andh3, h4 as above). We get again a valid transition sequence w.r.t.M′. Though, in
what follows, we will discard such sequences, thanks to someaxioms.

Example 2.Consider again the transitions of the Example 1. Now consider a modelM
in whichN0, {N1, N2, B}

R2

eKA
⊢M {N1, N0, B}reKA

for an honestly generated nonce
N0 that can be chosen by the attacker: the transition sequence of the previous example is
also valid w.r.t. this model. This however yields an attack,using a malleability property
of the encryption scheme.

Discarding such attacks requires some properties of the encryption scheme (for in-
stance IND-CCA). It can be ruled out by the non-malleabilityaxiom that we will intro-
duce.

From this example, we see that unexpected attacks can be found when some as-
sumption is not explicitly stated as an axiom to limit adversarial capabilities.

4 The Axioms

In this section we present a set of computationally sound axioms. The first 7 axioms are
rather trivial. The 8th looks long, but it actually only means that ifx is freshly generated
(it has not been sent out), then it cannot help to compute an honestly generated nonce
N , unlessx is the nonce itself (the computational reason being thatx is statistically in-
dependent ofN and everything else that has been sent around). The secrecy axiom was
essentially proven in [7], but since we need a little bit stronger version, we include the
proof of it here. We also prove here the computational soundness of the non-malleability
axiom. Axioms forc are trivial as it is just an ideal function introduced for convenience
to represent the agents’ view of a session.

– x = x, and the substitutability (congruence) property of equal terms holds for=, ⊢
predicates.

– Self derivability:φ̂,x, x ⊢ x
– Increasing capabilities:̂φ,x ⊢ y −→ φ̂,x, x ⊢ y
– Commutativity: Ifx′ is a permutation ofx, thenφ̂,x ⊢ y −→ φ̂,x′ ⊢ y
– Transitivity of derivability:φ̂,x ⊢ y ∧ φ̂,x,y ⊢ z −→ φ̂,x ⊢ z

– Functions are derivable:̂φ,x ⊢ f(x)
– No telepathy:fresh(x; φ̂) −→ φ̂ 6⊢ x
– Fresh items are independent:

fresh(x; φ̂,x) ∧ RandGen(N) ∧ x 4 φ̂ ∧ φ̂,x, x ⊢ N −→ φ̂,x ⊢ N ∨ x = N

8

– Special to IND-CCA encryption:
• Secrecy:

RandGen(K) ∧ eK ⊑ φ̂ ∧ fresh(R; φ̂,x, x, y) ∧ x 4 φ̂ ∧ x 4 φ̂

∧ y 4 φ̂ ∧ φ̂,x, {x}ReK ⊢ y

−→ dK ⊑ φ̂,x, x ∨ φ̂,x ⊢ y

Basically, this axiom says that ifK was correctly generated,R is fresh, andy
can be derived with the help of{x}ReK , then it can be derived without{x}ReK ,
or dK has been sent out.
• Non-malleability (assuming there is only one kind of encryption and pairing):

RandGen(N) ∧ RandGen(K) ∧ eK ⊑ φ̂ ∧ N ⊑ φ̂ ∧ x 4 φ̂

∧ φ̂,x ⊢ y ∧ φ̂,x, dec(y, dK) ⊢ N ∧ ∀xR(y = {x}ReK → {x}
R
eK 6⊑ φ̂)

−→ dK ⊑ φ̂,x ∨ φ̂,x ⊢ N

This means that ifN andK were correctly generated,y is a ciphertext, and
with the plaintext ofy,N can be derived, but no honest agent producedy as an
encryption, then eitherN can be derived without the plaintext ofy, or dK has
been sent out.

– Special toci, cr (Let c be either of them):
• c does not help the adversary:RandGen(N) ∧ φ̂,x, c(x, y, z, w) ⊢ N →

φ̂,x ⊢ N
• c cannot be forged and cannot be subparts of terms:φ̂,x ⊢ c(x, y, z, w) −→

c(x, y, z, w) ⊑ φ̂ ∨ x1 = c(x, y, z, w) ∨ ... ∨ xl = c(x, y, z, w)
• c cannot be equal with anything else: If the outermost function symbol of a

termT something different fromc, thenc(x, y, z, w) 6= T .
– Equations for the function symbols discussed earlier

4.1 Computational Soundness of the Secrecy Axiom

The intuitive meaning of the following axiom is that the adversary can only derive the
inside of a freshly generated encryption, if its decryptionkey has been sent out, or the
inside could be derived earlier.

Proposition 1. If the encryption scheme is IND-CCA2, then the following formula

θ = ∀
xx1...xlyKRφ̂

(

RandGen(K) ∧ eK ⊑ φ̂ ∧ fresh(R; φ̂,x, x, y)

∧ x 4 φ̂ ∧ x 4 φ̂ ∧ y 4 φ̂ ∧ φ̂,x, {x}ReK ⊢ y

−→ dK ⊑ φ̂,x, x ∨ φ̂,x ⊢ y
)

is computationally valid.

9

Proof. Suppose that it is not computationally valid. That is, thereis a computational
structure(M, Π, S1), with

M, Π, S1 6|= θ.

Then, there are PPT machinesA = (Ax,Ax1 , ...,Axl
,AyAK ,AR) such that

M, Π, S1,A 6|=RandGen(K) ∧ eK ⊑ φ̂ ∧ fresh(R; φ̂,x, x, y)

∧ x 4 φ̂ ∧ x 4 φ̂ ∧ y 4 φ̂ ∧ φ̂,x, {x}ReK ⊢ y

−→ dK ⊑ φ̂,x, x ∨ φ̂,x ⊢ y.

Therefore, there is aS1 ⊆ S non-negligible such that

M, Π, S1,A |=RandGen(K) ∧ eK ⊑ φ̂ ∧ fresh(R; φ̂,x, x, y)

∧ x 4 φ̂ ∧ x 4 φ̂ ∧ y 4 φ̂ ∧ φ̂,x, {x}ReK ⊢ y AND

M, Π, S1,A 6|= dK ⊑ φ̂,x, x ∨ φ̂,x ⊢ y

We claim that the second implies that there is a non-negligible subsetS2 of S1 such that
M, Π, S2,A |= ¬(dK ⊑ φ̂,x, x) andM, Π, S2,A 6|= φ̂,x ⊢ y. To see this, consider
the following:

– TakeS2 = S1\{τ | the computation ofA on τ yields a stateq such thatq |= dK ⊑

φ̂,x, x}. Clearly,M, Π, S2,A |= ¬(dK ⊑ φ̂,x, x), andM, Π, S1 \ S2,A |=

dK ⊑ φ̂,x, x.
– S2 is non-negligible becauseM, Π, S1,A 6|= dK ⊑ φ̂,x, x ∨ φ̂,x ⊢ y implies
M, Π, S1,A 6|= dK ⊑ φ̂,x, x.

– SinceM, Π, S1 \ S2,A |= dK ⊑ φ̂,x, x, we haveM, Π, S2,A 6|= φ̂,x ⊢ y,
because otherwise we would haveM, Π, S1,A |= dK ⊑ φ̂,x, x ∨ φ̂,x ⊢ y

contradictingM, Π, S1,A 6|= dK ⊑ φ̂,x, x ∨ φ̂,x ⊢ y.

SinceM, Π, S2,A 6|= φ̂,x ⊢ y, by the definition of the computational semantics of
the derivability predicate, there is a subsetS3 of S2 such that on all subsets ofS3, there
is no PT algorithm that computes the interpretation ofy from the computational frame
and the interpretation ofx. Then it is straightforward to check thatM, Π, S3,A |=

¬(φ̂,x ⊢ y):

– Suppose it is not true, that is,M, Π, S3,A 6|= ¬(φ̂,x ⊢ y).
– Then there is anS4 ⊆ S3 such thatM, Π, S3,A |= φ̂,x ⊢ y.
– That implies thatS3 has a subset on which there is an algorithm that computes

the interpretationy from the computational frame and the interpretation ofx, a
contradiction.

It is easy to check that

M, Π, S3,A |=RandGen(K) ∧ eK ⊑ φ̂ ∧ fresh(R, φ̂,x, x, y)

∧ x 4 φ̂ ∧ x 4 φ̂ ∧ y 4 φ̂ ∧ φ̂,x, {x}ReK ⊢ y

10

becauseS3 ⊆ S1, and the satisfaction of all these conjuncted predicates carry over to
subsets. Therefore,

M, Π, S3,A |= RandGen(K)

M, Π, S3,A |= eK ⊑ φ̂

M, Π, S3,A |= fresh(R, φ̂,x, x, y)

M, Π, S3,A |= x, x, y 4 φ̂

M, Π, S3,A |= ¬(dK ⊑ φ̂,x, x)

M, Π, S3,A |= φ̂,x, {x}ReK ⊢ y

M, Π, S3,A |= ¬(φ̂,x ⊢ y).

We have to create an adversaryACCA2 that wins the CCA2 game.
SinceM, Π, S3,A |= φ̂,x, {x}ReK ⊢ y holds, there is anS5 ⊆ S3 and an algorithm

C that computes the interpretation ofy from the interpretations of̂φ, x and{x}ReK on
S5. Clearly,

M, Π, S5,A |= RandGen(K)

M, Π, S5,A |= eK ⊑ φ̂

M, Π, S5,A |= fresh(R; φ̂,x, x, y)

M, Π, S5,A |= x, x, y 4 φ̂

M, Π, S5,A |= ¬(dK ⊑ φ̂,x, x)

M, Π, S5,A |= ¬(φ̂,x ⊢ y).

It may be the case that theS5 we have chosen depends on evaluations ofτ that are
determined afterM reaches the challenge stateqc. However, clearly, if we include all
possible future evaluations, the set that we receive this way,S will still be such that there
is an algorithmC that computes the interpretation ofy from the frame at the challenge
stateqc, x and{x}ReK onS. Moreover, it is easy to see that

M, Π, S,A |= RandGen(K)

M, Π, S,A |= eK ⊑ φ̂

M, Π, S,A |= fresh(R; φ̂, ,x, x, y)

M, Π, S,A |= x, x, y 4 φ̂

M, Π, S,A |= ¬(dK ⊑ φ̂,x, x)

M, Π, S,A |= ¬(φ̂,x ⊢ y)

because these are properties that depend only on conditionsin the challenge stated, and
not later ones.

SinceM, Π, S,A |= dK 6⊑ φ̂,x, x, the decryption key has never been sent.
We show that we can construct an algorithmACCA2 that breaks CCA2 security. Let

AΠ be the protocol adversary.

11

– ACCA2 generates computational keys thatAΠ uses, except for the one correspond-
ing toK.

– The encryption oracle generates a random bitb.
– The encryption oracle generates a computational key and publishes its public part.
ACCA2 encrypts with this key for encryptions withK, except forx.

– ACCA2 simulates both the agents andAΠ : It computes all messages that the agents
output according to their algorithm, and computes all messages thatAΠ outputs
according to its algorithm. This way it builds upφ and the bit strings corresponding
to them as well as the equations.

– Whenever a decryption withdK has to be computed, there are two possibilities:
• If the ciphertext was created byACCA2 using the encryption algorithm, then it

knows the plaintext, so it can use it without decryption.
• If the ciphertext was created in some other way, the decryption oracle is used.

This can be freely done untilx occurs.
Note, thatdK is not available to the adversary.

– WhenA reaches the challenge stateqc, usingAx, ACCA2 computes the bit string
for x, and submits it to the encryption oracle as well as a random bit string that has
the same length as the plaintext.

– According to our definition of satisfaction the computationby C is based on the
frame at the challenge state. We hadM, Π, S,A |= fresh(R; φ̂, ,x, x, y), which
means thatR was honestly generated and has not been sent around, and henceR
is independent of the items inφ. Moreover, sincex 4 φ̂ andx 4 φ̂ andy 4 φ̂
are satisfied,R is also independent ofx andx andy. Further, since we included all
future random choices inS,R is also independent ofS. Hence having it encrypted
by the encryption oracle will not lose any information as long as the oracle encrypts
the correct bit.

– The encryption oracle encrypts the interpretation ofx if b = 0, and encrypts the
random bit string ifb = 1. It gives the resultc back toACCA2.

– RunC on the bit stringc returned by the oracle and on the bit strings of the frame.
– If, in the above
• usingc, the execution is inS andACCA2 receives the same value asAy gives

for y, thenACCA2 returnsbACCA2 = 0.
• OtherwiseACCA2 throws a fair coin and returnsbACCA2 = 0 or bACCA2 = 1

with probability1/2.

We have now that

Prob (bACCA2 = b | S ∧ b = 0)− 1 (1)

(the conditional probability ofbACCA2 = b givenS andb = 0) is negligible because in
this case the oracle encrypts the correct string, andC’s computations are employed on
the correct bit string, so it gives the interpretation ofx. Note, we also use here thatS
and the interpretation ofR do not correlate.

On the other hand, observe that

Prob (bACCA2 = b | S ∧ b = 1)− 1/2 (2)

12

is also negligible. The reason is that whenb = 1, the encryption oracle computes some-
thing that has nothing to do with the protocol andx andy. So the probability of com-
putingx with or without the encryption in this case, is the same. But,remember, we
had thatM, Π, S,A |= φ̂,x 6⊢ y. This means thaty cannot be computed without the
encryption anywhere and therefore the adversary’s computation on the fake encryption
cannot give good result by more than negligible probability. So the adversary will end
up throwing a coin in this case. Putting (1) and (2) together,we have

Prob (bACCA2 = b | S)−
1

2

is non-negligible. Then, sinceACCA2 throws a fair coin outsideS,

Prob (bACCA2 = b)−
1

2

is non-negligible, which means CCA2 security assumption isbroken. ⊓⊔

4.2 Computational Soundness of the Non-Malleability Axiom

Proposition 2. If the encryption scheme is IND-CCA2, then the formula

θ ≡ ∀
xx1...xlyNKRφ̂

(

RandGen(N) ∧ RandGen(K)

∧ eK ⊑ φ̂ ∧ N ⊑ φ̂ ∧ x 4 φ̂ ∧ φ̂,x ⊢ y

∧ φ̂,x, dec(y, dK) ⊢ N ∧ ∀xR(y = {x}ReK → {x}
R
eK 6⊑ φ̂)

−→ dK ⊑ φ̂ ∨ φ̂,x ⊢ N
)

is computationally valid.

Proof. Suppose it is not computationally valid. That is, there is a computational struc-
ture(M, Π, S1), with

M, Π, S1 6|= θ.

There are PPT machinesA = (Ax1 , ...,Axk
,Ax,Ay,Az,AK ,AR) such that

M, Π, S1,A 6|= RandGen(N) ∧ RandGen(K) ∧ eK ⊑ φ̂ ∧ N ⊑ φ̂ ∧ x 4 φ̂

∧ φ̂,x ⊢ y ∧ φ̂,x, dec(y, dK) ⊢ N ∧ ∀xR(y = {x}ReK → {x}
R
eK 6⊑ φ̂)

−→ dK ⊑ φ̂ ∨ φ̂,x ⊢ N.

Exactly the same way as in the proof of the Secrecy Axiom, we get that there is an
S3 ⊆ S1 such that

M, Π, S3,A |= RandGen(N)

M, Π, S3,A |= RandGen(K)

M, Π, S3,A |= eK ⊑ φ̂

13

M, Π, S3,A |= N ⊑ φ̂

M, Π, S3,A |= x 4 φ̂

M, Π, S3,A |= φ̂,x ⊢ y

M, Π, S3,A |= φ̂,x, dec(y, dK) ⊢ N

M, Π, S3,A |= ∀xR(y = {x}ReK → {x}
R
eK 6⊑ φ̂)

M, Π, S3,A |= ¬(dK ⊑ φ̂)

M, Π, S3,A |= ¬(φ̂,x ⊢ N).

SinceM, Π, S3,A |= φ̂,x ⊢ y holds, there is anS4 ⊆ S3 and an algorithmC
that computes the interpretation ofy from the interpretation of̂φ, x on S4. Since
M, Π, S4,A |= φ̂,x, dec(y, dK) ⊢ N holds, there is anS5 ⊆ S4 and an algo-
rithm C′ that computes the interpretation ofN from the interpretations of̂φ andx

anddec(y, dK) onS5. Clearly, onS5 as well,C computes the interpretation ofy from
the interpretation of̂φ andx.

It may be the case that theS5 we have chosen depends on evaluations ofτ that are
determined afterM reaches the challenge stateqc. However, clearly, if we include all
possible future evaluations, the set that we receive this way, S will still be such that
there is an algorithmC that computes the interpretation ofy at the challenge stateqc,
andC′ that computes the interpretation ofN .

Moreover,
M, Π, S,A |= RandGen(N)

M, Π, S,A |= RandGen(K)

M, Π, S,A |= eK ⊑ φ̂

M, Π, S,A |= N ⊑ φ̂

M, Π, S,A |= x 4 φ̂

M, Π, S,A |= φ̂,x ⊢ y

M, Π, S,A |= φ̂,x, dec(y, dK) ⊢ N

M, Π, S,A |= ∀xR(y = {x}ReK → {x}
R
eK 6⊑ φ̂)

M, Π, S,A |= ¬(dK ⊑ φ̂)

M, Π, S,A |= ¬(φ̂,x ⊢ N).

Observe first that there had to be an honest encryption in which N was sent out.
The reason is the following.M, Π, S,A |= N ⊑ φ̂ ensures thatN was sent out and
M, Π, S,A |= ¬(φ̂,x ⊢ N) guarantees that the adversary has not access to it. Since
we assumed that there is only pairing and encryption, the only things the adversary may
not have access in a term of the frame, are the ones under encryptions with honest keys.
So there was at least one honest encryption ofN sent out.

14

Secondly, observe thatM, Π, S,A |= ∀xR(y = {x}ReK → {x}
R
eK 6⊑ φ̂) means

that for everyS′ ⊆ S, if y = {x}ReK onS′, then{x}ReK 6⊑ φ̂ onS′. So on any suchS′,
y was not created by one of the agents as an honest encryption with eK.

The simplest now is to use the CCA2 definition that allows multiple agents and
multiple encryption queries (this is equivalent to the standard definition). The CCA2
attackerACCA2 runs the protocol, and whenever there is an encryption by oneof the
honest agents with one of the honest agents’ keys, the plaintext is submitted to the
encryption oracle along with a randomly generated item withthe same length. The
encryption oracle chooses according to their internal random choiceb0 (same for all
encryption oracles) that is kept the same until the end. Other encryptions are done by
the CCA2 adversary. When the protocol roles are supposed to decrypt an encryption
that came from the oracle, the correctly recorded plaintextis used. At the challenge
state, the interpretation ofy is computed withC and is submitted to the decryption
oracle. As we have seen above, this message was not created byan honest agent, hence
it was created by the adversary and so it did not come from the encryption oracle.S
is checked. OutsideS, the adversary throws a coin and outputs the result. InsideS,
the algorithmC′ is applied to the interpretation of thêφ and dec(y, dK). InsideS,
as long as the encryption oracles encrypted the correct bit string, the output ofC′ is
the interpretation ofN . If they encrypted the random bit string, then the output ofC′

cannot be the interpretation ofN , because in this case none of the honest encryptions
have anything to do with the protocol (but all information about N is under honest
encryptions). So, ifC′ returnsN , ACCA2 outputs0, while if it does not outputN ,
ACCA2 throws a fair coin. We have

Prob (b0 = b : b← ACCA2
η | Sη ∧ b0 = 0)− 1

is negligible as in this case the encryption oracle encrypted the correct plaintexts. Now,

Prob (b1 =: b← ACCA2
η | Sη ∧ b0 = 1)−

1

2

is also negligible, because in this case, the encrypted items have nothing to do with the
protocol, and so the adversary throws a coin. Since by construction we also have that

Prob
(

b1 =: b← ACCA2
η | (Sη)⊥ ∧ b0 = 1

)

−
1

2

is negligible, it follows from the 3 equations above that that

Prob (b1 = b : b← ACCA2
η)−

1

2

is non-negligible hence breaking CCA2 security assumption. ⊓⊔

4.3 One Extra Axiom (The implementation needs to satisfy this too)

For this protocol, we need an additional axiom, namely,

RandGen(N)→ ¬W (π2 (N)).

15

That is, the second projection of a nonce can never be a name (by overwhelming proba-
bility on a non-negligible set). We assume that the implementation of the pairing is such
that this condition is satisfied. If this does not hold, thereis an attack which we include
in Appendix A. It is very easy to ensure that an implementation satisfies this property.
If the length of nonces is fixed for a given security parameter, and agents check the
length of bit strings that are in the positions of nonces, in this caseπ1 (N), then we can
preventW (π2 (N)) as it is easy to show thatW (π2 (N)) is only possible if the length
of π1 (N) differs from the length ofN with non-negligible probability. But they should
be the same length as they are both nonces. To be more precise,in this case we should
add in the above formula that bothW (π1 (N)) andN are of nonce type (meaning they
have the same computational length):

RandGen(N) ∧ NonceLength(N) ∧ NonceLength(π1 (N))→ ¬W (π2 (N)).

This axiom is satisfied in an implementation that checks the length of bit strings cor-
responding to nonces. This means thatsecurity of the NSL protocol does not require
tagging of nonces, pairs, encryptions.

This axiom is used under 2.2.2 part of the secrecy proof, provided in Section 6.

5 Examples for Proving Inconsistency

Before getting into the correctness proof of the NSL protocol, we first look at three
small example proofs. This way the reader will become familiar how the axioms work.
Note that these derivations arenot pure first-order deductions. Not only we use the
axioms and first order deduction rules, but we also use how a symbolic execution is
defined (and the transition system is not formalized in FOL).

Example 3.We start with a very trivial example. It is rather obvious that in the execu-
tion of the NSL protocol in Example 1,φ2 6⊢ A should be inconsistent with the axioms
asA was included inφ2. We can derive it the ollowing way: observe that

φ2 ≡ A,B, eKA, eKB, {〈N1, A〉}
R1

eKB
≡ φ0, A,B, eKA, eKB, {〈N1, A〉}

R1

eKB
.

From the self-derivability axiom at step0, φ0, B, eKA, eKB, {〈N1, A〉}
R1

eKB
, A ⊢ A.

By commutativity it follows that,φ0, A,B, eKA, eKB, {〈N1, A〉}
R1

eKB
⊢ A, which

means that
φ0, A,B, eKA, eKB, {〈N1, A〉}

R1

eKB
6⊢ A

is inconsistent with the axioms. So,M, σ 6|= A,B, eKA, eKB, {〈N1, A〉}
R1

eKB
6⊢ A for

any modelM, which implies thatφ2 6⊢ A is inconsistent with the axioms.

Example 4.We can also derive, as expected, thatφ2 ⊢ N1 is inconsistent with the
axioms in our NSL example. This should be the case, asN1 has only been sent out
under a single good encryption. As

φ2 ≡ A,B, eKA, eKB, {〈N1, A〉}
R1

eKB
≡ φ1, {〈N1, A〉}

R1

eKB
,

16

it is enough to show thatφ1, {〈N1, A〉}
R1

eKB
⊢ N1 is inconsistent with the axioms.

Suppose that, in order to get a contradiction, this is not thecase,i.e.,

φ1, {〈N1, A〉}
R1

eKB
⊢ N1. (3)

To apply the secrecy axiom consider thatx = 〈〉, x = 〈N1, A〉, andy = N1. SinceKB

was correctly generated (appeared as a name),RandGen(KB) holds. By Example 1
we haveeKB ⊑ φ1. fresh(R;φ1,x, x, y) also holds becauseRandGen(R1) ∧ R1 6⊑
φ1, 〈〉, 〈N1, A〉, N1. Finally, sincex 4 φ1, x 4 φ1 andy 4 φ1 because none has
handles, (3) holds, anddKB 6⊑ φ1,x, x, one may apply the secrecy axiom and get

φ1 ⊢ N1.

Finally, we may show that at Step1 we havefresh(N1;φ1), sofresh(N1;φ1)∧φ1 ⊢ N1

which contradicts the no telepathy axiom.

Example 5.From the axioms, we can also derive the increasing knowledgeof an ad-
versary,i.e., for anym andx, if φm ⊢ x is derivable from the axioms and agent checks,
thenφm+1 ⊢ x is also derivable from the axioms and agent checks. The proofis rather
simple. Assume thatφm ⊢ x is derivable from the axioms and agent checks. Lett be
the message sent in them + 1’th stepi.e., φm+1 ≡ φm, t. The increasing capabilities
axiom applied to stepm meansφm ⊢ x impliesφm, t ⊢ x. But that is the same as

φm+1 ⊢ x.

Note that from the above and from Example 3 it also follows that for anym, the axioms
imply that φm ⊢ A. It is clear from Example 3, thatφ2 ⊢ A follows from axioms.
Then from the above, by induction,φm ⊢ A follows from axioms. Here, we applied
induction. But note, that the induction is not within FOL, weused the induction on the
number of execution steps.

6 Correctness Proof of NSL

In this section we present the correctness of the NSL protocol for any (bounded) number
of sessions. Namely, we show that in the symbolic execution defined above, violation of
secrecy or authentication is inconsistent with the axioms.As we mentioned, we assume
that agentA only executes the initiator role, and agentB only executes the responder
role. But, we allow bothA andB to have other sessions running with possibly corrupted
agents. We start by showing that throughout the entire execution, nonces that were
generated by honest initiatorA and sent to honest responderB, or vice-versa, remain
secret. We do this by picking any stepm of the execution tree, and listing all possible
execution rounds (according to the protocol roles), we showthat for all possibilities,
φm 6⊢ N together with the axioms and the agent checks implyφm+1 6⊢ N . In other
words,φm 6⊢ N , the axioms and the agent checks, andφm+1 ⊢ N are inconsistent.
Sinceφ0 6⊢ N initially holds by no-telepathy, by induction, we haveφm 6⊢ N after any
finite number of stepsm. The reader can see below that the induction hypothesis is a
little more complex but essentially this is what we do.

17

Once secrecy is proven, authentication and agreement are shown. We pick the point
on the execution tree when the responder finished his task andusing that we have shown
that nonces remain secret, together with non-malleabilitywe show that the initiator also
had finished his task and the corresponding values that the two parties see have to match.
In other words,B finished,A not finished or values don’t match, and the axioms and
the agent checks are inconsistent.

6.1 Secrecy

The aim of the secrecy proof is to show that noncesN sent betweenA andB remain
secret. IfN is a nonce sent byA to B means that∃R

(

{N,A}ReKB
⊑ φ̂

)

. If B sent it

toA, that means that∃hR
(

{π1 (dec(h, dKB)) , N,B}ReKA
⊑ φ̂

)

. So, these nonces can
be characterized by the condition

C[N] ≡ RandGen(N)

∧
(

∃R.{N,A}ReKB
⊑ φ̂ ∨ ∃hR.{π1 (dec(h, dKB)) , N,B}

R
eKA
⊑ φ̂

)

where the first exists characterizes nonces sent fromA to B and the second charac-
terizes nonces sent fromB to A. Then the secrecy property we want to show is that
∀N

(

C[N] −→ φ̂ 6⊢ N
)

. It is equivalent to show that its negation,

∃N
(

C[N] ∧ φ̂ ⊢ N
)

, (4)

is inconsistent with the axioms and the agent checks on everypossible symbolic trace.
Suppose the total length of the symbolic trace in question isn. At the end of the

trace the frameφ containsn terms. Let us denote the frames at each node of this trace
by φ0, φ1, φ2, etc. Each frame contains one more term than the previous one.

Satisfaction ofC[N] by this trace means that one of the terms{N,A}ReKB
or

{π1 (dec(h, dKB)) , N,B}ReKA
appears in frameφn for someh,R. Let us fix suchN .

Furthermore, ifx is a list of a finite number of noncesx ≡ N1, ..., Nl such that they
were all generated by eitherA orB (possibly intended to each other, possibly intended
for other possible malicious agents), and they are all different fromN , then we say
conditionC′[x, N] is satisfied. This can be written as a first order formula like

C′[N1, ..., Nl, N] ≡

l
∧

i=1

(

RandGen(Ni) ∧ N 6= Ni ∧

∃QR.{Ni, A}ReKQ
⊑ φ̂ ∨ ∃QhR.{π1 (dec(h, dKB)) , Ni, B}ReKQ

⊑ φ̂

)

We will carry out an inductive proof on the length ofφl. As it turns out, in order to
avoid loops in the proof, instead of (4), it is better to provethat

∃N∃x
(

C[N] ∧ C′[x, N] ∧ φ̂,x ⊢ N
)

(5)

is inconsistent with the axioms and agent checks. On the symbolic trace, this means that

∃N∃x
(

C[N] ∧C′[x, N] ∧ φl,x ⊢ N
)

18

is inconsistent with the axioms and agent checks. We do this by fixing an arbitraryN
satisfyingC[N], and for this fixedN , we do an induction on the length ofφ. Namely,
we show that having fixedN , if for somem < l, ∃x

(

C′[x, N] ∧ φm,x ⊢ N
)

is
inconsistent with the axioms and agent checks, then

∃x
(

C′[x, N] ∧ φm+1,x ⊢ N
)

is also inconsistent with the axioms and agent checks. Then,as atm = 0 the statement
follows from no telepathy, we are done.

Proposition 3. In the above execution of NSL protocol, letN be such thatC[N] is sat-
isfied, and letm < l. If for all x such thatC′[x, N] holds, the axioms and agent checks
imply (by FOL deduction rules) thatφm,x 6⊢ N , then for allx such thatC′[x, N]
holds, the axioms and agent checks imply (by FOL deduction rules) thatφm+1,x 6⊢ N
holds.

Proof. Suppose in order to get a contradiction that the claim is not true. That is, let us
assume that there is a finite set of noncesx ≡ N1, ...Nl such thatC′[x, N] and

φm+1, N1, ..., Nl ⊢ N

is satisfied in some semantics. We will show show that this, together with the honest
agent tests and the axioms, imply that for some noncesx′ ≡ N ′

1, ...N
′
l′ with C′[x′, N],

φm, N
′
1, ..., N

′
l′ ⊢ N.

Let t be the last term inφm+1, that is,φm+1 ≡ φm, t (t was sent either byA orB).
Suppose, in order to get a contradiction, thatφm, t, N1, ..., Nl ⊢ N . By commutativity,
we get

φm, N1, ..., Nl, t ⊢ N. (6)

We divide the proof in two cases: whent was sent byA and whent was sent byB.
1.) Assume thatt was sent byA. According to the role ofA, for someN ′

1, R1, h3,
R3,Q,

1. t ≡ {N ′
1, A}

R1

eKQ
, or

2. t ≡ {π1 (π2 (dec(h3, dKA)))}
R3

eKQ
, or

3. t ≡ ci (A,Q,N1, π1 (π2 (dec(h3, dKA)))).

1.1.)t ≡ {N ′
1, A}

R1

eKQ
. SinceA is following the initiator role honestly,A generated

N ′
1 earlier.

1.1.1.) IfN ′
1 ≡ N , thenC[N ′

1] is satisfied (becauseC[N] was assumed to be sat-
isfied). By definition ofC that means thatN ′

1 was sent in a message toB. AsA does
only the initiator role and nothing else, each message byA that looks like{N ′

1, A}
R1

eKQ

has a freshly generated nonce each time. So ifN ′ ≡ N , that means that the messages
themselves must also be the same and so{N ′

1, A}
R1

eKQ
≡ {N,A}R1

eKB
, which implies

thatQ ≡ B. Applying to our hypothesis (6) we get

φm, N1, ..., Nl, {N
′
1, A}

R1

eKB
⊢ N.

19

AsA was sent out inφ1 we haveφm ⊢ A (Example 5), and by an argument similar to
the one in Example 4, we getφm, N1, ..., Nl, {N ′

1, A}
R1

eKB
⊢ 〈N,A〉.

Since forx ≡ N1, ..., Nl the predicatex 4 φm holds, as are all names,dKB 6⊑
φm, N1, ..., Nl, N

′
1, A, andfresh(R1;φm, N1, ..., Nl, N

′
1, A) also hold, the secrecy ax-

iom implies that
φm, N1, ..., Nl ⊢ N,

which is exactly what we had to show.
1.1.2.) Let nowN ′

1 6≡ N . By the functions axiom, we have

φm, N1, ..., Nl, N
′
1, A, eKQ, R1 ⊢ {N

′
1, A}

R1

eKQ
,

that together with hypothesis (6) and transitivity implies

φm, N1, ..., Nl, N
′
1, A, eKQ, R1 ⊢ N.

SinceR1 is fresh and different fromN , by the fresh items are independent axiom, we
obtainφm, N1, ..., Nl, N

′
1, A, eKQ ⊢ N.

SinceeKQ is revealed explicitly at the beginning, we haveφm, N1, ..., Nl, N
′
1, A ⊢

eKQ, and hence, by the transitivity axiom,φm, N1, ..., Nl, N
′
1, A ⊢ N. Applying the

same reasoning toA we get

φm, N1, ..., Nl, N
′
1 ⊢ N.

By hypothesisN ′
1 is notN and soC′[x′, N] is satisfied forx′ ≡ N1, ..., Nl, N

′
1 that is

exactly what we wanted.
1.2.)t ≡ {π1 (π2 (dec(h3, dKA)))}

R3

eKQ
. By the definition of the role ofA we have

thatπ2 (π2 (dec(h3, dKA))) = Q. Applying transitivity and function axioms to (6)

φm, N1, ..., Nl, dec(h3, dKA), eKQ, R3 ⊢ N.

SinceeKQ was revealed at the beginning, andR3 is fresh, by Example 5 and the fresh
items are independent axiom we get

φm, N1, ..., Nl, dec(h3, dKA) ⊢ N.

By the non-malleability axiom (withx = N1, ..., Nl, y = h3), we get that either

∃xR({x}ReKA
= h3 ∧ {x}

R
eKA
⊑ φm) or φm, N1, ..., Nl ⊢ N.

1.2.1.) Ifφm, N1, ..., Nl ⊢ N we are done.
1.2.2.) Suppose now∃xR({x}ReKA

= h3∧{x}ReKA
⊑ φm). Then{x}ReKA

has been
sent out. SinceA never encrypts with its own key, it had to beB who sent it out (as the
only two honest agents areA andB). Therefore, asB follows its responder role,

{x}ReKA
≡ {π1 (dec(h2, dKB)) , N

′
2, B}

R
eKA

for someN ′
2. Therefore,dec(h3, dKA) = 〈π1 (dec(h2, dKB)) , N

′
2, B〉. But then

π1 (π2 (dec(h3, dKA))) = N ′
2 and π2 (π2 (dec(h3, dKA))) = B.

20

As we also had thatπ2 (π2 (dec(h3, dKA))) = Q we getQ = B. So the message
t = {π1 (π2 (dec(h3, dKA)))}

R3

eKQ
= {N ′

2}
R3

eKB
. By substitution

φm, N1, ..., Nl, {N
′
2}

R3

eKB
⊢ N,

and by the security axiom, asR3 is fresh and asx 4 φm,

φm, N1, ..., Nl ⊢ N,

which is what we wanted.
1.3.) If t ≡ ci

(

A,Q,N1, π1 (π2 (dec(h3, dKA)))
)

, then by thec is not helpful
axiom,φm, N1, ..., Nl, t ⊢ N follows.

2.) Assume now thatt was sent byB. By to the role ofB, for someh2, N ′
2, R2,

1. t ≡ {π1 (dec(h2, dKB)) , N
′
2, B}

R2

eK
π2(dec(h2,dKB))

, or

2. t ≡ cr(π2 (dec(h2, dKB)) , B, π1 (dec(h2, dKB)) , N2).

(andW (π2 (dec(h2, dKB))) holds.) Just as in the previous case,cr does not help the ad-
versary to getN , so we can assumet ≡ {π1 (dec(h2, dKB)) , N

′
2, B}

R2

eK
π2(dec(h2,dKB))

.

2.1.) IfN ′
2 ≡ N , then, sinceC[N] holds,C[N ′

2] also holds, so asN ′
2 was generated

byB, it was sent toA. And sinceB does not do anything other than executing responder
sessions, andN is only generated in one session,

{π1 (dec(h2, dKB)) , N
′
2, B}

R2

eK
π2(dec(h2,dKB))

≡ {π1 (dec(h2, dKB)) , N,B}
R2

eKA
,

But substituting in (6) we getφm, N1, ..., Nl, {π1 (dec(h2, dKB)) , N,B}
R2

eKA
⊢ N,

which, by the secrecy axiom implies

φm, N1, ..., Nl ⊢ N,

which is what we wanted.
2.2.) IfN ′

2 6≡ N , by the transitivity and the functions derivability axioms, we have

φm, N1, . . . , Nl, π1 (dec(h2, dKB)) , N
′
2, B, eKπ2(dec(h2,dKB)), R2 ⊢ N.

By the independence axiom (and commutativity), asN ′
2 andR2 are fresh, we can drop

them, and sinceB andeKπ2(dec(h2,dKB)) were published at the beginning, so we can
drop them too obtaining

φm, N1, . . . , Nl, π1 (dec(h2, dKB)) ⊢ N.

By the transitivity and the functions derivability axioms,we have

φm, N1, . . . , Nl, dec(h2, dKB) ⊢ N. (7)

Applying non-malleability axiom to (7) we have either

φm, N1, . . . , Nl ⊢ N or ∃xR(h2 = {x}ReKB
∧ {x}ReKB

⊑ φm).

21

In the first case, we complete our proof. In the second case, sinceB does not encrypt
messages with the keyeKB, h2 is sent byA. Then, we have either

h2 = {x}ReKB
≡ {N ′

1, A}
R1

eKQ
or h2 = {x}ReKB

≡ {π1 (π2 (dec(h3, dKA)))}
R3

eKQ

for someQ,N ′
1,R1, R3, andh3 with Q ≡ B.

2.2.1.) If{x}ReKB
≡ {N ′

1, A}
R1

eKB
, thenN ′

1 ≡ π1 (dec(h2, dKB)) hence

t ≡ {N ′
1, N

′
2, B}

R
eKA

.

Then, the secrecy axiom applied toφm, N1, ..., Nl, {N ′
1, N

′
2, B}

R
eKA
⊢ N implies

φm, N1, ..., Nl ⊢ N

2.2.2.) If{x}ReKB
≡ {π1 (π2 (dec(h3, dKA)))}

R3

eKB
, then

dec(h2, dKB) = π1 (π2 (dec(h3, dKA))) .

Substituting in Equation 7, we getφm, N1, . . . , Nl, π1 (π2 (dec(h3, dKA))) ⊢ N , hence

φm, N1, . . . , Nl, dec(h3, dKA) ⊢ N.

Similarly to the previous case, applying non-malleabilityimplies that either

φm, N1, ..., Nl ⊢ N or ∃x′R′.(h3 = {x′}R
′

eKA
∧ {x′}R

′

eKA
⊑ φm).

In the first case, we complete the proof. If∃x′R′.(h3 = {x′}R
′

eKA
∧ {x′}R

′

eKA
⊑ φm),

then, since onlyB encrypts witheKA, and since it follows its responder role, we have

h3 = {x′}R
′

eKA
≡ {π1 (dec(h′2, dKB)) , N

′′
2 , B}

R′

2

eK
π2(dec(h′

2 ,dKB))
.

for someRandGen(N ′′
2). Therefore we haveπ1 (π2 (dec(h3, dKA))) ≡ N ′′

2 , that is,
x ≡ N ′′

2 . But, we also had thatx = dec(h2, dKB), and and the beginning of 2.), the
assumption wasW (π2 (dec(h2, dKB))). Putting these three together, we get

W (π2 (N
′′
2)),

which contradicts our necessary axiom for the NSL,RandGen(N ′′
2)→ ¬W (π2 (N

′′
2)).
⊓⊔

We still have to show that∃N∃x
(

C[N] ∧ C′[x, N] ∧ φ0,x ⊢ N
)

is inconsistent
with the axioms. LetC[N] andC′[x, N] hold forN andx ≡ N1, ..., Nl. At step0,
N ,N1, ..., Nl are still fresh (remember, we assumed for simplicity that everything was
generated upfront, and clearly, these nonces have not been sent), so by the no telepathy
axiom,φ0 6⊢ N , and then by the independence of fresh items,φ0, N1 ⊢ N . Then again
by the independence of fresh items,φ0, N1, N2 6⊢ N , etc. So

φ0, N1, ..., Nl 6⊢ N

holds, meaning that∃N∃x
(

C[N]∧C′[x, N]∧φ0,x ⊢ N
)

is indeed inconsistent. Then
the induction step in Proposition 3 proves that this property always holds. In particular,
we have the following theorem.

22

Theorem 1 (Secrecy).Consider a symbolic execution of the NSL protocol, with an
arbitrary number of possible dishonest participants and two honest participantsA,
B such that they follow the initiator and responder roles correspondingly, they only
execute these roles in each of their bounded number of sessions, and are forbidden to
initiate communications with themselves. Further, consider the convention〈x, y, z〉 ≡
〈x, 〈y, z〉〉.

Our axioms together with the agent checks andRandGen(N) → ¬W (π2 (N))
imply that for alln and for any nonceN that was either generated byA and sent toB
or vice versa,φn 6⊢ N .

The above Theorem states that secrecy of nonces satisfyingC[N] is not broken.
That is, nonces that were generated byA or B and intended to be sent between each
other, remain secret. Takingx to be the empty list, the formula∃N

(

C[N] ∧ φ̂ ⊢ N
)

,
together with the axioms and the agent checks, andRandGen(N)→ ¬W (π2 (N)) are
inconsistent on any symbolic trace.

6.2 Agreement and Authentication

We now prove agreement from the responder’s viewpoint. Thatis, we will show that

RespB

NSL[B, i′, N2, h2, h4, R2] AND
π2 (dec(h2, dKB)) = A

=⇒

EXIST i,N1, h1, h3, R1, R3 SUCH THAT
InitANSL[A, i, B,N1, h1, h3, R1, R3] AND
dec(h2, dKB) = 〈N1, A〉 AND
dec(h3, dKA) = 〈N1, N2, B〉 AND
dec(h4, dKB) = N2

Where by the implication sign we mean that the agent checks, and axioms imply this.
We can also write this within our syntax:

A = π2 (dec(h2, dKB)) ∧
N1 = π1 (dec(h2, dKB)) ∧

cr(A,B,N1, N2) ⊑ φ̂ ∧
−→ ∃h3.

(

ci(A,B,N1, N2) ⊑ φ̂ ∧
N2 = π1 (π2 (dec(h3, dKA)))

)

What we have to prove is that the negation of this is inconsistent with the axioms
and agent checks. But for that it is sufficient to show that theagent checks and axioms
and the premise of the formula imply the conclusion of this formula.

Theorem 2 (Agreement and Authentication).Consider a symbolic execution of the
NSL protocol, with an arbitrary number of possibly dishonest participants and two
honest participantsA, B such that they follow the initiator and responder roles corre-
spondingly, they only execute these roles in each of their bounded number of sessions,
and are forbidden to initiate communications with themselves. Further, consider the
convention〈x, y, z〉 ≡ 〈x, 〈y, z〉〉.

Our axioms together with the agent checks andRandGen(N)→ ¬W (π2 (N)) are
inconsistent with the negation of the formula

cr(π2 (dec(h2, dKB)), B, π1 (dec(h2, dKB)), N2) ⊑ φ̂ ∧ A = π2 (dec(h2, dKB))

−→ ∃N1h3.

ci(A,B,N1, π1 (π2 (dec(h3, dKA)))) ⊑ φ̂ ∧
N2 = π1 (π2 (dec(h3, dKA))) ∧
N1 = π1 (dec(h2, dKB))

23

Proof. cr(π2 (dec(h2, dKB)) , B, π1 (dec(h2, dKB)) , N2) ⊑ φ̂ means (by the role of
B) thatRespB

NSL[B, i
′, N2, h2, h4, R2] was carried out and so we have

{π1 (dec(h2, dKB)) , N2, B}
R2

eKA
⊑ φm (8)

(form step, when it is sent), and

dec(h4, dKB) = N2.

Applying the self derivability axiom we haveφm, dec(h4, dKB) ⊢ N2. and by non-
malleability we have either

φm ⊢ N2 or ∃xR.(h4 = {x}ReKB
∧ {x}ReKB

⊑ φm).

The first case is impossible by Theorem 1. In the second case decryptingh4 we have

x = N2.

SinceB does not send messages encrypted witheKB, h4 = {N2}ReKB
is sent byA in

some sessioni.
1.) Case{x}ReKB

≡ {N1, A}
R1

eKQ
for someN1 andR1: In this case we getx ≡

〈N1, A〉, and soN2 = 〈N1, A〉. This implies by the self-derivability that for anym′,
φm′ , N1, A ⊢ N2, and sinceA is public, implies

φm′ , N1 ⊢ N2.

This is true for allm′, so it is also true for the one whenN1 or N2 is fresh. But,
that contradicts either the freshness or the no telepathy axiom. If N1 is fresh, by the
freshness axiom we getφm′ ⊢ N2 that is impossible by Theorem 1. IfN2 is fresh, the
no telepathy axiom is violated. So the assumption in 1.) is not possible.

2.) Case{x}ReKB
≡ {π1 (π2 (dec(h3, dKA)))}ReKQ

: SinceA follows the initiator
role, there existsN1 honestly generated byA andh3 such that

π1 (dec(h3, dKA)) = N1 and π2 (π2 (dec(h3, dKA))) = B (9)

That is, sessioni ofA is with agentB. Sincex ≡ π1 (π2 (dec(h3, dKA))) andx = N2,
together with (9) we have

π1 (π2 (dec(h3, dKA))) = N2 and dec(h3, dKA) = 〈N1, N2, B〉. (10)

So we haveInitANSL[A, i, B,N1, h1, h3, R1, R3]. The only thing left to be proven is

dec(h2, dKB) = 〈N1, A〉.

Applying the self derivability axiom to (9) we haveφm′′ , π1 (dec(h3, dKA)) ⊢ N1 for
anym′′, and by the functions derivability and transitivity axioms, we have

φm′′ , dec(h3, dKA) ⊢ N1.

24

Applying the non-mallability axiom, we have

φm′′ ⊢ N1 or ∃x′R′.(h3 = {x′}R
′

eKA
∧ {x′}R

′

eKA
⊑ φm′′)

and the first is not possible by Theorem 1 asN1 was generated byA in sessioni in
which the intended party isB as we have shown. Then, we have

dec(h3, dKA) = x′. (11)

SinceA does not encrypt messages witheKA, {x′}R
′

eKA
was sent byB. Then we have

{x′}R
′

eKA
= {π1 (dec(h′2, dKB)) , N

′
2, B}

R′

2

eKA
(12)

for someh′2,N ′
2, andR′

2. From (9), (11) and (12), we get

N1 = π1 (dec(h3, dKA)) = π1 (x
′) = π1 (dec(h′2, dKB)) , (13)

and from (10), (11) and (12), we get

N2 = π1 (π2 (dec(h3, dKA))) = π1 (π2 (x
′)) = N ′

2.

SinceB, according to its role, always generates a new nonce before sending its message,
N2 is not used in more than one session. On the other hand, we havealready concluded
that in the session whereN2 is sent, (8), the message is{π1 (dec(h2, dKB)) , N2, B}

R2

eKA
,

therefore by (12),

{π1 (dec(h′2, dKB)) , N
′
2, B}

R′

2

eKA
≡ {π1 (dec(h2, dKB)) , N2, B}

R2

eKA
,

and soh′2 ≡ h2, which means by (13)

π1 (dec(h2, eKA)) = N1.

Putting all these together, we have that there existi, N1, h1, h3, R1, R3 such that

InitANSL[A, i, B,N1, h1, h3, R1, R3] AND
dec(h2, dKB) = 〈N1, A〉 AND
dec(h3, dKA) = 〈N1, N2, B〉 AND
dec(h4, dKB) = N2

which immediately implies the intended property. ⊓⊔

7 Conclusion and Future Work

In this paper we have illustrated that proof of the NSL protocol can be done within
the framework of Bana and Comon-Lundh [7] where one does not define explicitly the
Dolev-Yao adversarial capabilities but rather the limitations (axioms) on these capabil-
ities. This proof is computationally sound without the needof any further assumptions
such as no bad keys, etc that are otherwise usually assumed inother literature.

25

We presented axioms that are computationally sound for implementations using
CCA2 secure encryption. Using these axioms we proved both secrecy and agreement
of the NSL protocol. Applying the main theorem of [7] we obtained that there is no
computational adversary for such implementation that can violate secrecy or authen-
tication with non-negligible probability. A simple parsing axiom was also needed in
order to complete the proof. We were able to verify that without such axiom an attack
against the protocol could be performed. Other than this, noparticular assumptions had
to be made about parsing. In particular, tagging of bit pairs, encryptions is not necessary
to ensure security of the NSL protocol.

The proof we presented in this paper was done by hand. Automation is left for future
work. Also, secrecy means here that the adversary cannot compute a nonce. Indistin-
guishability is also left for future work.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption).Journal of Cryptology, 15(2):103–127, January 2002.

2. P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness andcompleteness of formal encryp-
tion: the cases of key-cycles and partial information leakage. Journal of Computer Security,
17(5):737–797, 2009.

3. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations. InCCS’03, 2003.

4. M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (rsim) framework for
asynchronous systems.Information and Computation, 205(12), 2007.

5. G. Bana, P. Adão, and H. Sakurada. Computationally soundverification of the
NSL protocol via computationally complete symbolic attacker—Long version, 2012.
http://web.ist.utl.pt/pedro.adao/pubs/drafts/nsl-long.pdf.

6. G. Bana and H. Comon-Lundh. Towards unconditional soundness: Computationally com-
plete symbolic attacker. Available at IACR ePrint Archive,Report 2012/019.

7. G. Bana and H. Comon-Lundh. Towards unconditional soundness: Computationally com-
plete symbolic attacker. InProceedings of POST’12, LNCS, 2012.

8. G. Bana, K. Hasebe, and M. Okada. Computational semanticsfor basic protocol logic - a
stochastic approach. InASIAN’07, volume 4846 ofLNCS, pages 86–94. Springer, 2007.

9. G. Bana, K. Hasebe, and M. Okada. Secrecy-oriented first-order logical analysis of crypto-
graphic protocols, 2010. http://eprint.iacr.org/2010/080.

10. G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification of code-based crypto-
graphic proofs. InPOPL’09, pages 90–101. ACM, 2009.

11. B. Blanchet. A computationally sound mechanized proverfor security protocols. IEEE
Transactions on Dependable and Secure Computing, 5(4):193–207, 2008.

12. H. Comon-Lundh and V. Cortier. Computational soundnessof observational equivalence. In
CCS’08, 2008.

13. H. Comon-Lundh and V. Cortier. How to prove security of communication protocols? A dis-
cussion on the soundness of formal models w.r.t. computational ones. InSTACS’11, volume 9
of Leibniz International Proceedings in Informatics, pages 29–44, March 2011.

14. V. Cortier and B. Warinschi. Computationally sound, automated proofs for security proto-
cols. InESOP’05, volume 3444 ofLNCS, pages 157–171, 2005.

15. A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic polynomial-
time semantics for a protocol security logic. InICALP’05, volume 3580 ofLNCS, pages
16–29. Springer, 2005.

26

16. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway logic of
encrypted expressions.Journal of Computer Security, 12(1):99–130, 2004.

A An Attack on NSL

If we assume thatRandGen(N) ∧ W (π2 (N)) is computationally satisfiable, then
we have the following computational attack on the NSL protocol. RandGen(N) ∧
W (π2 (N)) is the same as saying that with non-negligible probability,it is possible to
choose a name (bit-string)Q for an agent such that for the outputN of some honest
nonce generation, there is a bit-stringn such with〈n,Q〉 = N . To show that this is
not at all unrealistic, suppose the pairing〈·, ·〉 is concatenation, and the length of agent
names does not depend on the security parameter, say always8 bits. Then for any name
Q, n can be chosen with〈n,Q〉 = N as long as the last four digits ofN equalsQ,
which, if N is evenly generated, is of just1/28, a non-negligible probability. So this
situation is realistic. Now, the attack is the following, itneeds two sessions:

1. The adversary choses a nameQ as above.
2. The adversary catches the last message{N2}B in a session sent byA to B, two

honest agents.
3. The adversary, acting as agentQ initiates a new session withB, sending{N2}B to

it.
4. SinceB thinks this is a new session withQ, it will parse the message according

to its role, namely as{N ′
1, Q}B. This will succeed as long as there is ann with

〈n,Q〉 = N2, that is, it will succeed with non-negligible probability.
5. B generates a new nonce,N ′

2, and sends{n,N ′
2, B}Q toQ.

6. The adversaryQ decrypts{n,N ′
2, B}Q, readsn, and computesN2 = 〈n,Q〉. The

secrecy ofN2 is hence broken.

So, we can conclude that if〈n,Q〉 = N is possible computationally with non-negligible
probability, then the protocol fails. In such case, trace-lifting soundness proofs fail as a
bit string can be understood both as〈n,Q〉 and asN .

Notice, that this attack is not a usual type-flaw attack, because even if type-flaw
attacks are allowed, honestly generated nonces are normally considered atomic.

Clearly, if the implementation of the protocol is such thatB always checks the
length ofn, then this attack is not possible. But, it has to be made sure,that the imple-
mentation satisfies theRandGen(N)→ ¬W (π2 (N)) property.

27

