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Abstract

We consider the class of secret sharing schemes where there is no a priori bound on the
number of players n but where each of the n share-spaces has fixed cardinality q. We show two
fundamental lower bounds on the threshold gap of such schemes. The threshold gap g is defined
as r − t, where r is minimal and t is maximal such that the following holds: for a secret with
arbitrary a priori distribution, each r-subset of players can reconstruct this secret from their joint
shares without error (r-reconstruction) and the information gain about the secret is nil for each
t-subset of players jointly (t-privacy). Our first bound, which is completely general, implies that
if 1 ≤ t < r ≤ n, then g ≥ n−t+1

q
independently of the cardinality of the secret-space. Our second

bound pertains to Fq-linear schemes with secret-space Fk
q (k ≥ 2). It improves the first bound

when k is large enough. Concretely, it implies that g ≥ n−t+1
q

+ f(q, k, t, n), for some function
f that is strictly positive when k is large enough. Moreover, also in the Fq-linear case, bounds
on the threshold gap independent of t or r are obtained by additionally employing a dualization
argument. As an application of our results, we answer an open question about the asymptotics
of arithmetic secret sharing schemes and prove that the asymptotic optimal corruption tolerance
rate is strictly smaller than 1.

Keywords: Secret sharing, threshold gap, error correcting codes, Norse bounds, Griesmer
bound, arithmetic secret sharing

1 Introduction
We consider the class of secret sharing schemes where there is no a priori bound on the number of
players n but where each of the n share-spaces (i.e., a set in which a share takes its value) has fixed
cardinality q. We show two fundamental lower bounds on the threshold gap of such schemes. The
threshold gap g is defined as r− t, where r is minimal and t is maximal such that the following holds:
for a secret with arbitrary a priori distribution, each r-subset of players can reconstruct this secret
from their joint shares without error (r-reconstruction) and the information gain about the secret is
nil for each t-subset of players jointly (t-privacy).

For a given scheme, let λ∗ denote average share-length (in bits), i.e., the average Shannon-entropy
of the n shares. Our first lower bound states that, if 1 ≤ t < r ≤ n, then

g ≥ n− t+ 1

2λ∗
,

independently of the cardinality of the secret-space (i.e., the set in which the secret can be selected
arbitrarily). It follows at once that, in particular,

g ≥ n− t+ 1

q
.
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We stress that this result is completely general and is not restricted to, say, linear, ideal, threshold
or even perfect schemes. Our proof for the case t = 1 is based on a collision-entropy argument.
The key element of this argument is a generalization of the proof idea behind the Norse Bound on
covering radius from coding theory [24]. The general case is then proved from the result for t = 1 by
induction, which is enabled by shortening, i.e., the process of collapsing to a convenient sub scheme
by conditioning on a certain event followed by removal of some players. In the Fq- linear case the
dependency on t can be removed using a dualization technique. If 1 ≤ t < r ≤ n − 1, this leads to
the lower bound

g ≥ n+ 2

2q − 1
.

Hence, the threshold gap is Ω(n) if q is fixed.
Our second lower bound involves the cardinality of the secret-space. We first show that if there

exists an r-reconstructing, t-private secret sharing scheme whose secret-space has cardinality M ,
then there exists an [n − t,M, d] q-ary error correcting code where d ≥ n − r + 1. As an immediate
consequence, restrictions on the parameters n, t, r, q,M are obtained from known bounds on (linear)
error correcting codes, such as Singleton, Plotkin, Hamming, etc. However, a particularly nice result
is obtained from a suitable application of the Griesmer bound. This leads to a simple bound that
is easy to compare with our first bound. This bound is only valid for Fq- linear schemes, however.
Concretely, for Fq-linear schemes with secret-space Fkq (k ≥ 2), we show that

g ≥ n− r + 1

q
+ (k − 1),

or, equivalently,

g ≥ n− t+ 1

q
+ f(q, k, n, t)

where
f(q, k, n, t) :=

q

q + 1
(k − 1)− n− t+ 1

q(q + 1)
.

We note that the argumentation underlying our second bound does not give a non-trivial result for
k = 1 (in fact, it leads to the triviality g ≥ 1). Thus, for k = 1 only our first bound gives a non-trivial
result. Again we can remove the dependency on r using a dualization technique, thereby obtaining

g ≥ n+ 2

2q − 1
+ h(q, k, n)

where
h(q, k, n) :=

2q

2q + 1

(
k − 1− 1

q
· n+ 2

2q − 1

)
.

This improves our first bound when the size of the secret is large enough, i.e., when

k > 1 +
n+ 2

q(2q − 1)
.

As an application of our first bound, we answer an open question about certain arithmetic secret
sharing schemes (see Section 5 for the definition). An (n, t, 2, n− t)-arithmetic secret sharing scheme
for Fq over Fq is an Fq-linear secret sharing scheme where the secret is selected from Fq and each
of the n shares is an element of Fq. Moreover, there is t-privacy and, for any set of n − t players,
the product of two shared secrets can be reconstructed by applying some linear function to the
vector consisting of the products of the two shares held by each player in the set. Such schemes
have become a fundamental primitive in cryptographic protocol theory. Quite surprisingly, especially
those with good asymptotic properties have recently been shown to be of great importance in the
design of two-party secure protocols (see the references in [9]). It is known by algebraic geometric
arguments [10, 8, 9] that if q is fixed, then there are infinite families of such schemes with n unbounded
and t = t(n) (as well as important variations) such that the quantity 3t

n−1 tends asymptotically to a
positive constant, which is the salient property. It is a very interesting open problem whether there
exists a proof for these facts that avoids the use of advanced results from algebraic geometry, in
particular, the existence of certain good infinite towers of algebraic function fields. See the references
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for explicit lower bounds. On the other hand, in the non-asymptotic case, this rate can be equal to 1
by taking suitable instantiations of Shamir’s scheme. It was stated as one of the open theoretical
problems in [8] to decide whether asymptotically this rate has to be strictly smaller than 1 (as a
further price to be paid for “good asymptotics”, besides the apparent necessity of algebraic-geometric
machinery). We settle this open problem in the affirmative. Namely, we show that, for q fixed,

3t
n−1 < 1 − ε for some some ε = ε(q) > 0 and for all large enough n. More precisely, if we let τ̂(q)
denote the best possible achievable asymptotic rate, then we show that

τ̂(q) ≤ 1− 3q − 2

3q2 − 3q + 1
< 1

for all finite fields Fq. We prove this result by a combination of our first threshold gap bound for
linear schemes, basic properties of arithmetic secret sharing (specifically, the relationship between
privacy in the scheme and reconstruction in its “square” on the one hand, and reconstruction in the
scheme on the other hand), and, once again, shortening. It is interesting to note that the upper- and
lower bounds on τ̂(q) are quite far apart still.

1.1 Related work
After completing an earlier version of this paper, an unpublished result by Joe Kilian and Noam
Nisan [19] about threshold secret sharing was brought to our attention [3]. In essence, they showed
that, if r = t + 1, t 6= 0, n − 1 and if the secret-space has at least cardinality 2, at least one of the
share-spaces has cardinality n− t+1 or larger (independently of whether the scheme is linear or not).
As it turned out, this result is in fact mentioned, albeit without proof, in the literature, e.g. in Amos
Beimel’s PhD.-thesis [1] (as well as in at least one other paper including the same author, such as
[2]).

Although their bound does not imply any lower bounds on the threshold gap (indeed, it assumes
g = 1 to begin with), it is relevant to our results. Their bound follows as a special case of our first
bound if one substitutes g = 1 and interprets it as an upper bound for the average entropy of the
shares. As a consequence of their bound, if c is an arbitrary constant with 0 < c < 1 then there is a
constant c′ > 0 such that for any threshold scheme with t < cn, it must hold that

λ∗ ≥ c′ log n,

i.e., the shares are at least of logarithmic size. We incorporate the bound of Kilian and Nisan
(Theorem 3.2 below) and, for the first time, its (original) proof with their kind permission. This will
at the same time serve as a conceptual introduction to our first lower bound on the threshold gap,
whose proof idea turned out to bear some similarities to theirs (yet it has to deal with a much more
general scenario).

Karnin, Greene and Hellman had previously proved a weaker result in [18]. Namely, they consid-
ered threshold secret sharing schemes as above where, in addition, the cardinality of every share space
is at most the cardinality of the secret space. They proved that in that case all these cardinalities
must coincide and, through a connection with maximum distance separable (MDS) codes, that these
cardinalities are at least n− t+ 1.

We now consider general (i.e. non-necessarily threshold) secret sharing schemes. There is a vast
literature concerning restrictions on their parameters. We highlight here the results that are more
directly related to our work. Let M be the cardinality of the secret space and suppose every share
belongs to an alphabet of cardinality q. Results from Blundo, De Santis and Vaccaro [6], Jackson and
Martin [16] and Ogata and Kurosawa [22] imply that g ≥ logqM for general secret sharing schemes.
In the context of exposure resilient cryptography, Dodis, Sahai and Smith [14, Theorem 1] proved the
bound g ≥ r

q +(1− q−1
q ·

r
M−1 ) for general secret sharing schemes. We remark that the bounds we have

just mentioned involve the size of the secret and become trivial when in particularM = 2. Hence, our
bounds in Section 3 distinguish themselves in that they do not depend on M , and therefore establish
a limitation on some of the parameters even whenM is small. We can however establish a comparison
between our result in Theorem 3.25 (where we prove that for linear schemes with 1 ≤ r ≤ n− 1 we
have g ≥ r+1

q ) and the bound from [14]. We see that our bound is strictly stronger as long as M
is small and in the worst case it can be one unit smaller when M is large. On the other hand our
bounds in Section 4 do involve the cardinality of the secret-space. It becomes clear that combining
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our Theorem 4.1 and the Singleton bound we obtain the result implied by [6, 16, 22]. But other code
theoretic bounds yield different (stronger) results (although we should remark that our Corollary 4.3
and the subsequent results in that section are only valid for linear schemes, because they use the
Griesmer bound). To the best of our knowledge, such results had not been noticed before.

We can also see our results as lower bounds for the size of shares of a scheme with a fix threshold
gap. In the equivalent context of monotone span programs, Karchmer and Wigderson [17] considered
threshold linear secret sharing schemes and proved that the total number of field elements given as
shares must be Ω(n log n). In [8], this was also proved to hold if the gap is o(log n). Our results from
Section 3.2 extend this to the case where the gap is o(n).

In this paper we use different connections between secret sharing and error correcting codes. In
Section 3.2 we see a linear secret sharing scheme with shares in Fq and secret in Fkq as a linear code
over Fq, where every codeword consists of a secret (as its k first coordinates) and a sharing for it
(as its last n coordinates). This connection was first pointed out by McEliece and Sarwate [21] in
the case of Shamir’s secret sharing schemes (which can be seen as Reed-Solomon codes in this way).
In the case k = 1, it is known that ideal linear threshold secret sharing schemes are equivalent to
linear maximum distance separable (MDS) codes via this connection (see [18, 5]). Massey [20] gave,
also in the case k = 1, a characterization of the access structure of a linear secret sharing scheme
in terms of the supports of codewords in the dual of the associated linear code. This implies that
a linear code with minimum distance d and whose dual code has minimum distance d⊥ leads to a
linear secret sharing scheme with t ≥ d⊥ − 2 and r ≤ n − d + 2. See [11], where in addition a more
general result for k > 1 is proved. However, these inequalities do not help us to prove lower bounds
for the threshold gap because they are in the “wrong direction”. Instead, we exploit the fact that
both a code and its dual give to linear secret sharing schemes to which we can apply the general
bounds in Section 3.1 and that we can find relations between the access and adversary structures of
both schemes, using implicitely Massey’s characterization. In Section 4 we use a different connection
between secret sharing schemes and error correcting codes. In this case the error correcting code
contains only one vector per secret and the words consist only of the shares held by a set of n − t
players. The resulting code has length n− t, dimension M and minimum distance at least n− r+ 1.
We then use well known bounds from code theory, such as the Griesmer bound [15], in order to prove
our results. We are not aware of this particular connection being used before.

Finally, with regard to the tightness of our bounds, after we first circulated a preprint of this paper
Paterson and Stinson [23] showed that our main bound g ≥ n−t+1

q is tight, as it can be matched in
examples where t = 1 and where t = 2, q = 2 by families of secret sharing schemes with unbounded
n.

1.2 Outline of the paper
The paper is organized as follows. In Section 2 we give general definitions about (not necessarily
linear or ideal) secret sharing schemes, including the notion of threshold gap. In Section 3, we state
our first lower bound on the threshold gap of an arbitrary secret sharing scheme. In order to do this
we first prove a weaker result, where the shares are all uniformly distributed on alphabets of the same
size, then we prove the more general result and finally, we state in subsection 3.2 our improved bound
in the case of linear secret sharing schemes. In this section we also include the result by Kilian and
Nisan about threshold secret sharing schemes, which is a special case of our bound. In Section 4 we
state our second lower bound, which incorporates the size of the secret and is better than the bound
in Section 3 when the secret is large. Finally, in Section 5 we recall the concept of arithmetic secret
sharing scheme, we apply our bounds on the threshold gap from the previous sections in order to
bound the parameters of such schemes, and we prove the aforementioned upper bounds on τ̂(q).

2 Preliminaries of Secret Sharing
In this section we first introduce some notation that will be useful for our purposes and then we define
the notion of secret sharing scheme, first introduced in [4] and [25].
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2.1 Vectors of Random Variables
Definition 2.1 (Vector of Random Variables) A vector of random variables is a vector X =
(Xj)j∈I such that the index-set I ⊂ Z≥0 is finite and non-empty and the Xj’s are random variables
defined on the same finite probability space.

Moreover, for each j ∈ I, Xj is the finite alphabet where Xj takes its values. 1 If X is a vector
of random variables, I(X) denotes the index-set.

Note that X can be seen as the random variable with alphabet
∏
j∈I Xj whose probability distri-

bution is the joint distribution of {Xj}j∈I .

Definition 2.2 The support of X, denoted supp(X), is the set of all x ∈
∏
j∈I Xj such that Pr(X =

x) > 0.

Definition 2.3 If A ⊂ I with A 6= ∅, then XA denotes the vector of random variables (Xj)j∈A.

Definition 2.4 (Shannon and Collision Entropies) Let X be a random variable which takes
values in a finite alphabet X and for x ∈ X denote p(x) := Pr(X = x). The Shannon entropy of X is

H1(X) = −
∑
x∈X

p(x) log2(p(x)),

where 0 log2 0 := 0 by convention. The collision entropy is

H2(X) = − log2(
∑
x∈X

p(x)2).

Remark 2.5 By Jensen’s inequality H1(X) ≥ H2(X) for any random variable X in the conditions
above.

Definition 2.6 (Encoding Length) The average encoding length of a vector of random variables
X is defined as λ(X) = 1

|I| ·
∑
j∈I H1(Xj), where H1 denotes the Shannon entropy.

2.2 Formal Definition and some Basic Properties of Secret Sharing
Definition 2.7 (Secret Sharing) A secret sharing scheme Σ on n players is a vector of random
variables S with index-set I := {0, 1, . . . , n}, n ≥ 1, and such that we have:

• (Uniformity of the secret)2. The secret-space S0 satisfies |S0| > 1 and

H1(S0) = log2 |S0|,

i.e., there is a priori uncertainty about the secret S0 and it has the uniform distribution on S0.

• (Joint reconstruction) Define I∗ := {1, . . . , n}, the player set, and S∗ = (Sj)j∈I∗ , the shares.
Then

H1(S0|S∗) = 0,

i.e., the shares jointly determine the secret with probability 1.

We denote the cardinality of I∗ by n(Σ), or n when Σ is clear from the context.

Definition 2.8 The average length of the shares is λ∗(Σ) := λ(S∗). Whenever Σ is clear from the
context we will use λ∗.

Note that the definition allows the secret and individual shares to be in different sets, not even
necessarily of the same cardinality.

1It is not assumed that for each x ∈ Xj , Pr(Xj = x) > 0.
2We could also consider a definition of secret sharing scheme that does not assume the secret to be uniformly

distributed. However, a result by Blundo, De Santis and Vaccaro [7] implies that all our results hold as well in that
case, and hence our assumption here is without loss of generality for our purposes.
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Definition 2.9 (Reconstruction and privacy sets) Let Σ be a secret sharing scheme with player
set I∗. Let A ⊂ I∗ with A 6= ∅. Then A is a reconstructing set if

H(S0|S∗A) = 0,

i.e., the shares of the set A jointly determine the secret with probability 1.

On the other hand, A is a privacy set if

H(S0|S∗A) = H(S0),

i.e., the a posteriori uncertainty about the secret when given the shares for A, equals the a priori
uncertainty about the secret (or equivalently, S0 and S∗A are independent). By definition, ∅ is a
privacy set.

By information theory, H(S0|S∗A) = H(S0) if and only if S0, S∗A are independent. Therefore,
an equivalent definition of a non-empty privacy set A is that, for all s ∈ S0, the random variable
(S∗A)|S0=s, i.e., S∗A conditioned on the event S0 = s, has the same probability distribution as the
random variable S∗A.

Definition 2.10 (Access Structure) The access structure Γ(Σ) consists of all reconstructing
sets A ⊂ I∗.

Definition 2.11 (r-Reconstruction) Σ has r-reconstruction if each subset of I∗ of cardinality
at least r is an element of Γ(Σ). The reconstruction threshold is the smallest r such that Σ has
r-reconstruction, denoted by r(Σ).

Note that Γ(Σ) 6= ∅ since I∗ ∈ Γ(Σ) by definition. In particular, 1 ≤ r(Σ) ≤ n(Σ). Furthermore,
for all integers r with r(Σ) ≤ r ≤ n(Σ) there is r-reconstruction.

Definition 2.12 (Adversary Structure) The adversary structure A(Σ) consists of all privacy
sets A ⊂ I∗.

Definition 2.13 (t-privacy) Σ is said to have t-privacy if each subset of I∗ of cardinality at most
t is an element of A(Σ). The privacy threshold is the largest t such that Σ has t-privacy, denoted by
t(Σ).

As before, 0-privacy means by convention that “the empty set gives no information about the
secret.” Since there certainly is a secret about which there is positive a priori uncertainty, this makes
sense. Furthermore, t(Σ) = 0 does not necessarily mean that there are no privacy sets; it just means
that there is an i ∈ I∗ such that {i} is not a privacy set. But the definition of secret sharing above
certainly allows the “cryptographically non-interesting” case that there is no non-empty privacy set
at all. However, it is useful, for technical reasons in proofs, to allow this case. Similarly, it is useful
to allow n = 1. Note that for all integers t with 0 ≤ t ≤ t(Σ) there is t-privacy.

Suppose A 6= ∅ is a privacy set. Then, by definition, S0 and S∗A are independent. Also by
definition, the secret is uniformly randomly distributed on the secret-space S0, which satisfies |S0| ≥ 2.
Therefore, A is not a reconstructing set. Hence, there is the following lemma.

Lemma 2.14 A(Σ) ∩ Γ(Σ) = ∅. In particular, 0 ≤ t(Σ) < r(Σ) ≤ n.

For the sake of notation, we will write g, r, t instead of g(Σ), r(Σ), t(Σ) if Σ is clear from the
context. The following straightforward lemma is often useful when proving privacy.

Lemma 2.15 Let A ⊂ I∗ with A 6= ∅. If the distribution of (S0,S
∗
A) is the uniform distribution on

S0 × supp(S∗A), then A is a privacy set.

Proof. Defining the uniform distribution on the Cartesian product of two given finite, non-empty
sets V ′, V ′′ is the same as defining the uniform distribution on V ′ and, independently, the uniform
distribution on V ′′. Indeed, for all (v′, v′′) ∈ V ′ × V ′′, the following holds. First,

Pr(v′, v′′) =
1

|V ′| · |V ′′|
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by assumption. Second,

Pr(v′) =
∑

w′′∈V ′′
Pr(v′, w′′) = |V ′′| · 1

|V ′| · |V ′′|
=

1

|V ′|
,

and
Pr(v′′) =

∑
w′∈V ′

Pr(w′, v′′) = |V ′| · 1

|V ′| · |V ′′|
=

1

|V ′′|
.

Therefore,
Pr(v′, v′′) = Pr(v′) · Pr(v′′).

Now take V ′ = supp(S0) = S0 and V ′′ = supp(S∗A). From the condition in the statement of the
lemma it now follows that S0, S∗A are independent. 4

We now introduce the notion of “shortening” a secret sharing scheme which will be useful for us
throughout this paper.

Definition 2.16 Let Σ be a secret sharing scheme and let ∅ 6= A ∈ A(Σ) and x ∈
∏
j∈A Sj with

Pr(SA = x) > 0. Write B = I \A and B∗ = I∗ \A. Then we write Σ|SA=x the secret sharing scheme
given by the vector of random variables T := SB |SA=x defined on

∏
j∈B Sj.

Lemma 2.17 With the definitions above, let Σ′ := Σ|SA=x. Then Σ′ is a secret sharing scheme with
player set B∗ (so n(Σ′) = n(Σ)− |A|).

In addition
A(Σ′) ⊇ {D ⊆ B∗ : D ∪A ∈ A(Σ)}

and
Γ(Σ′) ⊇ {D ⊆ B∗ : D ∪A ∈ Γ(Σ)}.

In particular r(Σ′) ≤ r(Σ)− |A| and t(Σ′) ≥ t(Σ)− |A|.

Moreover, suppose in addition that H1(Sj) ≥ H1(S`) for all j ∈ A, ` ∈ B∗ and that∑
j∈B∗

H(Sj |SA = x) ≤
∑
j∈B∗

H(Sj |SA = y)

for all y ∈ supp SA. Then
λ∗(Σ) ≥ λ∗(Σ′).

Proof. We first prove that Σ′ is a secret sharing scheme, verifying the two conditions in Defini-
tion 2.7.

a) First, note that T0 = S0|SA=x. Since A ∈ A(Σ), S0 and SA are independently distributed.
Therefore T0 = S0|SA=x has the same distribution as S0 which, since Σ is a secret sharing scheme, is
the uniform distribution on S0.

b) Second, we need to prove that the value of T∗ determines the value of T0. For any y ∈
∏
j∈B∗ Sj

with Pr(T∗ = y) > 0 we have Pr(SA = x,SB∗ = y) > 0. Since Σ is a secret sharing scheme,
the value of S∗ completely determines the value of S0, so there exists a unique z ∈ S0 with
Pr(S0 = z|SA = x,SB∗ = y) = 1. But this implies that Pr(T0 = z|T∗ = y) = 1. We have
proved that T∗ determines T0.

We can now generalize these two observations: Let D ⊆ B∗ and suppose that D ∪A ∈ A(Σ) and
consequently S0 and SD∪A are independently distributed. Then it is again straightforward that T0

is uniformly distributed from TD. This proves the claim over A(Σ′) and t(Σ′) ≥ t(Σ) − |A| follows
directly. On the other hand let D be a subset of B∗ such that D ∪ A ∈ Γ(Σ). Then the value of
SD∪A determines the value of S0. By a similar argument as we used in part b) of the proof that
Σ′ is a secret sharing scheme this means TD determines T0. This proves the claim about Γ(Σ′) and
consequently that r(Σ′) ≤ r(Σ)− |A|.
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Finally, we prove the claim about λ∗(Σ) and λ∗(Σ′). Assume that H1(Sj) ≥ H1(S`) for all j ∈ A,
` ∈ B∗ and that

∑
j∈B∗ H(Sj |SA = x) ≤

∑
j∈B∗ H(Sj |SA = y) for all y ∈ supp SA. Suppose this is

the case. Then

λ∗(Σ) =

∑n
j=1H(Sj)

n(Σ)
≥
∑
j∈B∗ H(Sj)

n(Σ)− |A|
≥∑

j∈B∗ H(Sj |SA)

n(Σ)− |A|
=∑

j∈B∗
∑

y∈supp SA
Pr(SA = y)H(Sj |SA = y)

n(Σ)− |A|
=

∑
y∈supp SA

Pr(SA = y)

(∑
j∈B∗ H(Sj |SA = y)

n(Σ)− |A|

)
≥

∑
j∈B∗ H(Sj |SA = x)

n(Σ)− |A|
=

∑
j∈B∗ H(Tj)

n(Σ′)
= λ∗(Σ′).

Here we have used in the first inequality that the average of the multi-set {H(Sj)}nj=1 is larger or
equal than the average of the multi-set {H(Sj)}j∈B∗ because all the elements that we remove from
the first multi-set to obtain the second were larger than the elements that remain in it, by the first
of the assumptions. On the other hand, in the third inequality, we use that the expectation of the
random variable that samples y according to SA and outputs

∑
j∈B∗ H(Sj |SA = y) is larger or equal

than its minimum value, which is attained when SA = x by the second of the assumptions.
4

One of the main parameters of interest in this work is the threshold gap.

Definition 2.18 (Threshold gap) The threshold gap of Σ is g(Σ) := r(Σ)−t(Σ). Σ is a threshold
secret sharing scheme if g(Σ) = 1.

3 A Bound Independent of the Size of the Secret

3.1 General bound
In this section we prove lower bounds for the threshold gap of a secret sharing scheme in terms of the
number and average encoding length of the shares. In particular, our bound does not depend on the
size of the secret. More precisely, we will prove the following theorem:

Main Theorem 3.1 Let Σ be a secret sharing scheme with t(Σ) ≥ 1. Then

g(Σ) ≥ 2−λ
∗(Σ)(n(Σ)− t(Σ) + 1).

In particular, g(Σ) ≥ n(Σ)−t(Σ)+1
q̃ where q̃ is the average cardinality of the share-spaces.

For comparison, we state now the unpublished result by Kilian and Nisan regarding the case g = 1,
as mentioned in the introduction.

Theorem 3.2 ([19]) Let Σ be a threshold secret sharing scheme with n shares, privacy threshold
t(Σ) = t and where Si = {0, 1} and Sj = {0, 1}mj for some integer mj > 0 for all j ∈ I∗. Then∑

j∈I∗
mj ≥ n log2(n− t+ 1).

Proof. Appendix. 4
Before proving Main Theorem 3.1 in its full generality, we will show a weaker bound, which could

be seen as the corollary of Main Theorem 3.1 where all share spaces have the same cardinality q. Its
proof is exactly the same as that of Main Theorem 3.1, but the weaker setting allows for a shorter
exposition.3

3The presentation is copied from our lectures at the Chinese Academy of Sciences and at Institute of Advanced
Study, Tsinghua University, May 2012.
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Theorem 3.3 Let Σ be a secret sharing scheme with t(Σ) ≥ 1 and such that |Sj | = q for all j ∈ I∗.
Then

g(Σ) ≥ n− t(Σ) + 1

q
.

Proof.
We first prove the following weaker statement.

Claim 1: Let Σ̃ be a secret sharing scheme with t(Σ̃) ≥ 1 and such that |S̃j | = q for all j ∈ I∗.
Then

r(Σ̃) ≥ n(Σ̃)

q
+ 1.

Claim 1 is proved as follows. Let s, s′ be different elements of S̃0. Since t(Σ̃) ≥ 1, for all j ∈ I∗,
the probability distributions of S̃j |S̃0 = s and S̃j |S̃0 = s′ are the same. This implies that if we sample
x ∈ S̃j according to S̃j |S̃0 = s and y ∈ S̃j according to S̃j |S̃0 = s′, then Pr[x = y] is the collision
probability of S̃j |S̃0 = s, and it is well known 4 that

Pr[x = y] ≥ 1

|S̃j |
=

1

q
.

For a,b ∈
∏
j∈I∗ S̃j define the distance between a and b as d(a,b) := |{j ∈ I∗ : aj = bj}|.

This can be written as d(a,b) =
∑n
j=1 dj(a,b) where dj(a,b) = 1 if aj 6= bj and 0 otherwise. Then

the expectation of d(x,y) when x is sampled according to S̃∗|S̃0 = s and y is sampled according to
S̃∗|S̃0 = s′ is given by

E[d(x,y)] =

n∑
j=1

E[dj(x,y)] ≤ n(Σ̃)(1− 1

q
)

where this last inequality is obvious by the reasoning above. Consequently there exists a pair (x,y),
where x is a sharing of s and y is a sharing of s′ with d(x,y) ≤ n(Σ̃)

(
1− 1

q

)
. Therefore there is

A ⊆ I∗ with |A| ≥ n(Σ̃)
q such that xA = yA. This means A /∈ Γ(Σ̃) and hence r(Σ̃) ≥ n(Σ̃)

q + 1. So
Claim 1 is proved.

Now we prove the general case by applying Claim 1 to a shortened secret sharing scheme. Write
t := t(Σ). We need the following claim.

Claim 2: There exists a secret sharing scheme Σ′ with n(Σ′) = n(Σ) − (t − 1), t(Σ′) ≥ 1 and
r(Σ′) ≤ r(Σ)− (t− 1) and where the cardinalities of all share spaces are q.

In order to construct such Σ′, we select A ⊆ I∗ with |A| = t − 1 and a “possible sharing vector”
for the set A i.e., an element x ∈

∏
j∈A Sj with P (SA = x) > 0. We consider the shortened secret

sharing scheme Σ′ := Σ|SA=x, as defined in Definition 2.16. By Lemma 2.17 t(Σ′) ≥ t(Σ)−(t−1) = 1
and r(Σ′) ≤ r(Σ)− (t− 1). So Claim 2 is proved.

Finally

g(Σ) = r(Σ)− t ≥ r(Σ′)− 1 ≥ n(Σ′)

q
=
n(Σ)− t+ 1

q

where Σ′ is as in Claim 2, and the second inequality comes from applying Claim 1 with Σ̃ = Σ′. 4
We now turn back to proving our Main Theorem 3.1. As it happened with Theorem 3.3, we

will start by proving the case t = 1 and then we will prove the case of a general threshold scheme
by constructing another scheme with t = 1 as above. First we need some definitions and simple
observations.

4This can also be readily seen by noticing Pr[x = y] =
∑

x∈Sj Pr[x]2 and using Jensen’s inequality, since squaring
is a convex function.
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Definition 3.4 Let Σ be a secret sharing scheme. Let s ∈ S0. Then S|S0=s is the vector of random
variables S conditioned to the event S0 = s. Likewise we can consider S∗|S0=s, (SA)|S0=s, (Sj)|S0=s.
We define C|s(Σ) := supp (S∗|S0=s) ⊆

∏n
j=1 Sj. We write C|s when Σ is clear from the context.

Therefore, C|s is the set of “all possible sharings” of the secret s. We have already observed that

Lemma 3.5 If A ∈ A(Σ), then (SA)|S0=s has the same distribution as SA for all s ∈ S0.

Now write (C|s)A the projection of C|s to the coordinates in A. We have the following.

Lemma 3.6 Let s, s′ ∈ S0, s 6= s′. If A ∈ Γ(Σ), then (C|s)A∩(C|s′)A = ∅. In particular C|s∩C|s′ = ∅.

Proof. If x ∈ (C|s)A ∩ (C|s′)A, then it is clear that both Pr(SA = x|S0 = s) > 0 and Pr(SA =
x|S0 = s′) > 0 hold. This implies in turn that Pr(S0 = s|SA = x) > 0 and Pr(S0 = s′|SA = x) > 0.
Therefore SA does not determine S0 and A /∈ Γ(Σ). That proves the statement and in particular,
since I∗ ∈ Γ(Σ) by definition, we have C|s ∩ C|s′ = ∅. 4

Definition 3.7 Given x = (xj)j∈I∗ , x′ = (x′j)j∈I∗ ∈
∏
j∈I∗ Sj the Hamming distance between x

and x′ is
d(x,x′) = |{j ∈ I∗ : xj 6= x′j}|.

Let V,W ⊆
∏
j∈I∗ Sj. The Hamming distance between V and W is

d(V,W ) := min
(x,x′)∈V×W

d(x,x′).

From Lemma 3.6 we have:

Lemma 3.8 Let s, s′ ∈ S0, s 6= s′. Then

d(C|s, C|s′) ≥ n(Σ)− r(Σ) + 1.

Proof. Suppose d(C|s, C|s′) ≤ n − r. Then there exist two words x ∈ C|s,x
′ ∈ C|s′ which

coincide in at least r coordinates. Call A the set of these coordinates. Then Lemma 3.6 tells us that
A /∈ Γ(Σ). This contradicts the fact that |A| ≥ r. 4

We now prove our main combinatorial tool. If two vectors of random variables “look” locally the
same (each coordinate has the same distribution) then we can upper bound the Hamming distance
between their supports in terms of the encoding length of the variables.

Lemma 3.9 Let X, Y be vectors of random variables with respective supports V,W ⊆
∏
j∈I∗ Sj and

suppose that the marginal variables Xj, Yj have the same probability distribution on Sj for all j ∈ I∗.
Furthermore assume V ∩W = ∅. Then

0 < d(V,W ) ≤ |I∗| ·
(

1− 2−λ(X)
)
.

Proof. Note first that V ∩ W = ∅ implies d(V,W ) > 0. For j ∈ I∗, define the random
variable Dj as follows: Sample v ∈ V according to X and, independently, w ∈ W according to
Y. Then Dj = 0 if vj = wj and Dj = 1 if vj 6= wj . Also define D =

∑
j∈I∗ Dj . Note that the

expectation E(Dj) is the probability that vj 6= wj and E(D) is the “expected Hamming distance”
between v and w (i.e., the expectation of the value d(v,w)). Since Xj , Yj have the same distribution,
E(Dj) = 1− 2−H2(Xj), where H2 denotes the collision entropy. By linearity of expectation, E(D) =∑
j∈I∗ E(Dj) =

∑
j∈I∗

(
1− 2−H2(Xj)

)
. Hence there is a pair (v,w) ∈ V × W with d(v,w) ≤∑

j∈I∗
(
1− 2−H2(Xj)

)
. Therefore

d(V,W ) ≤
∑
j∈I∗

(
1− 2−H2(Xj)

)
≤

∑
j∈I∗

(
1− 2−H1(Xj)

)
≤ |I∗| ·

(
1− 2−λ(X)

)
,

where the latter inequality follows from Jensen’s inequality (note that 2−x is a convex function). 4
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Theorem 3.10 Let Σ be a secret sharing scheme and suppose t(Σ) ≥ 1. Then

r(Σ) ≥ 2−λ
∗(Σ) · n(Σ) + 1.

In particular, r(Σ) ≥ n(Σ)
q̃ + 1, where q̃ is the average cardinality of the share-spaces Sj.

Proof. Fix two different secrets s, s′ ∈ S0. Now we will apply Lemma 3.9 to the variables
S|S0=s and S|S0=s′ with support in the sets C|s and C|s′ ⊆

∏
j∈I∗ Sj respectively. We can do this

because, since t ≥ 1, {j} ∈ A(Σ) for all j ∈ I∗ and according to Lemma 3.5, the variables (Sj)|S0=s

and (Sj)|S0=s′ have both the same distribution (since they both have the same distribution as Sj).
Furthermore, by Lemma 3.6, C|s ∩ C|s′ = ∅. Therefore, Lemma 3.9 implies

d(C|s, C|s′) ≤ |I∗| ·
(

1− 2−λ
∗
)
.

Finally by Lemma 3.8 (and since |I∗| = n) we achieve

r ≥ 2−λ
∗
· n+ 1.

As for the second part of the theorem, we have

λ∗ =

∑n
j=1H1(Sj)

n
≤
∑n
j=1 log(|Sj |)

n
.

This together with Jensen’s inequality implies 2λ
∗ ≤ q̃ which leads to the result. 4

Obviously, this is enough to prove Main Theorem 3.1 in the case t = 1. In order to attain the
result in the general case t ≥ 1, we reduce it to the case t = 1 using appropiate shortening of the
secret sharing scheme.

Proof (of Main Theorem 3.1) If t(Σ) = 1, it is a direct consequence of Theorem 3.10. If
t(Σ) ≥ 1 then we choose A ⊆ I∗ the set of t(Σ) − 1 indices j such that H(Sj) are largest, we
denote B∗ = I∗ \ A and we choose x ∈ supp SA such that

∑
j∈B∗ H(Sj |SA = x) is smallest. We

can construct the secret sharing scheme Σ′ as in Definition 2.16 (note A ∈ A(Σ)). Note that, by
Lemma 2.17, t(Σ′) ≥ t(Σ)− |A| = 1 and consequently we can apply Theorem 3.10 to Σ′. This gives
r(Σ′) ≥ 2−λ

∗(Σ′) · n(Σ′) + 1 and therefore

r(Σ)− t(Σ) ≥ r(Σ′)− 1 ≥ 2−λ
∗(Σ′) · n(Σ′) ≥

2−λ
∗(Σ) · (n(Σ)− t(Σ) + 1)

where in addition we have used in the first inequality that r(Σ)− |A| ≥ r(Σ′) (Lemma 2.17), and in
the third that λ∗(Σ) ≥ λ∗(Σ′) because of the last part of Lemma 2.17 and our selection of A and x.

4
As a consequence we can state the following.

Corollary 3.11 Let {Σn}n be a family of threshold (g = 1) secret sharing schemes on n players,
where n is unbounded, and suppose there is a constant c < 1 such that 1 ≤ t(Σn) ≤ cn for all n. Then
the average size of the shares is at least logarithmic in n, i.e., λ∗(Σn) = Ω(logn).

3.2 Improvement for linear secret sharing schemes
In the main result of this section, Main Theorem 3.26, we prove a lower bound for the threshold gap
of a linear secret sharing scheme which, as opposed to what happened with Main Theorem 3.1, does
not depend on the privacy threshold.

We define now the concept of linear secret sharing scheme and some related notions and properties,
including the definition of dual secret sharing scheme and the relationship between the thresholds of
a scheme and those of its dual, which will play an important role in the proof of our main result.

Definition 3.12 Let Fq be a finite field. A linear secret sharing scheme (LSSS) over Fq is a secret
sharing scheme Σ where the secret and share spaces Sj are Fq-vector spaces and S has the uniform
distribution on a Fq-linear subspace V ≤

∏
j∈I Sj.
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Without loss of generalization, we may consider that all spaces Sj are of the form Fkjq for some
kj ≥ 0. For simplicity we will consider in most of this section the case where Sj = Fq for all j ∈ I∗,
i.e., every share consists of one element of the finite field. The secret will consist of k elements of Fq.
Note that the random variable S has the uniform distribution over a linear code over Fq of length
n + k. On the other hand, a linear code over Fq together with a specification of the coordinates
that will constitute the secrets and shares gives raise to a linear secret sharing scheme. Massey [20]
observed, in the case k = 1, that the access structure of the resulting linear secret sharing scheme
can be characterized in terms of the supports of the codewords in the dual code.

Our definition of secret sharing scheme is slightly more restricted than the one considered by
Massey (we exact reconstruction by the full set of players) and this suggests the notion of n-code,
which appeared in [9]. We define this notion below, after introducing some notation.

Definition 3.13 The Fq-vector space morphism π0 : Fkq × Fnq → Fkq is defined by the projection

(s1, . . . , sk, c1, . . . , cn) 7→ (s1, . . . , sk).

For each i ∈ {1, . . . , n}, the Fq-vector space morphism πi : Fkq × Fnq → Fq is defined by the
projection

(s1, . . . , sk, c1, . . . , cn) 7→ ci.

For ∅ 6= A ⊂ {1, . . . , n}, the Fq-vector space morphism πA : Fkq × Fnq → F|A|q is defined by the
projection

(s1, . . . , sk, c1, . . . , cn) 7→ (ci)i∈A.

For v ∈ Fkq ×Fnq , it is sometimes convenient to denote π0(v) ∈ Fkq by v0 and πA(v) ∈ F|A|q by vA.
We write I∗ = {1, . . . , n}. It is also sometimes convenient to refer to v0 as the secret-component of
v and to vI∗ as its shares-component.

Definition 3.14 An n-code for Fkq (over Fq) is an Fq-vector space C ⊂ Fkq × Fnq such that

(i) π0(C) = Fkq and

(ii) (Ker πI∗) ∩ C ⊂ (Ker π0) ∩ C.

Note that condition (ii) means that if a word c ∈ C is such that cI∗ = 0 then c0 = 0, i.e., c = 0.
By linearity of C, this means that if c, c′ ∈ C are such that cI∗ = c′I∗ , then c0 = c′0.

Proposition 3.15 Given an n-code C for Fkq over Fq, let S be the random variable with uniform
distribution over C. Then S is a LSSS on n players, secret space Fkq and share spaces Fq. We will
denote this LSSS as Σ(C).

Proof. The condition (i) means that, in C, the secret can take any value in Fkq . More precisely,
for a uniformly random vector c ∈ C, the secret c0 is uniformly random in Fkq . On the other hand,
condition (ii) means that S∗ determines S0, as immediately follows from the observations after the
definition, and therefore there is joint reconstruction. 4

We will now state some facts about the access and adversary structures of LSSS. These are
straightforward generalizations of known results.

Definition 3.16 Let

ΓC := {A ⊂ I∗ : A 6= ∅, (Ker πA) ∩ C ⊂ (Ker π0) ∩ C}.

Proposition 3.17 ΓC is the access structure of the scheme Σ(C), i.e., ΓC = Γ(Σ(C))

Proof. ΓC ⊆ Γ(Σ(C)) is a generalization of the proof of Proposition 3.15. On the other hand,
if A ∈ Γ(Σ(C)), then A 6= ∅ and for every two words c, c′ ∈ C such that cA = c′A, we must have
c0 = c′0. But in particular if c′ is the zero word, we have that for any c ∈ C with cA = 0, we must
have ci = 0, which is exactly the condition A ∈ ΓC 4
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Definition 3.18 We say A ⊆ I∗ is disconnected from 0 if the map π0,A : C −→ Fkq × πA(C) given
by c 7→ (c0, cA) is surjective.
We define the set

AC := {A ∈ I∗ : A = ∅ or A is disconnected from 0}.

Proposition 3.19 AC is the adversary structure of the scheme Σ(C), i.e., AC = A(Σ(C)).

Proof. Since S is uniformly distributed in C, for any non-empty set A ⊂ I∗, the distribution of
(S0,SA) is uniform on the set Im π0,A, and SA is uniform on the set Im πA. So A being disconnected
implies that the distribution of (S0,SA) is uniform on supp S0 × supp SA and by Lemma 2.15,
A ∈ A(Σ(C)). On the other hand if A ∈ A(Σ(C)) is non-empty, then every element in supp S0 ×
supp SA is in supp S{0}∪A = π0,A(C) (otherwise S0 and SA cannot be independent) which means
π0,A(C) = Fkq × πA(C) (because supp S0 = Fkq ). 4

Proposition 3.20
AC = {A ⊆ I∗ : A = ∅ or π0(Ker πA ∩ C) = Fkq}.

Proof. Let A be disconnected from 0. Since 0 ∈ C, we have 0A ∈ πA(C). Therefore for any
x ∈ Fkq , there exists a word c ∈ C such that π0,A(c) = (x,0A). But then c ∈ Ker πA ∩ C, so
x ∈ π0(Ker πA ∩ C).

In order to prove the other direction, let A ∈ I∗ be such that

π0(Ker πA ∩ C) = Fkq .

For every x ∈ Fkq , let cx be a word in Ker πA ∩ C with π0(cx) = x. On the other hand for every
y ∈ πA(C), let wy ∈ C be a word with πA(wy) = y. Now, given any pair (x,y) ∈ Fkq × πA(C),
write z = π0(wy) and define d = cx−z + wy ∈ C. It is easy to see that π0,A(d) = (x,y). Therefore
Im (π0,A) = Fkq × πA(C). 4

This means that a non-empty set A is a privacy set if and only if for all x ∈ Fkq , there is a word
c ∈ C with c0 = x and cA = 0. And in particular:

Corollary 3.21 If k = 1, then

ΓC = {A ⊆ I∗ : A 6= ∅ and @c ∈ C with c0 = 1, cA = 0}

and
AC = {A ⊆ I∗ : A = ∅ or ∃c ∈ C with c0 = 1, cA = 0}.

Therefore Σ(C) is perfect, i.e., for any A ⊆ I∗ either A ∈ Γ(Σ(C)) or A ∈ A(Σ(C)).

Definition 3.22 Let C be an n-code. We define r(C) := r(Σ(C)) and t(C) := t(Σ(C))

We need to introduce now the concept of the dual n-code of a given n-code.

Definition 3.23 Let < ·, · > denote the dot product in Fkq × Fnq , i.e., if c := (x1, . . . xk, y1, . . . , yn)

and c′ := (x′1, . . . x
′
k, y
′
1, . . . , y

′
n) ∈ Fkq × Fnq , then

< c, c′ >:=

k∑
i=1

xix
′
i +

n∑
j=1

yjy
′
j .

Given an n-code C for Fkq over Fq, we define its dual C⊥ ⊂ Fkq × Fnq as the set

C⊥ := {c∗ ∈ Fkq × Fnq :< c∗, c >= 0 ∀c ∈ C}.

Note that C = (C⊥)⊥. It is easy to see that if C is an n-code for Fkq over Fq then so is C⊥. Hence
we can define the dual secret sharing scheme Σ(C⊥).

Furthermore, we can give a relation between the access and adversary structure of Σ(C) and
Σ(C⊥). For k = 1 this relation could be directly deduced from the characterization of the access
structure given by Massey [20, Section 3] in terms of supports of words in the dual, together with the
characterization of the access and adversary structure from Corollary 3.21. In fact, it was already
proved in [11, Proof of Theorem 1]. For completeness, we give a full proof which also works for k > 1.
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Theorem 3.24 We have
ΓC⊥ = {A ⊆ I∗ : I∗ \A ∈ AC}.

Consequently r(C⊥) = n− t(C), t(C⊥) = n− r(C) and therefore g(C) = g(C⊥).

Proof.
Let A ⊆ I∗ be such that B := I∗ \ A ∈ AC . If B = ∅ then A = I∗ ∈ ΓC⊥ . Otherwise, by

Proposition 3.20, for each x ∈ Fkq , there exists cx ∈ C with π0(cx) = x and πB(cx) = 0. Now let
w ∈ C⊥ ∩Ker πA. Note < w, cx >= 0 for all x ∈ Fkq . On the other hand, since for all j ∈ I∗ either
j ∈ A or j ∈ B and therefore at least one of wi, (cx)i is zero, we have 0 =< w, cx >=< π0(w),x >
for all x ∈ Fkq . Therefore, π0(w) = 0 and w ∈ Ker π0. We have proved A ∈ Γ⊥C .

On the other hand let A ⊆ I∗ with B := I∗ \ A /∈ AC and let us prove A /∈ ΓC⊥ . By Proposi-
tion 3.20, there exists an x ∈ Fkq such that there is no word c in C with π0(c) = x, πB(c) = 0. In
other words the vector w := (x,0) ∈ Fk+|B|

q , is not in the vector space π0,B(C). Therefore there is a
vector y ∈ Fk+|B|

q which is orthogonal to π0,B(C) but not to w, i.e.,

< y, z >= 0, ∀z ∈ π0,B(C) (1)

< y,w > 6= 0 (2)

Inequality 2 tells us not only that y is nonzero, but since wB = 0, the only possibility is that y0 6= 0.
We now construct the vector c∗ ∈ Fk+n

q by π0,B(c∗) = y and c∗A = 0. Now for every c ∈ C, we
can split < c, c∗ > into the sum of < π0,B(c∗), π0,B(c) > and < c∗A, cA >. But the first term equals
< y, π0,B(c) > which is zero by Equation 1, while the second one is also zero because c∗A = 0. There-
fore c∗ is a word in C⊥ and it also satisfies that c∗ ∈ Ker πA, but c∗ /∈ Ker π0 (because c∗0 = y0 6= 0).
By definition, A /∈ ΓC⊥ .

Finally, since (C⊥)⊥ = C, we also have

ΓC = {A ⊆ I∗ : I∗ \A ∈ AC⊥},

and the statements about the reconstruction and privacy thresholds can be deduced from here. 4
We can state now a lower bound for the threshold gap of linear secret sharing schemes which does

not depend, as it happened with the general bound in Main Theorem 3.1, on the value of the privacy
threshold. The idea is to apply Main Theorem 3.1 to both the LSSS Σ(C) and the dual LSSS Σ(C⊥).
We remark that the bound in Main Theorem 3.26 does not depend at all on the size of the secret.
Here we only assume that all shares are single elements of Fq.

Theorem 3.25 Let Σ be a linear secret sharing scheme over Fq with all shares in Fq, t(Σ) ≥ 1 and
r(Σ) ≤ n(Σ)− 1. Then

g(Σ) ≥ max{n(Σ)− t(Σ) + 1

q
,
r(Σ) + 1

q
}.

Proof. Let Σ = Σ(C) for a linear code C over Fq of length n(Σ) + k . We will apply Main
Theorem 3.1 to both Σ and Σ⊥ := Σ(C⊥) (note that by Theorem 3.24 and the assumption on r(Σ),
we have t(Σ⊥) ≥ 1, so we can indeed apply the theorem to Σ⊥). Since every share is in Fq, this gives
us

g(Σ) ≥ n(Σ)− t(Σ) + 1

q

and

g(Σ⊥) ≥ n(Σ⊥)− t(Σ⊥) + 1

q
.

Now using Theorem 3.24 we can state this last inequality as g(Σ) ≥ r(Σ)+1
q which gives the result. 4

Main Theorem 3.26 Let Σ be a linear secret sharing scheme over Fq with all shares in Fq, t(Σ) ≥ 1
and r(Σ) ≤ n(Σ)− 1. Then

g(Σ) ≥ n(Σ) + 2

2q − 1
.
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Proof. We sum inequalities

g(Σ) ≥ n(Σ)− t(Σ) + 1

q

and
g(Σ) ≥ r(Σ) + 1

q

from Theorem 3.25 and use that g(Σ) = r(Σ)− t(Σ). 4

Corollary 3.27 If {Σn} is an infinite family of ideal linear secret sharing schemes over the same
finite field Fq, where Σn has n players, t(Σn) ≥ 1 and r(Σn) ≤ n − 1 and n is unbounded then
g(Σn) = Ω(n).

Remark 3.28 We have introduced the assumption r(Σ) ≤ n(Σ)− 1, which is crucial. For all n > 0
and every finite field Fq, we can define the n-code Cn for Fq over Fq consisting of all vectors c ∈ Fq×Fnq
such that c0 =

∑n
i=1 ci, and define Σn := Σ(Cn). This is indeed a LSSS (the additive LSSS over Fq

for n players) such that t(Σn) = n− 1 and r(Σn) = n, so g(Σn) = 1.

We state now, without proving it, the generalization of the Main Theorem 3.26 to the case where
players may hold more than one element of the field as share.

Theorem 3.29 Let Σ be a linear secret sharing scheme over Fq where for each j ∈ I∗ the j-th share
is in Fkjq for some kj ≥ 1. Let t(Σ) ≥ 1 and r(Σ) ≤ n(Σ)− 1. Let k = 1

n

∑
j∈I∗ kj. Then

g(Σ) ≥ n(Σ) + 2

2qk − 1
.

In [17], Karchmer and Wigderson proved, in the equivalent language of monotone span programs,
that the total number kn of field elements given as shares in a binary linear secret sharing scheme
(which they call dimension of the span program) with a threshold access structure where 1 ≤ t ≤ n−2
must be Ω(n log n). See also [13]. In [8, Theorem 13], this was generalized to linear secret sharing
schemes with threshold gap o(log n). Theorem 3.29 above improves the latter result, and therefore
further generalizes the previous facts. More precisely it implies that kn = Ω(n log n) if g = o(n).

3.3 Tightness of the bound in Main Theorem 3.1
Recently, in subsequent work to this paper, Paterson and Stinson [23] have shown that the bound in
Main Theorem 3.1 is tight in some cases. Namely in each of the cases t = 1, q ≥ 2 and t = 2, q = 2
they construct a family of secret sharing schemes for an infinite number of different values of n, where
the secret and each individual share are uniformly distributed in an alphabet of q symbols, the privacy
threshold is t and the reconstruction threshold is n−t+1

q + t.
It is not presently known whether the bounds can be tight for t ≥ 3 (except in the trivial case

t = n− 1).

4 Bounds Involving the Secret-Space
If the cardinality of the secret-space is “large,” then there is the following connection with the theory
of error correcting codes.

Theorem 4.1 Let Σ be a secret sharing scheme with |S0| = M and |Sj | = q for all j ∈ I∗. Then
for each set A ∈ A(Σ), there exists a q-ary code D with length n(Σ) − |A|, minimum distance
d(D) ≥ n(Σ) − r(Σ) + 1 and size |D| = M . In particular, there exists a q-ary code D′ with length
n(Σ)− t(Σ), minimum distance d(D′) ≥ n(Σ)− r(Σ) + 1 and size |D′| = M . Moreover, in the case
that Σ is an Fq-linear secret sharing scheme with S0 = Fkq and Sj = Fq for all j ∈ I∗, there exists an
Fq-linear code D′ with length n(Σ)− t(Σ), minimum distance d(D′) ≥ n(Σ)−r(Σ)+1 and dimension
k.
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Proof. Let A ∈ A(Σ) and assume it is non-empty. Let x ∈
∏
j∈A Sj with Pr(SA = x) > 0.

Write B = I \A and B∗ = I∗ \A. We consider the shortened secret sharing scheme Σ′ = Σ|SA=x, as
defined in Definition 2.16. By Lemma 2.17 we have that r(Σ′) ≤ r(Σ)−|A|. For each element e ∈ S0,
select one word we ∈ C|e(Σ′). The words form a code D over A with length n(Σ′) = n(Σ) − |A|.
Note that no two words can be the same, since by Lemma 3.8 the distance between words in different
sets C|s(Σ′), C|s′(Σ′) is at least 1. Hence |D| = M . Moreover, Lemma 3.8 also implies that the
distance between any two different words of D is at least n(Σ′)− r(Σ′) + 1 which in turn is at least
n(Σ)−r(Σ)+1, therefore proving the claim about the minimal distance. We can also proof the result
if A is the empty set. In this case we do not shorten but we construct D directly from Σ instead of
Σ′.

In the case of a linear scheme, we proceed the same way except that when constructing D, in
order to guarantee that it is a linear code, we first fix some basis of Fkq , and for each element e ∈ Fkq
in that basis, select one word we ∈ C|e(Σ′). The k selected words span a linear code D over Fq, and
from this point on the proof continues in exactly the same way.

4
As an immediate consequence, restrictions on the parameters n, t, r, q,M are obtained from known

bounds on error correcting codes. For example, by combining Theorem 4.1 and the Singleton bound
(see e.g.[24]), we would get the well known bound g(Σ) ≥ k from [6, 16, 22]. However, a much stronger
result is obtained from a suitable application of the Griesmer bound. This leads to a simple bound
that is easy to compare with our first bound. The drawback, however, is that the Griesmer bound
only applies to linear codes and consequently we will be restricted to linear secret sharing schemes.

Let dae denote the smallest integer that is larger than or equal to the real number a. The Griesmer
bound [15] (see also [24, Chapter 2.7]) is as follows.

Theorem 4.2 (Griesmer bound) Let C be an Fq-linear code with length n, dimension k ≥ 1, and
minimum distance d. Then

n ≥
k−1∑
i=0

d d
qi
e.

If we apply directly the Griesmer bound to the linear code in our Theorem 4.1, we get:

Corollary 4.3 Let Σ be a linear secret sharing scheme with secrets in Fkq and shares in Fq. Then

n(Σ)− t(Σ) ≥
k−1∑
i=0

dn(Σ)− r(Σ) + 1

qi
e.

Moreover, we also have

r(Σ) ≥
k−1∑
i=0

d t(Σ) + 1

qi
e.

The second expression is obtained by using the same dualization techniques as in Theorem 3.25.
One may argue at first sight that it is difficult to compare this bound with the general bounds in
Section 3. In order to facilitate comparison, we proceed as follows. Note that the right hand sides
of both expressions are sums of the form

∑k−1
i=0 daie, for some real numbers ai > 0. We will use the

bound daie ≥ ai for the two first terms of the sums (we will assume k ≥ 2) and daie ≥ 1 for the
remaining terms, if any. After rearranging terms we obtain.

Corollary 4.4 Let Σ be a linear secret sharing scheme with secrets in Fkq and shares in Fq. Suppose
k ≥ 2. Then

r(Σ)− t(Σ) ≥ n(Σ)− r(Σ) + 1

q
+ (k − 1).

Moreover, we also have

r(Σ)− t(Σ) ≥ t(Σ) + 1

q
+ (k − 1).
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Remark 4.5 If we sum 1
q (r(Σ)− t(Σ)) to both sides of the first inequality in Corollary 4.4 and then

we multiply by (1 + 1
q )−1 = 1− 1

q+1 , we obtain

g(Σ) ≥ n(Σ)− t(Σ) + 1

q
+ f(q, k, n(Σ), t(Σ))

where
f(q, k, n, t) :=

q

q + 1
(k − 1)− n− t+ 1

q(q + 1)

which allows for a better comparison with Main Theorem 3.1. It is clear that the bound in Corollary 4.4
is stronger if and only if f(q, k, n(Σ), t(Σ)) > 0, i.e., if and only if

k > 1 +
n(Σ)− t(Σ) + 1

q2

(although we remark that Corollary 4.4 is only valid for linear schemes while Main Theorem 3.1 holds
in the general case).

Summing both inequalities in Corollary 4.4 we get

Main Theorem 4.6 Let Σ be a linear secret sharing scheme with secrets in Fkq and shares in Fq.
Suppose k ≥ 2. Then

g(Σ) ≥ n(Σ) + 2

2q + 1
+

2q

2q + 1
(k − 1).

Remark 4.7 The bound above can also be written as:

g(Σ) ≥ n(Σ) + 2

2q − 1
+ h(q, k, n(Σ))

where
h(q, k, n) :=

2q

2q + 1

(
k − 1− 1

q
· n+ 2

2q − 1

)
.

Therefore the bound in Theorem 4.6 above is strictly stronger than the bound in Main Theorem 3.26
if

k > 1 +
n(Σ) + 2

q(2q − 1)
.

However, for k = 1, only our first bound gives a non-trivial result.

5 Arithmetic Secret Sharing
In [9], the notion of arithmetic secret sharing was introduced. This generalizes previous notions, such
as the strongly multiplicative secret sharing schemes defined in [12].

Definition 5.1 (Powers of an n-Code) Let m ∈ Z>0. For x,x′ ∈ Fmq , their product x∗x′ ∈ Fmq
is defined as (x1x

′
1, . . . , xmx

′
m). Let d be a positive integer.

If C is an n-code for Fkq over Fq, then C∗d ⊂ Fkq ×Fnq is the Fq-linear subspace generated by all terms
of the form c(1) ∗ . . . ∗ c(d) with c(1), . . . , c(d) ∈ C. For d = 2, we use the abbreviation Ĉ := C∗2.

Remark 5.2 (Powering Need Not Preserve n-Code) Suppose C ⊂ Fkq × Fnq is an n-code for
Fkq . It follows immediately that the secret-component in C∗d takes any value in Fkq . However, the
shares-component in C∗d need not determine the secret-component uniquely. Thus, C∗d need not be
an n-code for Fkq .

Definition 5.3 (Arithmetic SSS [9]) Let n, t, d, r, k, be integers with n, d, k > 0, 1 ≤ t < r ≤ n.
An (n, t, d, r)-arithmetic secret sharing scheme for Fkq (over Fq) is an n-code C for Fkq such that

(i) t ≥ 1, d ≥ 2,

(ii) t(C) ≥ t,

17



(iii) C∗d is in fact an n-code for Fkq and

(iv) r(C∗d) ≤ r.

An (n, t, d, r)-arithmetic secret sharing scheme for Fkq over Fq is a LSSS over Fq with secret in Fkq
where there is t-privacy and, in addition there is d-fold product r-reconstruction, i.e., for any set of r
playes, the product of d secrets can be reconstructed by applying some linear function to the vector
of r elements consisting of the products of the corresponding d shares held by each of the players in
the set. An (n, t, 1, r)-arithmetic secret sharing scheme for Fkq over Fq is then simply a LSSS over Fq
with secret in Fkq , shares in Fq and which has t-privacy and r-reconstruction.

When we consider an (n, t, d, r)-arithmetic secret sharing scheme with d > 1 as a LSSS, we can
state a stronger reconstruction threshold for it.

Theorem 5.4 Let C be an (n, t, d, r)-arithmetic secret sharing scheme for Fkq over Fq. Then as an
n-code for Fkq over Fq, C has t-privacy and (r − (d− 1)t)-reconstruction (i.e. it is also a (n, t, 1, r −
(d− 1)t)-arithmetic secret sharing scheme).

Proof. We need to prove that r(C) ≤ (r − (d − 1)t). Let A ⊆ I∗ with |A| = r − (d − 1)t. We
will prove that (Ker πA) ∩ C ⊂ (Ker π0) ∩ C. Let c ∈ (Ker πA) ∩ C.

Since |A| = r− (d− 1)t and |I∗| = n ≥ r, we can take B1, . . . , Bd−1 disjoint subsets of I∗ of size t
such that they are also disjoint with A. Also let 1k ∈ Fkq the all-one vector of length k. Since t(C) ≥ t,
for all m = 1, . . . , d− 1 there is y(m) ∈ C with (y(m))Bm

= 0 and (y(m))0 = 1k, by Proposition 3.20.
Consider now the vector w = c ∗ y(1) ∗ · · · ∗ y(d−1) which is in C∗d because it is the product of d

words in C. If we write D := A∪B1 ∪ · · · ∪Bd−1 then it is clear that wD = 0, so w ∈ Ker πD ∩C∗d.
But since |D| = |A|+ (d− 1)t = r and r(C∗d) ≤ r, then D ∈ ΓC∗d . Therefore w ∈ Ker π0 ∩C∗d. But
by construction w0 = c0 so c ∈ Ker π0 ∩ C. 4

Remark 5.5 Note that, since r(C)− t(C) ≥ k we have the bound r ≥ dt+ k. Particularly, if k = 1,
d = 2, r = n− t, then 3t ≤ n− 1.

But we can also apply our Main Theorems 3.26 and 4.6 in combination with Theorem 5.4 after
which we obtain

Corollary 5.6 Let C be an (n, t, d, r)-arithmetic secret sharing scheme for Fkq over Fq. Then

r ≥ dt+
n+ 2

2q − 1
+ h(q, k, n)+

where
h(q, k, n)+ := max

{
0,

2q

2q + 1

(
k − 1− 1

q
· n+ 2

2q − 1

)}
.

Proof. In order to apply Main Theorem 3.26 we only need to be careful that t(C) ≥ 1 and
r(C) ≤ n − 1. But note t(C) ≥ t ≥ 1 (by definition of arithmetic secret sharing scheme) and
r(C) ≤ r − (d − 1)t ≤ n − 1. In the case k = 1, we cannot use Main Theorem 4.6, however
the corollary is still true because h(q, 1, n)+ = 0 and then the statement is guaranteed by Main
Theorem 3.26 alone. 4

For the rest of the chapter we will consider the case where d = 2, r = n − t, known as strongly
multiplicative secret sharing scheme (see [12]). In addition we will restrict to the case k = 1, for
which a notion that measures the largest possible value of t with respect to n asymptotically was
defined in [8], where it was named asymptotical optimal corruption tolerance. We recall its definition
next.

Definition 5.7 Let C be an n-code for Fq over Fq. We define t̂(C) to be the maximum value of t
for which C is an (n, t, 2, n− t)-arithmetic secret sharing scheme for Fq.
Moreover we define τ̂(C) := 3t̂(C)

n(C)−1 .
In addition, let

Tq(n) := sup{τ̂(C) : C is an n− code for Fq over Fq}.

18



And we define
τ̂(q) := lim sup

n→∞
Tq(n),

the asymptotical optimal corruption tolerance over Fq.

Remark 5.8 We have 0 ≤ τ̂(q) ≤ 1. In [8], it was proved that τ̂(q) > 0 for every finite field Fq.
Previously, in [10], it had been proved that τ̂(q) ≥ 1− 4

(
√
q−1) > 0 for any q square, q ≥ 49.

Now Corollary 5.6 implies:

Main Theorem 5.9 τ̂(q) < 1− 1
2q−1 < 1 for all finite fields Fq. Therefore 0 < τ̂(q) < 1 for all finite

fields Fq.

In the remaining of this section we will provide better bounds for τ̂(q). We will use two different
ideas: on the one hand applying the gap bounds in Main Theorem 3.26 to both C and Ĉ. On the
other hand we will actually apply the bounds after shortening these codes.

Lemma 5.10 Let Σ = Σ(C) be an arithmetic secret sharing scheme. Let Σ̂ := Σ(Ĉ). There is an
ideal Fq-linear secret sharing scheme Σ′ such that n(Σ′) = n(Σ)− r(Σ) + 1, r(Σ′) ≤ r(Σ̂)− r(Σ) + 1
and t(Σ′) ≥ t(Σ).

Proof.
We take A the largest set in A(Σ). Because Σ is perfect, |A| = r(Σ)− 1. Since A ∈ A(Σ̂) as well,

we can shorten Σ̂ by fixing the shares of A to be zero. We obtain another linear scheme Σ′ which
has as player set J ∗ = I∗ \A, and by Lemma 2.17, satisfies r(Σ′) ≤ r(Σ̂)− r(Σ) + 1. We prove now
that t(Σ′) ≥ t(Σ). Let B ⊆ J ∗ with |B| = t(Σ). Let x ∈ Fkq . Since A ∈ A(Σ), by Proposition 3.20,
there is a word c ∈ C with c0 = x and cA = 0. On the other hand, since B ∈ A(Σ), there is a word
c′ ∈ C with c′0 = 1 and c′B = 0. Let w = c ∗ c′ ∈ Ĉ. Note wA = 0, so the vector wJ∗ is a share
vector for x in the shortened scheme Σ′. Moreover wB = 0. Since we can repeat this argument for
any x ∈ Fkq , Proposition 3.20 implies B ∈ A(Σ′). 4

Theorem 5.11 We have

t̂(C) ≤ (q − 1)2

3q2 − 3q + 1
n(C) + c(q)

for some constant c(q) which depends on q but not on n(C).

Proof. Let t̂(C) = t̂. Then C is an (n, t̂, 2, n − t̂)-arithmetic secret sharing scheme for Fq. Let
Σ := Σ(C) and Σ̂ := Σ(Ĉ). We then have that t(Σ) ≥ t̂ and r(Σ̂) ≤ n − t̂. We now consider the
scheme Σ′ promised by Lemma 5.10. By Main Theorem 3.1 applied to Σ′ we have

r(Σ′)− t(Σ′) = g(Σ′) ≥ n(Σ′)− t(Σ′) + 1

q
.

By combining this with the inequalities in Lemma 5.10 and the facts that t(Σ) ≥ t̂ and r(Σ̂) ≤ n− t̂
we get

(q − 1)n(Σ)− (q − 1) r(Σ) ≥ (2q − 1) t̂− 1.

We now apply Main Theorem 3.1 again, this time to Σ and again using t(Σ) ≥ t̂ we get

t̂ ≤ (q − 1)2

3q2 − 3q + 1
n(Σ) +

1

3q2 − 3q + 1
.

4
Now it is straightforward that

Main Theorem 5.12 For any finite field Fq,

τ̂(q) ≤ 1− 3q − 2

3q2 − 3q + 1
.
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Proof. Given an integer n, for any n-code C, the following holds. By Theorem 5.11, 3t̂(C) ≤
3(q−1)2

3q2−3q+1n+O(1), so

τ̂(C) ≤ 3(q − 1)2n

(3q2 − 3q + 1)(n− 1)
+O(n−1).

Hence Tq(n) ≤ 3(q−1)2n
(3q2−3q+1)(n−1) +O(n−1) and consequently

τ̂(q) ≤ 3(q − 1)2

3q2 − 3q + 1
= 1− 3q − 2

3q2 − 3q + 1
.

4
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A Appendix
We give here the proof of the unpublished result by Kilian and Nisan (Theorem 3.2)

Theorem A.1 ([19]) Let Σ be a threshold secret sharing scheme with n shares, privacy threshold
t(Σ) = t and where S0 = {0, 1} and Sj = {0, 1}mj for some integer mj > 0 for all j ∈ I∗. Then

n∑
j=1

mj ≥ n log2(n− t+ 1).

Proof. We begin by proving the case t = 1. We first claim that

n∑
j=1

1

2mj
≤ 1.

This will imply that at least n log2 n bits must be dealt (which is tight for n a perfect power of
2). Since no single player is allowed to receive any information about a shared bit, the induced
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distributions on the conditioned variables Sj,0 = Sj |S0=0 and Sj,1 = Sj |S0=1 must be identical for all
j ∈ I∗. By a simple convexity argument,5

Pr(Sj,0 = Sj,1) ≥ 1

2mj
.

Furthermore, for j, k ∈ I∗, j 6= k, it is impossible for both Sj,0 = Sj,1 and Sk,0 = Sk,1. If this were
the case, then in some circumstances it would be impossible to reconstruct the shared bit from the
shares {j, k}. Thus,

Pr((∃j)Sj,0 = Sj,1) =
∑
j∈I∗

Pr(Sj,0 = Sj,1)

≥
∑
j∈I∗

1

2mj
.

Since any probability is at most 1, our claim is established.
Now consider the general case where 1 ≤ t ≤ n − 1. We can convert any such secret sharing

scheme to a threshold scheme Σ′ for n− t+ 1 players and with t(Σ′) = 1. Let A ⊆ I∗ be a set of t−1
indices and B = I∗ \ A. Let {s′j}j∈A be a sequence of shares that could be dealt to A (since t − 1
people know nothing, this sequence of shares must be valid for both 0 and 1.) To share a single bit
b among B, use the scheme Σ to generate {sj,b}j∈I∗ , conditioned on sj,b = s′j for j ∈ A. The shares
of Σ′ are {sj,b}j∈B . The values of {s′j}j∈A are “hard-wired” into the secret sharing scheme, and thus
do not need to be transmitted. We thus have,∑

j∈B

1

2mj
≤ 1.

By a simple convexity argument, we have that∑
j∈B

mj ≥ (n− t+ 1) log2(n− t+ 1).

By renumbering the players, we can ensure that if j ∈ A and k ∈ B, then mj ≥ mk. This gives us a
final lower bound of n log2(n− t+ 1) bits that must be shared among the n players.

4
We note that, even though this theorem is stated for the case where a bit is shared, it can be

trivially extended to the case where the secret space is larger. The case g = 1 of our Main Theorem 3.1
could be read as

n∑
j=1

H1(Sj) ≥ n log2(n− t+ 1)

and hence is slightly more general than Theorem 3.2 in the sense that H1(Sj) ≤ mj for all j, but
equality does not need to hold.

5See proof of Theorem 3.3
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