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Abstract

In this paper, we present a generalization of Edwards model for elliptic curve which is
de�ned over any �eld and in particular for �eld of characteristic 2. This model generalize
the well known Edwards model of [10] over characteristic zero �eld, moreover it de�ne an
ordinary elliptic curve over binary �elds. For this, we use the theory of theta functions and
an intermediate model embed in P3 that we call a level 4-theta model. We then present an
arithmetic of this level 4-theta model and of our Edwards model using Riemann relations of
theta functions. The group laws are complete, i.e., none exceptional case for adding a pair
of points; their are also uni�ed, i.e., formulas using for addition and for doubling are the
same. Over binary �elds we have very e�cient arithmetics on ordinary elliptic curve, but
over odd �eld our explicit addition laws are not competitives. Nevertheless, we give e�cient
di�erential addition laws on level 4-theta model and on Edwards model de�ned over any
�elds.
Keywords: Edwards model, elliptic curve, e�cient arithmetic, complete addition law, dif-
ferential addition, theta functions, Riemann relations.

1 Introduction

In [10], Edwards has described the model Edc : x
2 + y2 = c2(1 + x2y2) for elliptic curve over

�eld of odd characteristic K. He gave group law formulas: let P1 = (x1, y1) and P2 = (x2, y2)
be two points on the curve Edc, then the coordinates of the sum P3 = P1 + P2 = (x3, y3) are
given by:

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)
and y3 =

y1y2 − x1x2

c(1− x1x2y1y2)
. (1)

The group law on Edc is uni�ed, this mean that it can be used to compute the double of a
point. But this group law is not complete, i.e. it does not work for every pair of inputs. In
fact, notice that if x 6= 0, y 6= 0, and the point (x, y) ∈ Edc then so are (±1/x,±1/y). But we
can not compute the sum of (x, y) and (1/x, 1/y) because denominator of y3 vanishes. Also in
projective coordinates addition law 1 is not complete.
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1

mailto:oumar.diao@univ-rennes1.fr
mailto:emmanuelfouotsa@prmais.org


2 O. Diao and E. Fouotsa

To �ll this gap, Bernstein and Lange introduced in [3] a more general model de�ned by
BLc,d : x2 + y2 = c2(1 + dx2y2) over �elds K of odd characteristic. Using the birational map
(x, y) 7→ (x, y) = (x 4

√
d, y 4
√
d), one can transform the classical Edwards model Edc : x

2 + y2 =
c2(1 + x2y2) to the model BLc,d : x2 + y2 = c2(1 + dx2y2), where c = c/ 4

√
d. Then, one can

derive the group law formulas on BLc,d. The formulas are also uni�ed and if d is not a square in
K they are complete. But BLc,d and its twisted ax2 + y2 = 1+ dx2y2 in [4] always give singular
model over binary �elds.

To solve this problem over characteristic 2 �eld, Bernstein, Lange, and Farashahi introduced
in [5] the ordinary binary Edwards model de�ned by EB,d1,d2 : d1(x + y) + d2(x

2 + y2) =
xy + xy(x + y) + x2y2 over a characteristic 2 �eld K. The authors of [23] deduced a new
Edwards model with e�cient arithmetic by cancelling the quartic monome of EB,d1,d2 . But, the
connection between binary Edwards curves of [5, 23] and classical Edwards model Edc of [10]
is mysterious. To solve this problem, Diao in [9, chapter 7] introduced a new binary Edwards
model which is deduced from the well known Edwards model. However model in [9] does not
have an e�cient arithmetic.

Contribution of this paper: A �rst contribution in this work is to introduce a generalization
of Edwards model of elliptic curves which is valid over �elds of all characteristic. For this, we use
an intermediate model given by level 4-theta functions which is also de�ned in all characteristic.
According to [10], the general Edwards model and the level 4-theta model are called normal
forms of elliptic curves. The explicit formulas for arithmetic of these normal forms are given by
Riemann theta relations. Addition and doubling can be done by same formulas, i.e., the group
law is uni�ed.

Moreover we prove that these group laws are also complete, i.e. they work for any pair of
input points. More precisely let Fq be the �eld of de�nition of normal forms of elliptic curves. We
prove that if q ≡ 3 mod 4 then addition laws on normal forms are complete. If q 6≡ 3 mod 4, then
we have a condition of completness depending of curve parameters or we can �nd a subgroup of
odd order of normal forms where addition laws are complete.

Over binary �eld, the group laws of normal forms are competitives with the well known
models of elliptic curve and moreover the addition on level 4-theta model is the more e�cient
formulas on ordinary elliptic curve in our knowledge. Indeed denote by M the multiplication, S
the square andm the multiplication by constant over �eld K, then addition laws cost respectively
7M + 2S + 2m and 12M + 2S for respectively level 4-theta model and Edwards model de�ned
over binary �elds.

Over �elds of odd characteristic, the group laws of normal forms are not competitives. How-
ever we give the di�erential addition formulas for normal forms which are competitives. Indeed
compute the point nP for integer n and point P on normal forms cost 4M + 3S + 4m and
5M + 5S + 2m per bits for respectively level 4-theta model and Edwards model de�ned over
�elds of odd characteristic.

Outline: This paper is divided into �ve sections: in Section 2, we brie�y review the theory
of theta functions. We give in Section 3 the equations of level 4-theta model, and we study
the arithmetic and the completness of this model. We use the result of Section 3 to deduce
the equation and arithmetic of our Edwards model in Section 4. In Section 5 we study the
di�erential addition on level 4-theta model and Edwards model.
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2 Theta functions

This section is dedicated to the tools we use to study normal forms of elliptic curve. Theta func-
tions are holomorphics form over complex �eld C which give some algebraic Riemann relations.
With Lefschetz principle [20, �6], these Riemann relations are valid over any algebraically closed
�eld of characteristic 0. In this section we only consider elliptic curve de�ned over complex
�eld C and for elliptic curves over �nite �eld, we use Lefschetz principle . More precisely let
E : f(x, y) = 0 be elliptic curve de�ned over �nite �eld Fq of characteristic p > 0, we lift the
coe�cients of polynom f(x, y) over Zq the integer ring of Qq an unrami�ed extension of Qp. We
�x an embedding Qq ↪→ C and let Qq be the algebraic extension of Qq. Let E/Qq be a canonical
lift of E over Qq (i.e. End(E/K) ≡ End(E/Qq)). According to Lefschetz principle, algebraic
relations de�ned over C are also valid over Qq.

Let E/C be an elliptic curve de�ned over complex �eld C, there exists ω ∈ C with positive
de�ned imaginary part such that the curve E and the torus C/(ωZ+Z) are analytically isomor-
phic. Theta functions are holomorphics form of C which are pseudo-periodic by any translation
over the lattice ωZ+ Z.

2.1 General de�nition

Let H1 be the one dimensional Siegel upper-half space over C and let a, b ∈ Q, the theta function
with rational characteristics (a, b) is by de�nition an analytic function on C×H1 given by:

θa,b(z, ω) =
∑
n∈Z

exp
(
iπ(n+ a)2ω + 2iπ(n+ a)(z + b)

)
. (2)

The classical theory of theta functions provide a projective embedding of C/(ωZ+Z) = EC
in projective space P`−1 for some integer ` ≥ 3 (for more details, see [19, p. 267]). To be more
precise, we say that a function f ∈ C is (ωZ + Z)-quasi-periodic of level ` ∈ N if for all z ∈ C
and m,n ∈ Z, we have f(z + ωm + n) = exp

(
−i`πm2ω − 2i`πmz

)
f(z). For ` ∈ N?, the set

R`,ω of (ωZ+ Z)−quasi-periodic of level ` is a C−vector space of dimension `, whose basis can
given by theta functions with characteristics B` :=

{
θ0,b(z, `

−1ω), b ∈ 1
`Z/Z

}
. If ` = k2, then an

alternative basis of R`,Ω is B(k,k) :=
{
θa,b(kz, ω), a, b ∈ 1

kZ/Z
}
. If ` ≥ 3, then we can consider

elements of basis of R`,ω as projective coordinates of P`−1. And for ` = 2, the image of R`,Ω in
P`−1 is the Kummer variety associated to E, which is the quotient of E by automorphism −1.
The change of basis between B` and B(k,k) can be obtained by formula:

θ0,b(z, `
−1ω) =

∑
α∈ 1

k
Z/Z

θα,kb(kz, ω). (3)

2.2 Riemann theta relations

Riemann theta relations give algebraic relations between theta functions. With these relations,
one can recover the addition law on an ordinary elliptic curve. Denote by θi(z) := θ0,i(z, `

−1ω),
then Riemann theta relations are given by the following theorem:

Theorem 1 Let i, j, k and l be in Z/2`Z. Assume that i′ = (i+ j + k + l)/2, j′ = (i+ j − k −
l)/2, k′ = (i − j + k − l)/2 and l′ = (i − j − k + l)/2 be in Z/`Z. Let z1 and z2 be elements in
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C. Then, for any characters χ over 1
2Z/Z the theta functions of level ` satisfy: ∑

η∈ 1
2
Z/Z

χ(η)θi+η(z1 + z2)θj+η(z1 − z2)


 ∑
η∈ 1

2
Z/Z

χ(η)θk+η(0)θl+η(0)


=

 ∑
η∈ 1

2
Z/Z

χ(η)θi′+η(z1)θj′+η(z1)


 ∑
η∈ 1

2
Z/Z

χ(η)θk′+η(z2)θl′+η(z2)

 . (4)

Proof: this is a particular case of g = 1 of [15, Theorem 1]. �
By de�nition, theta constants are the evaluation of theta functions at 0. Formula (4) is

de�ned when theta constants satisfy
∑

η∈ 1
2
Z/Z χ(η)θk+η(0)θl+η(0) 6= 0 which we always assume.

According to Lefschetz principle, relations (4) are also valid over Qq and then are also valid mod-
ulo odd prime p ≥ 3. But, relations (4) are not valid in characteristic 2, because of characters.
To remove characters on relations and give general relations which are valid in characteristic 2,
we have the following

Corollary 2 Consider the notation in Theorem 1, the Riemann theta relations (4) can be rewrit-
ten as follow: ∑

η∈ 1
2
Z/Z

θi+η(z1 + z2)θj+η(z1 − z2)θk+η(0)θl+η(0)

=
∑

η∈ 1
2
Z/Z

θi′+η(z1)θj′+η(z1)θk′+η(z2)θl′+η(z2). (5)

Proof: The Riemann relations (4) can be rewrite as:∑
η,η′∈ 1

2
Z/Z

χ(η + η′)θi+η(z1 + z2)θj+η(z1 − z2)θk+η′(0)θl+η′(0)

=
∑

η,η′∈ 1
2
Z/Z

χ(η + η′)θi′+η(z1)θj′+η(z1)θk′+η′(z2)θl′+η′(z2). (6)

Summing under all characters χ on the dual 1̂
2Z/Z gives the desired result. �

The previous theorem gives formulas (8), i.e. the addition law on level 4 theta model Eλ1,λ2
de�ned over any �eld (i.e. Eλ1,λ2 has a good reduction modulo p for any prime p).

3 Level 4-theta model

In this section, we de�ne the level 4-theta model of elliptic curve which is valid over any �eld.
In binary �eld, this level 4-theta model is ordinary and have a rational point of order 4. We also
give the arithmetic of level 4-theta model over any �eld.

3.1 Model valid over any �eld

Model over odd characteristic. Let K be a �eld in odd characteristic. Let λ ∈ K be a
non-zero constant. In the projective space P3 := P3(K) with homogeneous coordinates [X0 :
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X1 : X2 : X3]. Taking z2 = 0 and Xi = θi(z1) in formula (4) we have a model of an elliptic
curve over P3, which can be written as intersection of two quadrics (see also [17, page 352]):

Eλ1,λ2 :

{
X2

0 +X2
2 = λ1X1X3

X2
1 +X2

3 = λ2X0X2
, λi ∈ K?.

with the theta null point [a0 : a1 : a2 : a3] given by theta constants ai = θi(0), i = 0, 1, 2, 3, with
a1 = a3. Hence one can �nd a relation between λ1, λ2 and theta null point: λ1 = (a2

0 + a2
2)/(a

2
1)

and λ2 = 2a2
1/(a0a2). Where

λ1 = λ2 ⇐⇒ a0a2(a
2
0 + a2

2) = 2a4
1 (7)

is a famous Jacobi relation which plays a central role in this paper.

Model over even characteristic. For even characteristic, to have the level 4 theta model,
it su�ces to compute the 2−adic valuation of theta constants. For this, let K be a �nite �eld
of characteristic 2 and let W(K) be the ring of Witt vectors with coe�cients in K. Carls in [7]
prove that on canonical lift EW(K) we have for all i ∈ Z/`Z relations a2

i = α
∑

j φ(ai+j)φ(aj)
where φ is the lift of the Frobenius of K over W(K) and α is a constant. Therefore, we have
v2(a0) = 0 and v2(a2) = 1, where v2 is the 2−adic valuation. Then, there exists c0 and c2 such
that a0 = c0 and a2 = 2c2. Finally we have respectively λ1 = c2

0 +4c2
2 and λ2 = 1/(c0c2). Then,

the equations of level 4 theta model of elliptic curve over �eld K of even characteristic have good
reductions:

Eλ1,λ2 :

{
X2

0 +X2
2 = λ1X1X3

X2
1 +X2

3 = λ2X0X2
, where λi ∈ K?.

Valid model over any �eld. Let K be a �eld of characteristic p ≥ 0. Then a level 4-theta
model can be de�ne by the intersection of two equations:

Eλ1,λ2 :

{
X2

0 +X2
2 = λ1X1X3

X2
1 +X2

3 = λ2X0X2
,

where λ1 = c2
0 + 4c2

2, λ2 = 1/(c0c2) ∈ K?, and c0 = θ0(0) and c2 = 1
2θ2(0). Jacobi relation (7)

become c0c2(c
2
0 + 4c2

2) = 1 and the set of points (c0, c2) ∈ A2(K) satisfying Jacobi relation is a
curve C de�ned over K. The number of rationals points of C is equal to the number of level
4-theta model de�ned over K. In the above de�nitions the condition λ1λ2 6= 0 ensures that the
level 4-theta model Eλ1,λ2 is not singular. Indeed, if we assume that [X0 : X1 : X2 : X3] is a
singular point, then the rank of the following matrix can not be two.(

2X0 −λ1X3 2X2 −λ1X1

−λ2X2 2X1 −λ2X0 2X3

)
.

3.2 Addition law in level 4-theta model

Our addition law come from Riemann theta relations which are valid over all characteristic. Let
O0 := [c0 : 1 : 2c2 : 1] be the theta null point given by 2−adic valuation of theta constants.

Theorem 3 Let P1 = [X1,0 : X1,1 : X1,2 : X1,3] and P2 = [X2,0 : X2,1 : X2,2 : X2,3] be two
points on Eλ1,λ2, the coordinates of sum P1 + P2 = P3 are given by formulas:

X3,0 = (X2
1,0X

2
2,0 +X2

1,2X
2
2,2)− 4(c2/c0)X1,1X1,3X2,1X2,3

X3,1 = c0(X1,0X1,1X2,0X2,1 +X1,2X1,3X2,2X2,3)− 2c2(X1,2X1,3X2,0X2,1 +X1,0X1,1X2,2X2,3)
X3,2 = (X2

1,1X
2
2,1 +X2

1,3X
2
2,3)− 4(c2/c0)X1,0X1,2X2,0X2,2

X3,3 = c0(X1,0X1,3X2,0X2,3 +X1,1X1,2X2,1X2,2)− 2c2(X1,0X1,3X2,1X2,2 +X1,1X1,2X2,0X2,3)

. (8)
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Proof: Let B(i, j, k, l) =
∑

β∈ 1
2
Z/Z θi′+β(z1)θj′+β(z1)θl′+β(z2)θk′+β(z2), Zi,j = θi(z1 + z2)θj(z1 −

z2) and δk,l = θk(0)θl(0) = akal. The equations (5) lead to a system of linear equations:

(S)

{
δk,lZi,j + δk+2,l+2Zi+2,j+2 = B(i, j, k, l)
δk+2,lZi,j + δk,l+2Zi+2,j+2 = B(i, j, k + 2, l)

The determinant of the system (S) is det(S) = alal+2(a
2
k − a2

k+2). In characteristic zero, one
can choose k /∈ {1, 3} as a1 = a3 to have a non-vanishing determinant. Then Cramer method to
resolve the system (S) gives:

θi(z1 + z2)θj(z1 − z2) =
δk,l+2B(i, j, k, l)− δk+2,l+2B(i, j, k + 2, l)

δk,lδk,l+2 − δk+2,l+2δk+2,l

=
akB(i, j, k, l)− ak+2B(i, j, k + 2, l)

al(a
2
k − a2

k+2)
. (9)

if k /∈ {1, 3}, then a2
k − a2

k+2 never vanishes modulo any prime p. To avoid a zero denominator
in any characteristic we �x k = 0 and l = i+ j. Then for i ∈ {0, 1, 2, 3} we can simplify (9) by
a2

0 − a2
2 in projective coordinates to have:

θi(z1 + z2)θj(z1 − z2) =
a0B(i, j, 0, i+ j)− a2B(i, j, 2, i+ j)

ai+j
. (10)

In (10) we �x j equal respectively to 0, 1, 2 and 3 to have 16 formulas for i ∈ {0, 1, 2, 3} (see
appendix A):

θi(z1 + z2)θ0(z1 − z2) =
a0B(i, 0, 0, i)− a2B(i, 0, 2, i)

ai
, (11)

θi(z1 + z2)θ1(z1 − z2) =
a0B(i, 1, 0, i+ 1)− a2B(i, 1, 2, i+ 1)

ai+1
, (12)

θi(z1 + z2)θ2(z1 − z2) =
a0B(i, 2, 0, i+ 2)− a2B(i, 2, 2, i+ 2)

ai+2
, (13)

θi(z1 + z2)θ3(z1 − z2) =
a0B(i, 3, 0, i+ 3)− a2B(i, 3, 2, i+ 3)

ai+3
. (14)

Relations (11) give the addition law formulas in (8) by simplifying by θ0(z1 − z2). Reminding
that ci = ai if i 6= 2 and 2c2 = a2 these relations are (see appendix A for more details):

θ0(z1 + z2)θ0(z1 − z2) =
c0B(0, 0, 0, 0)− 2c2B(0, 0, 2, 0)

c0
,

θ1(z1 + z2)θ0(z1 − z2) =
c0B(1, 0, 0, 1)− 2c2B(1, 0, 2, 1)

c1
,

θ2(z1 + z2)θ0(z1 − z2) =
c0B(2, 0, 0, 2)− 2c2B(2, 0, 2, 2)

2c2
,

θ3(z1 + z2)θ0(z1 − z2) =
c0B(3, 0, 0, 3)− 2c2B(3, 0, 2, 3)

c3
.

If l = i = 2, the numerator and denominator of (11) are divisible by 2 such that we can simplify
by 2 before reducing modulo 2. Nevertheless one can avoid a2 in the denominator by using this
alternative relation

θi(z1 + z2)θ0(z1 − z2) =
a0B(i, 0, 0, i+ 2)− a2B(i, 0, 2, i+ 2)

ai+2
,
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which gives

θ2(z1 + z2)θ0(z1 − z2) =
c0B(2, 0, 0, 0)− 2c2B(2, 0, 2, 0)

c0
.

These relations give the theta of the sum θi(z1 + z2) in term of θi(z1) and θi(z2), and hence the
addition formulas in any �elds (see appendix B for sage script veri�cation). �

These formulas are valid modulo any prime p. In characteristic 2, the addition law formulas
are given by:

X3,0 = (X1,0X2,0 +X1,2X2,2)
2

X3,1 = c0(X1,0X1,1X2,0X2,1 +X1,2X1,3X2,2X2,3)
X3,2 = (X1,1X2,1 +X1,3X2,3)

2

X3,3 = c0(X1,0X1,3X2,0X2,3 +X1,1X1,2X2,1X2,2)

. (15)

The neutral element is the theta null point: i.e. O0 = [c0 : 1 : 2c2 : 1] over all char-
acteristic, which become 00 := [c0 : 1 : 0 : 1] for characteristic 2. Over all characteristic,
the opposite of point P = [X0 : X1 : X2 : X3] is −P = [X0 : X3 : X2 : X1] (the sec-
ond coordinate and the fourth coordinate are permuted). The additions laws (8) and (15),
for respectively odd and even characteristic, are also valid for doubling: they are uni�ed ad-
ditions laws. More precisely, let [X1,0, X1,1, X1,2, X1,3] be a point on Eλ1,λ2 the coordinates of
2[X1,0, X1,1, X1,2, X1,3] = [X5,0, X5,1, X5,2, X5,3] are:

X5,0 = X4
1,0 +X4

1,2 − 4(c2/c0)X
2
1,1X

2
1,3

X5,1 = c0(X
2
1,0X

2
1,1 +X2

1,2X
2
1,3)− 4c2X1,0X1,1X1,2X1,3

X5,2 = X4
1,1 +X4

1,3 − (c2/c0)X
2
1,0X

2
1,2

X5,3 = c0(X
2
1,0X

2
1,3 +X2

1,1X
2
1,2)− 4c2X1,0X1,1X1,2X1,3

(16)

Observe that Kohel in [14] uses another approach as in [13] to obtain formulas (15) in
characteristic 2. Denote respectively by M,S and m the cost of multiplication, square and
multiplication by a constant over �eld K. In characteristic 2, we have an e�cient algorithm to
compute point addition formulas (see ��4.3.2 for comparaison with previous work). For e�ciency
in odd characteristic we use a sextuplet represention to give an algorithm for point addition.
The cost is given in the following corollary.

Corollary 4 (Costs of addition) Addition of two generic points on Eλ1,λ2 can be done in:

(a) 7M + 2S + 2m, when K is a binary �eld;

(b) 11M + 8S + 6m, when K is a �eld of odd characteristic.

Proof: (a) Over binary �eld point addition formulas can by computed as:

A := X1,0·X2,0; B := X1,1·X2,1; C := X1,2·X2,2; D := X1,3·X2,3; X3,0 := (A+ C)2;
X3,2 := (B +D)2; X3,1 := c0(A·B + C·D); X3,2 := X3,1 + c0(A+ C)·(B +D),

which cost 7 multiplications and 2 squares and 2 multiplications by constant c0.

(b) For e�ciency over �elds of odd characteristic a point [X0 : X1 : X2 : X3] is represented
as a sextuplet (X0, X1, X2, X3, X0X1, X2X3). Thus the sum (X3,0, X3,1, X3,2, X3,3, U3, V3) of
the points represented by (X1,0, X1,1, X1,2, X1,3, U1, V1) and (X2,0, X2,1, X2,2, X2,3, U2, V2) where
U1 = X1,0X1,1; V1 = X1,2X1,3 and U2 = X2,0X2,1; V2 = X2,2X2,3 can be computed with the
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algorithm:

A := X1,0·X2,0; B := X1,1·X2,1; C := X1,2·X2,2; D := X1,3·X2,3; E := A2; F := B2;
G := C2; H := D2; X3,0 := E +G+ 2(c2/c0)((B −D)2 − F −H);
X3,2 := F +H + 2(c2/c0)((A− C)2 − E −G); I := ((A+B)2 − E − F )/2;
J := ((C +D)2 −G−H)/2; K := (U1 + V1)·(U2 + V2)− I − J ;
L := (A+ C)·(B +D)− I − J ; X3,1 := c0(I + J)− 2c2K;
E := (X1,0 +X1,2)·(X1,3 +X1,1)− U1 − V1; F := (X2,0 +X2,2)·(X2,3 +X2,1)− U2 − V2;
G := E·F − L; X3,3 := c0L− 2c2G; U3 := X3,0·X3,1; V3 := X3,2·X3,3,

which cost 11M + 8S + 6m where 6m equal to 2 multiplications by constant c0 and 2 multipli-
cations by 2c2 and 2 multiplications by 2c2/c0. �

Lemma 5 Let Eλ1,λ2 be the level 4-theta model of an elliptic curve over �eld K of characteristic
p ≥ 0. Then:

(1) Eλ1,λ2 has a rational point of order 4.

(2) Moreover, if p 6= 2, then Eλ1,λ2 has a rational point of order 8.

Proof: Let S4 be the group of permutation on {0, 1, 2, 3}. Let σ = (0, 1, 2, 3) be the hull
permutation of S4 and denote by H1 = 〈σ〉 the subgroup of S4 generated by σ. Remark that
if P = [X0 : X1 : X2 : X3] is in Eλ1,λ2 , then so are [X1 : X2 : X3 : X0], [X2 : X3 : X0 : X1]
and [X3 : X0 : X1 : X2]. Then, there exists an action of H1 on points of Eλ1,λ2 given by:
σ([X0 : X1 : X2 : X3]) = [Xσ(0) : Xσ(1) : Xσ(2) : Xσ(3)]. Under this action, cardinal of Eλ1,λ2 is
divisible by 4. Moreover, if the characteristic of K is not 2, then we have also an action on E
given by: τ([X0 : X1 : X2 : X3]) = [−X0 : X1 : −X2 : X3] = [X0 : −X1 : X2 : −X3]. Under this
second action, the cardinal of orbit is 2. �

Over non binary �eld, a part from the neutral element O0 = [c0 : 1 : 2c2 : 1], the level 4-theta
model has 3 points of order 2 namely Õ0 = [−c0 : 1 : −2c2 : 1], O1 := [2c2 : 1 : c0 : 1] and Õ1 :=
[−2c2 : 1 : −c0 : 1]. The four points of order 4 are A1 := [1 : 2c2 : 1 : c0], Ã1 := [−1 : 2c2 :
−1, c0], A2 := [1 : c0 : 1 : 2c2] and Ã2 := [−1 : c0 : −1 : 2c2]. Let P = [X0 : X1 : X2 : X3] be a
point on level 4-theta model Eλ1,λ2 , the actions of these rationals points of order 2 and 4 are:

P +O0 = [X0 : X1 : X2 : X3] , P + Õ0 = [−X0 : X1 : −X2 : X3] ,

P +O1 = [X2 : X3 : X0 : X1] , P + Õ1 = [−X2 : X3 : −X0 : X1] ,

P +A1 = [X1 : X2 : X3 : X0] , P + Ã1 = [−X1 : X2 : −X3 : X0] ,

P +A2 = [X3 : X0 : X1 : X2] , P + Ã2 = [−X3 : X0 : −X1 : X2] .

These formulas give: P + σi(O0) = σi(P ) and P + τ i(O0) = τ i(P ), which we can deduce that
σ(P ) + σ(Q) = P +Q+ 2σ(O0) and σ(P )− σ(Q) = P −Q.

Completness of group laws. A complete group law mean that one can compute all pair of
input. This propriety is used to avoid some exceptional procedure attack on elliptic curve cryp-
tosystems [12]. Let K be a �eld of odd characteristic and let Eλ1,λ2 : X2

0 +X2
2 = λ1X1X3, X

2
1 +

X2
3 = λ2X0X2 be a level 4-theta model de�ned over K.

Lemma 6 Let P = [X0 : X1 : X2 : X3] be a point on Eλ1,λ2. If Xi = 0 then we can write P as
of form σj([0 : 1 : ±

√
±ελ1 : ±ε]) for some j = 0, 1, 2, 3 where ε =

√
−1.
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Proof: Without loos of generality we can assume that X0 = 0. If we have also Xj = 0 for
j 6= 0 then be equations of level 4-theta model we will have P /∈ P3. Then X0 = 0 implies
that Xj 6= 0 for j 6= 0. Assume also that X1 6= 0 then X2

2 = λ1X1X3 and X2
1 + X2

3 = 0
or equivalently X3 = ±

√
−1X1 and X2

2 = ±
√
−1λ1X

2
1 . Then over projective space we have

P = σ0([0 : 1 : ±
√
±ελ1 : ±ε]). If now we assume that Xi = 0 and Xi+1 6= 0, we apply a power

of the permutation σi and use the �rst assumption. �

Theorem 7 (completness) If one of these conditions hold in K:

(1) −1 not a square in K, or

(2)
√
−1λ1 not a square in K

then addition formulas (8) are complete.

Proof: Assume that these conditions are not hold, then the addition of P1 = [0 : 1 : ±
√
±ελ1 :

±ε] and P2 = [±c0ε : 1 : ±2c2ε : ±1] is not de�ned. Indeed let P1 = [0 : 1 : X1,2 : ε] be one
point given by lemma 6 and let P2 = [X2,0 : X2,1 : X2,2 : X2,3]. By formulas (8) the coordinates
of sum P1 + P2 are:

X3,0 = (c0X
2
1,2Y

2
2,2 − 4c2X1,3X2,1X2,3)/c0

X3,1 = X1,3X1,2(c0X2,2Y2,3 − 2c2X2,0X2,1)
X3,2 = ε2X2

2,3 +X2
2,1

X3,3 = X1,2(c0X2,1X2,2 − 2c2X2,0X2,3)

.

IfX3,2 = 0 thenX2,3 = ±X2,1 and ifX3,0 = 0 thenX2,2 = ±2c2

√
±1X2,1. Since P2 ∈ Eλ1,λ2 then

X2,0 = ±c0

√
±1X2,1 and then we have P2 = [±c0ε : 1 : ±2c2ε : ±1]. According to lemma 6 the

addition of point of form P1 = [0 : 1 : ±
√
±ελ1 : ε] and point of form P2 = [±c0ε : 1 : ±2c2ε : ±1]

never give an element of P3(K) then is not de�ned by formulas (8). �
The �rst su�cient condition of Theorem 7 hold when K is a �nite �eld Fq of characteristic

p ≥ 3 such that q ≡ 3 mod 4. Notice that all points of form σi([±c0ε : 1 : ±2c2ε : ±1])
given by theorem 7 have an even order, since its coordinates are given by theta constants. This
implies that over any �elds (including binary �elds) addition law on level 4-theta model Eλ1,λ2
is complete in a subgroup of odd order.

Geometric interpretation of group law on Eλ1,λ2. Let P1 and P2 be two points on the
level 4-theta model Eλ1,λ2 . Denote by P(O0, P1, P2) the plane passing through O0, P1 and P2.
Then this plane intersects Eλ1,λ2 at a fourth point Q = −(P1 + P2). Denote also by P(O0, Q)
the tangent plane to the curve at O0 and passing through Q. Then this plane intersects Eλ1,λ2
at a fourth point which is exactly the inverse of Q.

4 Edwards model of elliptic curve

In [10], Edwards gave a normal form for elliptic curve de�ned over an algebraic closed �eld,
which is valid for non-binary �eld and has an uni�ed addition law. From the level 4-theta model
Eλ1,λ2 elliptic curve, we derive an Edwards model which is de�ned over any �eld and which
extends the well known Edwards model.
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4.1 Equation of Edwards model of elliptic curve

Theorem 8 Let K be a �eld of characteristic p ≥ 0. The level 4-theta model Eλ1,λ2 gives a
normal form with equation: Eλ : 1 + x2 + y2 + x2y2 = λxy, where λ = λ1λ2 ∈ K?.

Proof: Divide the �rst equation of Eλ1,λ2 by X
2
0 and the second by X2

1 and consider the following
change of variables: [X0 : X1 : X2 : X3]7−→(x, y) = (X2/X0, X3/X1), we have:

1 + x2 = λ1
X1X3

X2
0

and y2 + 1 = λ2
X0X2

X2
1

.

Multiply the two above equations to have (x2 + 1)(1 + y2) = λ1λ2xy, which can be written as
1+x2+y2+x2y2 = λ1λ2xy. The change of variables gives the neutral element O0 := (2c2/c0, 1)
which becomes (0, 1) over binary �eld. �

Theorem 9 Let K be a non-binary �eld, then the normal model Eλ, with the neutral element
O0 := (2c2/c0, 1) is isomorphic to the well known Edwards model.

Proof: As our new Edwards come from basis B` :=
{
θ0,b(z, `

−1ω), b ∈ 1
`Z/Z

}
. Consider the

alternative basis B(k,k) :=
{
θa,b(kz, ω), a, b ∈ 1

kZ/Z
}
. The formula (3) gives a change of basis:

X0 = θ00(z) + θ10(z)
X1 = θ01(z) + θ11(z)
X2 = θ00(z)− θ10(z)
X3 = θ01(z)− θ11(z)

⇐⇒


θ00(z) = X0 +X2

θ01(z) = X1 +X3

θ10(z) = X0 −X2

θ11(z) = X1 −X3

, where Xi = θi(z).

This change of basis B(k,k) gives an alternative level 4-theta model of elliptic curve de�ned over
non binary �elds (see [18, p. 23] for more details):{

θ2
00(0)T

2
00 = θ2

01(0)T
2
01 + θ2

10(0)T
2
10

θ2
00(0)T

2
11 = θ2

10(0)T
2
01 − θ2

01(0)T
2
10

, where Tij = θij(z) (17)

Setting x′ = T2/T0, y
′ = T3/T1 and c = θ10(0)/θ00(0), the curve (17) is isomorphic to the well

known Edwards model, for more details see [9, Section 7.1.1], which completes the proof. �
According to Theorems 8 and 9, we have this de�nition:

De�nition 1 Let K be a �eld of characteristic p ≥ 0. An Edwards model of elliptic curves can
be given by the equation:

Eλ : 1 + x2 + y2 + x2y2 = λxy, where λ ∈ K?.

Theorem 10 Let K be a �eld of characteristic p ≥ 0 and let λ ∈ K?. Then the Edwards model
de�ned over K is non-singular.

Proof : Our Edwards model is isomorphic to the Edwards model Edc : X
2 +Y 2 = c2(1+X2Y 2)

where c = θ10(0)/θ00(0). The model Edc is non singular if and only if c4 6= 1 (see [10]), i.e
(c0 − 2c2)

4 6= (c0 + 2c2)
4. This condition is equivalent to c0c2(c

2
0 +4c2

2) 6= 0 which is always true
according to Jacobi relation (7). �

A part from the neutral element O0 := (2c2/c0, 1), the Edwards model Eλ : 1+x2+y2+x2y2 =
λxy has three 2−torsion rationals points: P2 = (1/γ, 1), P3 = (−γ,−1) and P4 = (−1/γ,−1),
where γ = 2c2/c0. The Edwards model Eλ also has four 4-torsion points which are rationals over
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K: Q1 = (1, γ), Q2 = (1, 1/γ), Q3 = (−1,−γ) and Q4 = (−1,−1/γ). The actions of rationals
points of order 2 and 4 are:

(x, y) +O = (x, y), (x, y) + P2 = (1/x, 1/y)
(x, y) + P3 = (−x,−y), (x, y) + P4 = (−1/x,−1/y)
(x, y) +Q1 = (1/y, x), (x, y) +Q2 = (y, 1/x)
(x, y) +Q3 = (−1/y,−x), (x, y) +Q4 = (−y,−1/x)

,

Remark 11 If K is a binary �eld, then P3 = O, P4 = P2, Q3 = Q1 and Q4 = Q2. The number
of rationals points of Eλ is then divisible by 4.

4.2 Birational equivalence with Weierstraÿ model

Theorem 12 Let Eλ : 1 + x2 + y2 + x2y2 = λxy be the Edwards model of elliptic curve de�ned
over �eld K of characteristic p ≥ 0.

(1) if p 6= 2, then Eλ is equivalent to a cubic Weierstraÿ model;

(2) if p = 2, then Eλ is equivalent to the Weierstraÿ model v2 + uv = u3 + 1/λ4.

Proof: Theorem 9 gives the birational equivalence between Eλ : 1 + x2 + y2 + x2y2 = λxy and
the well known Edwards model X2 + Y 2 = c2(1 + X2Y 2). This well known Edwards model
is equivalent to the quartic Z2 = c2X4 − (c4 + 1)X2 + c2. Setting X = 2c(u − c4 − 1)/v and
Z = −c + uX2/(2c) the quartic Z2 = c2X4 − (c4 + 1)X2 + c2 is birational equivalent to the
cubic Weierstraÿ model v2 = u3 − (1 + c4)u2 − 4c4u+ 4c4(1 + c4) this proves (1).
For �elds of characteristic 2 the birational map and its inverse between Edwards model and
Weierstraÿ model are

(u, v) 7−→ (x, y) =

(
1

λu
,

λ2v + 1

λ2u+ λ2v + 1

)
and (0, 1) 7→ [0 : 1 : 0]

(x, y) 7−→ (u, v) =

(
1

λx
,
λy + x(y + 1)

λ2x(y + 1)

)
and [0 : 1 : 0] 7→ (0, 1).

which complete the proof (see also [9, p. 65]). �

Corollary 13 (j−Invariant) Let K be a �eld of any characteristic and let Eλ : 1 + x2 + y2 +
x2y2 = λxy be Edwards model over K. The j−Invariant of Eλ is

j =

(
(c4

0 − 4c3
0c2 + 8c2

0c
2
2 + 16c0c

3
2 + 16c4

2)(c
4
0 + 4c3

0c2 + 8c2
0c

2
2 − 16c0c

3
2 + 16c4

2)
)3(

c2c0(c0 − 2c2)(c0 + 2c2)(c2
0 + 4c2

2)
)4 .

Over �eld of characteristic 2 the j−Invariant is λ4 = j mod 2.

Proof : Let K be �eld of characteristic zero, the j−Invariant of Weierstraÿ model v2 = u3− (1+
c4)u2 − 4c4u+ 4c4(1 + c4) over K is:

jW = 24

(
(c4 − 2c3 + 2c2 + 2c+ 1)(c4 + 2c3 + 2c2 − 2c+ 1)

)3
(c(c− 1)(c+ 1)(c2 + 1))4

.

Since c = θ10(0)/θ00(0) = (c0 − 2c2)/(c0 + 2c2) then a straightforward calculation gives the
desired result. Notice that the expression of j is de�ned modulo any prime p then j is de�ned
over �eld of any characteristic. Over �eld of characteristic 2 we have j mod 2 = (c0/c2)

4 = λ4

which is the j−Invariant of Weierstraÿ model v2 + uv = u3 + 1/λ4 in Theorem 12. �
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4.3 Addition on Edwards model

In [9] Diao uses formulas (1) on the well known Edwards model [10] to deduce an addition on
binary Edwards model. Over binary �eld addition law in [9, Theorem 7.4] is not uni�ed and
not e�cient. However to have an uni�ed and more e�cient addition law formulas we use the
addition law on the level 4-theta model. More precisely we have:

Theorem 14 Let (x1, y1) and (x2, y2) be two points of Eλ. The coordinates of the sum (x3, y3) =
(x1, y1) + (x2, y2) are given by:

(x3, y3) =

(
c0(x1 + y1x2y2)− 2c2(y1 + x1x2y2)

c0(y2 + x1y1x2)− 2c2(x2 + x1y1y2)
,
c0(x1x2 + y1y2)− 2c2(x1y2 + y1x2)

c0(1 + x1y1x2y2)− 2c2(x1y1 + x2y2)

)
. (18)

The opposite of the point is −(x1, y1) = (x1, 1/y1) and the neutral element is O0 := (2c2/c0, 1).

One can verify addition law on new Edwards model Eλ by this sage script [22]:

R.<c0,c2,x1,y1,x2,y2> = QQ[]

E1 = c0*c2*(x1^2 + y1^2 + 1 + x1^2*y1^2) - (c0^2 + 4*c2^2)*x1*y1

E2 = c0*c2*(x2^2 + y2^2 + 1 + x2^2*y2^2) - (c0^2 + 4*c2^2)*x2*y2

S = R.quo([E1,E2])

Nx3 = c0*(x1 + y1*x2*y2) - 2*c2*(y1 + x1*x2*y2)

Dx3 = c0*(y2 + x1*y1*x2) - 2*c2*(x2 + x1*y1*y2)

Ny3 = c0*(x1*x2 + y1*y2) - 2*c2*(x1*y2 + y1*x2)

Dy3 = c0*(1 + x1*x2*y1*y2) - 2*c2*(x1*y1 + x2*y2)

x3 = Nx3/Dx3; y3 = Ny3/Dy3

E3 = c0*c2*(x3^2 + y3^2 + 1 + x3^2*y3^2) - (c0^2 + 4*c2^2)*x3*y3

S(numerator(E3)) == 0

Over characteristic 2 �elds the coordinates of sum are obtained by reducing modulo 2:

(x1, y1) + (x2, y2) =

(
x1 + y1x2y2

y2 + x1y1x2
,
x1x2 + y1y2

1 + x1y1x2y2

)
. (19)

Remark 15 Addition group law is uni�ed over any �elds, i.e. addition formulas are also valid
for point doubling. The point doubling formulas can be written as follow:

2(x1, y1) =

(
c0x1(1 + y2

1)− 2c2y1(1 + x2
1)

c0y1(1 + x2
1)− 2c2x1(1 + y2

1)
,
c0(x

2
1 + y2

1)− 4c2x1y1

c0(1 + x2
1y

2
1)− 4c2x1y1

)
. (20)

Over characteristic 2 �elds, the formulas (19) or (20) give the binary doubling formulas:

2(x1, y1) =

(
x1(1 + y1)

2

y1(1 + x1)2
,
(x1 + y1)

2

(1 + x1y1)2

)
. (21)

Since Theorem 7 addition law on Edwards model Eλ de�ned over �eld K is complete over any
subgroup of Eλ of odd order.

Remark 16 One can describe geometrically the group law on Edwards model Eλ using a conic
as the method in [1].
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4.3.1 Explicit formulas

A�ne coordinates. Let (x1, y1) and (x2, y2) be two points on Edwards model Eλ : 1 + x2 +
y2 + x2y2 = λxy de�ned over �elds K. The following formulas compute the sum (x3, y3) =
(x1, y1) + (x2, y2) when it is de�ned:

A = x1·y1; B = x2·y2; C = x1 + y1·B; D = y1 + x1·B; E = y2 + x2·A; F = x2 + y2·A;
G = A+B; H = (x1 + y2)·(x2 + y1)−G; I = (x1 + y1)·(x2 + y2)−H; J = 1 +A·B;
x3 = (c0·C − 2c2·D)/(c0·E − 2c2·F ); y3 = (c0·H − 2c2·I)/(c0·J − 2c2·G)

These formulas cost 2I + 9M + 8m over odd �elds and 2I + 5M over binary �elds, where I is
a �eld inversion, M is a �eld multiplication, S is a �eld squaring, and m a multiplication by a
constant. One can replace 2I by 1I + 3M using Montgomerry's inversion trick.

Remark that the negation of point cost 1 inversion which is too expensive. Nevertheless the
sum and the di�erence of two generics points (x1, y1) and (x2, y2) have the same complexity.
Indeed these following formulas compute the di�erence (x5, y5) = (x1, y1)−(x2, y2) if it is de�ned:

(x5, y5) =

(
c0(x1y2 + y1x2)− 2c2(x1x2 + y1y2)

c0(1 + x1y1x2y2)− 2c2(x1y1 + x2y2)
,
c0(y1 + x1x2y2)− 2c2(x1 + y1x2y2)

c0(y2 + x1y1x2)− 2c2(x2 + x1y1y2)

)
. (22)

We retrieve the eight polynoms used to compute the sum, i.e. F1 = x1 + y1x2y2, F2 = y1 +
x1x2y2, F3 = y2+x1y1x2, F4 = x2+x1y1y2, F5 = x1x2+y1y2, F6 = x1y2+y1x2, F7 = 1+x1y1x2y2

and F8 = x1y1 + x2y2. Indeed, formula (18) and formula (22) can be computed as:

(x1, y1) + (x2, y2) =

(
c0F1 − 2c2F2

c0F3 − 2c2F4
,
c0F5 − 2c2F6

c0F7 − 2c2F8

)
,

(x1, y1)− (x2, y2) =

(
c0F6 − 2c2F5

c0F7 − 2c2F8
,
c0F2 − 2c2F1

c0F3 − 2c2F4

)
.

Projective coordinates. Since over binary �elds we have competitives formulas for addition
law we only give projective coordinates over �nite �elds K of characteristic 2. To avoid inversions
we can work in projective space P3(K) or in P2(K). The addition formulas in P3(K) are given in
corollary 4 and are the best known addition formulas of elliptic curves. In this section we give
an alternative addition formulas in P2(K) which are more expensives than formulas (15). Let
x = X/Z and y = Y/Z then the coordinates of sum [X3 : Y3 : Z3] = [X1 : Y1 : Z1]+[X2 : Y2 : Z2]
can be computed as:

A = X1·X2; B = Y1·Y2; C = A·B;
D = X1·Z2; E = Y2·Z1; Z = Z1·Z2

F = E·(C +D2); G = D·(C + E2);
H = Z·(A+B); I = C + Z2;
X3 = F ·I; Y3 = H·G; Z3 = G·I

.

The coordinates of double [X4 : Y4 : Z4] = 2[X1 : Y1 : Z1] can be computed as:

A = (Y1 + Z1)
2; B = (X1 + Z1)

2; C = (Z1·(X1 + Y1))
2;

D = A·B + C; E = X1·A; F = Y1·B
X4 = E·D; Y4 = F ·C; Z4 = F ·D

.

Projective addition costs 12M + 3S and projective doubling costs 7M + 3S of �eld elements.
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4.3.2 Comparisons of addition formulas with previous works

In this section we compare our addition formulas of normal forms in binary �eld with other
models of elliptic curves. As Theorems 8 and 12 we choose models that are birationally equivalent
to ordinary Weierstraÿ model v2+uv = u3+b2u

2+b6 where b2 = 0 of Explicit-Formulas Database
[2]. Recall thatM,S and m are respectively the cost of multiplication, square and multiplication
by a constant over �eld K.

Models Doubling Addition

Weierstraÿ 7M + 3S 14M + 1S

Binary Edwards of [5] 4M + 4S + 1m 16M + 1S + 4m

Hessian 6M + 3S 12M + 6S

Hu� of [8] 6M + 5S + 2m 13M + 2S + 2m

Edwards model of [23] 3M + 3S + 1m 12M + 4S + 2m

Level 4-theta model 3M + 6S + 2m 7M + 2S + 2m

Our Edwards model 7M + 3S 12M + 3S

Table 1: Comparisons of points operations in binary �elds

We can observe that addition law on level 4-theta model costs only 7M +2S +2m, which is
the fastest addition formulas for ordinary elliptic curves.

5 Di�erential addition on Kummer line

As addition law on level 4-theta model is not competitive, we study in this section di�erential
additions. Let w(P ) be a coordinate function of point P on normal forms, if w(−P ) = w(P ), one
can compute the coordinate function w(nP ) for exponentiation nP . For level 4-theta model, if
P = [X0 : X1 : X2 : X3] ∈ Eλ1,λ2 we choose w(P ) ∈ {X0, X2}, see subsection 5.1. For Edwards
model, if P = (x, y) ∈ Eλ we choose w(P ) = x, see subsection 5.2.

Our di�erential additions are de�ned over any characteristic and are very competitives to
other di�erential addition in our knowledge. Indeed, our di�erential addition-doubling cost
4M + 3S + 4m for level 4-theta model and 5M + 5S + 2m for Edwards model de�ned over odd
�elds, and cost 4M + 3S + 2m for level 4-theta model and 5M + 4S + 2m for Edwards model
de�ned over binary �elds. The tables 2 and 3 show that our formula for level 4-theta model is
the most e�cient formula of existing formulas.

5.1 Di�erential addition on level 4-theta model

This section is devoted to di�erential addition on Kummer line of elliptic curve. Let K be a
�eld of characteristic p ≥ 0 and let Eλ1,λ2 be the level 4-theta model of ordinary elliptic curve
de�ned over K. Let [Xi] := [X0 : X1 : X2 : X3] be a point on Eλ1,λ2 , the opposite of [Xi] is
[X0 : X3 : X2 : X1]. The set {X0, X2, X1+X3} is invariant under the action of opposite. Denote
W = X1 +X3, an equation of Kummer line can be written as

KEλ1,λ2 :W 2 =
2

λ1
(X2

0 +X2
2 ) + λ2X0X2,

which becomeW 2 = λ2X0X2 over binary �eld. The addition on Eλ1,λ2 do not induce an addition
on corresponding Kummer line, but one can de�ned a di�erential addition on Kummer line. Let
[X1,i] = [X1,0 : X1,1 : X1,2 : X1,3] and [X2,i] = [X2,0 : X2,1 : X2,2 : X2,3] be two points on
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Eλ1,λ2 and let [X3,i] = [X1,i] + [X2,i], [X4,i] = [X1,i]− [X2,i] and [X5,i] = 2[X1,i]. For di�erential
addition and di�erential doubling we express respectively the coordinates X3,0, X3,2, X3,1 +X3,3

and X5,0, X5,2, X5,1 +X5,3 in term of coordinates of X1,i, X2,i and X4,i. We have:
X3,0 = (X2

1,0X
2
2,0 +X2

1,2X
2
2,2)− 4(c2/c0)X1,1X1,3X2,1X2,3

X3,1 = c0(X1,0X1,1X2,0X2,1 +X1,2X1,3X2,2X2,3)− 2c2(X1,0X1,1X2,2X2,3 +X1,2X1,3X2,0X2,1)
X3,2 = (X2

1,1X
2
2,1 +X2

1,3X
2
2,3)− 4(c2/c0)X1,0X2,0X1,2X2,2

X3,3 = c0(X1,0X1,3X2,0X2,3 +X1,1X1,2X2,1X2,2)− 2c2(X1,0X1,3X2,1X2,2 +X1,1X1,2X2,0X2,3)
X4,0 = (X2

1,0X
2
2,0 +X2

1,2X
2
2,2)− 4(c2/c0)X1,1X1,3X2,1X2,3

X4,1 = c0(X1,0X1,1X2,0X2,3 +X1,2X1,3X2,1X2,2)− 2c2(X1,0X1,1X2,1X2,2 +X1,2X1,3X2,0X2,3)
X4,2 = (X2

1,3X
2
2,1 +X2

1,1X
2
2,3)− 4(c2/c0)X1,0X1,2X2,0X2,2

X4,3 = c0(X1,0X1,3X2,0X2,1 +X1,1X1,2X2,2X2,3)− 2c2(X1,0X1,3X2,2X2,3 +X1,1X1,2X2,0X2,1)


X5,0 = X4

1,0 +X4
1,2 − 4(c2/c0)X

2
1,1X

2
1,3

X5,1 = c0(X
2
1,0X

2
1,1 +X2

1,2X
2
1,3)− 4c2X1,0X1,1X1,2X1,3

X5,2 = X4
1,1 +X4

1,3 − (c2/c0)X
2
1,0X

2
1,2

X5,3 = c0(X
2
1,0X

2
1,3 +X2

1,1X
2
1,2)− 4c2X1,0X1,1X1,2X1,3

A straightforward and easy calculation shows that: X3,0 = X4,0

X3,2 =
c2

0 − 4c2
2

c0c2
X1,0X2,0·X1,2X2,2 −X4,2

, (23)

{
X5,0 = µc0(X

2
1,0 +X2

1,2)
2 − 2X2

1,0X
2
1,2

X5,2 = (c2/c0)X
2
1,0·X2

1,2 − 2µc2(X
2
1,0 +X2

1,2)
2 , (24)

where µ = c0/(c
2
0+4c2

2). The cost of di�erential addition and doubling are respectively 3M+1m
and 1M + 3S + 3m operations over �elds of odd characteristic. Over binary �elds di�erential
addition and doubling cost respectively 3M + 1m and 1M + 3S + 1m operations.

Notice that, moreover, we can also focus to the computation of coordinates functions Wi =

Xi,1 +Xi,3 for i = 1, 2, 3, 4, 5 which give addition law on Kummer line KEλ1,λ2 :W 2 =
2

λ1
(X2

0 +

X2
2 ) + λ2X0X2,. We then have

W3 = W1·W2·
(
c0(X1,0·X2,0 +X1,2·X2,2)− 2c2(X1,0X2,2 +X1,2X2,0)

)
−W4

W5 = µ(c2
0 − 4c2

2)(X
2
1,0 +X2

1,2)·(W 2
1 − 2c0c2(X

2
1,0 +X2

1,2))

Then computations cost respectively 6M+3m and 2M+4S+5m operations for respectively
di�erentials addition and doubling over �eld of odd characteristic. Over binary �elds these cost
are respectively 5M + 2m operations and 2M + 4S + 2m for respectively di�erentials addition
and doubling.

5.2 Di�erential addition on Edwards model over any �elds

Let Eλ be Edwards model over any �eld K and let (x, y) be a point on Eλ. The �rst coordinate
of (x, y) is invariant under negation action. For i = 1, 2, 3, 4 let (xi, yi) be point on Eλ such
that (x3, y3) = (x1, y1) + (x2, y2), (x4, y4) = (x1, y1) − (x2, y2) and (x5, y5) = 2(x1, y1). As in
previous �5.1, our goal is to express x3 and x5 in term of x1, x2 and x4. As in previous 5.1 we
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have xi = Xi,2/Xi,0 for i = 1, 2, 3, 4, 5 where [Xi,0 : Xi,1 : Xi,2 : Xi,3] are points on level 4-theta
model. From equations (23) and (24) we have these following relations, if they are de�ned:

x3 + x4 =
(c2

0 − 4c2
2)x1x2

c0c2(1 + x2
1x

2
2)
, (25)

x5 =
(c2/c0)x

2
1 − 2µc2(1 + x2

1)
2

µc0(1 + x2
1)

2 − 2x2
1

, (26)

where µ = c0/(c
2
0+4c2

2). The computation of x3 and x5 cost respectively 1I+1M+1S+1m and
1I + 2S + 3m operations over any �eld K. To avoid inversions let xi = Xi/Zi for i = 1, 2, 3, 4, 5
where [X : Z] parametrize projective space P1(K). Over any �elds, formulas (25) and (26)
become: {

X3 =
c20−4c22
c0c2

Z4X1X2Z1Z2 −X4(X
2
1X

2
2 + Z2

1Z
2
2 )

Z3 = Z4(X
2
1X

2
2 + Z2

1Z
2
2 )

, (27){
X5 = (c2/c0)Z

2
1 ·X2

1 − 2µc2(Z
2
1 +X2

1 )
2

Z5 = µc0(Z
2
1 +X2

1 )
2 − 2Z2

1X
2
1

. (28)

The computation of [X3 : Z3] and [X5 : Z5] cost respectively 6M +2S+1m and 1M +3S+3m
operations over �elds K of odd characteristic. The cost of computation of di�erential addition
can be reduced to 4M + 2S + 1m operations if Z4 = 1. At same over �elds of characteristic 2
formulas (25) and (26) become:{

X3 = (c0/c2)Z4X1X2Z1Z2 +X4(X1X2 + Z1Z2)
2

Z3 = Z4(X1X2 + Z1Z2)
2 , (29){

X5 = (c2/c0)(Z1·X1)
2

Z5 = (Z1 +X1)
4 . (30)

The formulas (29) and (30) cost respectively 6M +1S+1m and 1M +3S+1m operations over
�elds of even characteristic. If Z4 = 1 formulas (29) can be reduced to 4M+1S+1m operations
over binary �elds. Formulas (29) correspond to Stam [21] formulas and formulas (30) correspond
to Gaudry and Lubicz formulas [11].

5.3 Comparisons with previous work on di�erential addition

Recall that M,S and m denote respectively the cost of �eld multiplication, �eld squaring and
multiplication by constant.

Over �elds of odd characteristic, Brier and Joye [6] generalize the idea of Montgomerry
[16] on general Weierstraÿ model v2 = u3 + b2u

2 + b6. The method of [6] use 6M + 2S + 2m
per bits to compute exponentiation, i.e. multiply a point on Kummer line by a scalar. The best
known formula, see table 2, for computing exponentiation uses 3M + 6S + 3m per bits and is
due by Gaudry and Lubicz in [11] on Kummer model of Legendre form v2 = u(u − 1)(u − b).
Our formula for computing exponentiation costs 4M + 3S + 4m on level 4-theta model and
5M + 5S + 2m on Edwards model. Over odd �elds, we can assume that S = M and then our
formula use 7M + 4m which is beter than formula in [11] which use 9M + 3m, moreover if we
assume that m =M then our method save one multiplication.
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model di�erential doubling di�erential addition Total

Montgomerry [16] 2M + 2S + 1m 3M + 2S 5M + 4S + 1m

Weierstraÿ 4M + 3S + 2m 6M + 2S + 2m 10M + 5S + 4m

Gaudry and Lubicz [11] 4S + 2m 3M + 2S + 1m 3M + 6S + 3m

Level 4-theta model 1M + 3S + 3m 3M + 1m 4M+ 3S+ 4m

Our Edwards model 1M + 3S + 1m 4M + 2S + 1m 5M + 5S + 2m

Table 2: Comparisons of di�erential addition over non-binary �elds

Over binary �elds, the best known formula, see table 3, due by Gaudry and Lubicz [11]
to compute exponentiation uses 5M + 5S + 1m on Kummer model of ordinary elliptic curve
v2+uv = u3+b6. Our formulas to compute exponentiation use 4M+3S+2m over level 4-theta
model and 5M + 4S + 2m over Edwards model. Our formulas on level 4-theta are the best
formulas to compute on Kummer line over binary �elds.

model di�erential doubling di�erential addition Total

Weierstraÿ of [21] 1M + 3S + 1m 4M + 1S 5M + 4S + 1m

Binary Edwards of [5] 1M + 3S + 1m 4M + 1S + 1m 5M + 4S + 2m

Hu� of [8] 1M + 3S + 1m 4M + 2S 5M + 5S + 1m

Edwards model of [23] 1M + 4S + 1m 4M + 2S 5M + 6S + 1m

Gaudry and Lubicz [11] 1M + 3S + 1m 4M + 2S 5M + 5S + 1m

Level 4-theta model 1M + 3S + 1m 3M + 1m 4M+ 3S+ 2m

Our Edwards model 1M + 3S + 1m 4M + 1S + 1m 5M + 4S + 2m

Table 3: Comparisons of di�erential addition over binary �elds

6 Conclusion

We successfully introduced an Edwards model of elliptic curves de�ned over �elds of all charac-
teristic. We used a model of elliptic curve called level 4-theta model come from theta functions
of level 4. We have shown that this theta model has a nice geometric interpretation of the
group law which is complete and is the fastest in characteristic two among common curves as
Weierstraÿ, Edwards, Hu� and Hessian curves.

As futur work, one must compare pairings computation using theta function and Miller
algorithm over any �elds where only pairings using theta function over odd �elds are published
by [15]. It would also be interesting to look for supersingular Edwards model of supersingular
elliptic curve.
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A Addition laws formulas over level 4-theta function

The Riemann theta formulas give 16 relations that are classi�ed according to j. Remind that
c0 = a0, c2 = a2/2 = θ2(0)/2 and a3 = a1 = 1. Let K be �eld of characteristic p ≥ 0 and let
c0, c2 ∈ K? and let Eλ1,λ2 : X2

0 +X2
2 = λ1X1X3, X

2
1 +X2

3 = λ2X0X2 be the level 4-theta model
de�ned over �eld K. The arithmetic (addition and doubling) on Eλ1,λ2 is given by following
theta formula:

θi(z1 + z2)θj(z1 − z2) =
akB(i, j, k, l)− ak+2B(i, j, k + 2, l)

al
.

This formula give 4× 4 formulas that give 4 equivalent group laws on Eλ1,λ2 . The 4 group laws
formulas are:

θi(z1 + z2)θ0(z1 − z2) =
a0B(i, 0, 0, i)− a2B(i, 0, 2, i)

ai
,

θi(z1 + z2)θ1(z1 − z2) =
a0B(i, 1, 0, i+ 1)− a2B(i, 1, 2, i+ 1)

ai+1
,

θi(z1 + z2)θ2(z1 − z2) =
a0B(i, 2, 0, i+ 2)− a2B(i, 2, 2, i+ 2)

ai+2
,

θi(z1 + z2)θ3(z1 − z2) =
a0B(i, 3, 0, i+ 3)− a2B(i, 3, 2, i+ 3)

ai+3
.

1©



θ0(z1 + z2)θ0(z1 − z2) =
c0

(
θ2

0(z1)θ
2
0(z2) + θ2

2(z1)θ
2
2(z2)

)
− 4c2θ1(z1)θ3(z1)θ1(z2)θ3(z2)

c0
,

θ1(z1 + z2)θ0(z1 − z2) = c0

(
θ0(z1)θ1(z1)θ0(z2)θ1(z2) + θ2(z1)θ3(z1)θ2(z2)θ3(z2)

)
−2c2

(
θ2(z1)θ3(z1)θ0(z2)θ1(z2) + θ0(z1)θ1(z1)θ2(z2)θ3(z2)

)
,

θ2(z1 + z2)θ0(z1 − z2) =
c0θ0(z1)θ2(z1)θ0(z2)θ2(z2)− c2

(
θ2

1(z1)θ
2
3(z2) + θ2

3(z1)θ
2
1(z2)

)
c2

,

θ3(z1 + z2)θ0(z1 − z2) = c0

(
θ0(z1)θ3(z1)θ0(z2)θ3(z2) + θ1(z1)θ2(z1)θ1(z2)θ2(z2)

)
−2c2

(
θ0(z1)θ3(z1)θ1(z2)θ2(z2) + θ1(z1)θ2(z1)θ0(z2)θ3(z2)

)
.

http://www.sagemath.org
http://www.sagemath.org
http://eprint.iacr.org/
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2©



θ0(z1 + z2)θ1(z1 − z2) = c0

(
θ0(z1)θ1(z1)θ0(z2)θ3(z2) + θ2(z1)θ3(z1)θ1(z2)θ2(z2)

)
−2c2

(
θ0(z1)θ3(z1)θ1(z2)θ2(z2) + θ1(z1)θ2(z1)θ0(z2)θ3(z2)

)
,

θ1(z1 + z2)θ1(z1 − z2) =
c0θ0(z1)θ2(z1)θ1(z2)θ3(z2)− c2

(
θ2

3(z1)θ
2
0(z2) + θ2

2(z1)θ
2
1(z2)

)
c2

,

θ2(z1 + z2)θ1(z1 − z2) = c0

(
θ0(z1)θ3(z1)θ2(z2)θ3(z2) + θ1(z1)θ2(z1)θ0(z2)θ1(z2)

)
−2c2

(
θ0(z1)θ3(z1)θ0(z2)θ1(z2) + θ1(z1)θ2(z1)θ2(z2)θ3(z2)

)
,

θ3(z1 + z2)θ1(z1 − z2) =
c0

(
θ2

0(z1)θ
2
3(z2) + θ2

2(z1)θ
2
1(z2)

)
− 4c2θ1(z1)θ3(z1)θ0(z2)θ2(z2)

c0
.

3©



θ0(z1 + z2)θ2(z1 − z2) =
c0θ0(z1)θ2(z1)θ1(z2)θ3(z2)− c2

(
θ2

1(z1)θ
2
1(z2) + θ2

3(z1)θ
2
3(z2)

)
c2

,

θ1(z1 + z2)θ2(z1 − z2) = c0

(
θ0(z1)θ3(z1)θ1(z2)θ2(z2) + θ1(z1)θ2(z1)θ0(z2)θ3(z2)

)
−2c2

(
θ0(z1)θ3(z2)θ0(z2)θ3(z2) + θ1(z1)θ2(z1)θ1(z2)θ2(z2)

)
,

θ2(z1 + z2)θ2(z1 − z2) =
c0

(
θ2

0(z1)θ
2
2(z2) + θ2

2(z1)θ
2
0(z2)

)
− 4c2θ1(z1)θ3(z1)θ1(z2)θ3(z2)

c0
,

θ3(z1 + z2)θ2(z1 − z2) = c0

(
θ0(z1)θ1(z1)θ2(z2)θ3(z2) + θ2(z1)θ3(z1)θ0(z2)θ1(z2)

)
−2c2

(
θ0(z1)θ1(z1)θ0(z2)θ1(z2) + θ2(z1)θ3(z1)θ2(z2)θ3(z2)

)
.

4©



θ0(z1 + z2)θ3(z1 − z2) = c0

(
θ0(z1)θ3(z1)θ0(z2)θ1(z2) + θ1(z1)θ2(z1)θ2(z2)θ3(z2)

)
−2c2

(
θ0(z1)θ3(z1)θ2(z2)θ3(z2) + θ1(z1)θ2(z1)θ0(z2)θ1(z2)

)
,

θ1(z1 + z2)θ3(z1 − z2) =
c0

(
θ2

0(z1)θ
2
1(z2) + θ2

2(z1)θ
2
3(z2)

)
− 4c2θ1(z1)θ3(z1)θ0(z2)θ2(z2)

c0
,

θ2(z1 + z2)θ3(z1 − z2) = c0

(
θ0(z1)θ1(z1)θ1(z1)θ2(z2) + θ2(z1)θ3(z1)θ0(z2)θ3(z2)

)
−2c2

(
θ0(z1)θ1(z1)θ0(z2)θ3(z2) + θ2(z1)θ3(z1)θ1(z2)θ2(z2)

)
,

θ3(z1 + z2)θ3(z1 − z2) =
c0θ0(z1)θ2(z1)θ1(z2)θ3(z2)− c2

(
θ2

1(z1)θ
2
0(z2) + θ2

3(z1)θ
2
2(z2)

)
c2

.
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B Sage veri�cation

This sage script [22] verify that addition formulas (8) are valid.

R.<c0,c2,X0,X1,X2,X3,Y0,Y1,Y2,Y3> = QQ[]

lbd1 = c0^2 + 4*c2^2; lbd2 = 1/(c0*c2)

LB = numerator(lbd1 - lbd2)

E1 = numerator(X0^2 + X2^2 - lbd1*X1*X3); E2 = numerator(X1^2 + X3^2 - lbd2*X0*X2)

F1 = numerator(Y0^2 + Y2^2 - lbd1*Y1*Y3); F2 = numerator(Y1^2 + Y3^2 - lbd2*Y0*Y2)

S = R.quo([E1,E2,F1,F2,LB])

Z0 = (X0^2*Y0^2 + X2^2*Y2^2) - 4*(c2/c0)*X1*X3*Y1*Y3

Z1 = c0*(X0*X1*Y0*Y1 + X2*X3*Y2*Y3) - 2*c2*(X2*X3*Y0*Y1 + X0*X1*Y2*Y3)

Z2 = (X1^2*Y1^2 + X3^2*Y3^2) - 4*(c2/c0)*X0*Y0*X2*Y2

Z3 = c0*(X0*X3*Y0*Y3 + X1*X2*Y1*Y2) - 2*c2*(X0*X3*Y1*Y2 + X1*X2*Y0*Y3)

G1 = Z0^2 + Z2^2 - lbd1*Z1*Z3; G2 = Z1^2 + Z3^2 - lbd2*Z0*Z2

S(numerator(G1)) == 0; S(numerator(G2)) == 0


	Introduction
	Theta functions
	General definition
	Riemann theta relations

	Level 4-theta model
	Model valid over any field
	Addition law in level 4-theta model

	Edwards model of elliptic curve
	Equation of Edwards model of elliptic curve
	Birational equivalence with Weierstraß model
	Addition on Edwards model
	Explicit formulas
	Comparisons of addition formulas with previous works


	Differential addition on Kummer line
	Differential addition on level 4-theta model
	Differential addition on Edwards model over any fields
	Comparisons with previous work on differential addition

	Conclusion
	Acknowledgements
	Addition laws formulas over level 4-theta function
	Sage verification

