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Abstract. In this paper we show that the recent technique of compuialtip
complete symbolic attackers proposed by Bana and ComodH_[i#] for com-
putationally sound verification is powerful enough to weettual protocols, such
as the Needham-Schroeder-Lowe Protocol. In their model,does not define
explicit Dolev-Yao adversarial capabilities but rathee timitations (axioms) of
the adversarial capabilities. In this paper we present afsetioms sufficient to
show that no symbolic adversary compliant with these axioarssuccessfully
violate secrecy or authentication in case of the NSL prdtddence all imple-
mentations for which these axioms are sound — namely, imgaiémtions using
CCAZ2 encryption, and satisfying a minimal parsing requieetmfor pairing —
exclude the possibility of successful computational &tac

1 Introduction

Computational soundness has been a topic of utmost impertanthe past decade.
It started with Abadi and Rogaway [1] and followed by manyer# for passive ad-
versaries [16, 2] as well as for active. The aim is always #yatbolic proofs imply
computational security. Works concerning active advésaran be divided into two
groups. Works in one [3, 14, 4,12] define symbolic adversaaad soundness theo-
rems state that under certain circumstances, if there isiocessful symbolic attack,
then there is no successful computational attack. The giloerp aims to work directly
in the computational model [15, 8, 11, 10].

The first group, where symbolic attacker is defined, givesltbpt already existing
automated tools may be used for computationally sound eatiifin, but these sound-
ness theorems require a large set of assumptions. Typitey assume that no key
cycles can ever be created, that bitstrings can be unamimstyuparsed into terms, that
there is no dynamic corruption, that keys are certified (pgéherated keys cannot be
used), etc. These assumptions, as well as reasons why thegtaealistic are discussed
in[13].

Recently, Bana and Comon-Lundh presented in [7] (and in graued version
[6]) a new technique to define symbolic attackers that is nsoitable for computa-
tional soundness than the usual Dolev-Yao adversary (@ati@rs of it). They called
this new symbolic adversagomputationally complete symbolic adversas it is ca-
pable of doing everything that a computational adversacagsable of. The basic idea



of their technique is the following. Instead of listing eyéind of move a symbolic

adversary is allowed to do, a few rules (axioms) should hedithat the symbolic ad-
versary is not allowed to violate. In other words, the syntbativersary is allowed to
do everything that is consistent with these axioms. Theragithat are introduced must
be computationally sound with respect to a computatiortatpretation that they de-
fined. Their main result is that once it is shown that no susfoésymbolic adversary
can exist complying some set of axioms, then for any comjmutalt implementation

satisfying that set of axioms, successful computatiortatks are impossible as long
as the number of sessions is bounded in the security paramete

In their original work however, they did not show that theictinique could actually
be used for practical protocol verification as they only preeed the general framework
and a few computationally sound axioms as a proof of condepactually prove pro-
tocols, more axioms have to be introduced in ordevéakernthe symbolic adversary
sufficiently close to the computational adversary (withaatistically strong symbolic
attackers, no protocol can be verified). But they left it fotufe work to show that it
was possible to introduce sufficiently many axioms to praweactness of a protocol.

In this paper, we illustrate with the Needham-Schroedewé protocol that this
technique can indeed be used for protocol verification. Ngme introduce compu-
tationally sound axioms for implementations with CCA2 secancryptions, and an
additional axiom that the computational implementatiomairing must satisfy (oth-
erwise there is an attackjve show that there is no symbolic adversary for which the
violation of either secrecy or authentication (or both) ansistent with the set of axioms
we give. Applying the main theorem of [7], this means thatetti® no computational
adversary of the NSL protocol (in an implementation satigfthe axioms) that can
violate secrecy or authentication with non-negligible Ipaility.

The set of axioms we give is divided into four groups. One jnsludes the equa-
tions we require for function symbols. Then, one has a nurobgeneral axioms in-
dependent of the implementation; another one has two axéxmessing secrecy and
non-malleability of CCA2 encryption schemes; and a fourik with only one axiom
expresses a certain parsing unambiguity, which needs tedered as otherwise an
attack exists.

The technique of [7] allows to avoill the above mentioned unnecessary assump-
tions. In particular, any number of bad keys are allowed tgémerated by the adver-
sary. Also, besides the two honest parties, any number efr atbrrupted, or uncor-
rupted, or dynamically corrupted parties can be present.

As for parsing of bit strings into terms, previous soundmessilts relied on un-
ambiguous parsing (even ambiguity with only negligible hability is not allowed).
Within this framework, we do not need such an assumptionateesymbolic agents
do not do any pattern matchingf unambiguous parsing is needed for the security of
a protocol, then it is necessary to list it as a property teatiee implementations need
to satisfy. The only needed assumption for proving NSL i$ #mhonestly generated
nonceN cannot be non-negligibly parsed into a pair, such that ticerse part of the
pair is some (dishonest) agent name, looks like (n, Q) for somen. This is a neces-
sary assumption, as the failure of it results in an attagsgmted in [9]. This can easily
be achieved in an implementation by, for example, checkiegléngth of bit strings



that should correspond to nonces. Other than this, no mahsipothesis is assumed.
For example, honestly generated nonces may collide witbrddinds of pairs, encryp-
tions coulda priori collide with other kinds of expressions, etc. This meanstdgging
of pairs, encryption etc is not necessary for the securithefNSL protocol

In fact, the security proof is long exactly because of parsimbiguities (that is to
say, because of the lack of pattern matching). Since any teaya priori coincide
with any other, that is, any term that was created by an haugsit or the adversary
may a priori be wrongly parsed by another agent (interpreting it as thesage of a
wrong session or a wrong massage of a given session), thinéa¢hey do not, has to
be derived from the nature of the protocol. Had we assumedgliaty unambiguous
parsing (which, in fact, has always been assumed by eanligrdness results), the proof
would actually be very short.

We would like to emphasize that our aim here is to demonsthatiethe technique
works, and not to provide the most general possible verifingbr the NSL protocol.
Further generalizations are possible at the cost of mudleloproofs. For example, in
the current proof, we assume that each honest agent onluteseeither the initiator
or the responder role as this makes the proof much shorteclaacer. We have been
however able to complete the proof for the case when they llwetd to run both
sessions, even against themselves (with an additiondahgaasiom).

A further assumption is that triples are created from pétiis.possible to do proofs
without this assumption, and have a separate function sifobwiples (and introduce
possible necessary requirements to avoid attacks), but,agaould make the proof
far longer.

We also feel that the security proof itself is quite inteiregtnot just the result, as it
follows the intuitive idea why the protocol should be cotrec

The contributions of this paper include some of the comparatly sound general
axioms, the non-malleability axiom that is computatiopalbund for CCA2 security,
the additional parsing axiom needed to avoid an attack andehurity proof itself.

This paper is organized as follows: we start by recallingitamework of [7] (Sec-
tion 2). In Section 3, we show how the NSL protocol and its exieo can be formulated
in the proposed framework. In Section 4, we present the finstribution of this paper
introducing the set of computational sound axioms needesthéov both secrecy and
authentication of the NSL protocol. In Section 5, we showva $amples examples of
how inconsistency of certain formulas and the axioms carnrbeen. In Section 6, we
prove that no symbolic adversary compliant with the presgtakioms can successfully
violate secrecy or authentication of the NSL protocol. lotia 7, we summarize our
results and present directions for future work.

2 Symbolic Execution

The framework used in this paper was introduced by Bana amdo@e_undh in [7].
We resent a brief excerpt of that (with minor adjustments) eafer the reader to that
paper for further details.



2.1 Terms and Frames

Terms are built out of a set of function symbdfsthat contains an unbounded set of
names\ and an unbounded set of handlésNames and handles are zero-arity func-
tion symbols. We will use names to denote items honestly igéee by agents, while
handles will denote inputs of the adversary. kébe an unbounded set of variables. A
ground term is a term without variabldgames are sequences of terms together with
name binders: a framg can be written(vm).p1 — t1,...,pn — t, Wherepy,...p,
are place holders that do not occurtin. . ., t, andm is a sequence of namds(¢),
thefree name®f ¢ are names occurring in someand not ini. Thevariablesof ¢ are
the variables of, . .., t,.

2.2 Formulas

Let P be a set of predicate symbols over tefsis assumed to contain the binary
predicate= (which is interpreted as a congruence) and is uséd asts, and a family
of n+ 1 predicates$-,,, (which is intended to model the adversary’s capabilityeowe
something) and is used &s ..., t,, - t. (we drop the index for readability).

As for the symbolic interpretation of such predicates,allew anythat does not
contradict our axioms, which we will introduce later.

Let M be any first-order structure that interprets the functichgredicate symbols
of the logic. We only require that it interprets terms and phedicates such that
is interpreted as the equality in the underlying doma&ig, (clearly, D, includes a
relationt,, interpreting the deducibility predicate too). Given an assigmemt of
elements inD . to the free variables of terr we write [t]%, for the interpretation
of to in M ([-]%, is the unique extension ef into a homomorphism aF-algebras).
For any first order structuré1 over the functionsF and predicate®, the satisfaction
relation M, o |= 6, whereo is an assignment of the free variablesfah the domain
of M, is defined as usual in first-order logic.

2.3 Execution of a Protocol
Definition 1. A symbolic statef the network consists of:

— a control state; € @ together with a sequence of names (that have been generated
sofanmny,...,ng

a sequence constants calledndlesh, . . ., h, (recording the attacker’s inputs)

a ground framep (the agents outputs)

a set of formula® (the conditions that have to be satisfied in order to reach the
state).

A symbolic transition sequenoé a protocol/! is a sequence

(QQ(TL_()),@,(bQ,@) EAER R (Qm(m), <h1, .. -vhm> 7¢m78m)

if, for everym — 1 > ¢ > 0, there is a transition rule

(ql(a_’b)v q’H’l(m)? <I17 s 7'ri> 7$77/)7 S)



such thatt = m\a_“ d)l'Jrl = (Vﬁ)(¢z ‘p = SpiO'i+1), Niy1 = N; YN, QiJrl =6,;U

{¢i b hiy1,¥pi0oir1} Whereo; = {x1 — hq,...,2; — h;} andp; is a renaming of

the sequenca; into the sequence;. We assume a renaming that ensures the freshness
of the namesi: m N 7; = 0.

Definition 2. Given an interpretation\, a transition sequence @i

(QO(W_O)a @7 (bOa @) — .. (Qm(m), <hla sy hm> 7¢m7 Qm)
is valid w.r.t. M if, foreverym —1 > ¢ > 0, M = ;.

Initialization. For technical purposes, we always take = v7(), wherem contains
the honest random items to be generated, and that is followed empty list of terms.
¢1 will contain the output of the initialization, that is, thames and the public keys.
We will also assume for technical purposes that all honeglyerated items (nonces,
random inputs of encryptions etc.) are generated upfront.

2.4 Satisfaction of Predicates, Constraints and FOL Formuds

Besides the predicates = y and ¢, 1, ...,z - z, we will also use the predicate
W (z), and the constrainRandGen(z), = C ¢, x, = < ¢, andfresh(z; ¢, ). Com-
putational semantics of these are defined in [7], so here siéjiefly mention that
refers to equality up to negligible probability, the meanaf F is that the adversary is
able to compute (with a PT algorithm) the right side givenléfg W (x) is a predicate
that tells ifz is the name of an agent, aR&ndGen(z) means that: was honestly, ran-
domly generated. We will assume that such an item can onlybssgd with negligible
probability.a: C ¢, x means that was part of a message sent out by an agent, not just
the bit string corresponding te, but the construction representeddgyfresh(z; o, x)

is just an abbreviation defined below, and< ¢ means that the adversarial input in
z was computable fromp. Suppose that a first-order mode! as discussed earlier is
given. Here we define satisfaction of predicates and cdngtria asymbolicexecution.

— Interpretation of predicates by1, o, (t1,...,tm), (n1,...,nk), whereo is a sub-
stitution as abovet, ..., t,, are closed terms, and, ..., n; are names (note that
the interpretation depends on the modé) is defined as follows:

o M,o,(t1,...,tm),(n1,...,n) Et=t'if Myol=t=1¢

e $,s1,...,5,  t, whereg is part of the syntax of the predicate (not an input),
intuitively, it aims at ranging over frames:
Mo (t1, ..., tm)1 = G, 51,... 8, FLif M, o E Sty eeey Syt eyt B E

o M,o,(t1,...,tm),mEW(x)if M,0 |EW(x)

— Interpretation of constraints byt o, (¢t1, ..., tm) , (n1,...,n%), whereo is a sub-
stitution as above, ..., t,, are closed terms, and, ..., n; are names (note that
the interpretation does not depend on the madgl

e RandGen(s) for s closed term (name):
Mo, {t1,...,tm),(n1,...,n;) = RandGen(s)
if M,oEs=n1V...Vz=n.



e tC ¢, 51,..., 50, Wheres, ..., s, andt are closed terms:

Mo, (t,....tym), TELC b, 51, ..., s, if t is a subterm of somg or s;
o t < ¢, wheretis closed: A

Mo, (t1,....tm),m Et <X ¢if forevery handleh of ¢, ¢ - h.
o We definefresh(z; ¢, ) = RandGen(z) A z IZ ¢, x

— InterpretationbyM, o, (t1,...,tm), (n1,...,n;) wheres is a substitution as above
of any FOL formulain which there are no free variables undestraints is defined
recursively:

e Interpretations ofl; A 05, 01 V 62, and—6 are defined as usual in FOL
e If = does not occur under a constrainténinterpretations of/z6 and 36 is
defined as usual in FOL.
e If z occurs under a constraint ththen
* M,o, (t1,...,tn), (n1,...,n) | V2o iff for every ground ternt,
Mo, (t1,...,tn), (n1,...,nk) E 0{x — t}
x M o, (t1,...,tn), (n1,...,n,) E J20 iff there is a ground term,
Mo, (t1,....tn), (n1,...,ng) E O0{x — t}
— Satisfaction at stepu:

M, (q,(h1,...,hm) T, 0m,O) EO  iff M, ¢, = 0.

3 The NSL Protocol and Its Symbolic Execution

We now formulate the NSL protocol and its execution in thevabfvamework. The
steps of the protocol, as usual are

1.A— B : {N17A}eKB 2.B— A : {Nl,NQ,B}eKA 3.A— B : {NQ}eKA

We use a randomized public-key encryption symlﬁm:}gKQ is intended to represent
the encryption of the plaintext with the public-key of the principal, with a random
seedr. So, consider the a set of construct@is= {{_}-,(_,_),e_,d_, K_ }, and a set
of destructorsF; = {ded_,_),m (-),m2 (-)}, with the following equations:

— Equations for encryption/decryption:

¢ Decryption of an encryption results the plaintedeq {z} %, dK) = «
— Equations for pairing/projections:

e First projection; ((z,y)) = x

e Second projectionts ((z,y)) =y

We will use pairs to construct triplest, y, z) = (z, (y, 2)).

We can define the action of principals as follows: the inftiatommunicating with
intended partyQ, does the following sequence of steps in sessiovhich we will
informally denote byinit& ¢, [A, i, Q, N1, hy, hs, Ry, Rs]:

1. (Stategs'(m)) Receives some handte from the adversary that triggers the start of
the session with intended paidy,

2. A generates noncly;

3. Asends{N, A}[%;  (stateg!(m));



4. Areceiveshy, and checks:
(a) T (de((hg, dKA)) = Ny;
(b) m2 (2 (dedhs, dK4))) = Q;
5. A sends{m; (2 (dedhs, dKa)))} i,

6. Asends;(A,Q, Ny, m (m2 (dedhs, dK 4))) ) (stategs' (m)).

We used notatior; (=) to denote the reached states. For verification purposes, let
be a special function symbol, that takes as arguménfs, |, N,, respectively who
commits for whom and the corresponding noneg&4, B, N1, N») is sent along with
{N1, N3, B} 4. For the responder, there is a similar commitment: at the adrithe
protocol,B emits (as a last messagg) A, B, N1, N2).

The responder does the following sequence of steps in segswhich we will
informally denote byResph s [B,i’, Na, ha, ha, Ra]:

1. (Stateg? (n)) B receives somé, from the adversary and checks:
— W(ms (dedhs,dKp))) (Checks that it is a name of someone);
B generates noncls;
B sends{r; (dedhs,dKp)), No, B} 2
mo(deqhy ,dK g))

B receivesiy, and checks itledhy, dK ) = No;
B sends:, (73 (dedha, dKg)) , B, 71 (deqhs, dK)), No) (stateq? (m)).

(stateq? (m));

ar wn

3.1 Example Executions of the NSL Protocol

We now show an example of how an initial segment of the NSL @tk@c can look like.

Example 1.We show the beginning of a possible branch in the symbolicuti@n of
NSL.

(quwv(bOa@) (Q17H13¢1591) (q23H27¢27@2) (q37H3a¢3a@3) (Q43H4a¢47@4)

wheren = N1, No, Ru, Ra, R3, g0 = (47" 45') (M), 1 = (a1, 48’) (M), a2 = (1", a’) (1),
g3 = (¢3',¢P)(m) andqy = (g3, ¢¥) (). In other words, we interleave the actions of
A and B, as in an expected execution and assume that the two preossse first
activated (if not, we could introduce two transitions aating the processes).

- ¢o =k, KkpaB(), Go=10
- H, =10, 01 =vik, kpaB(p1 — (A, B,eKa,eKp)), 61=10
— Hy=(h)), ¢ extendsp; with p; — {<N1,A>}f}(3, 02 = {¢1 - h1}
— H3 = (h1, ha),

¢3 extendsps with ps — {(m1 (dedhz, dKg)), (N2, B))} %2 ,

7o (dedhy,dK g))

O3 =6, U {¢2 F h27 W(ﬂ-Q (deqh% dKB)))}
— Hy = (h1, h2, hs),

¢4 extendsps with ps — {m1 (2 (dedhs, dK4)))} %

@4 = @3 @] {¢3 [ h3,71'1 (deqh37th)) = N177T2 (71'2 (de((h37dKA))) = B},
— H5 = <h17 h27h37 h4>, ¢5 = ¢4-

O5 = O4 U {¢s - ha,dedhs,dKp) = N2},



Let M be a model such that, (dedhs,dKp)) = A,

hy =pm {(NL, AL by =p {(N1, (N2, BOY2 0 ha =M (N}

andt 4 is simply the classical Dolev-Yao deduction relation. Tliea execution se-
guence above is valid w.rA, and this corresponds to the correct execution of the NSL
protocol betweeml and B.

There are however other models in which this transition eage is valid. For in-
stance letM’ be such thaby = Ny andegy bae he @and Ny = {(Ny, )}eKB
(andhg, hy as above). We get again a valid transition sequence wi’t. Though, in
what follows, we will discard such sequences, thanks to sax@ms.

Example 2.Consider again the transitions of the Example 1. Now comsigeodelM
in which Ny, { N1, Na, B}eKA Fam {N1, No, B}, for an honestly generated nonce
Ny that can be chosen by the attacker: the transition sequéttee@revious example is
also valid w.r.t. this model. This however yields an attaging a malleability property
of the encryption scheme.

Discarding such attacks requires some properties of theygtien scheme (for in-
stance IND-CCA). It can be ruled out by the non-malleabaixyjom that we will intro-
duce.

From this example, we see that unexpected attacks can bd f@hen some as-
sumption is not explicitly stated as an axiom to limit adeeia capabilities.

4 The Axioms

In this section we present a set of computationally sounadasi The first 7 axioms are
rather trivial. The 8th looks long, but it actually only meghat ifz is freshly generated
(it has not been sent out), then it cannot help to compute ardily generated nonce
N, unlessr is the nonce itself (the computational reason being:thatstatistically in-
dependent ofV and everything else that has been sent around). The seciecy was
essentially proven in [7], but since we need a little bit sger version, we include the
proof of it here. We also prove here the computational soassinf the non-malleability
axiom. Axioms fore are trivial as it is just an ideal function introduced for genience
to represent the agents’ view of a session.

— x = x, and the substitutability (congruence) property of eqeiaht holds for=, -
predicates.

— Self derivability:¢, z, = + z
— Increasing capabﬂmeaﬁ, xhy — ¢z, k- Y

— Commutativity: Ifz’ is a permutation of, theng, x -y — N

— Transitivity of derivability: bty A gb, r,ykz — ¢>, Tz

— Functions are derivable;, z - f(x)

— No telepathyfresh(z; ¢) — ¢ 1/ =

— Fresh items are independent:

fresh(z; ¢, ) A RandGen(N) Az < d A d,x,2 - N — ¢+ NVz=N



— Special to IND-CCA encryption:
e Secrecy:

RandGen(K) A eK C ¢ A fresh(R; ¢, @, z,y) A< Az <o

Ny<o A oz {atli by
— dKEé,w,:C V QAS,:BI—y

Basically, this axiom says that K was correctly generated is fresh, and,
can be derived with the help gf:} %, then it can be derived withodt:} 2,
or dK has been sent out.

e Non-malleability (assuming there is only one kind of entiyp and pairing):

RandGen(N) A RandGen(K) A eKC o ANC o A x <o
Noxby A doa, dedy,dK) - N A VaR(y = {z}f — {«}f £ §)
— dKE(ﬁ,:c \Y (ﬁ,mFN

This means that ifV and K were correctly generateg,is a ciphertext, and
with the plaintext ofy, NV can be derived, but no honest agent producasd an
encryption, then eitheiv can be derived without the plaintext gfor dK has
been sent out.
— Special tog;, ¢, (Let ¢ be either of them):
e ¢ does not help the adversafgandGen(N) A é,cc,c(:c,y,z,w) FN —
b,z N
e ¢ cannot be forged and cannot be subparts of terims: - clz,y, z,w) —
c(x,y, z,w) C SV = c(z,y,z,w) V...V, =c(z,y, z,w)
e ¢ cannot be equal with anything else: If the outermost fumcigmbol of a
termT something different from, thenc(z, y, z, w) # T.
— Equations for the function symbols discussed earlier

4.1 Computational Soundness of the Secrecy Axiom

The intuitive meaning of the following axiom is that the achagy can only derive the
inside of a freshly generated encryption, if its decryptieny has been sent out, or the
inside could be derived earlier.

Proposition 1. If the encryption scheme is IND-CCAZ2, then the followingrfola

0=V RandGen(K) A eK C ¢ A fresh(R; ¢, x, x,y)

mml...zlyKRqa(
NESdAT<oNy<o A da{atlicty

— dKEgZ;,cc,:zr \% é,m#y)

is computationally valid.



Proof. Suppose that it is not computationally valid. That is, thisra computational
structure(M, I1, Sy ), with
M I, Sy = 6.

Then, there are PPT machinds= (A,, A;,, ..., Ay, Ay Ak, Ar) such that

M, I, 81, A £RandGen(K) A eK C ¢ A fresh(R; ¢, x,z,y)
AwséAgc#q;Ay#q;/\é,w,{x}le—y
— dKE(ﬁ,m,:zr \Y (ﬁ,mky.

Therefore, there is & C S non-negligible such that

M, 11,5, A =RandGen(K) A eK C ¢ A fresh(R; ¢, x, x,y)
ANT<dNT<dNYy<9o A ¢, {z}f FyAND
M IS, AEdK C d,x,x V bzt y

We claim that the second implies that there is a non-nedéigibbsetS; of S; such that
M Sy, AE —(dK E ¢, x,x)and M, II, S5, A |~ ¢, F y. To see this, consider
the following:

— TakeS; = S;\{r | the computation ofd on yields a statg such thay = dK C
¢, @, z}. Clearly, M, IT, S, A = ~(dK T ¢, x,z), and M, II, S \ Sz, A =
dK C qg,w,x.

— S, is non-negligible becaus®t, I7, 51, A - dK C ¢, x,z V ¢,z + y implies
M, I, Sy, A ¥ dK C ¢z, .

— SinceM, 1,5, \ S2, A = dK T ¢,z x, we haveM, I, S5, A - ¢, + v,
because otherwise we would havé, 17,51, A = dK T ¢z, 2 V ozt y
contradictingM, II, S1, A £ dK C ¢,z V ¢, x - y.

Since M, IT, S5, A é,x + y, by the definition of the computational semantics of
the derivability predicate, there is a subSgtof .Sy such that on all subsets 6%, there

is no PT algorithm that computes the interpretatioy ifom the computational frame
and the interpretation af. Then it is straightforward to check tha, IT, S5, A |

—(p,x - y):

— Suppose it is not true, that i, 17, S5, A £ —(¢, z - ).

— Thenthereis ai$, C S5 such thatM, I1, S5, A = ¢, z I y.

— That implies thatSs; has a subset on which there is an algorithm that computes
the interpretatiory from the computational frame and the interpretationcofa
contradiction.

It is easy to check that

M, I, S5, A ERandGen(K) A eK C ¢ A fresh(R, ¢, x,z,y)
Ne<dAzdANy<o A bz {tfichy

10



becauses; C Si, and the satisfaction of all these conjuncted predicatey caer to
subsets. Therefore,

M, II, S5, A = RandGen(K)
M85, A= eK C ¢
M, I, S5, A = fresh(R, ¢, z, z, y)
ML Ss, Az, a,y < ¢
M, I, S5, A= —~(dK C ¢,z x)
M, IT,S3, A = g, {a} i by
M, T, S35, A b= —(d, @ - ).

We have to create an adversaty.c - that wins the CCA2 game.
SinceM, I1, S5, A &= b, x, {z} %+ yholds, there is a5 C S5 and an algorithm
C that computes the interpretation pfrom the interpretations af, 2 and {=}E on
Ss. Clearly,
M, 11, S5, A = RandGen(K)
M I, S5, A= eK C ¢

M, I, S5, A = fresh(R; ¢, z, z, y)
ML S5, A=z, x,y < ¢
M, II,S5, A= —~(dK T ¢,z,x)
M, IT, S5, A = —(,x F y).

It may be the case that th&; we have chosen depends on evaluations tfiat are
determined aftesM reaches the challenge state However, clearly, if we include all
possible future evaluations, the set that we receive thys $vaill still be such that there
is an algorithnC that computes the interpretationpfrom the frame at the challenge
stateq., z and{z} % onS. Moreover, it is easy to see that

M, 11, S, A = RandGen(K)

M S, A= eK C ¢
M, IT, S, A |= fresh(R; ¢, , @, z, )
MILS, Az, z,y< ¢
M1 S, A= —(dK C ¢,x,x)
M1, S, A= ~(¢,z +y)
because these are properties that depend only on conditiims challenge stated, and

not later ones.
SinceM, I1, S, A E dK L ®, x, z, the decryption key has never been sent.
We show that we can construct an algoritigca» that breaks CCA2 security. Let
Apr be the protocol adversary.
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— Accaz generates computational keys tht uses, except for the one correspond-
ingto K.

— The encryption oracle generates a randond.bit

— The encryption oracle generates a computational key anlispab its public part.
Accaz encrypts with this key for encryptions withi, except forz.

— Accaz2 Simulates both the agents adg;: It computes all messages that the agents
output according to their algorithm, and computes all mgssahatA; outputs
according to its algorithm. This way it builds dpand the bit strings corresponding
to them as well as the equations.

— Whenever a decryption witthK” has to be computed, there are two possibilities:

e If the ciphertext was created by-ca2 using the encryption algorithm, then it
knows the plaintext, so it can use it without decryption.
o If the ciphertext was created in some other way, the deayracle is used.
This can be freely done until occurs.
Note, thatd K is not available to the adversary.

— WhenA reaches the challenge state using.A,., Acca2 computes the bit string
for x, and submits it to the encryption oracle as well as a randostriig that has
the same length as the plaintext.

— According to our definition of satisfaction the computatlonC is based on the
frame at the challenge state. We h&d, 17, S, A | fresh(R; b, ,x,x, y), which
means thaf? was honestly generated and has not been sent around, arel/henc
is independent of the items i Moreover, sincer < 6 andz < ¢ andy < ¢3
are satisfiedR is also independent af andx andy. Further, since we included all
future random choices i, R is also independent &f. Hence having it encrypted
by the encryption oracle will not lose any information asj@s the oracle encrypts
the correct bit.

— The encryption oracle encrypts the interpretatiorzof b = 0, and encrypts the
random bit string i = 1. It gives the result back toAccas.

— RunC on the bit string: returned by the oracle and on the bit strings of the frame.

— If, in the above

e usingc, the execution is irf and.Acca2 receives the same value &8s gives
for y, thenAccaz returnsb 4., = 0.

e OtherwiseAcca2 throws a fair coin and returniss ., = 0 0rbac,, = 1
with probability1/2.

We have now that
Prob (bacea, =0 S A b=0)—1 Q)

(the conditional probability 0 4...,, = b givenS andb = 0) is negligible because in
this case the oracle encrypts the correct string,@sd¢omputations are employed on
the correct bit string, so it gives the interpretatiormofNote, we also use here thét
and the interpretation d® do not correlate.

On the other hand, observe that

Prob (bacen, =b|S A b=1)—1/2 )
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is also negligible. The reason is that whes 1, the encryption oracle computes some-
thing that has nothing to do with the protocol anéndy. So the probability of com-
puting = with or without the encryption in this case, is the same. Betpember, we
had thatM, I1, S, A = &,z t/ y. This means thay cannot be computed without the
encryption anywhere and therefore the adversary’s cortipatan the fake encryption
cannot give good result by more than negligible probabiity the adversary will end
up throwing a coin in this case. Putting (1) and (2) togetiverhave

1
Prob (bages, =0 S) — 5

is non-negligible. Then, sincédcca2 throws a fair coin outsidé,

1
Prob (bacga, = b) — 3
is non-negligible, which means CCA2 security assumptidoradken. a0

4.2 Computational Soundness of the Non-Malleability Axiom

Proposition 2. If the encryption scheme is IND-CCA2, then the formula

0= RandGen(N) A RandGen(K)

vmml...mlyNKR(i;(
A eKEé A NE@ A m#q@/\q@,ml—y
A ¢,m,dedy,dK) - N A VeR(y = {z} — {=}f Z )

L dKC ¢V é,mHv)
is computationally valid.

Proof. Suppose it is not computationally valid. That is, there i®mputational struc-
ture (M, I1, Sy), with
M IT, Sy 0.

There are PPT machines= (A, , ..., A;, , Ay, Ay, A, Ak, Ar) such that
M, IT,5;, A = RandGen(N) A RandGen(K) A eKC o A NC o A x<¢
No,wby A ¢ @ dedy,dK) - N A VeR(y = {2} — {2} £ 9)
— dKC ¢ V ¢zt N.

Exactly the same way as in the proof of the Secrecy Axiom, wetlga there is an
S3 C 57 such that
M, 11, S5, A |= RandGen(N)
K

M, II, S5, A = RandGen(K)
M5H5S37A ': eK Eé

13



M, 1,85, A= NC ¢
M, S5, AEx < ¢
M, 1,85, A= d,xty
M, 1,85, A = ¢, x,dedy,dK) - N
M, T, Sy, A= VaR(y = {2} e = {2} Z 9)
M, IT,85, A = —(dK T )
M, 11, S5, A = —($, @ - N).

Since M, I1, S5, A E q@,a: F y holds, there is arby C S3 and an algorithnC
that computes the interpretation gffrom the interpretation of, = on Ss. Since
M IS, A E b, dedy,dK) + N holds, there is arb; C S and an algo-
rithm C’ that computes the interpretation 8f from the interpretations of and
anddeqy, dK) on Ss. Clearly, onS; as well,C computes the interpretation gffrom
the interpretation op andz.

It may be the case that tht& we have chosen depends on evaluations thfat are
determined aftemM reaches the challenge state However, clearly, if we include all
possible future evaluations, the set that we receive thigs wawill still be such that
there is an algorithn@ that computes the interpretation gfat the challenge statg,
andC’ that computes the interpretation dt.

Moreover,

M, I, S, A = RandGen(N)

M, II,S, A = RandGen(K)
ML S, A= eK C ¢
M, IT,8,Al=NC ¢
M IS, A=< ¢
MILS, A= ¢ zty
M, IT,8, A = ¢, x,dedy, dK) - N
ML, S, A= VaR(y = {2} — {a} i Z )
M, IT,S, A= ~(dK C ¢)
M, I, S, A = (¢, - N).

Observe first that there had to be an honest encryption inhwNiavas sent out.
The reason is the following\, I1, S, A = N C q@ensures thalv was sent out and
M IS, A = ﬁ(é, x - N) guarantees that the adversary has not access to it. Since
we assumed that there is only pairing and encryption, thetbinigs the adversary may
not have access in a term of the frame, are the ones undepéiooywith honest keys.
So there was at least one honest encryptioN afent out.

14



Secondly, observe thawt, I, S, A = VzR(y = {z}B; — {z}F. Z ¢) means
that for everys’ C S, if y = {z}%, onS’, then{z} 2. Z ¢ on S’. So on any sucls’,
y was not created by one of the agents as an honest encryptionAvi

The simplest now is to use the CCA2 definition that allows ipldtagents and
multiple encryption queries (this is equivalent to the d&md definition). The CCA2
attackerAccaz2 runs the protocol, and whenever there is an encryption byobtee
honest agents with one of the honest agents’ keys, the @kirg submitted to the
encryption oracle along with a randomly generated item \thith same length. The
encryption oracle chooses according to their internal eam@hoiceb, (same for all
encryption oracles) that is kept the same until the end. IG¢heryptions are done by
the CCA2 adversary. When the protocol roles are supposeddiyjot an encryption
that came from the oracle, the correctly recorded plaintextsed. At the challenge
state, the interpretation af is computed withC and is submitted to the decryption
oracle. As we have seen above, this message was not creadacbyest agent, hence
it was created by the adversary and so it did not come fromniceyption oracleS
is checked. Outsidé, the adversary throws a coin and outputs the result. InSide
the algorithm¢’ is applied to the interpretation of the and dedy, dK). Inside S,
as long as the encryption oracles encrypted the correctriigsthe output ofC’ is
the interpretation ofV. If they encrypted the random bit string, then the outpuf’of
cannot be the interpretation of, because in this case none of the honest encryptions
have anything to do with the protocol (but all informationoabN is under honest
encryptions). So, i’ returnsN, Acca2 outputs0, while if it does not outputV,
Accao throws a fair coin. We have

Prob (bg =b: b+ Acca2 | S"Aby=0)—1
is negligible as in this case the encryption oracle encyite correct plaintexts. Now,

1
Prob (by =: b+ Acca2” | S"Aby=1) — 3

is also negligible, because in this case, the encryptedsiteave nothing to do with the
protocol, and so the adversary throws a coin. Since by aartgin we also have that

1
Prob (b =: b + Acca2" | (ST)" Aby=1) — 5

is negligible, it follows from the 3 equations above thattitha

1
Prob (b1 =b:b<«+ ACCAQ”) — 5
is non-negligible hence breaking CCA2 security assumption a

4.3 One Extra Axiom (The implementation needs to satisfy tts too)

For this protocol, we need an additional axiom, namely,

RandGen(N) — =W (w2 (IV)).
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That is, the second projection of a nonce can never be a nano€iwhelming proba-
bility on a non-negligible set). We assume that the impletatgon of the pairing is such
that this condition is satisfied. If this does not hold, thisran attack which we include
in Appendix A. It is very easy to ensure that an implementesatisfies this property.
If the length of nonces is fixed for a given security parametad agents check the
length of bit strings that are in the positions of nonceshia taser; (N), then we can
preventV (m, (N)) as it is easy to show th&¥ (w2 (IV)) is only possible if the length
of w1 (V) differs from the length ofV with non-negligible probability. But they should
be the same length as they are both nonces. To be more piiadisis,case we should
add in the above formula that bokH (7; (V)) and N are of nonce type (meaning they
have the same computational length):

RandGen(N) A NonceLengt h(N) A NonceLengt h(m (N)) — =W (w2 (IV)).

This axiom is satisfied in an implementation that checks ¢imgth of bit strings cor-
responding to nonces. This means thaturity of the NSL protocol does not require
tagging of nonces, pairs, encryptians

This axiom is used under 2.2.2 part of the secrecy proof,idealin Section 6.

5 Examples for Proving Inconsistency

Before getting into the correctness proof of the NSL protoae first look at three
small example proofs. This way the reader will become fanhiow the axioms work.
Note that these derivations anet pure first-order deductiondNot only we use the
axioms and first order deduction rules, but we also use howrdbsljc execution is
defined (and the transition system is not formalized in FOL).

Example 3.We start with a very trivial example. It is rather obvioustthrethe execu-
tion of the NSL protocol in Example X I/ A should be inconsistent with the axioms
as A was included inpo. We can derive it the ollowing way: observe that

¢2 = A,B,GKA,SKB, {<N13A>}§I]( = ¢07A7B36KA7€K35 {<N17A>}§Il(

B B’

From the self-derivability axiom at ste ¢o, B, eK 4, eKp, {(N1, A)} A+ A

eKp?
By commutativity it follows that,¢g, A, B,eK 4,eKp, {(Nl,A>}f;< F A, which
means that

¢01A7B76KA16KB7 {<N11A>}§II(B |7( A

is inconsistent with the axioms. S84, 0 (= A, B,eK4,eKp, {{Ny, A)}fé
any modelM, which implies thaty, I/ A is inconsistent with the axioms.

t# A for

B

Example 4.We can also derive, as expected, that N; is inconsistent with the
axioms in our NSL example. This should be the caselNasas only been sent out
under a single good encryption. As

¢2 = A, B,eKa,eKp, {(N1, A}k = 1, {(N1, A)} %

B7
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it is enough to show thap, {<N1,A>}f};3 F N is inconsistent with the axioms.
Suppose that, in order to get a contradiction, this is notHsej.e.,

1, {(N1, AV - Ny (3)

To apply the secrecy axiom consider that (), 2 = (N1, A), andy = N;. SinceKp
was correctly generated (appeared as a naRex)dGen(K ) holds. By Example 1
we haveeKp C ¢;. fresh(R; ¢1, x, z,y) also holds becaudRandGen(R;) A Ry [Z
&1, (), (N1, A), N7. Finally, sincex < ¢1, * < ¢ andy < ¢; because none has
handles, (3) holds, antis IZ ¢, x, x, one may apply the secrecy axiom and get

¢1 F Ny.

Finally, we may show that at Stapwve havefresh(Ny; ¢1), sofresh(Ny; ¢1)Ad1 B Ny
which contradicts the no telepathy axiom.

Example 5.From the axioms, we can also derive the increasing knowlefiga ad-
versaryj.e, for anym andz, if ¢,,, - x is derivable from the axioms and agent checks,
theng,,+1 - x is also derivable from the axioms and agent checks. The jsoather
simple. Assume thad,, - = is derivable from the axioms and agent checks. iLie¢
the message sent in the + 1'th stepi.e., ¢.,+1 = ém,t. The increasing capabilities
axiom applied to stepr meansy,,, b x implies¢,,, t - x. But that is the same as

¢m+1 .

Note that from the above and from Example 3 it also follows tbeanym, the axioms
imply that¢,,, - A. It is clear from Example 3, that, - A follows from axioms.
Then from the above, by induction,,, - A follows from axioms. Here, we applied
induction. But note, that the induction is not within FOL, wsed the induction on the
number of execution steps.

6 Correctness Proof of NSL

In this section we present the correctness of the NSL protocany (bounded) number

of sessions. Namely, we show that in the symbolic executfimed above, violation of
secrecy or authentication is inconsistent with the axioghssve mentioned, we assume
that agentA only executes the initiator role, and agéhbonly executes the responder
role. But, we allow bottd andB to have other sessions running with possibly corrupted
agents. We start by showing that throughout the entire dkstunonces that were
generated by honest initiatetr and sent to honest respondey or vice-versa, remain
secret. We do this by picking any stepof the execution tree, and listing all possible
execution rounds (according to the protocol roles), we sti@t for all possibilities,
om t/ N together with the axioms and the agent checks imply.1 I/ N. In other
words, ¢, I/ N, the axioms and the agent checks, ah¢., - N are inconsistent.
Sincegy t/ N initially holds by no-telepathy, by induction, we hawg, t/ N after any
finite number of steps:. The reader can see below that the induction hypothesis is a
little more complex but essentially this is what we do.

17



Once secrecy is proven, authentication and agreement@nskive pick the point
on the execution tree when the responder finished his tasksing that we have shown
that nonces remain secret, together with non-malleabiiyghow that the initiator also
had finished his task and the corresponding values that thpawties see have to match.
In other words,B finished, A not finished or values don’t match, and the axioms and
the agent checks are inconsistent.

6.1 Secrecy

The aim of the secrecy proof is to show that nonaésent betweem and B remain
secret. IfN is a nonce sent byl to B means thaBR({N, A} C ¢). If B sentit

to A, that means thath R ({r (dedh, dKp)), N, B} T ¢). So, these nonces can
be characterized by the condition

C[N] = RandGen(N)
A (EIR.{N, AYE. T ¢V 3nR{m (dedh,dKp)),N, B} C 95)

where the first exists characterizes nonces sent fdota B and the second charac-
terizes nonces sent froii to A. Then the secrecy property we want to show is that
VN (C[N] — ¢/ N). Itis equivalent to show that its negation,

AN (C[N] A - N), (4)

is inconsistent with the axioms and the agent checks on @@sgible symbolic trace.
Suppose the total length of the symbolic trace in question i&t the end of the
trace the frame containsn terms. Let us denote the frames at each node of this trace
by ¢9, ¢1, @2, etc. Each frame contains one more term than the previous one
Satisfaction of C[N] by this trace means that one of the terfns, A} or
{m (dedh,dKp)),N, B}E,  appears in frame,, for someh, R. Let us fix suchV.
Furthermore, ifz is a list of a finite number of nonces = Ny, ..., N; such that they
were all generated by eithelror B (possibly intended to each other, possibly intended
for other possible malicious agents), and they are all diffefrom NV, then we say
conditionC’[x, N] is satisfied. This can be written as a first order formula like

Cl[Nh ...7Nl,N] =
l RandGen(N;) A N # N; A
[\1 JQRAN;, A}l £ ¢ v 3QhR{m (dedh,dKp)), N;, B} T ¢

We will carry out an inductive proof on the length @f. As it turns out, in order to
avoid loops in the proof, instead of (4), it is better to prévat

AN3z(C[N] A C'[x, N] A b,z F N) (5)
is inconsistent with the axioms and agent checks. On the sljotbace, this means that

IN3z(C[N]AC'[x,N] A ¢,z N)
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is inconsistent with the axioms and agent checks. We do thitxing an arbitraryN
satisfyingC[N], and for this fixedV, we do an induction on the length of Namely,
we show that having fixedV, if for somem < I, 3z(C'[x, N| A ¢,z = N) is
inconsistent with the axioms and agent checks, then

Ja(C'[2, N A 1,z E N)

is also inconsistent with the axioms and agent checks. Tdwatn = 0 the statement
follows from no telepathy, we are done.

Proposition 3. In the above execution of NSL protocol, ¥tbe such thaC[N] is sat-
isfied, and letn. < [. If for all « such that”’[x, N] holds, the axioms and agent checks
imply (by FOL deduction rules) that,,,x t/ N, then for allz such thatC’[x, N]
holds, the axioms and agent checks imply (by FOL deductiesythate,, 1, x I/ N
holds.

Proof. Suppose in order to get a contradiction that the claim ism@t fThat is, let us
assume that there is a finite set of nonges Ny, ...V, such thatC’[x, N] and

Om+1, N1, ..., Nt =N

is satisfied in some semantics. We will show show that thigettoer with the honest
agent tests and the axioms, imply that for some nomtes N7, ... N/, with C’[z’, N7,

Gms NJ, ..., N}, - N.

Lett be the last term i,,, 11, that s, 11 = dm, t (t was sent either byl or B).
Suppose, in order to get a contradiction, that ¢, N1, ..., N; = N. By commutativity,
we get

Om, N1,..., N, t = N. (6)

We divide the proof in two cases: wheémvas sent byAd and whent was sent by3.

1.) Assume that was sent byA. According to the role of4, for someN7, Ry, hg,
R3, Q,

1 t={Nj, A} or
2. t = {m (m (dedhs,dK 4)))} i, of
3.t= (& (A7 Qa Nla U (7T2 (dec(h’37 dKA))))

1.1)t = {Ny, A}f};Q. SinceA is following the initiator role honestlyd generated
N7 earlier.

1.1.1) If N = N, thenC[Nj] is satisfied (becaus@[N] was assumed to be sat-
isfied). By definition ofC' that means tha; was sent in a message & As A does
only the initiator role and nothing else, each messagd byat looks like{ N7, A}féQ
has a freshly generated nonce each time. 3¢'if= N, that means that the messages
themselves must also be the same and 59, A}f;(Q = {N, A}F  which implies
thatQ = B. Applying to our hypothesis (6) we get

B
Gy N1, oy N {NT, A} N
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As A was sent out ip; we havep,, - A (Example 5), and by an argument similar to
the one in Example 4, we gét,, N1, ..., Ni, {N], A}Y[L F (N, A).

Since forz = Ny, ..., N; the predicater < ¢, holds, as are all namedKp £
®m, N1, ..., Ni, N7, A, andfresh(Ry; ¢, N1, ..., Ni, N1, A) also hold, the secrecy ax-
iom implies that

Gm, N1, ..., N F N,

which is exactly what we had to show.
1.1.2.) LetnowN; # N. By the functions axiom, we have

/ / R
¢m7Nla ---avaNlaAveKQle F {vaA}ell(Q’
that together with hypothesis (6) and transitivity implies
G, N1, ...,NZ,N{,A,eKQ,Rl FN.

SinceR; is fresh and different froniV, by the fresh items are independent axiom, we
obtaing,,, N1, ..., N;, N{, A,eKqg - N.

Sincee K is revealed explicitly at the beginning, we hatg, N1, ..., N;, N{, A+
eKq, and hence, by the transitivity axiom,,, N1, ..., N;, Ny, A = N. Applying the
same reasoning td we get

¢W1N17---7NZ,N{ l_ N

By hypothesisV] is not N and soC’[x’, N is satisfied for’ = Ny, ..., N, N thatis
exactly what we wanted.

1.2.)t = {m (72 (dedhs, dKA)))}ff(Q. By the definition of the role oA we have
thatms (72 (dedhs, dK 4))) = Q. Applying transitivity and function axioms to (6)

Gms N1,..., Ni,dedhs, dK 4),eKq, Rs F N.

Sincee K was revealed at the beginning, aRgl is fresh, by Example 5 and the fresh
items are independent axiom we get

Gmy N1,y ..., Nj,dedhs, dK 4) - N.
By the non-malleability axiom (witke = Ny, ..., N;, y = h3), we get that either
JeR({z}l = hs A {a} e, T ) OF ¢, Ni, .., N N

1.2.1) If¢,, N1, ..., N = N we are done.

1.2.2.) Suppose notw R({z} 5 | = hs AN}l € ¢n). Then{z} . has been
sent out. Sincel never encrypts with its own key, it had to Bewho sent it out (as the
only two honest agents arkand B). Therefore, a3 follows its responder role,

{x}(}jKA = {771 (de((hg, dKB)) ) N2/v B}fKA
for someN}. Thereforededhs, dK 4) = (m; (dedhs,dKp)), N}, B). But then

T (71'2 (de((hg,dKA))) = Né and U (71'2 (de((hg,dKA))) = B.

20



As we also had that, (7 (dedhs,dK4))) = Q we getQQ = B. So the message
t = {m (m2 (dedhs,dK )} 1%, = {N3} 13, - By substitution

(bmaNla'“aNh{Né}fIS{ |_N7

B
and by the security axiom, d%; is fresh and ag < ¢,
(bmlea"'aNl + N7

which is what we wanted.

1.3) Ift = ¢;(A,Q, N1, (w2 (dedhs,dK 4))) ), then by thec is not helpful
axiom, o, , N1, ..., N;, t = N follows.

2.) Assume now thatwas sent byB. By to the role ofB, for somehsy, N3, Ro,

1. t = {m (dedhs,dKp)), N}, B} ,
7y (dedhy dK g))
2.t = CT(7T2 (dEC(hQ, dKB)) , B, m (dEC(hQ, dKB)) ,Ng).

(andWW (w2 (dedhs, dK ))) holds.) Just as in the previous casedoes not help the ad-
versary to geiV, so we can assunte= {m; (dedhs,dKg)), Ny, B} (tethgrizm)”
w2 (dedha, B

2.1)If Nj, = N, then, since&”[N] holds,C[N4] also holds, so a&7 was generated
by B, it was sent tod. And sinceB does not do anything other than executing responder
sessions, and/ is only generated in one session,

{1 (dedhs,dKp)), N, B} = {m (deqhs,dKp)),N,B}2 |

wo(ded(hy,dK 3))

But substituting in (6) we geby,, N1, ..., Ni, {m (dedhe, dKp)) N, B}2 + N,
which, by the secrecy axiom implies

(bmlea"'aNl F N7

which is what we wanted.
2.2)) If NJ # N, by the transitivity and the functions derivability axiomee have

¢maNla e aNlaﬂ-l (dec(h27dKB))7NéaBaeKﬂg(deC(hQ,dKB))aR2 FN.

By the independence axiom (and commutativity)\§sand R, are fresh, we can drop
them, and sincé andeK ., geqn,,dx ) Were published at the beginning, so we can
drop them too obtaining

&my N1, ..., N, (dedhs, dKp)) F N.
By the transitivity and the functions derivability axionvge have
&ms N1, ..., N;,dedhs,dKp) F N. (7)
Applying non-malleability axiom to (7) we have either

Gm,N1,...,NyE N or zR(hs = {z}F, ANz}, T o).
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In the first case, we complete our proof. In the second casee 81 does not encrypt
messages with the key( g, hs is sent byA. Then, we have either

ho = {2}, = {N1, A} %, or he = {a}f, = {m (m2 (dedhs,dKa)))} %,

for someQ, Ny, Ri, Rs, andhs with Q = B.
2.2.1) IH{a}l = {N], A}l thenN| = m; (deqhs, dK)) hence

t= (N}, N3 B},
Then, the secrecy axiom applieddgg,, N1, ..., N;, { N7, N, B}fKA F N implies
Om, N1, ..., Nt = N
2.2.2) f{z}E = {m (m2 (dedhs, dK 1))},
dedhsy,dKp) = 71 (72 (deqhs, dK 4))) .

then

Substituting in Equation 7, we gét,,, N1, . .., N;, 71 (72 (dedhs, dK 4))) = N, hence
Gm, N1,..., Ny, dedhs,dK4) - N.
Similarly to the previous case, applying non-malleabilitylies that either
Gy N1y ooy N E N o8 32/ R (b = {2/} B, A/} E, T 6m).

In the first case, we complete the proof3i' R'.(hs = {z'} 5 A {2/} | T 6m),
then, since onlyB encrypts withe K 4, and since it follows its responder role, we have
_ (R / 1 R,
h’3 - {ZC }eKA = {ﬂ-l (dec(hQa dKB)) 3N2 ) B}elz(n2(deo(h/2,dKB)) :
for someRandGen(NNY). Therefore we have; (72 (dedhs,dK 4))) = NY, that is,

x = NJ. But, we also had that = deqhs, dK ), and and the beginning of 2.), the
assumption wall (r, (deqhq, dK))). Putting these three together, we get

W (s (N3)),

which contradicts our necessary axiom for the NBandGen(NY) — =W (mo (NY)).
O

We still have to show thai N3z (C[N] A C'[z, N] A ¢o,x = N) is inconsistent
with the axioms. LetC[N] and C’[x, N] hold for N andx = Ny, ..., N;. At step0,
N, Ny, ..., N; are still fresh (remember, we assumed for simplicity thatrgthing was
generated upfront, and clearly, these nonces have not be€nso by the no telepathy
axiom,¢q t/ N, and then by the independence of fresh items/N,  N. Then again
by the independence of fresh itergg, N1, N2 t/ N, etc. So

b0, N1, ..., N I/ N

holds, meaning thatN 3z (C[N]AC'[x, N]A¢o, z - N) is indeed inconsistent. Then
the induction step in Proposition 3 proves that this propaliays holds. In particular,
we have the following theorem.
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Theorem 1 (Secrecy)Consider a symbolic execution of the NSL protocol, with an
arbitrary number of possible dishonest participants an@ tmonest participantsA,
B such that they follow the initiator and responder roles espondingly, they only
execute these roles in each of their bounded number of ssssind are forbidden to
initiate communications with themselves. Further, coasttie conventiorz, y, z) =
(2, (y,2)).

Our axioms together with the agent checks &ahdGen(N) — —W (mg (N))
imply that for alln and for any nonceV that was either generated by and sent taB
or vice versag,, t/ N.

The above Theorem states that secrecy of nonces satigfifiNg is not broken.
That is, nonces that were generated/bwr B and intended to be sent between each
other, remain secret. Takingto be the empty list, the formulﬁN(C[N] A E N),
together with the axioms and the agent checks RandGen(N) — =W (w2 (N)) are
inconsistent on any symbolic trace.

6.2 Agreement and Authentication
We now prove agreement from the responder’s viewpoint. iEhate will show that

EXIST i, N1, h1, hs, R1, Rs SUCH THAT

Initysr[A,i, B, N1, hi, hs, R1, Rs] AND
— dedhs,dKp) = (N1, A) AND

deqhs,dK4) = (N1, Na, B AND
deqh4,dKB) = Ny

RespN sy [B,i', N2, ha, ha, Ry] AND
) (de((hg, dKB)) =A

Where by the implication sign we mean that the agent checidsagioms imply this.
We can also write this within our syntax:

A=my (de((hg,dKB)) AN R
Ny = my (dedhs, dKg)) A —s Ths. (Ci@‘laBaNl,Nz) Cén >
CT(A B N1 NQ) [ g%/\ N2 =71 (7T2 (dec(h37dKA)))

What we have to prove is that the negation of this is incoestsiiith the axioms
and agent checks. But for that it is sufficient to show thatafyent checks and axioms
and the premise of the formula imply the conclusion of thisrfola.

Theorem 2 (Agreement and Authentication).Consider a symbolic execution of the
NSL protocol, with an arbitrary number of possibly dishanearticipants and two
honest participantsi, B such that they follow the initiator and responder roles eorr
spondingly, they only execute these roles in each of theinbed number of sessions,
and are forbidden to initiate communications with themssl~urther, consider the
conventionz, y, z) = (z, (y, 2)).

Our axioms together with the agent checks &ahdGen(N) — —W (w2 (N)) are
inconsistent with the negation of the formula

CT(7T2 (dEC(hQ,dKB)),B,ﬂ'l (de((hg,dKB))7N2) E¢ A=my
Ci(A,B,Nl,ﬂ'l (7‘1’2 (dec(h3,dKA))) E
— dNyhs. Ny =m (71'2 (de((hg,dKA)))
Ny =m (deqhg,dKB))

(deqhQa dKR))
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Proof. ¢, (s (dedhs,dKp)), B, m (dedhs,dKg)), N2) T ¢ means (by the role of
B) thatRespﬁSL[B, i’', Na, ha, ha, Ro] was carried out and so we have

{m (dedhy, dKp)), No, B}, E ém (8)
(for m step, when it is sent), and
dec(h4, dKB) = Ns.

Applying the self derivability axiom we have,,,deqhs,dKg) - Ns. and by non-
malleability we have either

¢m = No or JzR.(hy = {z}l A{2}l T o).
The first case is impossible by Theorem 1. In the second casgpimgh, we have
Tr = Ng.

Since B does not send messages encrypted with, hy = {No fKB is sent byA in
some session

1.) Case{z} 5, = {Nl,A}f;(Q for someN; and R;: In this case we get =
(N1, A), and soN, = (Ny, A). This implies by the self-derivability that for any’,
om, N1, A F No, and sinceA is public, implies

Om/s N1 = Na.

This is true for allm/, so it is also true for the one wheN; or N is fresh. But,
that contradicts either the freshness or the no telepatloyradf N, is fresh, by the
freshness axiom we get,,, = N5 that is impossible by Theorem 1. N, is fresh, the
no telepathy axiom is violated. So the assumption in 1.) tgogsible.

2.) Case{z}[};, = {m (m (dedhs,dK4)))} i, Since A follows the initiator
role, there existév; honestly generated by andhs such that

T (de((h37 dKA)) =N and ) (7T2 (de((h37 dKA))) =B (9)

Thatis, sessionof A is with agentB. Sincex = 71 (72 (deqhs, dK 4))) andz = Na,
together with (9) we have

T (7‘1’2 (dec(h3, dKA))) = Ny and dEC(hg, dKA) = <J\/v17 No, B> (10)
Sowe havdm't;‘\‘,SL [A,i, B, N1, h1, hs, R1, Rs]. The only thing left to be proven is
dEC(hQ, dKB) = <J\/v17 A>

Applying the self derivability axiom to (9) we havg,,, 71 (deqhs,dK4)) - N; for
anym”, and by the functions derivability and transitivity axiomge have

Gt de((hg, dKA) F N;.
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Applying the non-mallability axiom, we have
G = N1 or 32’ R .(hs = {2}, AMa' Y, C gr)

and the first is not possible by Theorem 1/ds was generated byl in sessioni in
which the intended party i8 as we have shown. Then, we have

deqhs, dK 4) = . (11)

SinceA does not encrypt messages with 4, {« f}{A was sent byB. Then we have

(o'} 5, = {mi (dedhl, K p)), Ny, BY [}, (12)
for somehl, N5, andRj. From (9), (11) and (12), we get
Ny = my (dedhs, dK4)) = m (/) = m (deqhb, dKp)), (13)
and from (10), (11) and (12), we get
Ny = my (g (dedhs, dK 4))) = m1 (w2 () = Nj.

SinceB, according to its role, always generates a new nonce befodirgy its message,
N5 is not used in more than one session. On the other hand, wahiaaely concluded
that in the session whepé, is sent, (8), the messagelis, (dedha, dKp)), No, B}
therefore by (12),

Al
{m (deqhb, dKg)), Ng, B} 2, = {m (dedhs,dKp)), N, BYf%
and soh), = ho, which means by (13)

T (de((hg,eKA)) = Nj.
Putting all these together, we have that there exidt, hy, hs, Ry, R3 such that

Initiy g [A,i, B, N1, hy, hs, Ri, Rs] AND
de((hg,dKB) = <N1,A> AND
dedhs,dK 4) = (N1, N2, BY AND
dec(h47 dKB) = Ny

which immediately implies the intended property. a

7 Conclusion and Future Work

In this paper we have illustrated that proof of the NSL protaman be done within
the framework of Bana and Comon-Lundh [7] where one does efirie explicitly the
Dolev-Yao adversarial capabilities but rather the liniitas (axioms) on these capabil-
ities. This proof is computationally sound without the neéany further assumptions
such as no bad keys, etc that are otherwise usually assuroéueinliterature.
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We presented axioms that are computationally sound foramphtations using
CCAZ2 secure encryption. Using these axioms we proved battesg and agreement
of the NSL protocol. Applying the main theorem of [7] we olotad that there is no
computational adversary for such implementation that dalate secrecy or authen-
tication with non-negligible probability. A simple pargiraxiom was also needed in
order to complete the proof. We were able to verify that witheuch axiom an attack
against the protocol could be performed. Other than thigarticular assumptions had
to be made about parsing. In particular, tagging of bit painsryptions is not necessary
to ensure security of the NSL protocol.

The proof we presented in this paper was done by hand. Automiatieft for future
work. Also, secrecy means here that the adversary canngbutena nonce. Indistin-
guishability is also left for future work.
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A An Attack on NSL

If we assume thaRandGen(N) A W (w2 (IV)) is computationally satisfiable, then
we have the following computational attack on the NSL protoRandGen(N) A

W (me (N)) is the same as saying that with non-negligible probabilifg, possible to
choose a name (bit-string) for an agent such that for the outpiit of some honest
nonce generation, there is a bit-stringsuch with(n, Q) = N. To show that this is
not at all unrealistic, suppose the pairifig-) is concatenation, and the length of agent
names does not depend on the security parameter, say ahb#gsThen for any name
@, n can be chosen witkn, Q) = N as long as the last four digits é¥ equals(,
which, if N is evenly generated, is of jusy/2®, a non-negligible probability. So this
situation is realistic. Now, the attack is the followingn&eds two sessions:

1. The adversary choses a na@as above.

2. The adversary catches the last messayg} 5 in a session sent byl to B, two

honest agents.

3. The adversary, acting as agéhinitiates a new session with, sending{ N>} 5 to

it.

4. SinceB thinks this is a new session with, it will parse the message according
to its role, namely ag N, @} 5. This will succeed as long as there is mmwith
(n, Q) = Na, that is, it will succeed with non-negligible probability.

. B generates a new nonc¥y,, and send¢n, Nj, B} to Q.

6. The adversary) decrypts{n, N3, B}q, readsn, and computedVs = (n, Q). The

secrecy ofN, is hence broken.

(2]

So, we can conclude that(i, Q) = N is possible computationally with non-negligible
probability, then the protocol fails. In such case, trattéxy soundness proofs fail as a
bit string can be understood both @s Q) and asV .

Notice, that this attack is not a usual type-flaw attack, beeaeven if type-flaw
attacks are allowed, honestly generated nonces are ngrooalsidered atomic.

Clearly, if the implementation of the protocol is such thatalways checks the
length ofn, then this attack is not possible. But, it has to be made shaéthe imple-
mentation satisfies tieandGen(N) — —W (72 (N)) property.
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