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Abstract—In this paper, we consider the spectra of
Boolean functions with respect to the action of unitary
transforms obtained by taking tensor products of the
Hadamard, denoted by H, and the nega—Hadamard,
denoted by N, kernels. The set of all such transforms
is denoted by {H, N}". A Boolean function is said to be
bent, if its spectrum with respect to at least one unitary
transform in { H, N'}" is flat. We prove that the maximum
possible algebraic degree of a bent, function on n
variables is [ 3], and hence solve an open problem posed
by Riera and Parker [cf. IEEE-IT: 52(2)(2006) 4142—
4159]. We obtain a relationship between bent and bent,
functions which is a generalization of the relationship
between bent and negabent Boolean functions proved by
Parker and Pott [cf. LNCS: 4893(2007) 9-23].

Keywords: Walsh-Hadamard transform, nega—
Hadamard transform, bent function, bent, function,
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I. INTRODUCTION

Let us denote the set of integers, real numbers and
complex numbers by Z, R and C, respectively and
let the ring of integers modulo r be denoted by Z.,.
The vector space Zy is the space of all n-tuples x =
(Tpn,...,21) of elements from Zo with the standard
operations. By ‘+’ we denote the addition over Z, R
and C, whereas ‘@’ denotes the addition over Z75 for all
n > 1. Addition modulo ¢ is denoted by ‘+’ and it is
understood from the context. If x = (z,,,...,z1) and
Yy = (Yn,...,y1) are in Z%, we define the scalar (or
inner) product by X-y = 2,4, D - -Dxoy2PBx1y1. The
cardinality of a set S is denoted by |S|. If z = a+b: €

C, then |z| = va? + b? denotes the absolute value of
z, and Z = a — b1 denotes the complex conjugate of
z, where 2> = —1, and a,b € R.

We call any function from Z% to Zs a Boolean
function on n variables and denoted the set of all
Boolean functions by B,,. In general any function from
73 to Zq (@ > 2 a positive integer) is said to be a
generalized Boolean function on n variables [7], the set
of all such functions being denoted by GBY. Clearly
QBfL = B,. For any f € B,, the algebraic normal
form (ANF) is

[T M

i=1

D

a=(an,...,a1)ELY

flxn,. ..

7$1)::

where pa € Zo, for all a € Z3. For any a € Z7,

wt(a) = > a; is the Hamming weight. The
algebraic degree of f, deg(f) = max{wt(a) : a €
Zy, pa # 0}

Now, let ¢ > 2 be an integer, and let { = e2>™/4
be the complex g-primitive root of unity. The (gener-
alized) Walsh—Hadamard transform of f € GBY at any
point u € Z% is the complex valued function

Hylw) =278 30 (S0,

xEZg

@)

The inverse of the Walsh-Hadamard transform is given
by

¢ =278 37 A () (1),

uezy

3



If ¢ = 2, we obtain the (normalized) Walsh—Hadamard
transform of f € B,. A function f € GBI is a
generalized bent function if |Hy(u)] = 1 for all
u € Z3. When ¢ = 2, then f is said to be bent (bent
functions exist for n even, only).

The nega—Hadamard transform of f € B,, at any
vector u € Z4 is the complex valued function

J\/}(u) =273 Z (_l)f(X)Ewa LWt (4)

XELy

A function f € B, is said to be negabent if and only
if [Ny(u)] =1 for all u € Z3. If f € B, then the
inverse of the nega-Hadamard transform A is

n

(1)) =275 B Np(w)(=1)7, (5

uezy

for all y € Z5. We recall the following result.
Proposition 1: [9, Lemma 1] We have

Z (_1)u<xzwt(x) _ Z%wnszt(u% (6)

X€ELy

where w = (1+41)/+/2 is a primitive 8th root of unity.

The Hadamard kernel, the nega—Hadamard kernel
and the identity transform on Z%, denoted by H, N
and I, respectively, are as follows.
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-l a) =50 )
10
1= ( Lo ) |
The set of 2™ different unitary transforms that are
obtained by performing tensor products H and N, n
times in any possible sequence is denoted by { H, N'}".
If Ry and Ry partition {1,...,n} then the unitary

transformation, U of dimension 2" x 2™, corresponding
to this partition is

v= 1] # [] M (7)

JERH JERN

and

where
Ki=I®I®..l9KI®...01

with K in the jth position, K € {H,N} and “®”
indicating the tensor product of matrices. Let ix €
{0,1,...,2™ — 1} denote a row or column number of
the unitary matrix U. We write

ix = 22" L 2y 1272 4 02

where x = (xp,...,21) € Z%. Given a Boolean
function f € B,,, we consider the 2" x 1 column vector
(—1)f, whose iyth row contains (—1)f(W, for all u €

Z%. The spectrum of f with respectto U € {H, N}" is
the vector U(—1)f. If Ry = {1,...,n} then we write
that the corresponding matrix U € {H}" and the i, th
row element of U(—1)f is H(u). f Ry = {1,...,n}
then we write that the corresponding matrix U € {N}"
and the i, th row element of U(—1)f is Ay(u). In the
former case, U (—1)f is said to be the Walsh-Hadamard
spectrum of f, while in the latter case it is the nega—
Hadamard spectrum of f. The spectrum of a function
f with respect to a unitary transformation U is said to
be flat if and only if the absolute value of each entry
of U(—1)f is 1.

Definition 2: A function f € B, is said to be bent
if and only if its Walsh-Hadamard spectrum is flat,
negabent if and only if its nega—Hadamard spectrum is
flat and bent, if there exists at least one U € {H, N }"
such that U(—1)f is flat.

In this paper, we consider the spectra of Boolean
functions with respect to the action of unitary trans-
forms in {H, N}". We prove that the maximum possi-
ble algebraic degree of a benty function on n variables
is [5], and hence solve an open problem posed by
Riera and Parker [4]. We obtain a relationship between
bent and benty functions which is a generalization of
the relationship between bent and negabent Boolean
functions proved by Parker and Pott [3]. We also refer
to the recent Su, Pott and Tang [13] for related results.

II. BENT PROPERTIES WITH RESPECT TO {H, N}"

Let s,.(x) be the homogeneous symmetric function
of algebraic degree r, whose ANF is

B oz (8)

1<i1<...<ir<n

sr(x) =

The intersection of two vectors ¢ = (cp, . ..
(Tny ..., 21) € ZY is defined as

,C1),X =

cxX = (CpTpy...,C127).

Following this notation we define the function s,.(c*x)

D

1<ip<...<i.<n

sr(cxx) = (ciyxiy) ... (ci,zi,). (9)

Suppose, the function g € GB} defined as g(x) =
wt(x) mod 4, for all z € Z7. In the following propo-
sition and its corollary we obtain a connection between
g and so which plays a crucial role in developing
connections between different bent criteria. It is to
be noted that the result of Propostion 3 is mentioned
earlier by Su, Pott and Tang [13] and a proof by
induction is suggested. We provide an alternative proof.



Proposition 3: 1f g € GB,, is defined by g(x) =
wt(x) mod 4 for all x € Z%, then

g(x) =1-x+2s2(x) =wt(x) mod4, (10)
for all x € Z3.
Proof: By Proposition 1, we have
27% Z (71)u~xlwt(x) _ wnlfwt(u)' (11)
x€ELD

Therefore, g(x) = wt(x) mod 4 is a generalized bent
on Z4, which we refer to as Z4-bent. According to [12,
Corollary 15] and [7], there exist a,b € B,, such that b
and a+b are bent functions and g(x) = a(x)+2b(x) =
wt(x) mod 4, for all x € Z%. From this we have

2b(x) = wt(x) —a(x) (mod 4),
ie.,
2|(wt(x) — a(x)),
ie.,
a(x)=1-x
where 1 = (1,1,...,1) € Z%, forall x € Z3.
Therefore,

g(x) = 1-x+2b(x) = wt(x) mod 4, for all x € Z,

ie.,

b(x) = —1-x + wt(x)
2

Since b € B, is a symmetric bent function and

b(0) = 0 we have b(x) = sa(x) or s2(x)Ps1(x). Since

b(0...01) =0, we have b(x) = s3(x). Therefore

mod 2, for all x € Zj.

9(x) = 1-x+255(x) = wt(x)

|
The following corollary generalizes (10) which is use-
ful in finding a general expression of entries of any
matrix U € {H, N}".
Corollary 4: Let x,c € Z%y. Then

c- X+ 2sy(cxx) =wt(cxx) mod 4, (12)

for all x € Z7.
Proof: In Proposition 3 it is proved that

1 x4 2s9(x) = wt(x) mod 4, for all x € Z%,
ie.,
(1,...,1) (2n,..
= wt(zp,...,T1)

1) 4 282(xn, ..., 1)
mod 4, for all x € Z3.

Replacing x; by c;z; we get

(1,...,1) - (cnznp, -
= wt(epTn, ..., c121)

'701x1)

mod 4, for all x € Zj,

S e121) + 282(cnp, -

mod 4, for all x € Z5.

(CnTn @ ... D c121) + 282(CnTn,y - .., C121)

= wt(cpy,...,c1x1) mod 4, for all x € Z7.

Therefore,

c-x+2s5(cxx) = wi(cxx) mod 4, for all x € Z7.

|
Riera and Parker [4, Lemma 7] have obtained a general
expression for the entries of any matrix U € {H, N}"™.
We obtain an alternative description below which we
use to connect the spectrum U(—1)f of any f € B,
to the Walsh-Hadamard spectra of some associated
functions.

Theorem 5: 1f U = [[;cr, Hjlljer, V) is a
unitary matrix constructed as in (7), corresponding to
the partition Ry, Ry of {1,...,n} where n > 2, then
for any u,x € Z% the element in the ¢,,th row and ixth
column of 23U is

(_ 1)u~x6932 (exx) Zc-x’

where ¢ = (cp,...,c1) € Z§ is such that ¢; = 0 if
i€Rygand ¢; =1if i € Ry.

Proof: We prove by induction. Let n = 2. If ¢ =
(0,0) then clearly U = H ® H, and if ¢ = (1,1) then
U = N®N. We explicitly compute U when ¢ = (0, 1)
and ¢ = (1,0) and find that U is equal to

1 7 1 7
1 1 — 1 —
HeN = 21 1 1 —1 — |’
1 — -1 7
and
1 1 7 7
1 1 -1 1 —1
NeH = 21 1 1 — — |7
1 -1 — 7

respectively. By Corollary 4

(_l)u-x@SQ(c*x)Zox — (_1)u-xzwt(c*x).
Suppose the result is true for n. Let u,x,c € Z3,
and ' = (up41,1), X = (Tp41,%),¢ = (cpt1,€) €
731 Let U € {H,N}" be the unitary transformation
induced by the partition corresponding to ¢ € Z3. The
transformation corresponding to the partition induced
by ¢/ = (0,c) € Z4* is H® U. By taking the tensor
product of H and U we obtain

Aia )

Az

All
A21

25 (HRU) = (



where
u x wt(c*x))

2m x2m
(0 u) t((o,c)*(o,x))>

on xon ’

u x wt c*x))

(e
- (e
te = (o0
- (e
(0
(-

27L><27L
1)0w t((o,c>*(17x>>)
2n><2n ’
A21 — u x wt(c*x))
2m x2n
_ (1 u)-(0,%) ,wt((0,¢)*(0, x)))
271,><2n
and
A — ( 1) (=1)wx wt(c*x))
22 ( )( ) Z 2’71><2'IL
_ ((_1)(1,u>‘(17x>,wt((mc)*(l,x))) '
2m X2
Therefore,
n+1

u'-x’ wt(c'xx")
S (HQU) = (( 1)w' )wal.

The transform corresponding to the partition induced
by ¢/ = (1,c) € Zy is N®@U. By taking the tensor
product of H and U we obtain

9™t Bi1 B
N®U
( )= ( Ba1 Bao
where
Bll ( u x wt(c*x))
27L><2"L
( 0 ,u)-(0,x) wt((l,c)*(O,x)))
anxon
312 (Z u x wt(c*x))
2mx2n

o ) (1,%) wt((Le) (1, x)))
onxan’

u x wf(c*x))

- (e
B ()
- (e

2mx2n
-(0,x) wt((l,C)*(Oax)))
2n %27
and
B _ ( ) (—1)ux wt(c*x))
22 (=) (=1)"™ on yon
= ((_1)(LU).(17X)’Lwt((17C)*(17X))) '
2m x2m
Therefore,

2"‘2*'1 (N ® U) _ ((_1)u’-x’zwt(c'*x’)

)2n+1 won+l

This proves the result. [ ]

Using Theorem 5 we can state that given any U €
{H, N}" there exists ¢ € Z} such that for any f € B,
the iyth row of the column vector U(—1)f is

uc( ) o 2—% Z (_1)f(x)6552(c*x)lc'x(_1)u'x

x€Zy
=927 % Z (—1)/ ()@s2(cxx)(_qyux
x€ct
0277 Y (—1)/CIFslend(_pyux,
xgZct

(13)

Therefore, U§(u) is related to the Walsh-Hadamard
transform of restrictions f(x) @ sa(c * x) to the
subspace ¢t and its coset. From another perspective
this transformation provides a measure of the dis-
tance of the function f to the functions of the form
s2(c * x) & u - x. Thus, if [/f(u)| has high value
for a choice of u,c € Z% then f has low Hamming
distance from the function of the form ss(c*x)®u-x.
This means that the function may be approximated
efficiently by the function s3(c * x) ® u - x. This may
have some cryptographic significance for the spectra of
f with respect to the transformations U € {H, N}".

Riera and Parker [4, p. 4125 ] posed the following
open problem:

What is the maximum algebraic degree of a benty
Boolean function of n variables?
The following theorem provides the solution to this
problem.

Theorem 6: The maximum algebraic degree of a
bents Boolean function on n variables is [5].

Proof: Using Theorem 5 we can state that given
any U € {H, N}" there exists ¢ € Z% such that for
any f € B,, the iyth row of the column vector U (—1)f
is

25Up(u) = Y (—1)/ GOl ex (e
x€ELY
= 3 (e
xect
+1 Z f(x ®s2 C*x)( 1),
x¢gct

Let us suppose that f is benty with respect to the cho-
sen transformation U. Therefore, we have [U/§(u)| = 1,
for all u € Z3. By (14)

on — ( Z (_1)f(X)6982(C*X)(_1)u»x)2

xect

+( Z (_1)f(x)$82(c*x)(_1)u~x)2.

xgct

15)



By Jacobi’s two-square theorem we know that 2" has a

unique representation (disregarding the sign and order)

as a sum of two squares, namely 2" = (2%)2 4 0, if
n—1 n—1

n is even, and 2" = (277 )2 + (272 )2, if n is odd.
Let go(x) = sa(c * x), for all x € Z7.

[Hrog(w)| =272 Y (—1)/ I (q)u

xELD
= |2_% Z (_1)f(x)€BSQ(C*X)(_1)u~x
x€ct
+ 2_% Z (_1)‘)‘.(){)@52((3*3()(_1)u-x|
xgZct

= 1’
(16)

for all u € Z%5. Therefore, f @ g. is a bent function
and its algebraic degree is bounded above by 5. The
algebraic degree of g is upper-bounded by 2, so the
upper bound of the algebraic degree of a benty Boolean
function f is %, when n is even.

In case n is odd by a similar argument we get
|H tog. (0)| € {0,V/2}, that is f @ g. is semibent, and
therefore the algebraic degree of f is bounded above
by "TH [ ]

III. CONNECTING BENT AND BENT4 FUNCTIONS

The following lemma is well known.

Lemma 7: Let n = 2k, f € B,, a bent function, V'
be an (n —1)-dimensional subspace of Z%, a € ZH\V
such that Z% = VU (a® V). Then the restrictions of f
to V and a® V, denoted f|y and f|agy respectively,
are semibent functions and Hy|, (u)Hy),., (u) = 0
for all u € F3.

Proof: Since the dimension of V is n — 1, the
dimension of the orthogonal subspace V=1 is 1. Let
VL ={0,b}. Sincea g V, a-b = 0. For all u € Z3
we have the following

25H(u) = Y (—1)/Fux

xeV
+ (—)ux Y (mpfCemenx17)
xeV
€ {-2%,2%}
25 H(uob) =Y (—1)fIux
xeV
— (-1 Y (mp)f Crrezex (1)
xeV
€ {-2% 2%},
By adding (17) and (18) we  obtain
ey (—1foux € {-2%,0,25}, and
by subtracting (18) from (17) we obtain

ey (—D)f@®0Bux ¢ £ 9% 0 2%} This proves
that both f and f|agy are semibent functions. Further
since the sums in (17) and (18) are both in {—2%,2%}
for each u € Z7, the product of the Walsh—-Hadamard
transforms of the restrictions of f to V and a® V at
u is zero, that is Hy, (u)Hy| ., (1) = 0, in other
words, the Walsh-Hadamard spectra of fy and f|agy
are disjoint. [ ]
This leads us to a generalization of [3, Theorem 12]
due to Parker and Pott. Recall that for any ¢ € Z3
define g.(x) = sa2(c * x), for all x € Z3.
Theorem 8: Let f € B, where n is even. Then the
following are true.
1) If f is bent, then f @ g. is benty.
2) If f is benty, i.e., there exists ¢ € ZJ such that
UE(u)| =1 for all u € Z3, then f @ g is bent.
Proof: Suppose f is a bent function. If ¢ = 0
there is nothing to prove. If ¢ # 0, then

2505, (1) = 37 (~1)/Calerm) ey

x€EZL

= Z (,1)f(x)€982(C*X)EBsz(C*x)@u'XZC'X
x€EZ

= Z (fl)f(X)éBU-xZC-x
x€EZy

= Z (fl)f(X)GBU-x
xect
+1 Z (—1)fGoux,

xgct

19)

Since f is a bent function and c' is a subspace of
codimension 1, by Lemma 7 the restrictions of f on
ct and its remaining coset are semibent and their
Walsh-Hadamard spectra are disjoint. Therefore, the
right hand side of the above equation belongs to the
set {427, +£2%4} for all u € Z%. So f @ g. is a benty
function.

In the second part we assume f to be a benty
function such that there exists ¢ € Zj for which
UE(u)| =1 for all u € Zj,

u}:(u) — 2—% Z (_1)f(x)lwt(c*x)(_1)u~x
XELY

92— % Z Z’u;t(c*x)+2f(x)(_1)u-x.
XELY

Thus, the function h(x) = wt(c*x)+2f(x) mod 4,

is a Zy-bent function which implies the existence of

Boolean functions a, b € B,, such that b, a+b are bents
[12, Corollary 15], with

h(x) = a(x) + 2b(x) = wt(c * x) + 2f(x)

(20)

mod 4. (21)



Therefore, 2|(a(x) —wt(c*x)), which implies a(x) =
c - x. By Corollary 4 and (20) we have

b(x) = f(x) ® s2(c * x).

Since b € B, is a bent function f @ g. is a bent
function. Thus, we have proved that if f is benty
function then f@g, is a bent function for some ¢ € Z7.

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

[91

[10]

[11]

[12]

[13]

REFERENCES

T. W. Cusick, P. Sténicd, Cryptographic Boolean functions and
applications, Elsevier—Academic Press, 2009.

F. J. MacWilliams, N. J. A. Sloane, The theory of error—
correcting codes, North-Holland, Amsterdam, 1977.

M. G. Parker, A. Pott, On Boolean functions which are bent and
negabent. In: S.W. Golomb, G. Gong, T. Helleseth, H.-Y. Song
(eds.), SSC 2007, LNCS 4893 (2007), Springer, Heidelberg, 9—
23.

C. Riera, M. G. Parker, One and two-variable interlace poly-
nomials: A spectral interpretation, Proc. of WCC 2005, LNCS
3969 (2006), Springer, Heidelberg, 397-411.

C. Riera, M. G. Parker, Generalized bent criteria for Boolean
functions, IEEE Trans. Inform. Theory 52:9 (2006), 4142—
4159.

O. S. Rothaus, On bent functions, J. Comb. Theory — Ser. A
20 (1976), 300-305.

P. Solé, N. Tokareva, Connections between Quaternary and
Binary Bent Functions, http://eprint.iacr.org/2009/544.pdf; see
also, Prikl. Diskr. Mat. 1 (2009), 16-18.

K-U. Schmidt, Quaternary Constant-Amplitude Codes for Mul-
ticode CDMA, 1EEE International Symposium on Information
Theory, ISIT°2007 (Nice, France, June 24-29, 2007), 2781-
2785; available at http://arxiv.org/abs/cs.IT/0611162.

K. U. Schmidt, M. G. Parker, A. Pott, Negabent functions in the
Maiorana—McFarland class. In: S.W. Golomb, M.G. Parker,
A. Pott, A. Winterhof (eds.), SETA 2008, LNCS 5203 (2008),
Springer, Heidelberg, 390-402.

P. Stdnicd, S. Gangopadhyay, A. Chaturvedi, A. K. Gangopad-
hyay, S. Maitra, Nega—Hadamard transform, bent and negabent
functions, Proc. of SETA 2010, LNCS 6338 (2010), 359-372.
P. Stdnicd, S. Gangopadhyay, A. Chaturvedi, A. K. Gangopad-
hyay, S. Maitra, Investigations on bent and negabent functions
via the nega—Hadamard transform, IEEE Trans. Inform. The-
ory 58:6 (2012), 4064-4072.

P. Stanicd, T. Martinsen, S. Gangopadhyay, B. K. Singh, Bent
and generalized bent Boolean functions, Des. Codes Cryptogr.
DOI 10.1007/s10623-012-9622-5.

W. Su, A. Pott, X. Tang, Characterization of negabent functions
and construction of bent-negabent functions with maximum
algebraic degree, arXiv: 1205.6568v1 [cs.IT], 30 May 2012.



