
A Practical Polynomial-Time Known-Plaintext Attack on a

Cryptosystem Proposed by John Nash

Adi Shamir and Eldad Zinger

Department of Computer Science and Applied Mathematics

The Weizmann Institute of Science

June 2012

Abstract

In this paper we present a known plaintext attack on a stream cipher proposed by John Nash in

1955, which reduces the claimed security of the scheme from (n! · 2n)2 to n2 logn. This attack was

veri�ed with an actual simulation, �nding a cryptographic key of 3800 bits in just a few minutes

on a single PC.

1 Introduction

In 1955 John Nash wrote a series of letters to the National Security Agency (NSA) in which he described
a new design for a stream cipher [1]. His design was not adopted by NSA but both the letters and the
evaluation of the scheme by the NSA were kept classi�ed. In 2012, NSA declassi�ed and published the
correspondence to the public [2], but did not reveal any details about its internal evaluation process.
Naturally, this led to considerable speculation about the actual security of this scheme.

In his letters, Nash suggested that the security of the scheme is equivalent to the number of keys,
which is (n! · 2n)2. In this paper, we will �rst show that the e�ective number of keys can be easily

reduced from (n! · 2n)2 to n! · 2n+1. We will then describe a subtle weakness in the design, which
requires the analysis of patterns of logarithmic number of consecutive bits in the data. This weakness
is, brie�y, the result of the interaction of two random permutations, in which for any pair i ∈ [n] and
j ∈ {2, . . . n, output} there exists a sequence of about log n invocations of those permutations which
maps position i to position j. By exploiting this weakness, we will provide a known plaintext attack
with time and data complexities of O

(
n2 log n

)
. We will conclude with simulation results of our attack

for various key sizes.
A di�erent attack on the Nash cipher, which has similar time complexity but requires chosen

messages, was independently developed by Ron Rivest and his students (private communication).

2 The stream cipher

Nash introduced a stream cipher which is based on a permuter, which is a state that evolves by
applying permutations on it. This technique used to be very common among cryptographers in the
40s and the 50s and was used in the design of the Enigma machine. Unlike the Enigma machine,
Nash's cryptosystem design is fully electronic rather than electro-mechanical.

In his letter, Nash described a permuter that uses two single-cycle permutations
(
P 0, P 1

)
over a

state with n bits and two n bit vectors
(
K0K1

)
. The permuter is controlled by a decider D. In each

cycle, the permuter uses the bit in the decider to choose PD and KD. The permuter uses PD to
transfer all state bits, including the decider bit, across the state. When a bit is transferred, it might
be �ipped according to KD.

1



Figure 1:

At the beginning of each encryption step, the decider holds the previous generated ciphertext bit.
In order to encrypt a plaintext bit, the permuter transfers and �ips bits as described above and outputs
a single bit. This bit is added to the plaintext bit (mod 2) and the result is the ciphertext bit. The
ciphertext bit is transmitted, but also copied back into the decider bit.

The full operation of the permuter is formally described as follows:
Let PD (1)

i
be the position of a bit that was in position 1 and traveled i jumps along the Hamiltonian

path of permutation PD. Notice that it must be that PD (1)
n
= output. Let KD

i correspond to the
i'th jump of the Hamiltonian path of PD.

To be clear, given D, KD
1 is the bit that de�nes the �ip of b1 when moved to its new position by

the permutation PD and KD
n is the bit that de�nes the �ip of bPD(1)n−1 when it is outputted from the

permuter. The operations done in a single cycle are as follows:

output← bPD(1)n−1 ⊕KD
n

c← p⊕ output

∀i ∈ [n− 1] bPD(1)i ← bPD(1)i−1 ⊕KD
i

b1 ← D

D ← c

An example, taken from Nash's original letter to NSA, is given in Fig 1.
The secret key is the tuple

(
P 0, P 1,K0,K1

)
. The decryption process is based on the same permuter

with the same key since the permuter uses only the previous ciphertext bit which is available to the
receiver, so the receiver's state will evolve in the same way as the sender's state.

The conjectured cost of breaking the stream cipher is the cost of going over all possible keys and
checking each key by decrypting the given ciphertext and comparing to the known plaintext. Ignoring
the cost of decrypting and comparing the data, the cost is proportional to the number of keys:

(n! · 2n)2

3 Reducing the e�ective number of keys to n! · 2n+1

In the following subsections, we will show that the number of e�ective keys can be easily reduced to
n! · 2n+1. We will prove it in two steps.

In the �rst step we will show that the e�ect of the two secret single-cycle permutations P 0, P 1 can
be obtained by one arbitrary known permutation and one secret permutation, regardless of K0,K1.
This step will reduce the number of keys to n! · 22n.

In the second step we will show that the e�ect of the two secret n-bits vectors K0,K1 can be
obtained by just n+ 1 secret bits. This step will reduce the e�ective number of keys to n! · 2n+1.

2



Figure 2:

Figure 3:

3.1 A single secret permutation is su�cient to mimic the e�ect of two

secret permutations

Our �rst observation is that the e�ect of any two secret permutations
(
P 0, P 1

)
can be reduced to

the e�ect of one arbitrary known permutation and one secret permutation. Generally, by labeling the
positions in the state according to the order derived from P 0, for example, we will get that P 0 is
the trivial permutation of shifting: P 0 (i) = i + 1 (for i ∈ [n− 1]) and P 0 (n) = output. The second
permutation will hold the composition of the original secret permutations.

This relabeling is formally explained by the following transformation. Let iold ∈ [n] be the label
that a certain position has before the transformation. Let inew ∈ [n] be the label that the same position
has after the transformation. Let

(
P 0
old, P

1
old

)
and

(
P 0
new, P

1
new

)
be the representation of the pair of

permutations before/after the transformation. Let revP 0
old (iold) be the number of jumps along the

Hamiltonian path of P 0
old needed in order to reach position iold.

iold = P 0
old (1)

inew−1

inew = revP 0
old (iold) + 1

P 0
new (inew) = revP 0

old

(
P 0
old

(
P 0
old (1)

inew−1
))

+ 1 = inew + 1

P 1
new (inew) = revP 0

old

(
P 1
old

(
P 0
old (1)

inew−1
))

+ 1

Since the transformation is only symbolic, the new key
(
P 0
new, P

1
new

)
will be indistinguishable from

the original key
(
P 0
old, P

1
old

)
. Notice that only P 1

new is secret. From now on, we will replace P 0, P 1 by
P 0
new, P

1
new and all the described positions will be transformed accordingly.

As an example of what a permuter might look like after such a transformation, �gure 2 describes the
same permuter that Nash described in his original letter. Figure 3 is a more intuitive representation of
the same permuter, where the trivial P 0 is a simple clockwise rotation of the ring and P 1 is described
by the arrows inside the ring.

3



3.2 n + 1 secret �ipping bits are su�cient to mimic the e�ect of 2n secret

�ipping bits

First, we will notice that a distinguisher can look only at output bits. Hence, we need to mimic
the behavior of the original secret 2n �ipping bits only on full paths, which means paths that an
inserted bit, b, traveled inside the permuter and was outputted from the permuter as bit o. These
paths are de�ned by the sequence of bits inserted to the permuter after b was inserted and until b
was outputted. Let this sequence of input bits be x1, . . . , xm where x1 is the bit that was inserted
right after b was inserted, and the bit xm is the bit that was inserted and caused the extraction of o,
therefore P xm (· · · (P x1 (1))) = output. Let a path parity behavior a be the accumulated �ips that an
inserted bit b will be subjected to until b is outputted as o.

a = Kx1
1 ⊕ · · · ⊕K

xi

revPxi (Pxi−1 (···(Px1 (1))))+1
⊕ · · · ⊕Kxm

n

o = b⊕ a

As b and o are known, this is a linear equation with up to 2n variables.
Let πi be P 1 (1)

i
. De�ne the following n+ 1 variables:

z0 =

n⊕
j=1

K0
j

∀i ∈ [n] zi = K1
i ⊕

max{πi−1,πi}−1⊕
j=min{πi−1,πi}

K0
j

The �rst variable, z0, is the parity of K0. Any other variable zi is a sum of one unique bit from K1

added with the sum of consecutive bits from K0 that are needed by the trivial permutation P 0 to
complete the same jump that K1

i corresponds to in P 1 or the opposite jump if the i'th jump of P 1 is
to a smaller position.

In order to write the above linear equation as an equation of only up to n+1 variables, we will use
an iterative process in which we will hold a permuter path and in each step we will change this path
until the path matches the path that is de�ned by x1, . . . , xm.

Formally, we would like that for every m, x1, . . . , xm �nd a sequence y1, . . . , ym′ ∈ [n] ∪ {0},
m′ ≤ m+ 1, such that

a =

m′⊕
i=1

zyi

The iterative process will start with a′ = z0. The iterations are as follows: for every i ∈ [m], if
xi = 1 then add zrevPxi (Pxi−1 (···(Px1 (1))))+1 to a′.

Following is a proof for the correctness of the above transformation. It is advised to follow the
example in the appendix.

Claim: For any i ∈ [m], before the i'th iteration, a′ is the path parity behavior of the required path
up to position P xi−1 (· · · (P x1 (1))) added with the path parity behavior of the Hamiltonian path of P 0

from position P xi−1 (· · · (P x1 (1))) to the output. Notice that from this claim, before each iteration, a′

represents a full path.

Proof: By induction on i, the iteration index. The base case is the initial value a′ = z0 and the
represented path is the Hamiltonian path of the trivial permutation P 0, n zeros. Assuming that for
iteration i− 1 the claim holds, lets prove for iteration i. At the beginning of the iteration, the current
path suggested by a′ goes from position 1 to position P xi−1 (· · · (P x1 (1))) with the same path parity

4



behavior as required and then the path continues to the output by n+ 1− P xi−1 (· · · (P x1 (1))) steps
of P 0.

If xi = 0, a′ will stay the same. In this case a′ will be considered as the representation of the path
from position 1 to position P 0 (P xi−1 (· · · (P x1 (1)))) followed by n+1−P 0 (P xi−1 (· · · (P x1 (1)))) steps
of P 0. Trivially, the claim holds.

Consider the case of xi = 1. Notice that the current represented path from position P xi−1 (· · · (P x1 (1)))
to position P 1 (P xi−1 (· · · (P x1 (1)))) is by steps of P 0. These steps need to be replaced with one step
of P 1. Let q be the number of jumps in the Hamiltonian path of P 1 that are needed to reach posi-
tion P xi−1 (· · · (P x1 (1))) from position 1, q = revP 1 (P xi−1 (· · · (P x1 (1)))). The contribution of the
required jump of P 1 to the path parity is K1

q+1 and the contribution of the redundant steps of P 0 is⊕max{πq,πq+1}−1
j=min{πq,πq+1} K

0
j . In order to adjust the path parity behavior, canceling the contributed behavior

of the steps of P 0 is made by subtracting the contribution of the redundant steps of P 0 from a′ and
adding the contribution of the required jump of P 1. Subtraction and addition mod 2 are the same, so:

a′ ← a′ ⊕K1
q+1 ⊕

max{πq,πq+1}−1⊕
j=min{πq,πq+1}

K0
j

Notice that K1
q+1 ⊕

⊕max{πq,πq+1}−1
j=min{πq,πq+1} K

0
j = zq+1 = zrevP 1(Pxi−1 (···(Px1 (1))))+1. The claim follows.

Claim: After the last step, a′ represents the same path as described by x1, . . . , xm, so a
′ = a.

Proof: By the previous claim, after the last iteration, meaning before iteration m+1, a′ is the path
parity behavior of the required path up to position P xm (· · · (P x1 (1))) = output added with the path
parity behavior of the Hamiltonian path of P 0 from position P xm (· · · (P x1 (1))) to the output, 0 steps.
The claim follows.

Consequences: a′ is added with variables from {zi}i∈{0,...,n} until a′ = a. Therefore, every path
parity equation can be regarded as an equation over just n + 1 variables. If we know the secret
permutation P 1, then we will need to �nd n + 1 independent linear equations which are di�erent
permuter paths along with a sampled bit o⊕ b. Solving these linear equations will give us the missing
variables.

Since any distinguisher can test only the paths parity behavior, and the set of n + 1 variables
{zi} mimics this behavior perfectly, we can de�ne any transformation between the original key to the
reduced key arbitrarily as long as the values of {zi} are the same. As an example, such transformation
can be:

∀i ∈ [n− 1] newK0
i = 0

newK0
n =

n⊕
i=1

oldK0
i

∀i ∈ [n] newK1
i = oldK1

i ⊕
max{πi−1,πi}−1⊕
j=min{πi−1,πi}

oldK0
j

z0 = newK0
n

∀i ∈ [n] zi = newK1
i

5



4 A known plaintext attack with time and data complexities of

O
(
n2 log n

)
This attack will focus on �nding the secret random permutation P 1 while K0,K1 are unknown. After
this attack, a set of linear equations can be formulated and solved to �nd K0,K1. Each such linear
equation is a di�erent path in the permuter. This path is the result of the interaction between the
random permutation and the trivial permutation. Focusing only on short paths, each such equation
will hold up to 2 log n variables, as will be explained in the following subsection. Ignoring logarithmic
factors, the problem of solving a sparse system of linear equations over GF(2) is proportional to the
product of the number of variables, the number of equations, and the number of ones per row. Since in
our case this product is n2 log n, the additive complexity of solving the �nal system of linear equations
is comparable to that of applying the actual attack, and thus we will ignore it in the rest of our analysis.

This attack will assume two independent distributions:

1. Uniform key distribution. P 1 is a random permutation (Hamiltonian path) and so are K0,K1.

2. Uniform plaintext distribution. The known ciphertext is generated out of a uniform plaintext.
Notice that since each ciphertext bit is equal to pi ⊕ output = ci, and pi is a random (uniformly
chosen) bit, ci is distributed uniformly.

The next two subsections explain the main two ideas that this attack uses.

4.1 The length of the shortest path is ≤ log n with high probability

Lets consider len, the random variable of the length of the shortest path from position 1 to the output.
By considering the interaction of a random permutation with an arbitrary permutation, we would like
to upper bound this random variable by log n w.h.p.

One intuitive argument is to consider all the strings of length up to log n bits. About 2n random
positions are sampled out of n available positions {2, . . . , n, output}. Therefore, w.h.p there is a string
of length up to log n bits that reaches the output, as was veri�ed in simulations.

Another argument can be made by using the birthday paradox. In order to reach the output after
log n steps, one of the n

2 positions reached after log n − 1 steps must be either position n or position

P 1 (output)
−1

. This is possible if and only if one of the n
4 positions reached after log n − 2 steps is

in
{
n− 1, P 1 (output)

−1 − 1, P 1 (n)
−1
, P 1 (output)

−2
}
. Repeating this argument 1

2 log n steps we will

have a set Sneeded of
√
n positions that are needed in order to ensure that after 1

2 log n steps the position
will be the output. Notice that Sneeded might hold less than

√
n positions due to duplicates, but by

the uniformity of P 1 and the birthday paradox, the set will hold O (
√
n) distinct random positions.

On the other hand, the set Savailable of values that are available after 1
2 log n steps from position 1

has
√
n random positions. With the same argument as before, Savailable holds O (

√
n) distinct random

positions. Arguing for the birthday paradox again, w.h.p there is a position in Sneeded ∩ Savailable so
w.h.p some string of length log n bits is a full path.

A similar argument can be used to claim the same for the length of the shortest path from position
1 to any position and for the length of the shortest path from any position to the output.

4.2 A path is valid if it is c log n-positive

We would like to be able to answer queries of the form �is the following string of up to 2 log n+ c bits
a valid path from the �rst position to the output of the permuter?�. A suggested path is k-positive if
k di�erent instances were found in the known ciphertext (including overlaps) and all instances apply
the same path parity behavior a. That is, when a bit b is inserted just before the bits representing
a path are inserted, the output is always b ⊕ a for any b. Larger k means that the suggested path is

6



valid with higher probability. By setting the required known ciphertext length to be k · 22 logn+c, the
expected number of instances of an arbitrary string of length 2 log n+ c bits it at least k.

The validity of a path depends only on the random permutation P 1. Taking the probability over
the key distribution, a suggested path is valid with probability about 1

n given that no pre�x of it is a
valid path. Note that the answer of a query depends on the random key but also on the random data
(the given plaintext/ciphertext).

A valid path with k instances will always be considered k-positive. A non valid path with k
instances will be considered k-positive with probability about 2−k+1. Such an event occurs when for
each instance, the output bit o is correlated to the input bit b. Since it is given that the path is not
valid, it means that o is not related to b, but is the result of the travel of another input bit b′. The
�rst instance de�nes the correlation a so the probability is only over the other k − 1 instances.

We will answer the validity of a suggested path according to the grade the path received: negative or
k-positive. Unfortunately, the answers may be erroneous, and we have to consider the error probability.

Given that a query answer is negative, the path is de�nitely non valid so the query can not err.
Given that a query answer is k-positive, the probability that the path is actually non-valid and

thus the query errs is as following:

Pr [non-valid | k-positive] ≈ 2−(k−1−logn)

Taking k = c log n will result in an error probability of 1
poly(n) . Since the total number of such

queries is n2, with a good choice of k, no query is expected to err.

4.3 The Actual Attack

We will divide the attack into 3 phases: data processing, path-su�xes mapping, and revealing P 1.
In the �rst phase we will process the given data. In order to answer queries for the validity of

suggested paths quickly, we would use a su�x tree over the known ciphertext bits. Any such query will
travel along the su�x tree twice. Let b ∈ {0, 1} be the tested input bit, 〈path〉 be the bits representing
the suggested path and ob the output bit that was outputted after the insertion of b ◦ 〈path〉. A query
will check for the consistency of b ⊕ ob. The �rst tree travel will �nd all the su�xes that start with
0 ◦ 〈path〉. For each su�x calculate the output bit. If not all the output bits are the same, return
false. Else, remember this output bit as o0. The second tree travel is similar but will consider all the
su�xes that start with 1 ◦ 〈path〉 and if all the output bits are the same, remember the output bit as
o1. Return the boolean expression 0⊕ o0 = 1⊕ o1.

In the second phase we will build a dictionary of n path-su�xes, where the length of each path-
su�x is about log n bits. We will start by �nding the shortest path-su�x A{0}1 such that 0 ◦ A{0}1
is a path. The method for �nding this path checks for A{0}1 all strings in lexicographic order until a
positive path is found.

Having A{0}1 with expected length log n bits, store it in a dictionary with A{0}1 as the key and 1
as the data.

Do the same for any path-pre�x of i zeros, i ∈ [n− 1]. The data for each new path-su�x A{0}i
is i. For every i ∈ [n− 1], after �nding A{0}i , �nd the shortest path-pre�x R such that R ◦ A{0}i is
a valid path. In the next iteration, use R to �nd A{0}i+1 for the path-pre�x R ◦ 0. This compression
technique makes sure that the queries are always up to 2 log n+ c bits long while we keep track of the
starting positions of the path-su�xes.

After the second phase, a dictionary with path-su�xes from any position in {2, . . . , n} is available.
The third phase is very similar to the second phase but instead of path-pre�xes of zeros, run path-

pre�xes of ones. Instead of storing A{1}i , �nd it in the dictionary. Since any jump but the last one has
an end-index in {2, . . . , n}, the order of the generated path-su�xes guarantees that we �nd it as a key
in the dictionary. For each j ∈ [n− 1], we �nd i ∈ [n− 1] such that A{1}j = A{0}i and it means that

the j'th jump of P 1 reaches position i+ 1. Having the end-indices of all the jumps in P 1, we revealed
P 1.

7



Complexities The length of each path is at most 2 log n + c and we would like that each string of
2 log n + c bits will have at least k = c log n instances for low error probability. Therefore, we need
O
(
n2 log n

)
bits of data.

Building the su�x tree is done in linear time in the size of the data, O
(
n2 log n

)
. Each query to

the su�x tree costs O (log n) since the query length is O (log n) and the number of leaves to consider
for each query is not more than O (log n) leaves. Even if more leaves are available, there is no need to
consider them.

For i ∈ [n− 1], �nding A{0}i , A{1}i , R costs n su�x tree queries, so total n2 su�x tree queries are
processed. The dictionary can be implemented with a simple table with constant time insertion and
look up. The total cost of the attack is O

(
n2 log n

)
.

The following table describes the complexity of the attack for various key sizes (without actually solving
the resultant sparse system of linear equations). The �rst column is the size of the permuter. The
second column is the key size dlog (n!)e in bits, without the additional n+ 1 key-bits needed to de�ne
K0,K1. The third column is the attack time in seconds on a single PC. For each key size, we repeated
the attack 100 times and did not encounter any failures.

n key size attack time [sec]

24 45 0.115
25 118 0.7
26 296 4.85
27 717 24.7
28 1684 160
29 3876 917
210 8770 5125

References

[1] John Forbes Nash Jr. Cryptosystem proposal letters. http://www.nsa.gov/public_info/_files/
nash_letters/nash_letters1.pdf, January 1955.

[2] NSA Press Release. National Cryptologic Museum Opens New Exhibit on Dr. John Nash. http:
//www.nsa.gov/public_info/press_room/2012/nash_exhibit.shtml, January 2012.

A An example of secret bits reduction

We will use the permuter described in �gures 2 and 3 to give an example of the process described in
section 3.2. The bits z0, . . . , z7 are as following:

bit mark⊕7
j=1K

0
j z0

K1
1 ⊕

⊕2
j=1K

0
j z1

K1
2 ⊕

⊕4
j=3K

0
j z2

K1
3 ⊕

⊕6
j=5K

0
j z3

K1
4 ⊕K0

6 z4
K1

5 ⊕
⊕5

j=2K
0
j z5

K1
6 ⊕

⊕3
j=2K

0
j z6

K1
7 ⊕

⊕7
j=4K

0
j z7

Consider an output bit o. It started as a known bit b, then went through a series of XORs with
bits from K0 and K1 and eventually was outputted. Assume that the permutations are known. Lets

8

http://www.nsa.gov/public_info/_files/nash_letters/nash_letters1.pdf
http://www.nsa.gov/public_info/_files/nash_letters/nash_letters1.pdf
http://www.nsa.gov/public_info/press_room/2012/nash_exhibit.shtml
http://www.nsa.gov/public_info/press_room/2012/nash_exhibit.shtml


say that the output equation is:

o = b⊕K1
1 ⊕K0

3 ⊕K0
4 ⊕K0

5 ⊕K0
6 ⊕K1

4 ⊕K1
5 ⊕K0

2 ⊕K0
3 ⊕K1

7

Now we will show how to express o⊕ b as a function of the above n+ 1 = 8 bits {zi}7i=0.
Start with the expression a′ = z0. We would like that the expression will represent the path that

the bit b traveled in the permuter. Currently, it looks like if the bit started from the �rst position and
moved right all the way with P 0 until the output. This is not true and we will �x it. The �rst move
was the �rst jump of P 1. This means that b jumped from position 1 to position 3 by P 1. Therefore,
we need to replace the current path from position 1 to position 3 by a single jump of P 1. We will
replace K0

1 ⊕K0
2 with K1

1 . Adding z1 to a′ will do that.
The expression now is a′ = z0 ⊕ z1. The second jump is from position 3 to position 4 by a step of

P 0. This step is already accounted for in a′ so there is no need to update a′. The same goes for the
third, forth and �fth jumps because they are by steps of P 0 from position 4 to position 7.

The current path represented in a′ is from position 1 to position 3 by a single jump of P 1 and from
position 3 to the output by 5 steps of P 0.

The sixth jump is by P 1 from position 7 to position 6. Therefore, we need to add to the represented
path a jump backward from position 7 to position 6 by P 1 and then a step forward from position 6 to
position 7 by P 0. It is intuitive to consider this change as if we cut the represented path in position 7
and insert a new subpath 7→ 6→ 7. The change is made by adding z4 to a′.

The expression now is a′ = z0 ⊕ z1 ⊕ z4 and it matches the required path only up to the seventh
jump.

The seventh jump is from position 6 to position 2 by a jump of P 1. As before, we will cut the path
in position 6 and insert the subpath 6→ 2→ 3→ 4→ 5→ 6. The change is made by adding z5 to a

′.
The expression now is a′ = z0⊕ z1⊕ z4⊕ z5 and it matches the required path only up to the eighth

jump.
The eighth and ninth jumps are from position 2 to position 4 by steps of P 0 so no need to change

a′.
The tenth jump is from position 4 to the output by P 1 so we need to replace the represented

subpath 4→ 5→ 6→ 7→ output with a single jump of P 1 4→ output. This is done by adding z7 to
a′.

We iterated over all the jumps from position 1 to the output and our expression equals to the same
path parity behavior as the original expression.

o⊕ b = z0 ⊕ z1 ⊕ z4 ⊕ z5 ⊕ z7

9


	Introduction
	The stream cipher
	Reducing the effective number of keys to n!2n+1
	A single secret permutation is sufficient to mimic the effect of two secret permutations
	n+1 secret flipping bits are sufficient to mimic the effect of 2n secret flipping bits

	A known plaintext attack with time and data complexities of O(n2logn)
	The length of the shortest path is logn with high probability
	A path is valid if it is clogn-positive
	The Actual Attack

	An example of secret bits reduction

