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Abstract—In this paper, we consider the spectra of
Boolean functions with respect to the action of unitary
transforms obtained by taking tensor products of the
Hadamard, denoted by H , and the nega–Hadamard,
denoted by N , kernels. The set of all such transforms
is denoted by {H,N}n. A Boolean function is said to be
bent4 if its spectrum with respect to at least one unitary
transform in {H,N}n is flat. We prove that the maximum
possible algebraic degree of a bent4 function on n
variables is dn

2
e, and hence solve an open problem posed

by Riera and Parker [cf. IEEE-IT: 52(2)(2006) 4142–
4159]. We obtain a relationship between bent and bent4
functions which is a generalization of the relationship
between bent and negabent Boolean functions proved by
Parker and Pott [cf. LNCS: 4893(2007) 9–23].

Keywords: Walsh–Hadamard transform, nega–
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I. INTRODUCTION

Let us denote the set of integers, real numbers and
complex numbers by Z, R and C, respectively and
let the ring of integers modulo r be denoted by Zr.
The vector space Zn2 is the space of all n-tuples x =
(xn, . . . , x1) of elements from Z2 with the standard
operations. By ‘+’ we denote the addition over Z, R
and C, whereas ‘⊕’ denotes the addition over Zn2 for all
n ≥ 1. Addition modulo q is denoted by ‘+’ and it is
understood from the context. If x = (xn, . . . , x1) and
y = (yn, . . . , y1) are in Zn2 , we define the scalar (or
inner) product by x·y = xnyn⊕· · ·⊕x2y2⊕x1y1. The
cardinality of a set S is denoted by |S|. If z = a+b ı ∈

C, then |z| =
√
a2 + b2 denotes the absolute value of

z, and z = a − b ı denotes the complex conjugate of
z, where ı2 = −1, and a, b ∈ R.

We call any function from Zn2 to Z2 a Boolean
function on n variables and denoted the set of all
Boolean functions by Bn. In general any function from
Zn2 to Zq (q ≥ 2 a positive integer) is said to be a
generalized Boolean function on n variables [7], the set
of all such functions being denoted by GBqn. Clearly
GB2

n = Bn. For any f ∈ Bn, the algebraic normal
form (ANF) is

f(xn, . . . , x1) =
⊕

a=(an,...,a1)∈Zn
2

µa(

n∏
i=1

xaii ) (1)

where µa ∈ Z2, for all a ∈ Zn2 . For any a ∈ Zn2 ,
wt(a) :=

∑n
i=1 ai is the Hamming weight. The

algebraic degree of f , deg(f) = max{wt(a) : a ∈
Zn2 , µa 6= 0}.

Now, let q ≥ 2 be an integer, and let ζ = e2πı/q

be the complex q-primitive root of unity. The (gener-
alized) Walsh–Hadamard transform of f ∈ GBqn at any
point u ∈ Zn2 is the complex valued function

Hf (u) = 2−
n
2

∑
x∈Zn

2

ζf(x)(−1)u·x. (2)

The inverse of the Walsh–Hadamard transform is given
by

ζf(y) = 2−
n
2

∑
u∈Zn

2

Hf (u)(−1)u·y. (3)
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If q = 2, we obtain the (normalized) Walsh–Hadamard
transform of f ∈ Bn. A function f ∈ GBqn is a
generalized bent function if |Hf (u)| = 1 for all
u ∈ Zn2 . When q = 2, then f is said to be bent (bent
functions exist for n even, only).

The nega–Hadamard transform of f ∈ Bn at any
vector u ∈ Zn2 is the complex valued function

Nf (u) = 2−
n
2

∑
x∈Zn

2

(−1)f(x)⊕u·x ıwt(x). (4)

A function f ∈ Bn is said to be negabent if and only
if |Nf (u)| = 1 for all u ∈ Zn2 . If f ∈ Bn, then the
inverse of the nega–Hadamard transform Nf is

(−1)f(y) = 2−
n
2 ı−wt(y)

∑
u∈Zn

2

Nf (u)(−1)y·u, (5)

for all y ∈ Zn2 . We recall the following result.
Proposition 1: [9, Lemma 1] We have∑

x∈Zn
2

(−1)u·xıwt(x) = 2
n
2 ωnı−wt(u), (6)

where ω = (1+ ı)/
√
2 is a primitive 8th root of unity.

The Hadamard kernel, the nega–Hadamard kernel
and the identity transform on Z2

2, denoted by H , N
and I , respectively, are as follows.

H =
1√
2

(
1 1
1 −1

)
, N =

1√
2

(
1 ı
1 −ı

)
and

I =

(
1 0
0 1

)
.

The set of 2n different unitary transforms that are
obtained by performing tensor products H and N , n
times in any possible sequence is denoted by {H,N}n.
If RH and RN partition {1, . . . , n} then the unitary
transformation, U of dimension 2n×2n, corresponding
to this partition is

U =
∏
j∈RH

Hj

∏
j∈RN

Nj (7)

where

Kj = I ⊗ I ⊗ . . .⊗ I ⊗K ⊗ I ⊗ . . .⊗ I

with K in the jth position, K ∈ {H,N} and “⊗”
indicating the tensor product of matrices. Let ix ∈
{0, 1, . . . , 2n − 1} denote a row or column number of
the unitary matrix U . We write

ix = xn2
n−1 + xn−12

n−2 + · · ·+ x22 + x1,

where x = (xn, . . . , x1) ∈ Zn2 . Given a Boolean
function f ∈ Bn, we consider the 2n×1 column vector
(−1)f , whose iuth row contains (−1)f(u), for all u ∈

Zn2 . The spectrum of f with respect to U ∈ {H,N}n is
the vector U(−1)f . If RH = {1, . . . , n} then we write
that the corresponding matrix U ∈ {H}n and the iuth
row element of U(−1)f isHf (u). If RN = {1, . . . , n}
then we write that the corresponding matrix U ∈ {N}n
and the iuth row element of U(−1)f is Nf (u). In the
former case, U(−1)f is said to be the Walsh–Hadamard
spectrum of f , while in the latter case it is the nega–
Hadamard spectrum of f . The spectrum of a function
f with respect to a unitary transformation U is said to
be flat if and only if the absolute value of each entry
of U(−1)f is 1.

Definition 2: A function f ∈ Bn is said to be bent
if and only if its Walsh–Hadamard spectrum is flat,
negabent if and only if its nega–Hadamard spectrum is
flat and bent4 if there exists at least one U ∈ {H,N}n
such that U(−1)f is flat.

In this paper, we consider the spectra of Boolean
functions with respect to the action of unitary trans-
forms in {H,N}n. We prove that the maximum possi-
ble algebraic degree of a bent4 function on n variables
is dn2 e, and hence solve an open problem posed by
Riera and Parker [4]. We obtain a relationship between
bent and bent4 functions which is a generalization of
the relationship between bent and negabent Boolean
functions proved by Parker and Pott [3]. We also refer
to the recent Su, Pott and Tang [13] for related results.

II. BENT PROPERTIES WITH RESPECT TO {H,N}n

Let sr(x) be the homogeneous symmetric function
of algebraic degree r, whose ANF is

sr(x) =
⊕

1≤i1<...<ir≤n

xi1 . . . xir . (8)

The intersection of two vectors c = (cn, . . . , c1),x =
(xn, . . . , x1) ∈ Zn2 is defined as

c ∗ x = (cnxn, . . . , c1x1).

Following this notation we define the function sr(c∗x)
as

sr(c ∗ x) =
⊕

1≤i1<...<ir≤n

(ci1xi1) . . . (cirxir ). (9)

Suppose, the function g ∈ GB4n defined as g(x) =
wt(x) mod 4, for all x ∈ Zn2 . In the following propo-
sition and its corollary we obtain a connection between
g and s2 which plays a crucial role in developing
connections between different bent criteria. It is to
be noted that the result of Propostion 3 is mentioned
earlier by Su, Pott and Tang [13] and a proof by
induction is suggested. We provide an alternative proof.
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Proposition 3: If g ∈ GB4n is defined by g(x) =
wt(x) mod 4 for all x ∈ Zn2 , then

g(x) = 1 · x+ 2s2(x) = wt(x) mod 4, (10)

for all x ∈ Z4
2.

Proof: By Proposition 1, we have

2−
n
2

∑
x∈Zn

2

(−1)u·xıwt(x) = ωnı−wt(u). (11)

Therefore, g(x) = wt(x) mod 4 is a generalized bent
on Z4, which we refer to as Z4-bent. According to [12,
Corollary 15] and [7], there exist a, b ∈ Bn such that b
and a+b are bent functions and g(x) = a(x)+2b(x) =
wt(x) mod 4, for all x ∈ Zn2 . From this we have

2b(x) ≡ wt(x)− a(x) (mod 4),

i.e.,
2|(wt(x)− a(x)),

i.e.,
a(x) = 1 · x

where 1 = (1, 1, . . . , 1) ∈ Zn2 , for all x ∈ Zn2 .
Therefore,

g(x) = 1·x+2b(x) = wt(x) mod 4, for all x ∈ Zn2 ,

i.e.,

b(x) =
−1 · x+ wt(x)

2
mod 2, for all x ∈ Zn2 .

Since b ∈ Bn is a symmetric bent function and
b(0) = 0 we have b(x) = s2(x) or s2(x)⊕s1(x). Since
b(0 . . . 01) = 0, we have b(x) = s2(x). Therefore

g(x) = 1·x+2s2(x) = wt(x) mod 4, for all x ∈ Zn2 .

The following corollary generalizes (10) which is use-
ful in finding a general expression of entries of any
matrix U ∈ {H,N}n.

Corollary 4: Let x, c ∈ Zn2 . Then

c · x+ 2s2(c ∗ x) = wt(c ∗ x) mod 4, (12)

for all x ∈ Zn2 .
Proof: In Proposition 3 it is proved that

1 · x+ 2s2(x) = wt(x) mod 4, for all x ∈ Zn2 ,

i.e.,

(1, . . . , 1) · (xn, . . . , x1) + 2s2(xn, . . . , x1)

= wt(xn, . . . , x1) mod 4, for all x ∈ Zn2 .

Replacing xi by cixi we get

(1, . . . , 1) · (cnxn, . . . , c1x1) + 2s2(cnxn, . . . , c1x1)

= wt(cnxn, . . . , c1x1) mod 4, for all x ∈ Zn2 ,

i.e.,

(cnxn ⊕ . . .⊕ c1x1) + 2s2(cnxn, . . . , c1x1)

= wt(cnxn, . . . , c1x1) mod 4, for all x ∈ Zn2 .

Therefore,

c·x+2s2(c∗x) = wt(c∗x) mod 4, for all x ∈ Zn2 .

Riera and Parker [4, Lemma 7] have obtained a general
expression for the entries of any matrix U ∈ {H,N}n.
We obtain an alternative description below which we
use to connect the spectrum U(−1)f of any f ∈ Bn
to the Walsh–Hadamard spectra of some associated
functions.

Theorem 5: If U =
∏
j∈RH

Hj

∏
j∈RN

Nj , is a
unitary matrix constructed as in (7), corresponding to
the partition RH , RN of {1, . . . , n} where n ≥ 2, then
for any u,x ∈ Zn2 the element in the iuth row and ixth
column of 2

n
2 U is

(−1)u·x⊕s2(c∗x)ıc·x,

where c = (cn, . . . , c1) ∈ Zn2 is such that ci = 0 if
i ∈ RH and ci = 1 if i ∈ RN .

Proof: We prove by induction. Let n = 2. If c =
(0, 0) then clearly U = H ⊗H , and if c = (1, 1) then
U = N⊗N . We explicitly compute U when c = (0, 1)
and c = (1, 0) and find that U is equal to

H ⊗N =
1

2


1 ı 1 ı
1 −ı 1 −ı
1 ı −1 −ı
1 −ı −1 ı

 ,

and

N ⊗H =
1

2


1 1 ı ı
1 −1 ı −ı
1 1 −ı −ı
1 −1 −ı ı

 ,

respectively. By Corollary 4

(−1)u·x⊕s2(c∗x)ıc·x = (−1)u·xıwt(c∗x).

Suppose the result is true for n. Let u,x, c ∈ Zn2 ,
and u′ = (un+1,u),x

′ = (xn+1,x), c
′ = (cn+1, c) ∈

Zn+1
2 . Let U ∈ {H,N}n be the unitary transformation

induced by the partition corresponding to c ∈ Zn2 . The
transformation corresponding to the partition induced
by c′ = (0, c) ∈ Zn+1

2 is H ⊗U . By taking the tensor
product of H and U we obtain

2
n+1
2 (H ⊗ U) =

(
A11 A12

A21 A22

)
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where

A11 =
(
(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(0,u)·(0,x)ıwt((0,c)∗(0,x))

)
2n×2n

,

A12 =
(
(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(0,u)·(1,x)ıwt((0,c)∗(1,x))

)
2n×2n

,

A21 =
(
(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(1,u)·(0,x)ıwt((0,c)∗(0,x))

)
2n×2n

and

A22 =
(
(−1)(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(1,u)·(1,x)ıwt((0,c)∗(1,x))

)
2n×2n

.

Therefore,

2
n+1
2 (H ⊗ U) =

(
(−1)u

′·x′ ıwt(c
′∗x′)

)
2n+1×2n+1

.

The transform corresponding to the partition induced
by c′ = (1, c) ∈ Zn+1

2 is N ⊗U . By taking the tensor
product of H and U we obtain

2
n+1
2 (N ⊗ U) =

(
B11 B12

B21 B22

)
where

B11 =
(
(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(0,u)·(0,x)ıwt((1,c)∗(0,x))

)
2n×2n

,

B12 =
(
ı(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(0,u)·(1,x)ıwt((1,c)∗(1,x))

)
2n×2n

,

B21 =
(
(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(1,u)·(0,x)ıwt((1,c)∗(0,x))

)
2n×2n

and

B22 =
(
(−ı)(−1)u·xıwt(c∗x)

)
2n×2n

=
(
(−1)(1,u)·(1,x)ıwt((1,c)∗(1,x))

)
2n×2n

.

Therefore,

2
n+1
2 (N ⊗ U) =

(
(−1)u

′·x′ ıwt(c
′∗x′)

)
2n+1×2n+1

.

This proves the result.
Using Theorem 5 we can state that given any U ∈

{H,N}n there exists c ∈ Zn2 such that for any f ∈ Bn
the iuth row of the column vector U(−1)f is

Uc
f (u) = 2−

n
2

∑
x∈Zn

2

(−1)f(x)⊕s2(c∗x)ıc·x(−1)u·x

= 2−
n
2

∑
x∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x

+ ı2−
n
2

∑
x6∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x.

(13)

Therefore, Uc
f (u) is related to the Walsh–Hadamard

transform of restrictions f(x) ⊕ s2(c ∗ x) to the
subspace c⊥ and its coset. From another perspective
this transformation provides a measure of the dis-
tance of the function f to the functions of the form
s2(c ∗ x) ⊕ u · x. Thus, if |Uc

f (u)| has high value
for a choice of u, c ∈ Zn2 then f has low Hamming
distance from the function of the form s2(c∗x)⊕u ·x.
This means that the function may be approximated
efficiently by the function s2(c ∗ x)⊕ u · x. This may
have some cryptographic significance for the spectra of
f with respect to the transformations U ∈ {H,N}n.

Riera and Parker [4, p. 4125 ] posed the following
open problem:

What is the maximum algebraic degree of a bent4
Boolean function of n variables?
The following theorem provides the solution to this
problem.

Theorem 6: The maximum algebraic degree of a
bent4 Boolean function on n variables is dn2 e.

Proof: Using Theorem 5 we can state that given
any U ∈ {H,N}n there exists c ∈ Zn2 such that for
any f ∈ Bn the iuth row of the column vector U(−1)f
is

2
n
2 Uc

f (u) =
∑
x∈Zn

2

(−1)f(x)⊕s2(c∗x)ıc·x(−1)u·x

=
∑
x∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x

+ ı
∑
x6∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x.

(14)

Let us suppose that f is bent4 with respect to the cho-
sen transformation U . Therefore, we have |Uc

f (u)| = 1,
for all u ∈ Zn2 . By (14)

2n = (
∑
x∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x)2

+ (
∑
x6∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x)2.
(15)
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By Jacobi’s two-square theorem we know that 2n has a
unique representation (disregarding the sign and order)
as a sum of two squares, namely 2n = (2

n
2 )2 + 0, if

n is even, and 2n = (2
n−1
2 )2 + (2

n−1
2 )2, if n is odd.

Let gc(x) = s2(c ∗ x), for all x ∈ Zn2 .

|Hf⊕gc(u)| = |2−
n
2

∑
x∈Zn

2

(−1)f(x)⊕s2(c∗x)(−1)u·x|

= |2−n
2

∑
x∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x

+ 2−
n
2

∑
x 6∈c⊥

(−1)f(x)⊕s2(c∗x)(−1)u·x|

= 1,
(16)

for all u ∈ Zn2 . Therefore, f ⊕ gc is a bent function
and its algebraic degree is bounded above by n

2 . The
algebraic degree of gc is upper-bounded by 2, so the
upper bound of the algebraic degree of a bent4 Boolean
function f is n

2 , when n is even.
In case n is odd by a similar argument we get

|Hf⊕gc(u)| ∈ {0,
√
2}, that is f ⊕ gc is semibent, and

therefore the algebraic degree of f is bounded above
by n+1

2 .

III. CONNECTING BENT AND BENT4 FUNCTIONS

The following lemma is well known.
Lemma 7: Let n = 2k, f ∈ Bn a bent function, V

be an (n−1)-dimensional subspace of Zn2 , a ∈ Zn2 \V
such that Zn2 = V ∪(a⊕V ). Then the restrictions of f
to V and a⊕ V , denoted f |V and f |a⊕V respectively,
are semibent functions and Hf |V (u)Hf |a⊕V

(u) = 0
for all u ∈ Fn2 .

Proof: Since the dimension of V is n − 1, the
dimension of the orthogonal subspace V ⊥ is 1. Let
V ⊥ = {0,b}. Since a 6∈ V , a ·b = 0. For all u ∈ Zn2
we have the following

2
n
2H(u) =

∑
x∈V

(−1)f(x)⊕u·x

+ (−1)u·x
∑
x∈V

(−1)f(x+a)⊕u·x

∈ {−2n
2 , 2

n
2 }

(17)

2
n
2H(u⊕ b) =

∑
x∈V

(−1)f(x)⊕u·x

− (−1)u·x
∑
x∈V

(−1)f(x+a)⊕u·x

∈ {−2n
2 , 2

n
2 }.

(18)

By adding (17) and (18) we obtain∑
x∈V (−1)f(x)⊕u·x ∈ {−2n

2 , 0, 2
n
2 }, and

by subtracting (18) from (17) we obtain

∑
x∈V (−1)f(a⊕x)⊕u·x ∈ {−2

n
2 , 0, 2

n
2 }. This proves

that both f and f |a⊕V are semibent functions. Further
since the sums in (17) and (18) are both in {−2n

2 , 2
n
2 }

for each u ∈ Zn2 , the product of the Walsh–Hadamard
transforms of the restrictions of f to V and a⊕ V at
u is zero, that is Hf |V (u)Hf |a⊕V

(u) = 0, in other
words, the Walsh–Hadamard spectra of fV and f |a⊕V
are disjoint.

This leads us to a generalization of [3, Theorem 12]
due to Parker and Pott. Recall that for any c ∈ Zn2
define gc(x) = s2(c ∗ x), for all x ∈ Zn2 .

Theorem 8: Let f ∈ Bn where n is even. Then the
following are true.

1) If f is bent, then f ⊕ gc is bent4.
2) If f is bent4, i.e., there exists c ∈ Zn2 such that
|Uc
f (u)| = 1 for all u ∈ Zn2 , then f ⊕ gc is bent.

Proof: Suppose f is a bent function. If c = 0
there is nothing to prove. If c 6= 0, then

2
n
2 Uc

f⊕gc(u) =
∑
x∈Zn

2

(−1)f(x)⊕s2(c∗x)ıwt(c∗x)(−1)u·x

=
∑
x∈Zn

2

(−1)f(x)⊕s2(c∗x)⊕s2(c∗x)⊕u·xıc·x

=
∑
x∈Zn

2

(−1)f(x)⊕u·xıc·x

=
∑
x∈c⊥

(−1)f(x)⊕u·x

+ ı
∑
x 6∈c⊥

(−1)f(x)⊕u·x.

(19)

Since f is a bent function and c⊥ is a subspace of
codimension 1, by Lemma 7 the restrictions of f on
c⊥ and its remaining coset are semibent and their
Walsh-Hadamard spectra are disjoint. Therefore, the
right hand side of the above equation belongs to the
set {±2n

2 ,±2n
2 ı} for all u ∈ Zn2 . So f ⊕ gc is a bent4

function.
In the second part we assume f to be a bent4

function such that there exists c ∈ Zn2 for which
|Uc
f (u)| = 1 for all u ∈ Zn2 ,

Uc
f (u) = 2−

n
2

∑
x∈Zn

2

(−1)f(x)ıwt(c∗x)(−1)u·x

= 2−
n
2

∑
x∈Zn

2

ıwt(c∗x)+2f(x)(−1)u·x.
(20)

Thus, the function h(x) = wt(c ∗x)+ 2f(x) mod 4,
is a Z4-bent function which implies the existence of
Boolean functions a, b ∈ Bn such that b, a+b are bents
[12, Corollary 15], with

h(x) = a(x) + 2b(x) = wt(c ∗ x) + 2f(x) mod 4. (21)
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Therefore, 2|(a(x)−wt(c∗x)), which implies a(x) =
c · x. By Corollary 4 and (20) we have

b(x) = f(x)⊕ s2(c ∗ x).

Since b ∈ Bn is a bent function f ⊕ gc is a bent
function. Thus, we have proved that if f is bent4
function then f⊕gc is a bent function for some c ∈ Zn2 .
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