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Abstract. This paper focuses on the LFSR-based multi-output stream
ciphers consisting of a linear feedback shift register (LFSR) and a multi-
output filter boolean function. Our contribution is twofold. First, to fill
in the blank, for the first time, we propose a general algebraic attack
framework on the multi-output stream ciphers, put forward four attack
scenarios and explain how to use the low degree multiples. Moreover, we
mount our method on the LFSR-based stream ciphers of single-output
boolean function with optimum algebraic immunity via the augmented
function to transform the model into multi-output. Using our approach,
we identify equation system with degree less than the optimum algebraic
immunity of the single-output boolean function, which suggests a better
way to apply algebraic attack on this kind of model.
Our second contribution involves providing novel definitions to give the
algebraic descriptions of the algebraic immunity for multi-output boolean
functions. We demonstrate that our definitions are equivalent to the defi-
nition presented by Armknecht and Krause, while being more convenient
and understandable. Armed with our new description, it is easier to de-
rive the low degree equation system when algebraic attack is applied
on multi-output case. Finally, we study the general properties and vari-
ous characterizations of the algebraic immunity of multi-ouput boolean
functions and obtain some meaningful results.

Key words: Algebraic attacks, Stream Ciphers, Multi-output boolean
functions, Single-output boolean functions, Algebraic immunity, Aug-
mented functions.

1 Introduction

Algebraic attacks are kinds of efficient methods on stream ciphers which
adapt LFSR-based keystream generators with nonlinear filter generator or the
combiner as one of their components. The basic idea is to recover the initial state
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of the LFSR by solving a system of nonlinear equations of low degree. Courtois
and Meier made a major breakthrough in algebraic attacks on stream ciphers
[1,2]. They proposed a powerful method to obtain low degree equations in the
initial state bits by multiplying the filter function f by a well chosen boolean
function g. Hence given some keystream bits, the attack tries to recover the initial
state by solving systems of the overdefined polynomial equations. Further, the
concept of algebraic immunity(AI) for boolean functions was introduced in [4] as
a measure for stream ciphers based on linear feedbacks against algebraic attacks.
In general it should be as high as possible and the maximum is dm

2 e where m is
the number of variables of boolean functions.

Since then, a large body of literature has emerged on the field of algebraic
immunity (AI) [5,6,7,8,9]. Carlet. C and Feng. K proposed an infinite class of
balanced boolean functions with optimum algebraic immunity [10]. This class of
functions also achieves optimum algebraic degree and a much better nonlinearity
than all the previously obtained infinite classes of functions.

On the other hand, with the development of the stream ciphers, some modern
stream ciphers are multi-output, the encryption and decryption speed of which
is much faster than the single-output ones. There are two basic designs for such
stream ciphers based on the linear feedback shift register (LFSR) [16]. One kind
is the filter function generator where m bits are extracted from one LFSR as
inputs to the filter function f(x) to produce n-bit (n ≥ 1) keystream. The other
one is the combiner generator consisting of m LFSRs and a multi-output boolean
function f(x). One bit is trapped from each LFSR as an input bit for f(x) to
produce n-bit keystream each clock.

Similar with the single-output stream ciphers, it is necessary to consider the
algebraic attack on the multi-output case. In this paper, we propose a general
algebraic attack framework on the multi-output stream ciphers, put forward four
attack scenarios and explain how to use the low degree multiples by listing Case
1, Case 2 and Case 3 systematically. To the best of our knowledge, it is the first
time that we give a general method to apply the algebraic attack on multi-output
case by using the attack scenarios given in advance. Moreover, we mount our
method on the LFSR-based single-output stream ciphers by using augmented
function to transform them into multi-output case. Several examples show that
we can get equation system of degree less than the optimum algebraic immunity
of the filter functions.

Armknecht and Krause presented a definition of the algebraic immunity for
multi-output boolean functions in [11], and investigated some construction meth-
ods of multi-output boolean functions with maximal algebraic immunity. In this
paper, based on the algebraic attack scenarios mentioned before, we promote
novel definitions to give the algebraic description for the algebraic immunity
of multi-output boolean functions, and we prove that the new definitions are
equivalent to the definition in [11]. While the new definitions are more conve-
nient and understandable for us to derive the low degree equation system when
we apply algebraic attack on multi-output case. We study the general properties
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and various possible characterizations of the algebraic immunity of multi-output
boolean functions, and get some meaningful results.

The paper is organized as follows: In Section 2, we present some preliminaries
which will be used throughout this paper. We promote a general framework for
the algebraic attack on the LFSR-based multi-output stream ciphers in Section
3, give four attack scenarios and explain how to use the low degree multiples.
We also give an example to show how to use our method on the LFSR-based
multi-output stream ciphers. In Section 4, we promote new definitions to give
the algebraic description for the algebraic immunity of the multi-output boolean
functions, and rigorously prove that the new definitions are equivalent to the
definition of algebraic immunity of the multi-output boolean functions. Further-
more, we give some meaningful theoretical results on the algebraic immunity of
the multi-output boolean functions. In Section 5, we extend our attack proposed
in Section 3 to the LFSR-based single-output stream ciphers by using augmented
function, and get better results than the conventional algebraic attack presented
in [1]. Section 6 gives the conclusion for this paper.

2 Preliminaries

A boolean function on m variables is a mapping from Fm
2 into F2. We denote

the ring of boolean functions in m variables by Bm. Let X1, . . . , Xm be m in-
determinates, then we may represent Bm as Bm = F2[X1, . . . , Xm]/I, where
I = Ideal(X2

1−X1, . . . , X
2
m−Xm) is the ideal generated by X2

1−X1, . . . , X
2
m−Xm

in F2[X1, . . . , Xm].
Hence every h ∈ Bm can be represented as h = h1mod I, where h1 ∈

F2[X1, . . . , Xm]. We denote Xi mod I by xi, thus an element in Bm is denoted
by h(x1, . . . , xm), while its corresponding element in F2[X1, . . . , Xm] is denoted
by h(X1, . . . , Xm).

Thus every boolean function f of m variables may be written as

f(x1, . . . , xm) =
⊕

I⊆{1,...,n}

aIΠi∈Ixi.

Where aI ∈ F2. The terms Πi∈Ixi are called monomials. The algebraic degree
deg(f) of a boolean function f equals to the maximal degree of those monomials
with nonzero coefficients.

Let f ∈ Bm, we would like to introduce the following notations that will be
used throughout the paper.

(i) For g = (g1, . . . , gn) ∈ Bn
m, f = (f1, . . . , fn) ∈ Bn

m, g◦f denotes
∑n

i=1 gifi,
which is in Bm. In particular, for c = (c1, . . . , cn) ∈ Fn

2 , c ◦ g =
∑n

i=1 cigi.
(ii) Let b = (b1, . . . , bn) ∈ Fn

2 , and f = (f1, . . . , fn) ∈ Bn
m, Ideal(f + b)

denotes the ideal generated by f1 + b1, . . . , fn + bn in Bm, and Ann(f + b) =
{g ∈ Bn

m|g ◦ (f + b) =
∑n

i=1(fi + bi)gi = 0}.
(iii) For a nonzero g = (g1, . . . , gn) ∈ Bn

m, define deg1(g) = max0 6=c∈Fn
2
{deg(c◦

g)|c ◦ g 6= 0}, deg2(g) = min0 6=c∈Fn
2
{deg(c ◦ g)|c ◦ g 6= 0}. It is easy to know

deg1(g) = maxi{deg(gi)|g 6= 0}.
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3 Algebraic Attack on LFSR-Based Multi-Output Stream
Ciphers

Courtois and Meier [1,2] presented algebraic attack on stream ciphers with
LFSR, and they focused on the single-output case. They observed that for a
boolean function f ∈ Bm, the following cases may arise:

(1) There exists a low degree 0 6= g ∈ Bm such that h = fg 6= 0 is of low
degree.

(2) There exists a low degree 0 6= g ∈ Bm such that h = fg = 0.
(3) There exists g ∈ Bm such that h = fg 6= 0 is of low degree.
The above cases can be used to mount algebraic attack on LFSR-based

stream ciphers, such as LiLi-128, Toyocrypt, and E0 [1,3]. The algebraic im-
munity of boolean functions quantifies the resistance to the algebraic attack of
stream ciphers based on LFSR filtered by a boolean function. Let us recall the
following important definition:

Definition 1. [4] Let f ∈ Bm, AI(f) = min{deg(g)|g 6= 0, gf = 0 or g(f +1) =
0} is called algebraic immunity of f .

By Courtois and Meier’s theorem [1], AI(f) ≤ dm
2 e. In general AI(f) should

be as large as possible in order to resist algebraic attack.
Now we extend the definition of algebraic immunity to multi-output boolean

functions. Let S be a subset of Fm
2 , define I(S) = {g ∈ Bm|g(s) = 0,∀s ∈ S}.

Let f : Fm
2 → Fn

2 , Armknecht and Krause [11] introduced the following
definition:

Definition 2. Let f : Fm
2 → Fn

2 . AI(f) = min{deg(g)|0 6= g ∈ I(f−1(a)), a ∈
Fn

2} is called algebraic immunity of f .

Let d be the least integer such that
∑d

i=0

(
m
d

)
> 2m−n, then AI(f) ≤ d [11].

Feng. K etc. proved that d can be reached by suitable boolean functions [9].
In this section, we will give a detailed observation on the filter function

of LFSR-based multi-output stream ciphers and explore the algebraic attack
scenarios for the multi-output case, which has not been done before.

Similar with the conventional algebraic attack in [1], we consider only syn-
chronous stream ciphers. The target cipher systems are multi-output stream
ciphers.

Let the length of the linear feedback shift register be m. L is the ”connection
function” of the LFSR, and it is linear. The LFSR generator polynomial is
a primitive polynomial p(x) = p0 + p1x + ... + pm−1x

m−1 + xm. It generates
an m-sequence which is filtered by a nonlinear multi-output boolean function
f : Fm

2 → Fn
2 . Let the initial state of the LFSR is s0 = (s0, s1, ..., sm−1), then

the state of the LFSR at time t is

st = (st, st+1, ..., st+m−1) = Lt(s0, s1, ..., sm−1).
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Denote the output of the filter generator by C0, C1, C2, ..., where Ci ∈ Fn
2 ,

then we can get the following equation system:
C0 = f (s0, s1, ..., sm−1)
C1 = f(L (s0, s1, ..., sm−1))
C2 = f(L2(s0, s1, ..., sm−1))
...

Our problem is to recover the initial state s0 = (s0, s1, ..., sm−1) from some
keystream bits C0, C1, C2, .., where Ci ∈ Fn

2 .
Let f : Fm

2 → Fn
2 , we give the following attack scenarios:

Algebraic Attack Scenarios on Multi-Output Case
S1: There exists low degree g = (g1, . . . , gn) ∈ Ann(f), that is, f ◦ g =∑n

i=1 figi = 0.
S2: There exists g = (g1, . . . , gn) ∈ Bn

m such that f ◦ g =
∑n

i=1 figi = h is of
low degree.

S3: There exists low degree g = (g1, . . . , gn) ∈ Bn
m such that g ∈ Ann(f + b)

for some nonzero b ∈ Fn
2 .

S4: There exists low degree h ∈ Ideal(f + b) for some nonzero b ∈ Fn
2 .

How to Use the Low Degree Multiples and Related Definitions
There are three cases that we can mount algebraic attack by using the attack

scenarios S1, S2, S3 and S4.
Case 1: S1 and S2
Using S1 and S2 , we can obtain low degree equations:
(a)For scenario S1, if f(v) = u 6= 0, then for a low degree g = (g1, . . . , gn) ∈

Ann(f), we obtain a low degree equation: 0 = g(v)◦f(v) = g(v)◦u =
∑n

i=1 uigi(v).
(b)For scenario S2, if f(v) = 0, then for a low degree h = g ◦ f ∈ Ideal(f),

we have a low degree equation: h(v) = 0.
These low degree equations can be used to mount algebraic attack to stream

ciphers. Thus the following definition should be significant.

Definition 3. Let f : Fm
2 → Fn

2 , define AIj(f) = min{degj(g),deg(h)|0 6= g ∈
Ann(f), 0 6= h ∈ Ideal(f)} for j = 1, 2.

From Definition 3 we can see that when n = 1, AI1(f) = AI2(f) = AI(f),
which is corresponding to the single-output case. For arbitrary n, AIj(f) should
be large in certain sense.

However, when n > 1, only considering AIj(f) is not enough. For example,
if v ∈ Fm

2 , b ∈ Fn
2 such that f(v) = b 6= 0, and there is no low degree function in

Ann(f), but there exists a low degree function in Ideal(f + b); this is possible,
for Ann(f) does not generally equal to Ideal(f + b) when n > 1. Hence we also
consider the following case:

Case 2: S3 and S4
Using S3 and S4, we can get the following attack:
(c)For scenario S3, if f(v) = a 6= b, then for a low degree g ∈ Ann(f + b), we

get a low degree equation 0 = g(v) ◦ (f(v) + b) =
∑n

i=1(ai + bi)gi(v).
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(d)For scenario S4, if f(v) = b, then for a low degree h ∈ Ideal(f + b), we
derive a low degree equation h(v) = 0.

Enlightened by (a), (b), (c) and (d), we give the following definition:

Definition 4. Let f : Fm
2 → Fn

2 be a map. AIj(f+b) = min{degj(g),deg(h)|0 6=
g ∈ Ann(f + b), 0 6= h ∈ Ideal(f + b)} for j = 1, 2.

It is necessary that minb∈Fn
2
AIj(f + b) should be large in certain sense. Thus

the following problem seem to be worthy of consideration:
Problem 2.1. What is the relationship of AI(f) and minb∈Fn

2
AIj(f + b)?

We would solve Problem 2.1 in the next section.
Similar with the case n = 1, low degree relations among f1+b1, f2+b2,...,fn+

bn may also produce the low degree equation. We make use of the attack scenarios
S1 and S3 to mount an attack similar with (a) and (b) mentioned above.

Case 3: S1 and S3
Using S1 and S3, we can mount the following attack:
(e) For scenario S1, if f(v) 6= 0, then we have similar low degree equation as

in (a) using the low degree boolean function from Ann(f).
(f) For scenario S3, if f(v) = 0, then for a low degree g as in S3, we obtain

0 = g(v) ◦ (f(v) + b) =
∑n

i=1 bigi(v).
Corresponding to (e) and (f), the following definition should be considered:

Definition 5. Let f : Fm
2 → Fn

2 , define ANIj(f) = min{degj(g)|0 6= g ∈
∪b∈Fn

2
Ann(f + b)} for j = 1, 2.

By definition of ANIj(f), for any b ∈ Fn
2 , we have ANIj(f) = ANIj(f + b).

Thus a natural problem is as follows:
Problem 2.2. How to relate AI(f) with ANIj(f) for j = 1, 2?
We will solve Problem 2.2 in the next section.
According to the above analysis, if we can find boolean functions that satisfy

any of the three cases, then we can construct low degree equation system with
the initial state bits as the variables. Moreover, if we can find function g that
satisfies S1 or S3, then we need at most n

∑AI(f)
i=0

(
m
i

)
keystream bits in order

to obtain a complete saturated system solvable by linearization. Otherwise, the
number of required data should be n2n

∑AI(f)
i=0

(
m
i

)
.

Similar with the analysis in [1], Table 1 gives the estimation of the complexity
for the algebraic attack on multi-output stream ciphers. Here D =

∑AI(f)
i=0

(
m
i

)
,

m is the number of variables for f , n is the length of the keystream bits output by
the multi-output boolean function, w is the exponent of the Gaussian reduction,
and w ≤ 2.376 [17].

When we apply algebraic attack on the LFSR-based multi-output stream
ciphers, we look for the boolean functions that satisfy Case 1, Case 2 or Case 3
by computing Gröbner basis, resulting to equation system of the lowest degree
with the initial state bits as the variables. Solve the equation system and we get
the initial state value. In the following, we will give an attack example on the
LFSR-based multi-output stream cipher.
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Table 1. Estimation of the Complexity

Memory Complexity Data(best) Data(worst)

O(D2) O(Dw) O(nD) O(n2nD)

Example 1. Let the generator polynomial be p(x) = x7+x+1, which is primitive.
The filter function is a 7-variable and 2-output function F = (f1, f2) : F7

2 → F2
2,

where f1 : F7
2 → F2, f2 : F7

2 → F2.
f1 = x1x2x3x4x5x6+x1x2x3x4x5x7+x1x2x3x4x5+x1x2x3x4x6x7+x1x2x3x4x7+
x1x2x3x5x6x7+x1x2x3x5x6+x1x2x3x6x7+x1x2x3x6+x1x2x4x6x7+x1x2x4x6+
x1x2x4x7 +x1x2x4 +x1x2x6x7 +x1x2x7 +x1x3x4x6 +x1x3x5x6x7 +x1x3x5x7 +
x1x3x5 + x1x3x6x7 + x1x3x7 + x1x4x5x6x7 + x1x4x5x7 + x1x4x6x7 + x1x4x6 +
x1x4x7+x1x4+x1x5x6+x1x5x7+x1x7+x2x3x4x5x6x7+x2x3x4x5x6+x2x3x4x6x7+
x2x3x4x7 +x2x3x5x7 +x2x3x5 +x2x4x5x7 +x2x4x6 +x2x5x7 +x2x5 +x2x6x7 +
x3x4x5x6x7 + x3x4x6 + x3x5x7 + x3x6 + x4x5x7 + x4x7 + 1.
f2 = x1x2x3x4x5 + x1x2x3x4x7 + x1x2x3x4 + x1x2x3x5x6x7 + x1x2x3x5x7 +
x1x2x3x5 + x1x2x3 + x1x2x4x5x6x7 + x1x2x4x5 + x1x2x4x6x7 + x1x2x4x7 +
x1x2x5x6x7 + x1x2x5x7 + x1x2x5 + x1x2x6x7 + x1x3x4x5x6x7 + x1x3x4x6 +
x1x3x4x7+x1x3x5x6+x1x3x5x7+x1x3x5+x1x3x6+x1x3x7+x1x3+x1x4x5x6x7+
x1x4x6x7 + x1x4x7 + x1x4 + x1x5x7 + x1x5 + x1x6x7 + x1x6 + x1x7 + x1 +
x2x3x4x5x7+x2x3x4x5+x2x3x4x6x7+x2x3x4x6+x2x3x4x7+x2x3x4+x2x3x5x6+
x2x3x5x7+x2x3x5+x2x3x6x7+x2x3x6+x2x3+x2x4x5x6x7+x2x4x5x6+x2x4+
x2x5x6 +x2x5x7 +x2x6x7 +x2x6 +x2x7 +x2 +x3x4x5x6 +x3x4x5x7 +x3x4x5 +
x3x4x6x7 + x3x4x6 + x3x4x7 + x3x4 + x3x5x6x7 + x3x5 + x3x6x7 + x3x7 + x3 +
x4x5x6x7 + x4x5x6 + x4x5x7 + x4x5 + x4x6 + x4 + x5x6x7 + x5x6 + x5x7 + x5 +
x6x7 + x6 + x7.

Here f1 and f2 are both of optimum algebraic immunity, AI(f1) = AI(f2) =
4.

Using Case 1, Case 2 and Case 3, we find the following equation:
f1(x1x5x7 + x3x5x7 + x1x7 + x3x7 + x5x7 + x7) + f2(x2x3x7 + x1x5x7 +

x2x5x7 + x3x5x7 + x4x5x7 + x2x6x7 + x1x7 + x3x7 + x4x7 + x5x7 + x7) = 0.

In the next section, we first prove some basic properties involving in the
invariants defined in this section, and give a complete and strict proof that Defi-
nition 4 and Definition 5 are both equivalent to Definition 2, which provides great
convenience for computing the algebraic immunity of multi-output boolean func-
tions thanks to the detailed algebraic description in Definition 4 and Definition
5 .

4 Research on the Algebraic Immunity of the
Multi-Output Boolean Function

We begin to prove the following lemma which shows that min0 6=c∈F n
2
(AI(c ◦ f))

is the biggest among all these invariants:
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Lemma 1. Let f : Fm
2 → Fn

2 be a map, then ANI1(f) ≤ min0 6=c∈F n
2
(AI(c ◦ f)),

ANI2(f) ≤ min0 6=c∈F n
2
(AI(c ◦ f)).

Proof. Let 0 6= c = (c1, . . . , cn) ∈ Fn
2 such that AI(c◦f) = mine 6=0(AI(e◦f)). By

definition of AI(c ◦ f), there exists a boolean function g such that AI(c ◦ f) =
deg(g), and g(c ◦ f + b) = 0, where b = 0 or 1. Let ci1 = · · · = cis

= 1,
other terms are 0. Then c ◦ f = fi1 + · · · + fis

. Let g be a vector of boolean
functions such that ij position is g for j = 1, . . . , s, other positions are 0. Hence
g ◦ (f + b) = 0, where b is a vector of length n with b in the i1 position and
0 otherwise. Thus ANI1(f) ≤ deg1(g) = deg(g). Similar discussion shows that
ANI2(f) ≤ deg(g).

Lemma 2. Let f : Fm
2 → Fn

2 be a surjective map, then AI(f) ≤ ANI2(f).

Proof. Let ANI2(f) be achieved by g = (g1, . . . , gn). That is, ANI2(f) =
deg2(g) = deg(b ◦ g) for a nonzero b ∈ Fn

2 , and g ◦ (f + a) = 0 for some a ∈ Fn
2 .

For v = (v1, . . . , vm) ∈ Fm
2 such that f(v) = a + b, we have f(v) + a = b.

Hence 0 = g(v) ◦ (f(v) + a) = b ◦ g(v) = (b ◦ g)(v). Hence by definition of AI(f),
we have AI(f) ≤ deg(b ◦ g).

By Lemma 1 and Lemma 2, the following corollary can be directly obtained:

Corollary 1. Let f = (f1, . . . , fn) : Fm
2 → Fn

2 be a surjective map, then AI(f) ≤
min0 6=c∈Fn

2
(AI(c ◦ f)).

Remark 1. Corollary 1 indicates that the algebraic immunity of a vector boolean
function is less than or equal to that of its component functions. For a multi-
output boolean function f = (f1, f2, ..., fn) ∈ Bn

m, we choose c = (1, 0, 0, ..., 0) ∈
Fn

2 , then we can see AI(f) ≤ AI(f1). Similarly, we can get that AI(f) ≤ AI(fi),
i ∈ {2, ..., n}. The following example shows that the ” = ” can be reached.

Example 2. Let f = (f1, f2) : F6
2 → F2

2 be a surjective map.
f1 = x1x2x3x4x5+x1x2x3x4x6+x1x2x3x4+x1x2x4x5x6+x1x2x4x5+x1x2x4x6+
x1x2x5x6 + x1x2x5 + x1x2x6 + x1x2 + x1x3x4 + x1x3x5 + x1x3x6 + x1x4x5 +
x1x4+x1+x2x3x4x5x6+x2x3x4x6+x2x3x6+x2x4x5+x2x4x6+x2x4+x2x5x6+
x2x5 + x3x4x6 + x3x4 + x3x6 + x5 + x6.
f2 = x1x2x3x4x5+x1x2x3x5x6+x1x2x3x5+x1x3x4x5x6+x1x3x4x5+x2x3x4x5x6+
x1x2x3x6 +x1x2x3 +x1x2x4 +x1x3x4 +x2x3x4x6 +x1x3x5 +x1x4x5 +x2x4x5 +
x1x3x6 + x2x3x6 + x1x4 + x2x4x6 + x2x4 + x3x4x6 + x3x4 + x2x5x6 + x2x5 +
x1 + x3x6 + x5 + x6.
We can compute that AI(f) = 1, AI(f1) = AI(f2) = 3, and AI(f1 + f2) = 1.

Example 2 verifies that AI(f) ≤ min0 6=c∈Fn
2
(AI(c ◦ f)), and the ” = ” can be

reached.

In order to investigate the problems in Section 2, we introduce a new invari-
ant:
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Definition 6. Let f = (f1, . . . , fn) : Fm
2 → Fn

2 be a map. Define DI(f) =
min{deg(g)|0 6= g ∈ ∪a∈Im(f)Ideal(f + a)}, where Im(f) is the image set of f .

With the above notation, the following lemma provides an algebraic descrip-
tion of AI(f), which seems to be obvious from the view of algebraic geometry
and the definition of AI(f). Since it is a basis of our subsequent discussions, we
give here a rigorous proof.

Lemma 3. Let f = (f1, . . . , fn) : Fm
2 → Fn

2 be a map, then AI(f) = DI(f).

Proof. Let F2 be the algebraically closure of F2. Let fi(X) be the polynomial
obtained from the boolean function fi(x) by replacing the boolean variables xi

by the polynomial variables Xi for i = 1, . . . ,m, where x = (x1, . . . , xm), and
X = (X1, . . . , Xm).

Let J be the ideal generated by f1(X)+a1, . . . , fn(X)+an, X2
1−X1, . . . , X

2
m−

Xm in F2[X1, . . . , Xm], and J1 = JF2[X1, . . . , Xm] is the extension of J in
F2[X1, . . . , Xm]. For a ∈ Fn

2 , it is easy to know f−1(a) = {v ∈ Fm

2 |∀h ∈ J1, h(v) =
0}.

Let 0 6= g ∈ Bm such that g vanishes on f−1(a) with deg(g) = AI(f), where
f−1(a) 6= ∅. Let g1 ∈ F2[X1, . . . , Xm] be any polynomial corresponding to g, i.e.,
g1mod I = g, where I = Ideal(X2

1 − X1, . . . , X
2
m − Xm). Then g1 vanishes on

f−1(a). Hence by Hilbert’s Nullstellensatz, gr
1 ∈ J1 for some positive integer r.

Therefore, gr
1 ∈ J1 ∩ F2[X1, . . . , Xm] = J ([13], page 212).

Note that gr
1 mod I = (g1 mod I)r = gr = g = g1 mod I, we have gr

1 − g1 ∈
I. By I ⊆ J , we have g1 ∈ J . Hence there exists the following equation in
F2[X1, . . . , Xm]:

g1 =
∑n

i=1 hi(X1, . . . , Xm)(fi(X1, . . . , Xm) + ai) + h, where h ∈ I.
Passing to Bm by modulo I, we get g =

∑n
i=1 hi(x1, . . . , xm)(fi(x1, . . . , xm)+

ai), thus g ∈ Ideal(f + a) in Bm. Hence deg(g) ≥ DI(f), i.e., AI(f) ≥ DI(f).
On the other hand, let 0 6= h ∈ ∪a∈Im(f)Ideal(f + a) such that deg(h) =

DI(f). Thus for some a ∈ Im(f) and boolean functions gi, h =
∑n

i=1 gi(fi +ai).
Thus for any v ∈ f−1(a), we have h(v) = 0. Hence DI(f) = deg(h) ≥ AI(f).
Thus we have proved AI(f) = DI(f).

The following theorem gives the relationship of AI(f) and ANI2(f).

Theorem 1. Let f = (f1, . . . , fn) : Fm
2 → Fn

2 be a map. Then AI(f) ≥ ANI2(f).
In particular, when f is surjective, AI(f) = ANI2(f).

Proof. By Lemma 3, AI(f) = DI(f). Hence there exists a nonzero g ∈ Ideal(f +
a) for some a = (a1, . . . , an) ∈ Fn

2 such that AI(f) = deg(g).
Therefore there exists hi ∈ Bm for i = 1, . . . , n such that

g = h1(f1 + a1) + h2(f2 + a2) + · · ·+ hn(fn + an). (1)

Since g 6= 0, there exists some i with hi 6= 0. Without loss of generality, we
may assume i = 1. Multiplying two sides of (1) by f1 + a1, we get:

g(f1 + a1) = h1(f1 + a1) + h′2(f + a2) + · · ·+ h′n(fn + an), (2)
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where h′i = hi(fi + ai) for i = 2, . . . , n.
Combining (1) and (2), we obtain:

g(f1 + a1 + 1) + w2(f2 + a2) + · · ·+ wn(fn + an) = 0, (3)

where wi = hi + h′i for i = 2, . . . , n.
From (3), we get g′ = (g, w2, . . . , wn) ∈ Ann(f + a′), where a′ = (a1 +

1, a2, . . . , an). Hence ANI2(f) ≤ deg2(g′) ≤ deg(g) = AI(f).
In particular, when f is surjective, by Lemma 2, AI(f) ≤ ANI2(f). Thus we

have AI(f) = ANI2(f).

Until now, we have solved Problem 2.2.
We would like to give an example to verify that when f is surjective, AI(f) =

ANI2(f).

Example 3. Let f = (f1, f2) : F5
2 → F2

2 be a surjective map.
f1 = x1x2x3x5 +x1x2x5 +x1x2 +x1x3x4x5 +x1x3x4 +x1x3x5 +x1x4x5 +x1x4 +
x2x3 + x2x4x5 + x2x5 + x3x4 + x4x5 + 1.
f2 = x1x2x3x4 +x1x2x3 +x1x2x4x5 +x1x2x4 +x1x2x5 +x1x3x5 +x1x3 +x1x5 +
x2x3x4x5 + x2x3x5 + x2x4x5 + x2x5 + x3x4 + x3 + x4x5 + 1.
We can compute that AI(f) = ANI2(f) = 2, which completes our verification.

In order to give a characterization of AI(f) in view of the minimum of AI2(f+
a) and AI1(f + a), we note the following lemma:

Lemma 4. Let f : Fm
2 → Fn

2 be a map. Then AI(f) ≤ AI2(f).

Proof. Let g = (g1, . . . , gn) ∈ Ann(f) such that deg2(g) = min{deg2(h)|0 6= h ∈
Ann(f)}.

Assume that deg2(g) = deg(b◦g) for some nonzero b ∈ Fn
2 . Then ∀v ∈ f−1(b),

we have f(v) = b. Hence 0 = g(v) ◦ f(v) = (b ◦ g)(v), which shows that AI(f) ≤
deg(b ◦ g).

On the other hand, let 0 6= h ∈ Ideal(f) such that deg(h) reaches the mini-
mum. Thus h =

∑n
i=1 gifi for some boolean functions g1, . . . , gn. ∀v ∈ f−1(0),

we have f(v) = (f1(v), . . . , fn(v)) = 0. Hence h(v) = 0, which shows that
AI(f) ≤ deg(h). Thus we have proved AI(f) ≤ AI2(f).

The following theorem reveals the relations among AI(f) and AIj(f + b) for
b ∈ Fn

2 and j = 1, 2, which can be thought as a solution to Problem 2.1.

Theorem 2. Let f : Fm
2 → Fn

2 be a map. Then AI(f) = minb∈Fn
2
AI2(f + b) =

minb∈Fn
2
AI1(f + b).

Proof. By Lemma 4, we have AI(f) ≤ AI2(f). Hence for any b ∈ Fn
2 , we

have AI(f) = AI(f + b) ≤ AI2(f + b). Thus AI(f) ≤ minb∈Fn
2
AI2(f + b) ≤

minb∈Fn
2
AI1(f + b).

On the other hand, minb∈Fn
2
AI1(f + b) ≤ minb∈Fn

2
{mindeg(g)|0 6= g ∈

Ideal(f+b)}. The latter is AI(f) by Lemma 3. Hence minb∈Fn
2
AI1(f+b) ≤ AI(f).

Thus we have proved the conclusion.
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Remark 2. The results in this section are very useful when we apply algebraic
attack on LFSR-based stream ciphers.
(1)Theorem 2 and Lemma 3 verify that Definition 4 and Definition 6 are both
equivalent to Definition 2. Particularly, Definition 4 gives a precise algebraic
description of the algebraic immunity, which is more general and understandable
when we mount algebraic attack on the multi-output model. Compared with
Definition 2, our new definition provides a more convenient and intuitive target
when we study the properties of the algebraic immunity for multi-output boolean
functions.
(2) Given a multi-output filter function, according to Corollary 1, we may find
equation system with degree less than the optimum algebraic immunity of the
component functions.

Inspired by Corollary 1, we conjecture that for the LFSR-based single-output
stream ciphers, maybe we can use our method in Section 3 to derive equation
system of degree lower than the optimum algebraic immunity of the filter func-
tion. In the next section, we apply our attack on single-output stream ciphers
by using augmented function to transform the model into multi-output.

5 Algebraic Attacks on LFSR-Based Single-Output
Stream Ciphers by Using Augmented Function

Qichun Wang and Thomas Johansson presented a method called higher order
algebraic attack on stream ciphers [14]. They also apply their attack on aug-
mented functions. However, they did not give the detailed and systematic attack
scenarios on how to look for the low degree equations.

In this section, we would like to apply the method presented in Section 3
on the LFSR-based single-output stream ciphers. When the boolean function is
single-output, we can construct augmented function to transform it into multi-
output case.

First, let us give the model of single-output stream ciphers. The LFSR is the
same with the one described in Section 3. While the filter function f : Fm

2 → F2

is single-output. The algebraic immunity of f is optimum, which means that
the lowest degree of the equation system we can find equals to the algebraic
immunity of f when we apply the conventional algebraic attack given in [1] on
this model.

Let the initial state of the LFSR be s0 = (s0, s1, ..., sm−1), then the state of
the LFSR at time t is

st = (st, st+1, ..., st+m−1) = Lt(s0, s1, ..., sm−1).
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Denote the output of the filter generator by c0, c1, c2, ..., where ci ∈ F2, then
we can get the following equation system:

c0 = f (s0, s1, ..., sm−1)
c1 = f(L (s0, s1, ..., sm−1))
c2 = f(L2(s0, s1, ..., sm−1))
...

When we apply the conventional algebraic attack on this model, we can get
equations of degree no less than dm

2 e. While according to Corollary 1, we may
get equations of degree less than dm

2 e if we use the augmented function. First,
let us recall the definition of augmented function:

Definition 7. [16] For a nonlinear filter function f : Fm
2 → F2, the n-th aug-

mented function of f is defined as Fn : Fm+n−1
2 → Fn

2 :

Fn(x1, ..., xn+m−1) = (f(x1, ..., xm), f(x2, ..., xm+1), ..., f(xn, ..., xn+m−1)).

From Definition 7, we can define the augmented function for the LFSR-based
stream cipher described in this section as follows:

Definition 8. For the nonlinear filter function f : Fm
2 → F2, the n-th aug-

mented function of f is defined as Fn : Fn+m−1
2 → Fn

2 :
Fn(s0, s1, ..., sn+m−1) = (f(s0, s1, ..., sm−1), f(s1, s2, ..., sm), ..., f(sn, sn+1, ..., sn+m−1))

The generator polynomial is p(x) = p0 + p1x + ... + pm−1x
m−1 + xm, which

is primitive. Then we can get the generator matrix of the sequence generated by
LSFR:

M =


0 1 0 ... 0
0 0 1 ... 0
0 0 0 ... 1
p0 p1 p2 ... pm−1

 (4)

Then Definition 8 can also be written as:

Definition 9. For the nonlinear filter function f : Fm
2 → F2, the n-th aug-

mented function of f is defined as Fn : Fm
2 → Fn

2 :

F n(s0, s1, ..., sm−1) = (f(s0, s1, ..., sm−1), f(M(s0, s1, ..., sm−1)
T ), ..., f(Mn(s0, s1, ..., sm−1)

T )).

According to Corollary 1, we derive that the algebraic immunity of the aug-
mented function AI(Fn) ≤ AI(f). It means that although AI(f) is optimum, we
may find equation system of degree less than AI(f) by targeting the augmented
function Fn.

Here we would like to give examples to show that when the single-output filter
function f has optimum algebraic immunity, our attack on augmented function
case can find equation system of degree less than AI(f).
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Example 4. Let the generator polynomial is p(x) = x5+x2+1. The filter function
is a 5-variable Carlet-Feng function f(x1, x2, ..., x5) = x1x2x3x5 + x1x2x4x5 +
x1x2x4 + x1x3x4x5 + x1x3 + x1x4x5 + x2x3x4 + x2x3x5 + x2x3 + x2 + x3x5 +
x4x5 + x4 + 1.

Then we know that AI(f) = 3, deg(f) = 4. So if we apply the conventional
algebraic attack on this model, we can get equation system with degree no less
than AI(f) = 3.

In the following, we will show the results when we apply our method in
Section 3 on the augmented function, which is constructed by the expressions of
the keystream bits of different clocks. In this case, we construct the augmented
function F 2 : F5

2 → F2
2 as follows:

F 2 = (f1, f2) = (f(x1, x2, ..., x5), f(M(x1, x2, ..., x5)T ).

Where M is the companion matrix of p(x).

M =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 1 0 0

 (5)

Similar with the attack on multi-output boolean function, we mount algebraic
attack on this model and get the following equation:

f1(x1 + x3 + x4 + x5 + 1) + f2(x1x4 + x2 + x3 + 1) = 0.

AI(F 2) = 1 < AI(f) = 3. Then we can get equation system of degree less than
3.

Remark 3. This example indicates that the algebraic immunity of the multi-
output boolean function is less than or equal to that of the component functions,
which is consistent with Corollary 1.

We would like to give another example:

Example 5. Let the generator polynomial is p(x) = x12+x7+x6+x5+x3+x+1.
The filter function is a 12-variable function f , where 1f = {M iβ|0 ≤ i < 212−1},
β = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , M is the companion matrix of p(x). According
to [15], f is of optimum algebraic immunity, AI(f) = 6. So if we apply the
conventional algebraic attack on this model, we can get equation system with
degree no less than AI(f) = 6. the complexity of the standard algebraic attack
is roughly O(Ew) in time and O(E) in data, where E =

∑6
i=0

(
m
i

)
, m is the

number of variables for f , w is the exponent of the Gaussian reduction, and
w ≤ 2.376 [17].

Here we set n = 2, then the augmented function:

F 2 = (f1, f2) = (f(x1, x2, ..., x12), f(M(x1, x2, ..., x12)).
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Where M is the companion matrix of p(x).

M =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 1 0 1 1 1 0 0 0 0



(6)

Using our method, we can find the following relation:

(f1 + f2)(x7 + x12) = 0.

We get a linear equation, which can greatly decrease the computational com-
plexity.

According to Definition 7, we can learn that if the LFSR-based stream cipher
is equidistant, there is no need to involve all the initial state bits of the LFSR
in the augmented function. For instance, assume the length of the LFSR is m
and the filter function is of k-variable (m > 10k), if we adapt 2-th augmented
function, then we only need to consider k + 1 variables instead of the whole
m initial state bits. Hence the number of variables involved in the augmented
function can be reduced in a large extent, which cuts down the cost of deriving
the low degree boolean functions that satisfy Case 1, Case 2 or Case 3. To
illustrate the method intuitively, we would like to give the following example.

Example 6. Let the length of the LFSR be m = 128. The generator polynomial
is p(x) = x11 + x2 + 1. The filter function is a 11-variable Carlet-Feng function.
The support of f is {0, 1, α, α2, ..., α211−1−2}, where α is a primitive element of
the finite field F 12

2 . The stream cipher is equidistant.
If we use the whole initial state bits as the variables of the augmented func-

tion, then the number of variables is 128, which is almost impossible for us to
derive the low degree functions by using computer.

We take advantage of the equidistant feature of the cipher and adapt the
augmented function F 2 := (f1, f2), where f1 = f, f2 = f(x2, x3, x4, x5, x6, x7, x8,
x9, x10, x11, x12). We can check that AI(f1) = AI(f2) = 6.

Then the number of variables for F 2 is 12, less than m = 128. We search the
low degree boolean functions quickly and get the following equation of degree 2:

(f1 + f2)(x1x12 + x1 + x12 + 1).

In the same way, we can find low degree equations with the other initial state
bits as the variables.
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Remark 4. The three examples in this section are very meaningful. They sug-
gests another way to mount algebraic attack on the LFSR-based single-output
stream ciphers. In particular, when the filter function is of optimum algebraic
immunity, we may use the augmented function model to find equation system
of degree less than the algebraic immunity.

6 Conclusion

This paper makes extensive efforts on the LFSR-based multi-output stream ci-
phers. To sum up, we have made two main contributions. First, a systematic
and standardized framework of algebraic attack on multi-output stream ciphers
is proposed, which is unprecedented. We put forward four attack scenarios and
provide interpretation on how to leverage the low degree multiples in Case 1,
Case 2 and Case 3. Moreover, our approach is applied on the LFSR-based stream
ciphers with single-output boolean functions by using augmented function to
change them into multi-output models. we can find equation system of degree
no greater than the optimum algebraic immunity of the original single-output
filter boolean function, which suggests a better way than the conventional alge-
braic attack in [1] to attack the LFSR-based stream ciphers with single-output
boolean functions.

Secondly, this paper provides novel definitions as the algebraic descriptions
of the multi-output boolean functions, and rigorously proves that the descrip-
tions are equivalent to the definition given by Armknecht and Krause [11]. Our
definitions are more convenient and understandable for us to look for the low
degree multiples. We also study the general properties and various possible char-
acterizations of the invariants presented in Section 3.

Further study should focus on the detailed relationship between the alge-
braic immunity and number of variables for the multi-output boolean functions.
Research on how to find the low degree multiples more effectively is also very
meaningful.
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