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Abstract. In this paper, we construct a class of vectorial Boolean func-
tions over F2n with high algebraic immunity based on the decomposition
of the multiplicative group of F2n . By viewing F2n as G1G2

∪
{0} (where

G1 and G2 are subgroups of F∗
2n , (#G1,#G2) = 1 and #G1 × #G2 =

22k − 1), we give a generalized description for constructing vectorial
Boolean functions with high algebraic immunity. Moreover, when n is
even, we provide two special classes of vectorial Boolean functions with
high(sometimes optimal) algebraic immunity, one is hyper-bent, and the
other is of balancedness and optimal algebraic degree .
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1 Introduction

Boolean functions play a very critical role in symmetric cryptographic systems.
There are many criteria for a Boolean function to be a so-called “good” func-
tion, such as balancedness, high nonlinearity, high algebraic degree, and cor-
relation immunity. In 2003, Courtois and Meier proposed a standard algebraic
attack upon some well-known stream cryptographic systems(i.e. LILI128 and
Toyocrypt)[12], which was then improved by Armknecht[2]. After that, algebraic
attack has become an effective method to analyze stream ciphers, block ciphers.
Besides LILI128 and Toyocrypt, many other cryptographic systems[1][11][13][4]
were investigated by the means of algebraic attack. At the same time, algebraic
immunity, which is used to measure a Boolean function’s ability for resisting alge-
braic attack, has become a very important criterion to design Boolean functions.
Because of the various algebraic properties and geometric constructions of Galois
field, Boolean functions are most frequently studied over F2n . When n is even,
i.e., n = 2k, Boolean functions can also be viewed over F2

2k . Based on those rep-
resentations, several work has been done in constructing Boolean and vectorial
Boolean functions with high(especially optimal) algebraic immunity[7][20][8][15].
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As we know, for any commutative group G, if G has two subgroups G1 and
G2, with G1

∩
G2 = {1}, #G = N1 ×N2, (N1, N2) = 1, where #G1 = N1 and

#G2 = N2, then G can be represented as G = G1G2. Based on this fact, we
offer a generalized description of constructing vectorial Boolean functions with
high algebraic immunity over F2n . When n = 2k, F∗

2n has such two subgroups
naturally: one is F∗

2k and the other is the group of 2k + 1-th roots of unity in
F2n . Then, we construct two special classes of such kind of Boolean functions:
one is hyper-bent and the other is balanced and with optimal algebraic degree.

The rest of this paper is organized as follows. We give some notations and
recall some basic knowledge for this paper in Section 2. Then, we describe the
main jobs in Section 3 and 4. Finally, in Section 5, we conclude our work.

2 Preliminary

2.1 Boolean and vectorial Boolean functions

Let n and m be two positive integers. A Boolean function of n variables is a func-
tion from F2n to F2, and functions from Fn

2 to Fm
2 are called (n,m)−functions.

Such function F being given, the Boolean functions f1, · · · , fm defined, at every
x ∈ Fn

2 , by F (x) = (f1(x), · · · , fm(x)), are called the coordinate function of F.
When the numbers m and n are not specified, (n,m) − functions are called
multi-output Boolean functions or vectorial Boolean functions[6].

2.2 Representations of Boolean functions

The basic representation of a n-varible Boolean function f is the truth-table,
i.e., a binary string of length 2n as

(f(0, · · · , 0, 0), f(0, · · · , 0, 1), f(0, · · · , 1, 0), · · · , f(1, · · · , 1, 1)).

We say that a Boolean function f is balanced if its truth table contains an equal
number of ones and zeros. The support of f is defined as

supp(f) := {x ∈ Fn
2 : f(x) = 1}.

Let Bn be the set of n-variable(Boolean) functions from Fn
2 to F2. Then, each

f ∈ Bn has a unique representation as multivariate polynomial over F2, called
the algebraic normal form(ANF), of the special form:

f(x1, x2, · · · , xn) =
∑

I⊆{1,2,··· ,n}

aI(
∏
i∈I

xi) (aI ∈ F2).

The algebraic degree of f or deg f is defined as the number of variables in the
highest order term with nonzero coefficient. It should be noted that the maximal
algebraic degree of a balanced Boolean functions of n variables is n− 1.
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The Boolean functions over F2n can also be uniquely expressed by a univari-
ate polynomial

f(x) =
2n−1∑
i=0

aix
i,

where a0, a2n−1 ∈ F2, ai ∈ F2n for 1 ≤ i < 2n − 1 such that ai = a2i( mod 2n−1),
and the addition is modulo 2. In fact,

f(x) =
∑

a∈F2n

f(a)(1 + (x+ a)2
n−1).

For the 2-adic expansion i = i0 + i12 + · · ·+ in−12
n−1, the algebraic degree

of f is defined as

deg f = max{wt(i) : fi ̸= 0, 0 ≤ i < 2n},

where wt(i) is the number of ones in the 2-adic expansion of i or the Hamming
weight of i. In this paper, we use ī to denote the 2-adic expansion of i, i.e.,
ī = (i0, i1, · · · , in−1).

For F2n = F∗
2n

∪
{0}, where n = 2k and let α be a primitive element of F∗

2n ,
we consider the polar decomposition of F∗

2n = F∗
2k × U , where F∗

2k is a subgroup

of F∗
2n with primitive element β = α2k+1, U is the group of 2k + 1-th roots of

unity in F2n , that is, U = {z ∈ F∗
2n : z2

k+1 = 1}. Under the polar decomposition
of F∗

2n , ∀x ∈ F∗
2n , x can be decomposed as x = yz, where y ∈ F∗

2k , z ∈ U .
Especially, ∀x ∈ F∗

2n , 0 ≤ r ≤ 2n − 1, we have xr = (yz)r = yizj , where
y ∈ F∗

2k , z ∈ U and i ≡ r mod 2k − 1, j ≡ r mod 2k + 1. According to the
Chinese Remainder Theorem, r = i(2k + 1)u + j(2k − 1)v mod 2n − 1, where
u = 1 − 2k−1, v = 2k−1. Hence, under the polar decomposition of F∗

2n , any
Boolean function f ∈ Bn can be represented as

f(x) =

{
f1(x) = f1(y, z), 0 ̸= x = yz, y ∈ F∗

2k and z ∈ U

f0, x = 0

where f1(y, z) =
2k−2∑
s=0

2k∑
t=0

fs,ty
szt, fs,t ∈ F2n , f0 ∈ F2. The algebraic degree of f

is

deg(f) = max{wt(r) : r = s(2k + 1)u+ t(2k − 1)v mod 2n − 1, fs,t ̸= 0},

where (2k + 1)u+ (2k − 1)v = 1.
The algebraic degree of vectorial Boolean functions is defined by

Definition 1. [6] The algebraic degree of (n,m)-Boolean function F is

Deg(F ) = max{deg(fi) : 0 ≤ i ≤ m− 1} = max{deg(v · F ) : 0 ̸= v ∈ Fm
2 },

where v ·F =
m−1∑
i=0

vifi. If F is balanced, then all fi (0 ≤ i ≤ m−1) are balanced,

so that Deg(F ) ≤ n− 1.
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2.3 Algebraic immunity of Boolean and vectorial Boolean function

Definition 2. [17]The algebraic immunity AI(f) of an n-variable Boolean func-
tion f ∈ Bn is defined to be the lowest degree of nonzero functions g such that
f · g = 0 or (f + 1) · g = 0.

In order to study the algebraic immunity property of vectorial Boolean functions,
Armknecht introduced the idea of annihilating of set, and then generalized con-
cept of annihilator from single-output Boolean functions to multi-output ones.

Definition 3. [3]The basic algebraic immunity of a (n,m)-Boolean function F
is

AI(F ) = min{deg(g) : 0 ̸= g ∈ Bn, there exists b ∈ Fm
2 such that g |F−1(b)= 0}

In 2003, Courois[12] gave the upper bound of Boolean functions, and in 2006,
Armknecht[3] found the upper bound of the basic algebraic immunity of a (n,m)-
Boolean function.

Theorem 1. (1). Let f be a n-varible Boolean function, then

AI(f) ≤ min{⌈n
2
⌉, deg(f)};

(2). If F is a (n,m)-Boolean function, 1 ≤ m ≤ n, then AI(F ) ≤ d(n,m), where
d = d(n,m) is the minimum positive integer such that

d∑
i=0

(
n

i

)
> 2n−m.

Now, let’s take a further look at the set and its algebraic immunity.

2.4 Algebraic immunity of set

Definition 4. For any set P ⊆ Fn
2 , The algebraic degree of P is defined as

AD(P ) = min{deg(g) : g ̸= 0, g|P = 0}.

Obviously, if P1 ⊆ P2, then AD(P1) ≤ AD(P2).
Here we give some more definitions about set:

Definition 5. (1). P = {P0, · · · , PM−1} is said to be a M-division of set P , if
P =

∪
0≤i<M

Pi, Pi

∩
Pj = ∅, ∀i ̸= j, 0 ≤ i, j < M .

(2). Let P = {P0, · · · , PM−1} be a M-division of set P , and Q = {Q0, · · · , QM−1}.
If Q =

∪
0≤i<M

Qi, Qi

∩
Qj = ∅, Q ⊆ P, Qi ⊆ Pk, ∀i ̸= j, 0 ≤ i, j, k < M , Q is

said to be a M-subdivision of P (Sometimes we also call Q as a M-subdivision
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of P, and denote as Q 4 P).
(3). For any division P = {P0, · · · , PM−1} of set P, the algebraic immunity of
P is defined as

AI(P) = min{AD(Pi) : 0 ≤ i < M}.

(4).Let P1 be a M-subdivision of P, if AI(P1) ≥ d, we call P1 as a d-base
algebraic immunity of P , and denote as ADd,M (P ).

From the above definitions, it follows that

Lemma 1. Let both P = {P0, . . . , PM−1} and P ′ = {P ′
0, . . . , P

′
M} be the M-

subdivisions of P. If P 4 P ′, then AI(P) ≤ AI(P ′).

Remark 1. By Lemma 1, if we can get a ADd,M (F2n) for the preimage set of
some (n,m)-Boolean function F, where AI(F ) ≥ d and M = 2m, then any M-
division of F2n K satisfying ADd,M (F2n) 4 K, has a algebraic immunity larger
than d, hence the (n,m)-Boolean function FK whose preimage set is K satisfies
AI(FK) ≥ d. Specially, if AI(ADd,M (F2n)) reaches the maximum as Theorem
1 gives, then FK is a (n,m)-Boolean function with optimal algebraic immunity.
Motivated by this strategy, we will construct high algebraic immunity (n,m)-
Boolean functions from some known one.

2.5 Vectorial bent and hyper-bent functions

Bent function is a class of Boolean functions with even variables and with the
maximal distance to linear and affine functions. In fact, the distance of a n-
variable Bent function to any linear and affine function is 2n−1 − 2

n
2 −1. After

introduced by Rothaus[18] in 1976, and thanks to their good algebraic and com-
binatorial properties, Bent functions have drawn more and more attention in
designing cryptographic systems. In 2001, Youssef and Gong[21] found a sub-
class of Bent functions with even better cryptographic properties, which was
named as hyper-bent function. The definition of Bent and hyper-bent functions
can be referred to [18,21]. In this paper we will show some interest in vectorial
hyper-bent function which is defined as follows.

Definition 6. Let F be a (n,m)-Boolean function, if Fv = v · F = v0f0 + · · ·+
vm−1fm−1 : F2n → F2 is bent for every 0 ̸= v = (v0, v1, · · · , vm−1) ∈ Fm

2 , we call
F a vectorial bent function. Moreover, if Fv is hyper-bent, we call F a vectorial
hyper-bent function.

3 A general way to constructing high algebraic immunity
vectorial Boolean functions based on the decomposition
of group

As mentioned before, for any commutative group G, if G has two subgroups G1

and G2, with G1

∩
G2 = {1}, #G = N1 ×N2, (N1, N2) = 1, where #G1 = N1
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and #G2 = N2, then G can be represented as G = G1G2. In this section,
we assume F∗

2n can be decomposed into G1 and G2 which satisfy the above
requirements. Based on this representation, we will construct a class of vectorial
Boolean functions with high algebraic immunity.

Before constructing, we define some symbols. Let t, A, D ∈ Z, 0 ≤ t, A ≤
2k − 1. Define

S̃N1,t(n,D) = {i : wt(N1i+ t) < D, 0 ≤ i ≤ N2 − 1},

and
ÑN1(n,D) = max{#S̃N1,t(n,D) : 0 ≤ t < N1},

Obviously, ÑN1(n,D) is monotonic increasing about D. Let D̃N1(n,A) be

the maximal integer satisfying ÑN1(n,D) ≤ A , i.e.,

D̃N1
(n,A) = max{D : ÑN1

(n,D) ≤ A, 1 ≤ D ≤ ⌈n
2
⌉}.

Now, we can construct set with high algebraic immunity as follows.

Theorem 2. Let F∗
2n = G1G2, #G1 = N1, #G2 = N2, (N1, N2) = 1, α be a

generator of G2, 0 ≤ A < [N2

2 ], 0 ≤ c < [N2

A ], where [T ] is the integer part of T .
Define:

P̃c,A = {β · αi : β ∈ G1, cA ≤ i < (c+ 1)A},

then AD(P̃c,A) ≥ D̃N1(n,A).

Proof. Let h(x)|P̃c,A
= 0, 1 ≤ deg(h) < D̃N1(n,A), then for any β ∈ G1, γ =

αi(cA ≤ i < (c+ 1)A), we get h(βγ) = 0. Let h(x) =
2n−2∑

wt(i)<D̃N1
(n,A)

hix
i, then

h(βγ) =
2n−2∑

wt(i)<D̃N1
(n,A)

hi(βγ)
i

=
∑

0≤i<2n−1

wt(i)<D̃N1 (n,A)

βi (mod N1)hiγ
i

=

N1−1∑
t=0

βt
∑

0≤i<2n−1
i≡t (mod N1)

wt(i)<D̃N1
(n,A)

hiγ
i.

Let Ht(γ) =
∑

0≤i<2n−1
i≡t (mod N1)

wt(i)<D̃N1
(n,A)

hiγ
i, then h(βγ) =

N1−1∑
t=0

βtHt(γ) = 0 holds for any

β ∈ G1. Therefore, Ht(γ) = 0, where 0 ≤ t < N1, γ = αi(cA ≤ i < (c + 1)A).
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Since

Ht(γ) =
∑

0≤i<N2

wt(t+N1i)<D̃N1
(n,A)

ht+N1iγ
t+N1i

= γt
∑

0≤i<N2

wt(t+N1i)<D̃N1 (n,A)

ht+N1i(γ
N1)i.

Let H̃t(y) =
∑

0≤i<N2

wt(t+N1i)<D̃N1
(n,A)

ht+N1i(y)
i, H̃t(y) takes A consecutive points

i.e., (αN1)cA, · · · , (αN1)(c+1)A−1 as its roots. Since (N1, N2) = 1, αN1 is also a

generator of G2. Then ĥt = (ht, ht+N1 , · · · , ht+N1(N2−1)) is a codeword of some

BCH code with designed distance A+1. If ĥ ̸= 0̄, then the number of i satisfying
hi ̸= 0, t ≤ i ≤ N1(N2−1) is at least A+1. However, our hypothesis implies that
there are at most A nonzero elements in {hi}, which is a contradiction! Therefore,

ĥt = (0, · · · , 0) holds for any t (i.e. h ≡ 0), thus AD(P̃c,A) ≥ D̃N1(n,A).

Based on Theorem 2, we can construct vectorial Boolean function with high
algebraic immunity as follows.

Theorem 3. Let A = [N2

2m ], P̃ci,A(0 ≤ i ≤ 2m − 1, ci ∈ F2m) be defined as
in Theorem 2, and Pci,A

∩
Pcj ,A = ∅(i ̸= j). If the vectorial Boolean function

F : F2n −→ F2m satisfies F−1(ci) ⊇ P̃ci,A, then AI(F ) ≥ DN1(n,A).

Proof. By Theorem 2 and Definition 3, the result stands.

4 Constructing high algebraic immunity vectorial
Boolean functions over F22k

From section 2.2, we know, when n = 2k, the multiplicative group of F2n , i.e.,
F∗
2n , always has two subgroups which satisfy the conditions listed in Theorem

2. Therefore, we can construct some classes of vectorial Boolean functions with
high algebraic immunity based on Theorem 3.

From now on, we alwasy assume n = 2k , α is a primitive element in F∗
2n , U

is the group of 2k+1-th roots of unity in F2n , that is, U = {z ∈ F∗
2n : z2

k+1 = 1}.
ξ = α2k−1 is a generator of U, and β = α2k+1 is a primitive element in F∗

2k .

4.1 Constructing a class of hyper-bent functions with high algebraic
immunity

In 2006, Carlet and Gaborit[9] found a class of hyper-bent functions which was
named as PS#

ap class. After that, Charpin and Gong[10] derived a slightly dif-
ferent version of this kind of hyper-bent functions:
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Proposition 1. ([10],Theorem 2)Let n = 2k, α be a primitive element in F2n

and f be a Boolean function over F2n satisfying f(α2k+1

x) = f(x)(∀x ∈ F2n) and
f(0)=0. Let ξ be a primitive 2k+1-th root in F∗

2n . Then f is a hyper-bent function
if and only if the cardinality of the set {i|f(ξi) = 1, 0 ≤ i ≤ 2k} is 2k−1.

Construction 1 Let 1 ≤ m ≤ k, n = 2k, 0 ≤ i ≤ m − 1, fi : F2n = F∗
2k ×

U
∪
{0} −→ F2 defined as:

fi(x) = fi(yz) =


1, y ∈ F∗

2k , z ∈
∪

0≤b≤2m−1
bi=1

Ab;

0, otherwise.

where Ab = {ξi | 2k−mb ≤ i ≤ 2k−m(b+ 1)− 1}. Then

F (x) = (f0(x), f1(x), · · · , fm−1(x)) : F2n = F∗
2k × U

∪
{0} −→ F2m .

Theorem 4. The (n,m)-Boolean function defined in Construction 1 is a vec-
torial hyper-bent function, and AI(F ) ≥ DN1(n,A), where N1 = 2k − 1, A =

[ 2
k+1
2m ] = 2k−m.

Proof. 1. hyper-bentness

We will prove Fv =
m−1∑
i=0

vifi is a hyper-bent function, ∀v ∈ F∗
2m . Following

the definition of fi, we get

Fv(x) = Fv(yz) =


1, y ∈ F∗

2k , z ∈
∪

0≤b≤2m−1
v̄b̄=1

Ab;

0, otherwise.

then

Fv(α
2k+1 · x) = Fv(α

2k+1 · yz)

= Fv(y
′ · z) where y′ = α2k+1 · y ∈ F∗

2k

However, Fv(y
′ · z) = 1 if and only if y ∈ F∗

2k and z ∈
∪

v̄b̄=1

Ab, so Fv(α
2k+1 ·

x) = Fv(y
′ · z) = Fv(y · z) = Fv(x), ∀v ∈ F∗

2m . There are 2m−1 solutions(i.e.,
b̄) for v̄ · b̄ = 1, that is, the number of i such that Fv(ξ

i) = 1 is 2m−1 ·2k−m =
2k−1 . By Proposition 1, we know Fv is hyper-bent, hence F is a vectorial
hyper-bent function.

2. algebraic immunity
F is a special case of the function defined in Theorem 2 with G1 = F∗

2k and

G2 = U , thus AI(F ) ≥ DN1(n,A), where N1 = 2k − 1, A = [ 2
k+1
2m ] =

2k−m. From the results of some small k we have checked(see Table 1),
D2k−1(n, 2

k−m) is very close to d(n,m) and some can even equal d(n,m).
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Table 1. The corresponding values of d∗ = D2k−1(n, 2
k−m) and d(n,m) for

small k and m

(k,m) (7,4) (7,5) (8,3) (8,4) (8,5) (8,6)

d∗ 4 3 5 4 4 3

d(n,m) 4 4 6 5 4 4

(k,m) (9,3) (9,4) (9,5) (9,7) (9,8) (10,3)

d∗ 6 5 4 3 2 7

d(n,m) 7 6 5 4 4 7

(k,m) (10,4) (10,5) (10,6) (10,7) (10,8) (11,3)

d∗ 6 5 4 4 3 8

d(n,m) 7 6 5 5 4 8

(k,m) (11,4) (11,5) (11,6) (11,7) (11,8)

d∗ 7 6 5 4 4

d(n,m) 7 7 6 5 5

Although the (n,m)-Boolean function F defined in Construction 1 has high
algebraic immunity, it’s not balanced due to the hyper-bent property and the
algebraic degree is too low (compared with n−1). We hope to find some functions
which are balanced and with optimal algebraic degree. By the proof of Theorem
4, we know P = {P0, · · · , P2m−1} is a d-base algebraic immunity of F2n , where
Pi = {yz : y ∈ F∗

2k , z ∈ Ai}, d = D2k−1(n, 2
k−m). According to Lemma 1, if we

can construct some functions whose 2m-division of their preimage sets contain
P, then those functions have algebraic immunity greater than AI(F ). To achieve
such goal, we only need to add the elements in F2n\P into Ai arbitrarily. And
hence we obtain a large number of (n,m)-Boolean functions with high algebraic
immunity from F .

Theorem 5. We can derive (2m!) · 2m2k (n,m)-Boolean functions from the
one defined in Construction 1, whose algebraic immunities are greater than

D2k−1(n, 2
k−m). Among them there are (2m!) · 2k!

(2k−m!)2m
balanced functions.

Proof. As P = {P0, · · · , P2m−1}, Pi = {yz : y ∈ F∗
2k , z ∈ Ai} is a d-base

algebraic immunity of F2n , we can get a new function by adding the elements in

Q = F2n\P = F∗
2k × {1}

∪
{0} arbitrarily. There are (2m)#Q = (2m)2

k

= 2m2k

ways to do this. Moreover, there are 2k!
(2k−m!)2m

ways to assign those #Q = 2k

numbers to Pi equally. Every assignment corresponds to a different balanced
(n,m)-Boolean function.

For division P = {P0, · · · , P2m−1}, if we re-permutate those Pi, we can get
another division P ′ = {Pτ(1), · · · , Pτ(2m−1)}, where τ : F2m → F2m , τ is a
bijection(or permutation). There are 2m! such permutations in all, and obviously
P ′ is a d-base algebraic immunity of F2n .
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Thus by Construction 1, we can get (2m!) · 2m2k (n,m)-Boolean functions
whose algebraic immunity are greater than D2k−1(n, 2

k−m). Among them (2m!) ·
2k!

(2k−m!)2m
ones are balanced.

In the next subsection, we will find some balanced (n,m)-Boolean functions
with optimal algebraic degree (i.e., n− 1) among those vectorial Boolean func-
tions mentioned in Theorem 5.

4.2 Construction of balanced high algebraic immunity
(n,m)-Boolean function with optimal algebraic degree

Construction 2 Let 1 ≤ m ≤ k, n = 2k ≥ 4, β be a primitive element
of F∗

2k , F ′(x) = F (x) + G(x) : F2n = F∗
2k × U

∪
{0} −→ F2m , where F is

the (n,m)-Boolean function defined in Construction 1, and G(x) = G(yz) =
(g0(yz), . . . , gm−1(yz)) : F2n = F∗

2k × U
∪
{0} −→ F2m , y ∈ F∗

2k , z ∈ U , defined
by

gi(x) = gi(yz) =


1, y ∈

∪
0≤b≤2m−1

bi=1

Cb, z = 1;

0, otherwise.

where Cb = {βi | 2k−mb ≤ i ≤ 2k−m(b+ 1)− 1}, 0 ≤ i ≤ m− 1.

Theorem 6. F ′ defined in Construction 2 is a balanced (n,m)-function with
optimal algebraic degree satisfying AI(F ′) ≥ D2k−1(n, 2

k−m) .

Proof. First, we show that F ′ is balanced. For all b ∈ F2k ,

x ∈ F−1(b) ⇔ y ∈ F∗
2k , z ∈ Ab

x ∈ G−1(b) ⇔ gi(x) = gi(yz) = bi (0 ≤ i < m)

⇔ y ∈
∩

{Cc | 0 ≤ c ≤ 2m − 1, ci = bi}, z = 1

⇔ y ∈ Cb, z = 1.

Since F−1(b)
∩
G−1(b) = ∅, thus

∣∣F ′−1(b)
∣∣ = ∣∣F−1(b)

∣∣ + ∣∣G−1(b)
∣∣ = (2k − 1) ×

2k−m × 2m−1 + 2k−m × 2m−1 = 22k−1 = 2n−1.

Second, we compute the algebraic immunity of F ′ as follows. By the proof
for Theorem 4, we know P = {A0, · · · , A2m−1} is a M-subdivision of F2n ,
where M = 2m. Let R = {D0, · · · , D2m−1} be a M-division of F2n , where
Di = Ai

∪
Ci, 0 ≤ i ≤ 2m − 1. R is the preimage set of F ′ that makes

up a division of F2n . It’s easy to check P 4 R, then AI(P) ≤ AI(R). Thus
AI(F ′) ≥ AI(F ) ≥ D2k−1(n, 2

k−m).

At last, we prove that F ′ has optimal algebraic degree. Let F ′(x) = F (x) +
G(x), F (x) be a hyper-bent vectorial function, then Deg(F (x)) = n

2 = k. We
only need to compute the algebraic degree of G(x). Consider the coefficient of
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item xr = yizj in G(x), where r = 2n − 2, i = r mod 2k − 1 = 2k − 2, j = r
mod 2k + 1 = 2k.

gi(x) = g(yz) =
∑

γ∈Ci, δ=1

(1 + (y + γ)2
k−1)((1 + (z + δ)2

k+1))

=(1 + (z + 1)2
k+1)

∑
γ∈Ci

(1 + (y + γ)2
k−1)

=(1 + (z + 1)2
k+1)

∑
γ∈Ci

2k−2∑
λ=0

γλy2
k−1−λ

=(1 + (z + 1)2
k+1)

2k−2∑
λ=1

y2
k−1−λ

∑
γ∈Ci

γλ

where Ci =
∪

0≤b≤2m−1
bi=1

Cb,
∑

λ∈Ci

1 =| Ci |= 2k−1 = 0 ∈ F2. The coefficient of item

y2
k−2z2

k

is
∑

λ∈Ci

λ. By Eq. (8) in [8],

∑
λ∈Ci

λ = β−1(1 + β)2
k−1(

β

1 + β
)(2

k−m+i) ̸= 0

Then, for any i, 0 ≤ i ≤ m − 1, deg(gi(x)) ≥ wt(2n − 2) = n − 1, which
means deg(G(x)) ≥ n − 1. By the balancedness of F ′(x) = F (x) + G(x) and
Deg(F (x)) = k = n

2 , Deg(F ′(x)) ≤ n− 1, we obtain Deg(F ′(x)) = n− 1.

5 Conclusion

Based on the decomposition of F∗
2n , we give a generalize way to construct a

class of vectorial Boolean functions with high algebraic immunity. Then, under
the polar decomposition of F∗

22k , we construct two class of vectorial Boolean
functions with high algebraic immunity over F22k : one is hyper-bent and the
other is of balancedness and optimal algebraic degree .
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