
Computationally Complete Symbolic Attacker in Action

Gergei Bana1, Pedro Adão2, and Hideki Sakurada3

1 MSR-INRIA Joint Centre, Orsay, France bana@math.upenn.edu
2 SQIG-IT and IST-TULisbon, Portugal, pedro.adao@ist.utl.pt
3 NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan,

sakurada.hideki@lab.ntt.co.jp

Abstract. We show that the recent technique of computationally complete symbolic attackers
proposed by Bana and Comon-Lundh [7] for computationally sound verification of security
protocols is powerful enough to verify actual protocols. In their work, Bana and Comon-Lundh
presented only the general framework, but they did not introduce sufficiently many axioms to
actually prove protocols. We present a set of axioms—some generic axioms that are compu-
tationally sound for all PPT algorithms, two specific axioms that are sound for CCA2 secure
encryptions, and a further minimal parsing assumption for pairing without which there is an
attack—and illustrate the power of this technique by giving the first computationally sound
verification (secrecy and authentication) via symbolic attackers of the NSL Protocol that does
not need any further restrictive assumptions about the computational implementation. In other
words, all implementations for which the axioms are sound – namely, implementations using
CCA2 encryption, and satisfying the parsing requirement for pairing – exclude the possibility of
successful computational attacks. Furthermore, the axioms are entirely modular, not particular
to the NSL protocol.

1 Introduction

Computational soundness has been a topic of utmost importance in the past decade. It started with
Abadi and Rogaway [1] and followed by many others, for passive adversaries [16, 2] as well as
for active. The aim is always that symbolic proofs imply computational security. Works concerning
active adversaries can be divided into two groups. Works in one [3, 14, 4, 12] define symbolic ad-
versaries, and soundness theorems state that under certain circumstances, if there is no successful
symbolic attack, then there is no successful computational attack. The other group aims to work
directly in the computational model [15, 8, 11, 10].

The first group, where symbolic attacker is defined, gives hope that already existing automated
tools may be used for computationally sound verification, but these soundness theorems require a
large set of assumptions. Typically they assume that no key cycles can ever be created, that bitstrings
can be unambiguously parsed into terms, that there is no dynamic corruption, that keys are certified
(badly generated keys cannot be used), etc. These assumptions, as well as reasons why they are not
realistic are discussed in [13].

Recently, Bana and Comon-Lundh presented in [7] (and in an improved version [6]) a new tech-
nique to define symbolic attackers that is more suitable for computational soundness than the usual
Dolev-Yao adversary (or variations of it). They called this new symbolic adversary computationally
complete symbolic adversary, as it is capable of doing everything that a computational adversary is
capable of. The basic idea of their technique is the following. Instead of listing every kind of move

1

a symbolic adversary is allowed to do, a few rules (axioms) should be listed that the symbolic ad-
versary is not allowed to violate. In other words, the symbolic adversary is allowed to do everything
that is consistent with these axioms. The axioms that are introduced must be computationally sound
with respect to a computational interpretation that they defined. Their main result is that once it is
shown that no successful symbolic adversary can exist complying some set of axioms, then for any
computational implementation satisfying that set of axioms, successful computational attacks are
impossible as long as the number of sessions is bounded in the security parameter.

In their original work however, they did not show that their technique could actually be used
for practical protocol verification as they only presented the general framework and a few compu-
tationally sound axioms as a proof of concept. To actually prove protocols, more axioms have to
be introduced in order to weaken the symbolic adversary sufficiently close to the computational ad-
versary (with unrealistically strong symbolic attackers, no protocol can be verified). They left it for
future work to show that this program could be carried out in practice.

In this paper, we show the technique of Bana and Comon-Lundh can indeed be used for protocol
verification. Namely, we introduce some modular, computationally sound axioms, and then illustrate
that the technique with the axioms we introduced can be used to verify secrecy and authentication of
an actual protocol, namely, the Needham-Schroeder-Lowe protocol. More precisely, we show that
there is no symbolic adversary for which the violation of either secrecy or authentication (or both)
of the NSL protocol is consistent with the set of general axioms we give together with an additional
minimal parsing property that the computational implementation of pairing must satisfy (otherwise
there is an attack). Applying the main theorem of [7], this means that there is no computational
adversary of the NSL protocol (in an implementation satisfying the axioms) that can violate secrecy
or authentication with non-negligible probability.

The set of axioms we give is divided into four groups. One has a number of general axioms sound
for any computational implementation. Then, there is a group consisting of the equations required
for function symbols, such as the decryption of a cipher gives the plaintext back. Then, there is a
group of two axioms sound for CCA2 encryptions, one expressing the secrecy of a CCA2 encrypted
item, and one expressing the non-malleability property of CCA2 encryptions. Furthermore, to prove
security of the NSL protocol, one more property is needed expressing a certain parsing unambiguity,
which needs to be assumed as otherwise an attack exists.

The axioms are not particular to NSL protocols. They are modular. Introducing further primitives
will not destroy the soundness of these axioms, they do not have to be proved again.

The technique of [7] allows to avoid all restrictions mentioned before on the computational
world. Once a protocol is proven secure in our symbolic model with respect to a set of axioms, then
all properties that the computational implementation has to satisfy for computational security are
included in the axioms. Any number of bad keys are allowed to be generated by the adversary; any
number of corrupted, uncorrupted, or dynamically corrupted parties can be present. As for parsing
of bit strings into terms, previous soundness results relied on unambiguous parsing. Within this
framework, we do not need such an assumption, because symbolic agents do not do any pattern
matching. If unambiguous parsing is needed for the security of a protocol, then it is necessary to list
it as a property that secure implementations need to satisfy. The only needed assumption for proving
NSL is that an honestly generated nonce N cannot be non-negligibly parsed into a pair, such that
the second part of the pair is some (dishonest) agent name, i.e., looks like 〈n,Q〉 for some n. This
is a necessary assumption, as the failure of it results in an attack, presented in [9]. This can easily
be achieved in an implementation by, for example, checking the length of bit strings that should

2

correspond to nonces. Other than this, no parsing hypothesis is assumed. For example, honestly
generated nonces may collide with other kinds of pairs, encryptions could a priori collide with other
kinds of expressions, etc. That is, tagging of pairs, encryption etc is not necessary for the security
of the NSL protocol.

In fact, the security proof is long exactly because of parsing ambiguities. Since any term may a
priori coincide with any other, that is, any term that was created by an honest agent or the adversary
may a priori be wrongly parsed by another agent (interpreting it as the message of a wrong session
or a wrong message of a given session), the fact that they do not, has to be derived from the nature
of the protocol. Had we assumed tagging and completely unambiguous parsing (which, in fact, has
always been assumed by earlier NSL proofs, even in Cryptoverif), the proof would be quite short.

We would like to emphasize that our aim here is to demonstrate that the technique works, and
not to provide the most general possible verification for the NSL protocol. Further generalizations
are possible at the cost of much longer proofs. For example, in the current proof, we assume that
each honest agent only executes either the initiator or the responder role as this makes the proof
much shorter and clearer. We have however been able to complete the proof for the case when they
are allowed to run both sessions, even against themselves at the cost of an additional parsing axiom.
A further assumption is that triples are created from pairs. It is possible to do the proofs without
this assumption, and have a separate function symbol for triples (and introduce further necessary
requirements to avoid attacks), but again, it would make the proofs far longer.

The contributions of this paper include (i) the set of general axioms that are computationally
sound for any PPT implementation, (ii) the non-malleability axiom that is computationally sound
for CCA2 security, (iii) the additional parsing axiom needed to avoid an attack to the NSL, and (iv)
the security proof itself. Again, the axioms are all modular, independent of the protocol, and they do
not have to be proved again if further primitives are included.

This paper is organized as follows: we start by recalling the framework of [7] (Section 2). In
Section 3, we show how the NSL protocol and its execution can be formulated in the proposed
framework. In Section 4, we present the first contribution of this paper introducing the set of com-
putationally sound axioms needed to show both secrecy and authentication of the NSL protocol. In
Section 5 we show soundness of the two non-trivial axioms, namely, the CCA2 axioms. In Section 6,
we show a few simple examples of how inconsistency of certain formulas with the axioms can be
proven. In Section 7, we prove that no symbolic adversary compliant with the presented axioms can
successfully violate secrecy or authentication of the NSL protocol. In Section 8, we summarize our
results and present directions for future work.

2 Symbolic Execution

The framework used in this paper was introduced by Bana and Comon-Lundh in [7]. We resent a
brief summary of that (with minor adjustments) and refer the reader to that paper for further details.

2.1 Terms and Frames

Terms are built out of a set of function symbolsF that contains an unbounded set of namesN and an
unbounded set of handlesH. Names and handles are zero-arity function symbols. We will use names
to denote items honestly generated by agents, while handles will denote inputs of the adversary.
Let X be an unbounded set of variables. A ground term is a term without variables. Frames are

3

sequences of terms together with name binders: a frame φ can be written (νn).p1 7→ t1, . . . , pn 7→
tn where p1, . . . pn are place holders that do not occur in t1, . . . , tn and n is a sequence of names.
fn(φ), the free names of φ are names occurring in some ti and not in n. The variables of φ are the
variables of t1, . . . , tn.

2.2 Formulas

LetP be a set of predicate symbols over tems.P is assumed to contain the binary predicate = (which
is interpreted as a congruence) and is used as t1 = t2, and a family of n+1 predicates `n, (which is
intended to model the adversary’s capability to derive something) and is used as t1, ..., tn ` t. (we
drop the index n for readability).

As for the symbolic interpretation of such predicates, we allow any that does not contradict our
axioms, which we will introduce later.

LetM be any first-order structure that interprets the function and predicate symbols of the logic.
We only require that it interprets terms and the predicates such that = is interpreted as the equality
in the underlying domain DM (clearly, DM includes a relation `M interpreting the deducibility
predicate ` too). Given an assigment σ of elements in DM to the free variables of term t, we write
[[t]]σM for the interpretation of tσ inM ([[]]σM is the unique extension of σ into a homomorphism of
F-algebras). For any first order structureM over the functions F and predicates P , the satisfaction
relation M, σ |= θ, where σ is an assignment of the free variables of θ in the domain of M, is
defined as usual in first-order logic.

2.3 Execution of a Protocol

Definition 1. A symbolic state of the network consists of:

– a control state q ∈ Q together with a sequence of names (that have been generated so far)
n1, . . . , nk

– a sequence constants called handles h1, . . . , hn (recording the attacker’s inputs)
– a ground frame φ (the agents outputs)
– a set of formulas Θ (the conditions that have to be satisfied in order to reach the state).

A symbolic transition sequence of a protocol Π is a sequence

(q0(n0), ∅, φ0, ∅)→ . . .→ (qm(nm), 〈h1, . . . , hm〉 , φm, Θm)

if, for every m− 1 ≥ i ≥ 0, there is a transition rule

(qi(αi), qi+1(αi+1), 〈x1, . . . , xi〉 , x, ψ, s)

such that n = αi+1 \ αi, φi+1 = (νn).(φi · p 7→ sρiσi+1), ni+1 = ni] n, Θi+1 = Θi ∪ {φi `
hi+1, ψρiσi+1} where σi = {x1 7→ h1, . . . , xi 7→ hi} and ρi is a renaming of the sequence αi into
the sequence ni. We assume a renaming that ensures the freshness of the names n: n ∩ ni = ∅.

Definition 2. Given an interpretationM, a transition sequence of Π

(q0(n0), ∅, φ0, ∅)→ . . .→ (qm(nm), 〈h1, . . . , hm〉 , φm, Θm)

is valid w.r.t.M if, for every m− 1 ≥ i ≥ 0,M |= Θi+1.

4

Initialization. For technical purposes, we always take φ0 = νn(), where n contains the honest
random items to be generated, and that is followed by an empty list of terms. φ1 will contain the
output of the initialization, that is, the names and the public keys. We will also assume for technical
purposes that all honestly generated items (nonces, random inputs of encryptions etc.) are generated
upfront.

2.4 Satisfaction of Predicates, Constraints and FOL Formulas in Executions

M modeled, among others, the predicate t1, ..., tn ` t. In executions however, instead of this predi-
cate, we consider a predicate that we write as φ̂, t1, ..., tn ` t. This is also an n+1-arity predicate. φ̂
is just a symbol, not an argument, and it represents the frame containing the messages that protocol
agents sent out, that is, the information available from the protocol to the adversary. Computational
semantics of the predicates x = y and φ̂, x1, ..., xm ` x were defined in [7]. Here we just briefly
mention that = refers to equality up to negligible probability, and ` means that the adversary is able
to compute (with a PT algorithm) the right side from the left. We also use another predicate, W (x),
which just tells if x is the name of an agent. We also use 4 different constraints: Handle(h), and
RandGen(x), and x v φ̂, and x v x. Handle(h) means h is a handle, RandGen(x) means that
x was honestly, randomly generated (i.e. appearing under ν in the frame); x v φ̂ means that x was
part of a message sent out by an agent (i.e. listed in the frame φ), x v x means x is part of x. Let us
introduce the following abbreviations:

– x v φ̂,x ≡ x v φ̂ ∨ x v x
– fresh(x; φ̂,x) ≡ RandGen(x) ∧ x 6v φ̂ ∧ x 6v x

– x 4 φ̂ ≡ h v x ∧ Handle(h)→ φ̂ ` h

Given a first-order model M as before, satisfaction of predicates and constraints in a symbolic
execution is defined as:

– Interpretation of predicates by M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk), where σ is a substitution as
above, t1, ..., tm are closed terms, and n1, ..., nk are names: (note the interpretation depends on
M) is defined as follows
• M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= t = t′ ifM, σ |= t = t′

• M,σ,〈t1, . . . , tm〉,n |= φ̂, s1, . . . , sn ` t ifM, σ |= s1, . . . , sn, t1, . . . , tm ` t.
• M, σ, 〈t1, . . . , tm〉 , n |=W (x) ifM, σ |=W (x)

– Interpretations of constraints byM, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk), where σ is a substitution as
above, t1, ..., tm are closed terms, and n1, ..., nk are names: (do not depend on the modelM):
• Handle(h) for h closed term:
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= Handle(h) if h ∈ H.

• RandGen(s) for s closed term:
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= RandGen(s) if s ∈ N andM,σ |= s=n1∨ . . .∨s=
nk.

• t v φ̂, where t is closed term:
M, σ, 〈t1, . . . , tm〉 , n |= t v φ̂ if t is a subterm of some ti

• t v s1, ..., sn, where s1, ..., sn and t are closed terms:
M, σ, 〈t1, . . . , tm〉 , n |= t v s1, ..., sn if t is a subterm of some si

– Interpretation of any FOL formula in which there are no free variables under constraints by
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) where σ is a substitution as above, is defined recursively as:

5

• Interpretations of θ1 ∧ θ2, θ1 ∨ θ2, and ¬θ are defined as usual in FOL
• If x is not under a constraint in θ, interpretations of ∀xθ and ∃xθ are defined as usual in

FOL.
• If x occurs under a constraint in θ, then
∗ M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= ∀xθ iff for every ground term t,
M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= θ{x 7→ t}

∗ M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= ∃xθ iff there is a ground term t,
M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= θ{x 7→ t}

– Satisfaction at step m:M, (q, 〈h1, . . . , hm〉 , n, φm, Θ) |= θ iff M, φm, n |= θ.

3 The NSL Protocol and Its Symbolic Execution

We now formulate the NSL protocol and its execution in the above framework. The steps of the
protocol, as usual are

1. A→ B : {N1, A}eKB 2. B → A : {N1, N2, B}eKA 3. A→ B : {N2}eKA

We use a randomized public-key encryption symbol: {m}reKQ is intended to represent the en-
cryption of the plaintext m with the public-key of the principal Q, with a random seed r. So,
consider the a set of constructors Fc = {{ } , 〈 , 〉, e , d ,K }, and a set of destructors Fd =
{dec(,), π1 () , π2 ()}, with the following equations:

– Equations for encryption/decryption:
• Decryption of an encryption results the plaintext: dec({x}ReK , dK) = x

– Equations for pairing/projections:
• First projection: π1 (〈x, y〉) = x
• Second projection: π2 (〈x, y〉) = y

We will use pairs to construct triples: 〈x, y, z〉 ≡ 〈x, 〈y, z〉〉.
We can define the action of principals as follows: the initiator, communicating with intended

party Q, does the following sequence of steps in session i which we will informally denote by
InitANSL[A, i,Q,N1, h1, h3, R1, R3]:

1. Receives some handle h1 from the adversary that triggers the start of the session with intended
party Q;

2. A generates nonce N1;
3. A sends {N1, A}R1

eKQ
;

4. A receives h2, and checks:
(a) π1 (dec(h3, dKA)) = N1;
(b) π2 (π2 (dec(h3, dKA))) = Q;

5. A sends {π1 (π2 (dec(h3, dKA)))}R3

eKQ
;

6. A sends ci
(
A,Q,N1, π1 (π2 (dec(h3, dKA)))

)
.

We used notation qAi (n) to denote the reached states. For verification purposes, let ci be a special
function symbol, that takes as argumentsA,B,N1, N2, respectively who commits for whom and the
corresponding nonces. ci(A,B,N1, N2) is sent along with {N1, N2, B}A. For the responder, there
is a similar commitment: at the end of the protocol, B emits (as a last message) cr(A,B,N1, N2).

The responder does the following sequence of steps in session i′ which we will informally denote
by RespBNSL[B, i

′, N2, h2, h4, R2]:

6

1. B receives some h2 from the adversary and checks:
– W (π2 (dec(h2, dKB))) (Checks that it is a name of someone);

2. B generates nonce N2;
3. B sends {π1 (dec(h2, dKB)) , N2, B}R2

eKπ2(dec(h2,dKB))
;

4. B receives h4, and checks if dec(h4, dKB) = N2;
5. B sends cr(π2 (dec(h2, dKB)) , B, π1 (dec(h2, dKB)) , N2).

3.1 Example Executions of the NSL Protocol

We now show an example of how an initial segment of the NSL execution can look like.

Example 1. We show the beginning of a possible branch in the symbolic execution of NSL.

(q0, ∅, φ0, ∅) (q1, H1, φ1, Θ1) (q2, H2, φ2, Θ2) (q3, H3, φ3, Θ3) (q4, H4, φ4, Θ4)
• • • • •- - - -

where n = N1, N2, R1, R2, R3, and, with qAj , qBj counting the states ofA andB, q0 = (qA0 , q
B
0)(n),

q1 = (qA1 , q
B
0)(n), q2 = (qA1 , q

B
1)(n), q3 = (qA2 , q

B
1)(n) and q4 = (qA2 , q

B
2)(n). In other words, we

interleave the actions of A and B, as in an expected execution and assume that the two processes
were first activated (if not, we could introduce two transitions activating the processes).

– φ0 = νKAKBAB(), Θ0 = ∅
– H1 = ∅, φ1 = νKAKBAB(p1 7→ (A,B, eKA, eKB)), Θ1 = ∅
– H2 = 〈h1〉, φ2 extends φ1 with p1 7→ {〈N1, A〉}R1

eKB
, Θ2 = {φ1 ` h1}

– H3 = 〈h1, h2〉,
φ3 extends φ2 with p2 7→ {〈π1 (dec(h2, dKB)) , 〈N2, B〉〉}R2

eKπ2(dec(h2,dKB))
,

Θ3 = Θ2 ∪ {φ2 ` h2,W (π2 (dec(h2, dKB)))}
– H4 = 〈h1, h2, h3〉,
φ4 extends φ3 with p3 7→ {π1 (π2 (dec(h3, dKA)))}R3

eKB
,

Θ4 = Θ3 ∪ {φ3 ` h3, π1 (dec(h3, dKh)) = N1, π2 (π2 (dec(h3, dKA))) = B},
– H5 = 〈h1, h2, h3, h4〉, φ5 = φ4,
Θ5 = Θ4 ∪ {φ4 ` h4, dec(h4, dKB) = N2},

LetM be a model such that π2 (dec(h2, dKB)) = A,

h2 =M {〈N1, A〉}R1

eKB
, h3 =M {〈N1, 〈N2, B〉〉}R2

eKA
, h4 =M {N}R3

eKB
,

and `M is simply the classical Dolev-Yao deduction relation. Then the execution sequence above is
valid w.r.t.M, and this corresponds to the correct execution of the NSL protocol between A and B.

Example 2. There are however other models in which this transition sequence is valid. LetM′ be
such that h2 =M′ N1 and φ1 `M′ h2 and N1 =M′ {〈N1, A〉}R1

eKB
, (and h3, h4 as above). We get

again a valid transition sequence w.r.t.M′. Though, in what follows, we will discard such sequences,
thanks to some axioms.

Example 3. Consider again the transitions of the Example 1. Now consider a model M in which
N0, {N1, N2, B}R2

eKA
`M {N1, N0, B}reKA for an honestly generated nonce N0 that can be chosen

by the attacker: the transition sequence of the previous example is also valid w.r.t. this model. This
however yields an attack, using a malleability property of the encryption scheme.

Discarding such attacks requires some properties of the encryption scheme (for instance IND-
CCA). It can be ruled out by the non-malleability axiom that we will introduce.

From this example, we see that unexpected attacks can be found when some assumption is not
explicitly stated as an axiom to limit adversarial capabilities.

7

4 The Axioms

This section contains the core results of this paper: a set of computationally sound axioms that are
sufficient to prove security of actual protocols that use CCA2 secure encryptions. The axioms are
not at all special to the NSL protocol and can be used in other protocol proofs too. They are entirely
modular, so introducing further primitives will not invalidate their soundness, they do not have to be
verified again. As usual, unquantified variables are universally quantified.

– Equality is a Congruence. The first axiom says that the equality is a congruence relation:
• x = x, and the substitutability (congruence) property of equal terms holds for predicates

(but not necessarily constraints).
This axiom is computationally sound simply as we limit ourself to consider computational in-
terpretations of predicates that are invariant if we change the arguments on sets with negligible
probability. The computational interpretations of =, ` and W are all such.

– Axioms for the Derivability Predicate. The following axioms are trivially computationally
sound for what the PPT adversary can compute. The last is sound as we assume that all function
symbols are interpreted as PT computable functions.
• Self derivability: φ̂,x, x ` x
• Increasing capabilities: φ̂,x ` y −→ φ̂,x, x ` y
• Commutativity: If x′ is a permutation of x, then φ̂,x ` y −→ φ̂,x′ ` y
• Transitivity of derivability: φ̂,x ` y ∧ φ̂,x,y ` z −→ φ̂,x ` z

• Functions are derivable: φ̂,x ` f(x)
– Axioms for Randomly Generated Items. These axioms express relations between RandGen()

and the v constraints that are not purely symbolic (for example, as v is a constraint, x v φ̂, x
holds purely symbolically, so it does not have to be listed as an axiom as opposed to φ̂,x, x ` x
which is a predicate). The no telepathy axiom expresses that items that were randomly generated
but not yet sent out are not guessable. It is sound because we assumed that random generation
happens in a large enough space such that guessing is only possible with negligible probability.
The second axiom is sound because random generation is independent of everything else, so a
randomly generated item x given to the adversary cannot help to compute y from which it is
independent, before x was sent out (that is, appear in φ). Once x appears in the frame (as e.g.
{y}Rx), giving x to the adversary may help to compute y.
• No telepathy: fresh(x; φ̂) −→ φ̂ 6` x
• Fresh items are independent and hence contain no information about other items:

fresh(x; φ̂,x, y) ∧ x 4 φ̂ ∧ y 4 φ̂ ∧ φ̂,x, x ` y −→ φ̂,x ` y

– Equations for the fixed function symbols. discussed earlier:
• dec({x}ReK , dK) = x; π1 (〈x, y〉) = x; π2 (〈x, y〉) = y

– Special to IND-CCA Encryption. Let x1, ..., xn 4 φ̂ ≡ x1 4 φ̂ ∧ ... ∧ xn 4 φ̂. We present
two axioms here. Both follow if the encryption is CCA2 secure and if random generation is only
guessable with negligible probability. The first expresses secrecy, the second non-malleability.
None of them implies the other. As they are not trivial, we state them in the form of Theorems.
• Secrecy of CCA2 Encryption.

8

Theorem 1. If the encryption scheme is IND-CCA2, then the following formula is compu-
tationally sound.

RandGen(K) ∧ eK v φ̂ ∧ fresh(R; φ̂,x, x, y) ∧ x, x, y 4 φ̂ ∧ φ̂,x, {x}ReK ` y

−→ dK v φ̂,x, x ∨ φ̂,x ` y

This axiom says that if K was correctly generated, R is fresh, and y can be derived with the
help of {x}ReK , then it can be derived without {x}ReK , or dK has been sent out. The secrecy
axiom was essentially proven in [7], but as we need a little stronger version, we include the
proof in Section 5.1. Note, that this axiom may look like it would work for CPA security,
but it does not in general, as in general honest agents can be used as decryption oracles.
However, for proving this axiom we only need the decryption oracle in the CCA2 game
before the ciphertext was created by the encryption oracle, and not after.

• Non-Malleability of CCA2 Encryption. Suppose we have pairing as before. Let f1, ..., fn
be the rest of the non-0-arity function symbols not inFc∪Fd from Section 3. Let Otherf(u)
be a constraint meaning that u is any term that is a bunch of paired together terms all of
which occur under one of the functions f1, . . . , fn in φ.

Theorem 2. If the encryption scheme is IND-CCA2, then the following formula is compu-
tationally sound.

∀u(Otherf(u)→ φ̂, u 6` N) ∧

RandGen(N) ∧ RandGen(K) ∧ eK v φ̂ ∧ N v φ̂ ∧ x 4 φ̂ ∧ φ̂,x ` y ∧

φ̂,x, dec(y, dK) ` N ∧ ∀xR(y = {x}ReK → {x}ReK 6v φ̂) −→ dK v φ̂ ∨ φ̂,x ` N

This means that if N and K were correctly generated, y can be decrypted and from the
plaintext, N can be derived, but no honest agent ever produced y as an encryption, then
eitherN can be derived without the plaintext of y, or dK has been sent out. For this, we need
the full power of the CCA2 security, decryption oracle calls both before and after encryption
oracle calls. The first line is necessary for making sure that function symbols other than the
ones related to pairing or encryption do not interfere with our CCA2 encryption. In principle
it is possible to have another encryption for example that may allow to fake encryptions of
our CCA2 encryption. The condition we included ensures that the combined information
contained in items occurring under the other function symbols cannot corrupt N . So if we
blindly introduce a new primitive, we have to show in the course of the security proof that
the first line is satisfied and the new primitive does not have a chance to interfere. However,
typically, other primitives should be introduced so that they do not interfere with the non-
malleability property of the encryption scheme, and if that is proven separately for all added
primitives, then the first line is not needed in the protocol proof. In our NSL case, there is
no first line as there are no other function symbols. The proof is presented in Section 5.2

– Special to ci, cr. These axioms are trivial as ci, cr are just ideal functions introduced for conve-
nience to represent the agents’ view of a session. (Let c be either of them):
• c does not help the adversary: RandGen(N) ∧ φ̂,x, c(x, y, z, w) ` N → φ̂,x ` N
• c cannot be forged and cannot be subpart of a term: φ̂,x ` c(x, y, z, w) −→ c(x, y, z, w) v
φ̂ ∨ x1 = c(x, y, z, w) ∨ . . . ∨ xl = c(x, y, z, w)

9

• c cannot be equal to anything else: If the outermost function symbol of a term T is some-
thing different from c, then c(x, y, z, w) 6= T .

– One Extra Axiom. For the NSL protocol, we need an additional axiom, namely,

RandGen(N)→ ¬W (π2 (N)).

That is, the second projection of a nonce can never be a name (by overwhelming probability
on a non-negligible set). We assume that the implementation of the pairing is such that this
condition is satisfied. If this does not hold, there is an attack which we include in Appendix A.
It is very easy to ensure that an implementation satisfies this property. If the length of nonces
is fixed for a given security parameter, and agents check the length of bit strings that are in
the positions of nonces, in this case π1 (N), then we can prevent W (π2 (N)) as it is easy to
show that W (π2 (N)) is only possible if the length of π1 (N) differs from the length of N with
non-negligible probability. But they should be the same length as they are both nonces. To be
more precise, in this case we should add in the above formula that both W (π1 (N)) and N are
of nonce type (meaning they have the same computational length):

RandGen(N) ∧ NonceLength(N) ∧ NonceLength(π1 (N))→ ¬W (π2 (N)).

This axiom is satisfied in an implementation that checks the length of bit strings corresponding
to nonces. This means that security of the NSL protocol does not require tagging of nonces,
pairs, encryptions. The axiom is used under 2.2.2 of the proof of Proposition 1.

5 Computational Soundness of the CCA2 Axioms

Computational semantics is defined rigorously in [6]. We use that definition to show computational
soundness.

5.1 Computational Soundness of the Secrecy Axiom

First we prove soundness of the secrecy axiom for CCA2 security, Theorem 1: If the encryption
scheme is IND-CCA2, then the following formula is computationally sound.

RandGen(K) ∧ eK v φ̂ ∧ fresh(R; φ̂,x, x, y) ∧ x, x, y 4 φ̂ ∧ φ̂,x, {x}ReK ` y

−→ dK v φ̂,x, x ∨ φ̂,x ` y

Proof. Let θ denote the formula. Suppose that it is not computationally valid. Then there is a proto-
col Π and an interactive turing machine (attacker)M such that

M, Π 6|=c θ.

This, by the computational semantics in [6], is equivalent with that there is an S1 computable, non-
negligible set of the underlying probability field such thatM, Π, S1 |=c ¬θ, which, by first-order
deductions, is the same as

M, Π, S1 |=c ∃xxyKR
(

RandGen(K) ∧ eK v φ̂ ∧ fresh(R; φ̂,x, x, y) ∧ x, x, y 4 φ̂

∧ φ̂,x, {x}ReK ` y ∧ ¬(dK v φ̂,x, x) ∧ ¬(φ̂,x ` y)
)
.

10

This on the other hand means that there are PT machinesA = (Ax,Ax1
, ...,Axl ,AyAK ,AR) such

that
M, Π, S1,A |=c RandGen(K)

M, Π, S1,A |=c eK v φ̂

M, Π, S1,A |=c fresh(R, φ̂,x, x, y)

M, Π, S1,A |=c x, x, y 4 φ̂

M, Π, S1,A |=c ¬(dK v φ̂,x, x)

M, Π, S1,A |=c φ̂,x, {x}ReK ` y

M, Π, S1,A |=c ¬(φ̂,x ` y).

We have to create an adversary ACCA2 that wins the CCA2 game.
Since M, Π, S1,A |=c φ̂,x, {x}ReK ` y holds, there is an S2 ⊆ S1 and an algorithm C that

computes the interpretation of y from the interpretations of φ̂, x and {x}ReK on S2. Clearly,

M, Π, S2,A |=c RandGen(K)

M, Π, S2,A |=c eK v φ̂

M, Π, S2,A |=c fresh(R; φ̂,x, x, y)

M, Π, S2,A |=c x, x, y 4 φ̂

M, Π, S2,A |=c ¬(dK v φ̂,x, x)

M, Π, S2,A |=c ¬(φ̂,x ` y).

It may be the case that the S2 we have chosen depends on evaluations of τ that are determined after
M reaches the challenge state qc. However, clearly, if we include all possible future evaluations,
the set that we receive this way, S will still be such that there is an algorithm C that computes the
interpretation of y from the frame at the challenge state qc, x and {x}ReK on S. Moreover, it is easy
to see that

M, Π, S,A |=c RandGen(K)

M, Π, S,A |=c eK v φ̂

M, Π, S,A |=c fresh(R; φ̂, ,x, x, y)

M, Π, S,A |=c x, x, y 4 φ̂

M, Π, S,A |=c ¬(dK v φ̂,x, x)

M, Π, S,A |=c ¬(φ̂,x ` y)

because these are properties that depend only on conditions in the challenge stated, and not later
ones.

SinceM, Π, S,A |=c dK 6v φ̂,x, x, the decryption key has never been sent.
We show that we can construct an algorithm ACCA2 that breaks CCA2 security. Let AΠ be the

protocol adversary.

11

– ACCA2 generates computational keys that AΠ uses, except for the one corresponding to K.
– The encryption oracle generates a random bit b.
– The encryption oracle generates a computational key and publishes its public part. ACCA2 en-

crypts with this key for encryptions with K, except for x.
– ACCA2 simulates both the agents and AΠ : It computes all messages that the agents output

according to their algorithm, and computes all messages that AΠ outputs according to its algo-
rithm. This way it builds up φ and the bit strings corresponding to them as well as the equations.

– Whenever a decryption with dK has to be computed, there are two possibilities:
• If the ciphertext was created by ACCA2 using the encryption algorithm, then it knows the

plaintext, so it can use it without decryption.
• If the ciphertext was created in some other way, the decryption oracle is used. This can be

freely done until x occurs.
Note, that dK is not available to the adversary.

– When A reaches the challenge state qc, using Ax, ACCA2 computes the bit string for x, and
submits it to the encryption oracle as well as a random bit string that has the same length as the
plaintext.

– According to our definition of satisfaction the computation by C is based on the frame at the
challenge state. We hadM, Π, S,A |=c fresh(R; φ̂, ,x, x, y), which means thatRwas honestly
generated and has not been sent around, and henceR is independent of the items in φ. Moreover,
since x 4 φ̂ and x 4 φ̂ and y 4 φ̂ are satisfied,R is also independent of x and x and y. Further,
since we included all future random choices in S, R is also independent of S. Hence having it
encrypted by the encryption oracle will not lose any information as long as the oracle encrypts
the correct bit.

– The encryption oracle encrypts the interpretation of x if b = 0, and encrypts the random bit
string if b = 1. It gives the result c back to ACCA2.

– Run C on the bit string c returned by the oracle and on the bit strings of the frame.
– If, in the above
• using c, the execution is in S and ACCA2 receives the same value as Ay gives for y, then
ACCA2 returns bACCA2

= 0.
• Otherwise ACCA2 throws a fair coin and returns bACCA2 = 0 or bACCA2 = 1 with probabil-

ity 1/2.

We have now that
Prob (bACCA2

= b | S ∧ b = 0)− 1 (1)

(the conditional probability of bACCA2
= b given S and b = 0) is negligible because in this case

the oracle encrypts the correct string, and C’s computations are employed on the correct bit string,
so it gives the interpretation of x. Note, we also use here that S and the interpretation of R do not
correlate.

On the other hand, observe that

Prob (bACCA2
= b | S ∧ b = 1)− 1/2 (2)

is also negligible. The reason is that when b = 1, the encryption oracle computes something that
has nothing to do with the protocol and x and y. So the probability of computing x with or without
the encryption in this case, is the same. But, remember, we had thatM, Π, S,A |=c φ̂,x 6` y. This
means that y cannot be computed without the encryption anywhere and therefore the adversary’s

12

computation on the fake encryption cannot give good result by more than negligible probability. So
the adversary will end up throwing a coin in this case. Putting (1) and (2) together, we have

Prob (bACCA2 = b | S)− 1

2

is non-negligible. Then, since ACCA2 throws a fair coin outside S,

Prob (bACCA2 = b)− 1

2

is non-negligible, which means CCA2 security assumption is broken. ut

5.2 Computational Soundness of the Non-Malleability Axiom

We now prove the non-malleability axiom for CCA2 security, Theorem 2: If the encryption scheme
is IND-CCA2, then the following formula is computationally sound.

∀u(Otherf(u)→ φ̂, u 6` N) ∧

RandGen(N) ∧ RandGen(K) ∧ eK v φ̂ ∧ N v φ̂ ∧ x 4 φ̂ ∧ φ̂,x ` y ∧

φ̂,x, dec(y, dK) ` N ∧ ∀xR(y = {x}ReK → {x}ReK 6v φ̂) −→ dK v φ̂ ∨ φ̂,x ` N

Proof. The first line just means that N was never included under anything else except for the func-
tion symbols related to pairing and encryption. So we assume this from now, and denote the rest of
the formula by θ. Suppose it is not computationally valid. Just as in the proof of the secrecy axiom, it
follows from the computational semantics in [6] that there is a computational structure (M, Π, S1),
with

M, Π, S1 |=c ¬θ.

By first-order deductions, this means

M, Π, S1 |=c

∃xxyzKR
(

RandGen(N) ∧ RandGen(K) ∧ eK v φ̂ ∧ N v φ̂ ∧ x 4 φ̂ ∧ φ̂,x ` y ∧

φ̂,x, dec(y, dK) ` N ∧ ∀xR(y = {x}ReK → {x}ReK 6v φ̂) ∧ ¬(dK v φ̂) ∧ ¬(φ̂,x ` N)
)
.

Hence here are PPT machines A = (Ax1
, ...,Axk ,Ax,Ay,Az,AK ,AR) such that

M, Π, S1,A |=c RandGen(N)

M, Π, S1,A |=c RandGen(K)

M, Π, S1,A |=c eK v φ̂

M, Π, S1,A |=c N v φ̂

M, Π, S1,A |=c x 4 φ̂

M, Π, S1,A |=c φ̂,x ` y

13

M, Π, S1,A |=c φ̂,x, dec(y, dK) ` N

M, Π, S1,A |=c ∀xR(y = {x}ReK → {x}ReK 6v φ̂)

M, Π, S1,A |=c ¬(dK v φ̂)

M, Π, S1,A |=c ¬(φ̂,x ` N).

SinceM, Π, S1,A |=c φ̂,x ` y holds, there is an S2 ⊆ S1 and an algorithm C that computes the in-
terpretation of y from the interpretation of φ̂, x on S2. SinceM, Π, S2,A |=c φ̂,x, dec(y, dK) ` N
holds, there is an S3 ⊆ S2 and an algorithm C′ that computes the interpretation of N from the inter-
pretations of φ̂ and x and dec(y, dK) on S3. Clearly, on S3 as well, C computes the interpretation
of y from the interpretation of φ̂ and x.

It may be the case that the S3 we have chosen depends on evaluations of τ that are determined
afterM reaches the challenge state qc. However, clearly, if we include all possible future evaluations,
the set that we receive this way, S will still be such that there is an algorithm C that computes the
interpretation of y at the challenge state qc, and C′ that computes the interpretation of N .

Moreover,
M, Π, S,A |=c RandGen(N)

M, Π, S,A |=c RandGen(K)

M, Π, S,A |=c eK v φ̂

M, Π, S,A |=c N v φ̂

M, Π, S,A |=c x 4 φ̂

M, Π, S,A |=c ∀xR(y = {x}ReK → {x}ReK 6v φ̂)

M, Π, S,A |=c ¬(dK v φ̂)

M, Π, S,A |=c ¬(φ̂,x ` N).

Observe first that there had to be an honest encryption in whichN was sent out. The reason is the
following.M, Π, S,A |=c N v φ̂ ensures that N was sent out andM, Π, S,A |=c ¬(φ̂,x ` N)
guarantees that the adversary has not access to it. Since we assumed that there is only pairing and
encryption, the only things the adversary may not have access in a term of the frame, are the ones
under encryptions with honest keys. So there was at least one honest encryption of N sent out.

Secondly, observe thatM, Π, S,A |=c ∀xR(y = {x}ReK → {x}ReK 6v φ̂) means that for every
S′ ⊆ S, if y = {x}ReK on S′, then {x}ReK 6v φ̂ on S′. So on any such S′, y was not created by one
of the agents as an honest encryption with eK.

The simplest now is to use the CCA2 definition that allows multiple agents and multiple en-
cryption queries (this is equivalent to the standard definition). The CCA2 attacker ACCA2 runs the
protocol, and whenever there is an encryption by one of the honest agents with one of the honest
agents’ keys, the plaintext is submitted to the encryption oracle along with a randomly generated
item with the same length. The encryption oracle chooses according to their internal random choice
b0 (same for all encryption oracles) that is kept the same until the end. Other encryptions are done
by the CCA2 adversary. When the protocol roles are supposed to decrypt an encryption that came
from the oracle, the correctly recorded plaintext is used. At the challenge state, the interpretation of
y is computed with C and is submitted to the decryption oracle. As we have seen above, this message

14

was not created by an honest agent, hence it was created by the adversary and so it did not come
from the encryption oracle. S is checked. Outside S, the adversary throws a coin and outputs the
result. Inside S, the algorithm C′ is applied to the interpretation of the φ̂ and dec(y, dK). Inside S,
as long as the encryption oracles encrypted the correct bit string, the output of C′ is the interpretation
of N . If they encrypted the random bit string, then the output of C′ cannot be the interpretation of
N , because in this case none of the honest encryptions have anything to do with the protocol (but all
information about N is under honest encryptions). So, if C′ returns N , ACCA2 outputs 0, while if it
does not output N , ACCA2 throws a fair coin. We have

Prob (b0 = b : b← ACCA2
η | Sη ∧ b0 = 0)− 1

is negligible as in this case the encryption oracle encrypted the correct plaintexts. Now,

Prob (b1 =: b← ACCA2
η | Sη ∧ b0 = 1)− 1

2

is also negligible, because in this case, the encrypted items have nothing to do with the protocol, and
so the adversary throws a coin. Since by construction we also have that

Prob
(
b1 =: b← ACCA2

η | (Sη)⊥ ∧ b0 = 1
)
− 1

2

is negligible, it follows from the 3 equations above that that

Prob (b1 = b : b← ACCA2
η)− 1

2

is non-negligible hence breaking CCA2 security assumption. ut

6 Examples for Proving Inconsistency

Before getting into the correctness proof of the NSL protocol, we first look at three small example
proofs. This way the reader will become familiar how the axioms work. Note that these derivations
are not pure first-order deductions. Not only we use the axioms and first order deduction rules, but
we also use how a symbolic execution is defined (and the transition system is not formalized in
FOL).

Example 4. We start with a very trivial example. It is rather obvious that in the execution of the NSL
protocol in Example 1, φ2 6` A should be inconsistent with the axioms as A was included in φ2. We
can derive it the ollowing way: observe that

φ2 ≡ A,B, eKA, eKB , {〈N1, A〉}R1

eKB
≡ φ0, A,B, eKA, eKB , {〈N1, A〉}R1

eKB
.

From the self-derivability axiom at step 0, φ0, B, eKA, eKB , {〈N1, A〉}R1

eKB
, A ` A. By commuta-

tivity it follows that, φ0, A,B, eKA, eKB , {〈N1, A〉}R1

eKB
` A, which means that

φ0, A,B, eKA, eKB , {〈N1, A〉}R1

eKB
6` A

is inconsistent with the axioms. So,M, σ 6|= A,B, eKA, eKB , {〈N1, A〉}R1

eKB
6` A for any model

M, which implies that φ2 6` A is inconsistent with the axioms.

15

Example 5. We can also derive, as expected, that φ2 ` N1 is inconsistent with the axioms in our
NSL example. This should be the case, asN1 has only been sent out under a single good encryption.
As

φ2 ≡ A,B, eKA, eKB , {〈N1, A〉}R1

eKB
≡ φ1, {〈N1, A〉}R1

eKB
,

it is enough to show that φ1, {〈N1, A〉}R1

eKB
` N1 is inconsistent with the axioms. Suppose that, in

order to get a contradiction, this is not the case, i.e.,

φ1, {〈N1, A〉}R1

eKB
` N1. (3)

To apply the secrecy axiom consider that x = 〈〉, x = 〈N1, A〉, and y = N1. Since KB was
correctly generated (appeared as a name), RandGen(KB) holds. By Example 1 we have eKB v
φ1. fresh(R;φ1,x, x, y) also holds because RandGen(R1) ∧ R1 6v φ1, 〈〉, 〈N1, A〉, N1. Finally,
since x 4 φ1, x 4 φ1 and y 4 φ1 because none has handles, (3) holds, and dKB 6v φ1,x, x, one
may apply the secrecy axiom and get

φ1 ` N1.

Finally, we may show that at Step 1 we have fresh(N1;φ1), so fresh(N1;φ1) ∧ φ1 ` N1 which
contradicts the no telepathy axiom.

Example 6. From the axioms, we can also derive the increasing knowledge of an adversary, i.e.,
for any m and x, if φm ` x is derivable from the axioms and agent checks, then φm+1 ` x is
also derivable from the axioms and agent checks. The proof is rather simple. Assume that φm ` x
is derivable from the axioms and agent checks. Let t be the message sent in the m + 1’th step
i.e., φm+1 ≡ φm, t. The increasing capabilities axiom applied to step m means φm ` x implies
φm, t ` x. But that is the same as

φm+1 ` x.

Note that from the above and from Example 4 it also follows that for any m, the axioms imply that
φm ` A. It is clear from Example 4, that φ2 ` A follows from axioms. Then from the above, by
induction, φm ` A follows from axioms. Here, we applied induction. But note, that the induction is
not within FOL, we used the induction on the number of execution steps.

7 Correctness Proof of NSL

In this section we present the correctness of the NSL protocol for any (bounded) number of sessions.
Namely, we show that in the symbolic execution defined above, violation of secrecy or authentication
is inconsistent with the axioms. As we mentioned, we assume that agentA only executes the initiator
role, and agent B only executes the responder role. But, we allow both A and B to have other
sessions running with possibly corrupted agents. We start by showing that throughout the entire
execution, nonces that were generated by honest initiator A and sent to honest responder B, or vice-
versa, remain secret. We do this by picking any step m of the execution tree, and listing all possible
execution rounds (according to the protocol roles), we show that for all possibilities, φm 6` N
together with the axioms and the agent checks imply φm+1 6` N . In other words, φm 6` N , the
axioms and the agent checks, and φm+1 ` N are inconsistent. Since φ0 6` N initially holds by
no-telepathy, by induction, we have φm 6` N after any finite number of steps m. The reader can see
below that the induction hypothesis is a little more complex but essentially this is what we do.

16

Once secrecy is proven, authentication and agreement are shown. We pick the point on the ex-
ecution tree when the responder finished his task and using that we have shown that nonces remain
secret, together with non-malleability we show that the initiator also had finished his task and the
corresponding values that the two parties see have to match. In other words, B finished, A not
finished or values don’t match, and the axioms and the agent checks are inconsistent.

7.1 Secrecy

The aim of the secrecy proof is to show that nonces N sent between A and B remain secret. If N
is a nonce sent by A to B means that ∃R

(
{N,A}ReKB v φ̂

)
. If B sent it to A, that means that

∃hR
(
{π1 (dec(h, dKB)) , N,B}ReKA v φ̂

)
. So, these nonces can be characterized by the condition

C[N] ≡ RandGen(N)

∧
(
∃R.{N,A}ReKB v φ̂ ∨ ∃hR.{π1 (dec(h, dKB)) , N,B}ReKA v φ̂

)
where the first exists characterizes nonces sent from A to B and the second characterizes nonces
sent from B to A. Then the secrecy property we want to show is that ∀N

(
C[N] −→ φ̂ 6` N

)
. It is

equivalent to show that its negation,

∃N
(
C[N] ∧ φ̂ ` N

)
, (4)

is inconsistent with the axioms and the agent checks on every possible symbolic trace.
Suppose the total length of the symbolic trace in question is n. At the end of the trace the frame

φ contains n terms. Let us denote the frames at each node of this trace by φ0, φ1, φ2, etc. Each frame
contains one more term than the previous one. Satisfaction of C[N] by this trace means that one of
the terms {N,A}ReKB or {π1 (dec(h, dKB)) , N,B}ReKA appears in frame φn for some h,R. Let us
fix such N . Furthermore, if x is a list of a finite number of nonces x ≡ N1, ..., Nl such that they
were all generated by either A or B (possibly intended to each other, possibly intended for other
possible malicious agents), and they are all different from N , then we say condition C ′[x, N] is
satisfied. This can be written as a first order formula like

C ′[N1, ..., Nl, N] ≡
l∧
i=1

(
RandGen(Ni) ∧ N 6= Ni ∧
∃QR.{Ni, A}ReKQ v φ̂ ∨ ∃QhR.{π1 (dec(h, dKB)) , Ni, B}ReKQ v φ̂

)
We will carry out an inductive proof on the length of φl. As it turns out, in order to avoid loops

in the proof, instead of (4), it is better to prove that

∃N∃x
(
C[N] ∧ C ′[x, N] ∧ φ̂,x ` N

)
(5)

is inconsistent with the axioms and agent checks. On the symbolic trace, this means that for all l,

∃N∃x
(
C[N] ∧ C ′[x, N] ∧ φl,x ` N

)
is inconsistent with the axioms and agent checks. We do this by fixing an arbitrary N satisfying
C[N], and for this fixed N , we do an induction on the length of φ. Namely, we show that having

17

fixed N , if for some m < l, ∃x
(
C ′[x, N] ∧ φm,x ` N

)
is inconsistent with the axioms and agent

checks, then
∃x
(
C ′[x, N] ∧ φm+1,x ` N

)
is also inconsistent with the axioms and agent checks. Then, as at m = 0 the statement follows from
no telepathy, we are done.

Proposition 1. In the above execution of NSL protocol, let N be such that C[N] is satisfied, and let
m < l. If for all x such that C ′[x, N] holds, the axioms and agent checks imply (by FOL deduction
rules) that φm,x 6` N , then for all x such that C ′[x, N] holds, the axioms and agent checks imply
(by FOL deduction rules) that φm+1,x 6` N holds.

Proof. Suppose in order to get a contradiction that the claim is not true. That is, let us assume that
there is a finite set of nonces x ≡ N1, ...Nl such that C ′[x, N] and

φm+1, N1, ..., Nl ` N

is satisfied in some semantics. We will show show that this, together with the honest agent tests and
the axioms, imply that for some nonces x′ ≡ N ′

1, ...N
′
l′ with C ′[x′, N],

φm, N
′
1, ..., N

′
l′ ` N.

Let t be the last term in φm+1, that is, φm+1 ≡ φm, t (t was sent either by A or B). Suppose, in
order to get a contradiction, that φm, t, N1, ..., Nl ` N . By commutativity, we get

φm, N1, ..., Nl, t ` N. (6)

We divide the proof in two cases: when t was sent by A and when t was sent by B.
1.) Assume that t was sent by A. According to the role of A, for some N ′

1, R1, h3, R3, Q,

1. t ≡ {N ′
1, A}

R1

eKQ
, or

2. t ≡ {π1 (π2 (dec(h3, dKA)))}R3

eKQ
, or

3. t ≡ ci (A,Q,N1, π1 (π2 (dec(h3, dKA)))).

1.1.) t ≡ {N ′
1, A}

R1

eKQ
. Since A is following the initiator role honestly, A generated N ′

1 earlier.
1.1.1.) If N ′

1 ≡ N , then C[N ′
1] is satisfied (because C[N] was assumed to be satisfied). By

definition of C that means that N ′
1 was sent in a message to B. As A does only the initiator role

and nothing else, each message by A that looks like {N ′
1, A}

R1

eKQ
has a freshly generated nonce

each time. So if N ′ ≡ N , that means that the messages themselves must also be the same and so
{N ′

1, A}
R1

eKQ
≡ {N,A}R1

eKB
, which implies that Q ≡ B. Applying to our hypothesis (6) we get

φm, N1, ..., Nl, {N ′
1, A}

R1

eKB
` N.

As A was sent out in φ1 we have φm ` A (Example 6), and by an argument similar to the one in
Example 5, we get φm, N1, ..., Nl, {N ′

1, A}
R1

eKB
` 〈N,A〉.

Since for x ≡ N1, ..., Nl the predicate x 4 φm holds, as the entries of x are all names, dKB 6v
φm, N1, ..., Nl, N

′
1, A, and fresh(R1;φm, N1, ..., Nl, N

′
1, A) also hold, the secrecy axiom implies

that
φm, N1, ..., Nl ` N,

18

which is exactly what we had to show.
1.1.2.) Let now N ′

1 6≡ N . By the functions axiom, we have

φm, N1, ..., Nl, N
′
1, A, eKQ, R1 ` {N ′

1, A}
R1

eKQ
,

that together with hypothesis (6) and transitivity implies

φm, N1, ..., Nl, N
′
1, A, eKQ, R1 ` N.

Since R1 is fresh and different from N , by the fresh items are independent axiom, we obtain
φm, N1, ..., Nl, N

′
1, A, eKQ ` N.

Since eKQ is revealed explicitly at the beginning, we have φm, N1, ..., Nl, N
′
1, A ` eKQ, and

hence, by the transitivity axiom, φm, N1, ..., Nl, N
′
1, A ` N. Applying the same reasoning to A we

get
φm, N1, ..., Nl, N

′
1 ` N.

By hypothesis N ′
1 is not N and so C ′[x′, N] is satisfied for x′ ≡ N1, ..., Nl, N

′
1 that is exactly what

we wanted.
1.2.) t ≡ {π1 (π2 (dec(h3, dKA)))}R3

eKQ
. By the definition of the role followed by A, we have

that π2 (π2 (dec(h3, dKA))) = Q. Applying transitivity and function axioms to (6)

φm, N1, ..., Nl, dec(h3, dKA), eKQ, R3 ` N.

Since eKQ was revealed at the beginning, and R3 is fresh, by Example 6 and the fresh items are
independent axiom we get

φm, N1, ..., Nl, dec(h3, dKA) ` N.

By the non-malleability axiom (with x = N1, ..., Nl, y = h3), we get that either

∃xR({x}ReKA = h3 ∧ {x}ReKA v φm) or φm, N1, ..., Nl ` N.

1.2.1.) If φm, N1, ..., Nl ` N we are done.
1.2.2.) Suppose now ∃xR({x}ReKA = h3 ∧ {x}ReKA v φm). Then {x}ReKA has been sent out.

Since A never encrypts with its own key, it had to be B who sent it out (as the only two honest
agents are A and B). Therefore, as B follows its responder role,

{x}ReKA ≡ {π1 (dec(h2, dKB)) , N
′
2, B}ReKA

for some N ′
2. Therefore, dec(h3, dKA) = 〈π1 (dec(h2, dKB)) , N

′
2, B〉. But then

π1 (π2 (dec(h3, dKA))) = N ′
2 and π2 (π2 (dec(h3, dKA))) = B.

As we also had that π2 (π2 (dec(h3, dKA))) = Q, we getQ = B. Substituting the appropriate terms
we have t ≡ {π1 (π2 (dec(h3, dKA)))}R3

eKQ
= {N ′

2}
R3

eKB
. Then, by the congruence of equality with

respect to `,
φm, N1, ..., Nl, {N ′

2}
R3

eKB
` N,

and by the secrecy axiom, as R3 is fresh and as x 4 φm,

φm, N1, ..., Nl ` N,

19

which is what we wanted.
1.3.) If t ≡ ci

(
A,Q,N1, π1 (π2 (dec(h3, dKA)))

)
, then by the c is not helpful axiom, we have

φm, N1, ..., Nl, t ` N .
2.) Assume now that t was sent by B. By to the role of B, for some h2, N ′

2, R2,

1. t ≡ {π1 (dec(h2, dKB)) , N
′
2, B}

R2

eKπ2(dec(h2,dKB))
, or

2. t ≡ cr(π2 (dec(h2, dKB)) , B, π1 (dec(h2, dKB)) , N2).

(and W (π2 (dec(h2, dKB))) holds.) Just as in the previous case, cr does not help the adversary to
get N , so we can assume t ≡ {π1 (dec(h2, dKB)) , N

′
2, B}

R2

eKπ2(dec(h2,dKB))
.

2.1.) If N ′
2 ≡ N , then, since C[N] holds, C[N ′

2] also holds, so as N ′
2 was generated by B, it was

sent to A. And since B does not do anything other than executing responder sessions, and N is only
generated in one session,

{π1 (dec(h2, dKB)) , N
′
2, B}

R2

eKπ2(dec(h2,dKB))
≡ {π1 (dec(h2, dKB)) , N,B}R2

eKA
,

But substituting in (6) we get φm, N1, ..., Nl, {π1 (dec(h2, dKB)) , N,B}R2

eKA
` N, which, by the

secrecy axiom implies
φm, N1, ..., Nl ` N,

which is what we wanted.
2.2.) If N ′

2 6≡ N , by the transitivity and the functions derivability axioms, we have

φm, N1, . . . , Nl, π1 (dec(h2, dKB)) , N
′
2, B, eKπ2(dec(h2,dKB)), R2 ` N.

By the independence axiom (and commutativity), as N ′
2 and R2 are fresh, we can drop them, and

since B and eKπ2(dec(h2,dKB)) were published at the beginning, so we can drop them too obtaining

φm, N1, . . . , Nl, π1 (dec(h2, dKB)) ` N.

By the transitivity and the functions derivability axioms, we have

φm, N1, . . . , Nl, dec(h2, dKB) ` N. (7)

Applying non-malleability axiom to (7) we have either

φm, N1, . . . , Nl ` N or ∃xR(h2 = {x}ReKB ∧ {x}
R
eKB v φm).

In the first case, we complete our proof. In the second case, since B does not encrypt messages with
the key eKB , h2 is sent by A. Then, we have either

h2 = {x}ReKB ≡ {N
′
1, A}

R1

eKQ
or h2 = {x}ReKB ≡ {π1 (π2 (dec(h3, dKA)))}R3

eKQ

for some Q, N ′
1, R1, R3, and h3 with Q ≡ B.

2.2.1.) If {x}ReKB ≡ {N
′
1, A}

R1

eKB
, then N ′

1 ≡ π1 (dec(h2, dKB)) hence

t ≡ {N ′
1, N

′
2, B}ReKA .

20

Then, the secrecy axiom applied to φm, N1, ..., Nl, {N ′
1, N

′
2, B}ReKA ` N implies

φm, N1, ..., Nl ` N

2.2.2.) If {x}ReKB ≡ {π1 (π2 (dec(h3, dKA)))}R3

eKB
, then

dec(h2, dKB) = π1 (π2 (dec(h3, dKA))) .

Substituting in Equation 7, we get φm, N1, . . . , Nl, π1 (π2 (dec(h3, dKA))) ` N , hence

φm, N1, . . . , Nl, dec(h3, dKA) ` N.

Similarly to the previous case, applying non-malleability implies that either

φm, N1, ..., Nl ` N or ∃x′R′.(h3 = {x′}R
′

eKA ∧ {x
′}R

′

eKA v φm).

In the first case, we complete the proof. If ∃x′R′.(h3 = {x′}R′

eKA
∧ {x′}R′

eKA
v φm), then, since

only B encrypts with eKA, and since it follows its responder role, we have

h3 = {x′}R
′

eKA ≡ {π1 (dec(h′2, dKB)) , N
′′
2 , B}

R′
2

eKπ2(dec(h′2,dKB))
.

for some RandGen(N ′′
2). Therefore we have π1 (π2 (dec(h3, dKA))) ≡ N ′′

2 , that is, x ≡ N ′′
2 . But,

we also had that x = dec(h2, dKB), and the beginning of 2.), said W (π2 (dec(h2, dKB))). Putting
these three together, we get

W (π2 (N
′′
2)),

which contradicts our necessary axiom for the NSL, RandGen(N ′′
2)→ ¬W (π2 (N

′′
2)). ut

We still have to show that ∃N∃x
(
C[N] ∧ C ′[x, N] ∧ φ0,x ` N

)
is inconsistent with the

axioms. Let C[N] and C ′[x, N] hold for N and x ≡ N1, ..., Nl. At step 0, N , N1, ..., Nl are still
fresh (remember, we assumed for simplicity that everything was generated upfront, and clearly, these
nonces have not been sent), so by the no telepathy axiom, φ0 6` N , and then by the independence of
fresh items, φ0, N1 ` N . Then again by the independence of fresh items, φ0, N1, N2 6` N , etc. So

φ0, N1, ..., Nl 6` N

holds, meaning that ∃N∃x
(
C[N]∧C ′[x, N]∧φ0,x ` N

)
is indeed inconsistent. Then the induction

step in Proposition 1 proves that this property always holds. In particular, we have the following
theorem.

Theorem 3 (Secrecy). Consider a symbolic execution of the NSL protocol, with an arbitrary num-
ber of possible dishonest participants and two honest participants A, B that follow the initiator and
responder roles correspondingly, and that only execute these roles in each of their bounded number
of sessions. Further, consider the convention 〈x, y, z〉 ≡ 〈x, 〈y, z〉〉.

Our axioms together with the agent checks and RandGen(N) → ¬W (π2 (N)) imply that for
all n and for any nonce N that was either generated by A and sent to B, or vice versa, φn 6` N .

The above Theorem states that secrecy of nonces satisfying C[N] is not broken. That is, nonces
that were generated by A or B and intended to be sent between each other, remain secret. Taking
x to be the empty list, the formula ∃N

(
C[N] ∧ φ̂ ` N

)
, together with the axioms and the agent

checks, and RandGen(N)→ ¬W (π2 (N)) are inconsistent on any symbolic trace.

21

7.2 Agreement and Authentication

We now prove agreement from the responder’s viewpoint. That is, we will show that

RespB
NSL[B, i

′, N2, h2, h4, R2] AND
π2 (dec(h2, dKB)) = A

=⇒

EXIST i,N1, h1, h3, R1, R3 SUCH THAT
InitANSL[A, i,B,N1, h1, h3, R1, R3] AND
dec(h2, dKB) = 〈N1, A〉 AND
dec(h3, dKA) = 〈N1, N2, B〉 AND
dec(h4, dKB) = N2

Where by the implication sign we mean that the agent checks, and axioms imply this. We can also
write this within our syntax:

A = π2 (dec(h2, dKB)) ∧
N1 = π1 (dec(h2, dKB)) ∧
cr(A,B,N1, N2) v φ̂ ∧

−→ ∃h3.
(
ci(A,B,N1, N2) v φ̂ ∧
N2 = π1 (π2 (dec(h3, dKA)))

)
What we have to prove is that the negation of this is inconsistent with the axioms and agent

checks. But for that it is sufficient to show that the agent checks and axioms and the premise of the
formula imply the conclusion of this formula.

Theorem 4 (Agreement and Authentication).
Consider a symbolic execution of the NSL protocol, with an arbitrary number of possible dis-

honest participants and two honest participants A, B that follow the initiator and responder roles
correspondingly, and that only execute these roles in each of their bounded number of sessions.
Further, consider the convention 〈x, y, z〉 ≡ 〈x, 〈y, z〉〉.

Our axioms together with the agent checks and RandGen(N)→ ¬W (π2 (N)) are inconsistent
with the negation of the formula

cr(π2 (dec(h2, dKB)), B, π1 (dec(h2, dKB)), N2) v φ̂ ∧ A = π2 (dec(h2, dKB))

−→ ∃N1h3.

(
ci(A,B,N1, π1 (π2 (dec(h3, dKA)))) v φ̂ ∧
N2 = π1 (π2 (dec(h3, dKA))) ∧ N1 = π1 (dec(h2, dKB))

)
Proof. cr(π2 (dec(h2, dKB)) , B, π1 (dec(h2, dKB)) , N2) v φ̂ means (according to the role of B)
that RespBNSL[B, i

′, N2, h2, h4, R2] was carried out and so we have

{π1 (dec(h2, dKB)) , N2, B}R2

eKA
v φm (8)

(for m step, when it is sent), and
dec(h4, dKB) = N2.

Applying the self derivability axiom we have φm, dec(h4, dKB) ` N2. and by non-malleability we
have either

φm ` N2 or ∃xR.(h4 = {x}ReKB ∧ {x}
R
eKB v φm).

The first case is impossible by Theorem 3. In the second case decrypting h4 we have

x = N2.

Since B does not send messages encrypted with eKB , h4 = {N2}ReKB is sent by A in some session
i.

22

1.) Case {x}ReKB ≡ {N1, A}R1

eKQ
for some N1 and R1: In this case we get x ≡ 〈N1, A〉, and so

N2 = 〈N1, A〉. This implies by the self-derivability that for any m′, φm′ , N1, A ` N2, and since A
is public, implies

φm′ , N1 ` N2.

This is true for allm′, so it is also true for the one whenN1 orN2 is fresh. But, that contradicts either
the freshness or the no telepathy axiom. If N1 is fresh, by the freshness axiom we get φm′ ` N2 that
is impossible by Theorem 3. If N2 is fresh, the no telepathy axiom is violated. So the assumption in
1.) is not possible.

2.) Case {x}ReKB ≡ {π1 (π2 (dec(h3, dKA)))}ReKQ : Since A follows the initiator role, there
exists N1 honestly generated by A and h3 such that

π1 (dec(h3, dKA)) = N1 and π2 (π2 (dec(h3, dKA))) = B (9)

That is, session i of A is with agent B. Since x ≡ π1 (π2 (dec(h3, dKA))) and x = N2, together
with (9) we have

π1 (π2 (dec(h3, dKA))) = N2 and dec(h3, dKA) = 〈N1, N2, B〉. (10)

So we have InitANSL[A, i,B,N1, h1, h3, R1, R3]. The only thing left to be proven is

dec(h2, dKB) = 〈N1, A〉.

Applying the self derivability axiom to (9) we have φm′′ , π1 (dec(h3, dKA)) ` N1 for any m′′, and
by the functions derivability and transitivity axioms, we have

φm′′ , dec(h3, dKA) ` N1.

Applying the non-mallability axiom, we have

φm′′ ` N1 or ∃x′R′.(h3 = {x′}R
′

eKA ∧ {x
′}R

′

eKA v φm′′)

and the first is not possible by Theorem 3 as N1 was generated by A in session i in which the
intended party is B as we have shown. Then, we have

dec(h3, dKA) = x′. (11)

Since A does not encrypt messages with eKA, {x′}R′

eKA
was sent by B. Then we have

{x′}R
′

eKA = {π1 (dec(h′2, dKB)) , N
′
2, B}

R′
2

eKA
(12)

for some h′2, N ′
2, and R′

2. From (9), (11) and (12), we get

N1 = π1 (dec(h3, dKA)) = π1 (x
′) = π1 (dec(h′2, dKB)) , (13)

and from (10), (11) and (12), we get

N2 = π1 (π2 (dec(h3, dKA))) = π1 (π2 (x
′)) = N ′

2.

23

Since B, according to its role, always generates a new nonce before sending its message, N2 is not
used in more than one session. On the other hand, we have already concluded that in the session
where N2 is sent, (8), the message is {π1 (dec(h2, dKB)) , N2, B}R2

eKA
, therefore by (12),

{π1 (dec(h′2, dKB)) , N
′
2, B}

R′
2

eKA
≡ {π1 (dec(h2, dKB)) , N2, B}R2

eKA
,

and so h′2 ≡ h2, which means by (13)

π1 (dec(h2, eKA)) = N1.

Putting all these together, we have that there exist i,N1, h1, h3, R1, R3 such that

InitANSL[A, i,B,N1, h1, h3, R1, R3] AND
dec(h2, dKB) = 〈N1, A〉 AND
dec(h3, dKA) = 〈N1, N2, B〉 AND
dec(h4, dKB) = N2

which immediately implies the intended property. ut

8 Conclusion and Future Work

In this paper we illustrated that the framework proposed by Bana and Comon-Lundh [7], where one
does not define explicitly the Dolev-Yao adversarial capabilities but rather the limitations (axioms)
on these capabilities, is suitable and powerful enough to prove correctness of security protocols. The
proofs with this technique are computationally sound without the need of any further assumptions
such as no bad keys, etc that are otherwise usually assumed in other literature.

We presented a modular set of axioms that are computationally sound for implementations using
CCA2 secure encryption. Using the axioms together with a minimal parsing assumption, we were
able to perform an inductive proof to show both secrecy and agreement of the NSL protocol. Ap-
plying the main theorem of [7] we obtain that for any implementation satisfying CCA2 security and
the parsing assumption, there is no computational adversary that can violate secrecy or authentica-
tion except with negligible probability. We also believe the axioms of secrecy and non-malleability
constitute a sufficient abstraction of CCA2 security to prove correctness of protocols other than NSL.

As other current techniques have problems incorporating dynamic corruption, it is worth noting,
that our technique works even if the protocol allows the release of a decryption key of A or B at
some time. Secrecy can still be proven until that point, and authentication that was carried out earlier
can be verified even if the decryption key is later released.

The proof we presented in this paper was done by hand but we believe that automation is possible
and is left for future work.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of formal
encryption). Journal of Cryptology, 15(2):103–127, January 2002.

2. P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness and completeness of formal encryption: the cases
of key-cycles and partial information leakage. Journal of Computer Security, 17(5):737–797, 2009.

24

3. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations. In
CCS’03, 2003.

4. M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (rsim) framework for asynchronous
systems. Information and Computation, 205(12), 2007.

5. G. Bana, P. Adão, and H. Sakurada. Computationally sound verification of the NSL protocol via computa-
tionally complete symbolic attacker—Long version, 2012. http://web.ist.utl.pt/pedro.adao/pubs/drafts/nsl-
long.pdf.

6. G. Bana and H. Comon-Lundh. Towards unconditional soundness: Computationally complete symbolic
attacker. Available at IACR ePrint Archive, Report 2012/019.

7. G. Bana and H. Comon-Lundh. Towards unconditional soundness: Computationally complete symbolic
attacker. In Proceedings of POST’12, LNCS, 2012.

8. G. Bana, K. Hasebe, and M. Okada. Computational semantics for basic protocol logic - a stochastic
approach. In ASIAN’07, volume 4846 of LNCS, pages 86–94. Springer, 2007.

9. G. Bana, K. Hasebe, and M. Okada. Secrecy-oriented first-order logical analysis of cryptographic proto-
cols, 2010. http://eprint.iacr.org/2010/080.

10. G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification of code-based cryptographic proofs.
In POPL’09, pages 90–101. ACM, 2009.

11. B. Blanchet. A computationally sound mechanized prover for security protocols. IEEE Transactions on
Dependable and Secure Computing, 5(4):193–207, 2008.

12. H. Comon-Lundh and V. Cortier. Computational soundness of observational equivalence. In CCS’08,
2008.

13. H. Comon-Lundh and V. Cortier. How to prove security of communication protocols? A discussion on the
soundness of formal models w.r.t. computational ones. In STACS’11, volume 9 of Leibniz International
Proceedings in Informatics, pages 29–44, March 2011.

14. V. Cortier and B. Warinschi. Computationally sound, automated proofs for security protocols. In ESOP’05,
volume 3444 of LNCS, pages 157–171, 2005.

15. A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic polynomial-time semantics
for a protocol security logic. In ICALP’05, volume 3580 of LNCS, pages 16–29. Springer, 2005.

16. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway logic of encrypted ex-
pressions. Journal of Computer Security, 12(1):99–130, 2004.

A An Attack on NSL

If we assume that RandGen(N) ∧ W (π2 (N)) is computationally satisfiable, then we have the
following computational attack on the NSL protocol. RandGen(N) ∧W (π2 (N)) is the same as
saying that with non-negligible probability, it is possible to choose a name (bit-string) Q for an
agent such that for the output N of some honest nonce generation, there is a bit-string n such with
〈n,Q〉 = N . To show that this is not at all unrealistic, suppose the pairing 〈·, ·〉 is concatenation, and
the length of agent names does not depend on the security parameter, say always 8 bits. Then for
any name Q, n can be chosen with 〈n,Q〉 = N as long as the last four digits of N equals Q, which,
if N is evenly generated, is of just 1/28, a non-negligible probability. So this situation is realistic.
Now, the attack is the following, it needs two sessions:

1. The adversary choses a name Q as above.
2. The adversary catches the last message {N2}B in a session sent by A to B, two honest agents.
3. The adversary, acting as agent Q initiates a new session with B, sending {N2}B to it.
4. Since B thinks this is a new session with Q, it will parse the message according to its role,

namely as {N ′
1, Q}B . This will succeed as long as there is an n with 〈n,Q〉 = N2, that is, it

will succeed with non-negligible probability.

25

5. B generates a new nonce, N ′
2, and sends {n,N ′

2, B}Q to Q.
6. The adversary Q decrypts {n,N ′

2, B}Q, reads n, and computes N2 = 〈n,Q〉. The secrecy of
N2 is hence broken.

So, we can conclude that if 〈n,Q〉 = N is possible computationally with non-negligible probabil-
ity, then the protocol fails. In such case, trace-lifting soundness proofs fail as a bit string can be
understood both as 〈n,Q〉 and as N .

Notice, that this attack is not a usual type-flaw attack, because even if type-flaw attacks are
allowed, honestly generated nonces are normally considered atomic.

Clearly, if the implementation of the protocol is such that B always checks the length of n,
then this attack is not possible. But, it has to be made sure, that the implementation satisfies the
RandGen(N)→ ¬W (π2 (N)) property.

26

