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Abstract. “Lapin” is a new RFID authentication protocol proposed at
FSE 2012. “Ring-LPN” (Ring-Learning-Parity-with-Noise) is a new com-
putational problem proposed in the same paper; there is a proof relating
the security of Lapin to the difficulty of Ring-LPN. This paper presents
an attack against Ring-LPN-512 and Lapin-512. The attack is not prac-
tical but nevertheless violates specific security claims in the FSE 2012
paper.
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1 Introduction

Lapin [15] is a lightweight “RFID authentication” system introduced at FSE
2012 a week before the submission of this paper. The system is claimed in [15,
Section 1.1] to be “provably secure against active attacks”. This claim is qualified
elsewhere in [15]: attacking Lapin-n is provably as difficult as attacking an n-bit
“Ring-LPN” problem introduced in the same paper [15].

This proof begs the question of how secure Ring-LPN-n is. Ring-LPN-512 is
claimed in [15, Section 3.1] to “require 277 memory (and thus at least that much
time) to solve when given access to approximately as many samples” according
to the “analysis” of [22].

A closer look shows that the attack in [22] begins with nearly 276 513-bit
vectors consuming nearly 282 bytes of memory, performs a series of 6 sorting
steps to compute 263 reduced 75-bit vectors, and concludes with a similarly
expensive Walsh transform. Note that [22] is an analysis of some attacks; there
is no proof that better attacks do not exist against Ring-LPN-512, or against
Lapin-512.
? The Wolf: “I knew it! Never trust a bunny!” Twitchy: “Never trust a bunny!” [9]
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Contributions of this paper. We present an attack that discovers the Ring-
LPN-512 secret using <256 bytes of memory, <238 queries, and <298 easily vec-
torized bit operations. Running the attack twice discovers the Lapin-512 secret,
allowing the attacker to clone a Lapin-512 RFID tag.

We do not claim that this Ring-LPN-512 attack is feasible. However, it is ob-
viously much closer to feasibility than the attack in [22], and in particular breaks
solidly through the “277 memory” barrier claimed in [15] while remaining com-
petitive in bit operations. It breaks even more solidly through the “approximately
[277] samples” barrier claimed in [15].

The concrete proposal in [15] is actually Lapin-532 rather than Lapin-512. Our
attack scales naturally to any Ring-LPN-n, and allows many different tradeoffs
between memory, queries, and bit operations.

Varying the error fraction. LPN, Ring-LPN, and Lapin have an implicit
“error fraction” τ . The specific Lapin-n protocols and Ring-LPN-n problems
discussed above have τ = 1/8, but smaller values and larger values have appeared
in other proposals: for example, the “reducible” Lapin variant in [15, Section
5.1] has τ = 1/6, while [22, Section 5.2] recommends τ = 1/20. We state and
analyze our attack with τ as a variable.

It is stated in [19] that “the best algorithms [attacking LPN] take time 2`/ log `”
for any “constant” τ > 0. In Section 4 we consider the case n = 1024, τ = 1/20,
and give an attack on Ring-LPN taking far fewer than 21024/ lg 1024 = 2102.4 bit
operations, while using <221 bytes of memory and <264 queries. A variant of
the attack uses more bit operations, but still fewer than 2102.4 bit operations,
<221 bytes of memory, and just 10 Ring-LPN queries. This variant also works
for LPN, using just 5120 queries.

We emphasize that τ plays an important role in the cost of these attacks, and
that security estimates must take τ into account. Note that increasing τ slows
down protocols.

Previous work. HB [16], HB+ [18], HB++ [6], HB-MP [23], HB∗ [8], Trusted-
HB [5], and HB] [13] were each broken within one year of being proposed. See,
e.g., [12].

Each of these RFID authentication protocols claimed security on the basis
of the alleged difficulty of various LPN problems. The protocols were broken in
two different ways. First, in many cases the protocol structure allowed attacks
that were simpler than breaking those LPN problems. Second, in many cases the
LPN problems turned out to be weaker than claimed.

Our attack follows the second line of work. We combine and refine LPN attack
ideas previously published by Blum, Kalai, Wasserman, Levieil, Fouque, and
Kirchner. See [3], [22], and [20].

We note that some of the previous attacks have the advantage of provability.
Our algorithm — like the number-field sieve for attacking RSA, the rho method
for attacking ECC, etc. — is only analyzed heuristically.

Notes on low-memory LPN attacks. It is often claimed that memory is
the main bottleneck in breaking LPN: consider the “require 277 memory” quote
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above, or the quote “It takes 246 bytes of memory to solve a LPN problem with
k = 256 [and τ = 1/8]” from [22, Section 5.2].

This claim is obviously violated by extremely slow attacks: a glance at the
definition of LPN shows that a brute-force search for the LPN secret takes neg-
ligible memory. What is less obvious is that the claim is also violated by fast
attacks, although perhaps not quite the fastest possible attacks. This was al-
ready visible from Kirchner’s paper [20] (and not from earlier papers such as
[22]); we introduce an improvement in the Walsh-transform step, but the critical
LPN attack idea is due to Kirchner.

Notes on LPN vs. Ring LPN. [15, Section 3.1] says that the most efficient
known attacks against “irreducible” cases of (q-query) Ring-LPN are simply
attacks against (nq-query) LPN. However, one of the major steps in our Ring-
LPN attack saves some time by taking advantage of the ring structure of Ring-
LPN, suggesting that Ring-LPN is not as hard as LPN. This savings applies to
both the “reducible” and “irreducible” cases; it is lost only when the number of
queries is very small.

Consequences for RFID security. We do not mean to suggest that LPN and
Ring-LPN are incapable of reaching a 280 security level. LPN has always been
able to dodge attacks by increasing its parameters, the same way that RSA has
always been able to dodge improved factorization algorithms. However, we are
skeptical of the idea that LPN, Ring-LPN, HB, Lapin, etc. can provide the same
security as a block cipher within the same RFID cost constraints.

Lapin-532 is advertised in [15, Keywords] as being suitable for “RFID authen-
tication” and in [15, Abstract] as having “10 times smaller code size” than AES.
Code size is claimed in [15, Section 5] to be “the most precious resource once the
run-time constraints are fulfilled . . . For instance, the WISP, a computational
RFID tag, has only 8 kBytes of program memory.”

This comparison is puzzling for several reasons. First, the AES implementa-
tion cited in [15] is clearly very far from optimal. Second, Lapin-532 was designed
for 280 security, while AES was designed for 2128 security. Third, AES is certainly
not the state of the art in lightweight block-cipher design. Fourth, Lapin-532 ob-
viously needs much more RAM than a block cipher, and bytes of RAM are
inherently more expensive than bytes of ROM; note that the MSP430F2132 in
the current WISP4.1 has only 512 bytes of RAM.

What [15] actually reports for Lapin-532 is 195000 cycles using 459 bytes of
code on an AVR ATmega163 smart-card CPU. For comparison, [10] reports

– 128-bit AES: 4600 AVR cycles, 1659 bytes of code, 32 bytes of RAM;
– 128-bit NOEKEON: 23500 AVR cycles, 364 bytes of code, 32 bytes of RAM;
– 128-bit HIGHT: 19500 AVR cycles, 402 bytes of code, 32 bytes of RAM;

and so on. Lapin uses more code than (e.g.) NOEKEON, uses more RAM, uses
more cycles, uses more communication, and provides much less security against
known attacks. The cost evaluation in [15, Section 5.3] also omits the cost of
generating random bits, stating that this cost is “independent of the underlying
cryptographic functions”; but cipher-based protocols actually require far fewer
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random bits than Lapin. There is also no evidence that switching platforms
(from AVR to MSP430 or to an ASIC) would make Lapin competitive.

Notes on provable security. The literature describes several ways for an RFID
tag to securely authenticate itself using a secret AES key shared with the RFID
reader; see, e.g., [11]. Attacking any of these AES-based authentication protocols
is provably as difficult as attacking the standard “PRP” security notion for AES:
distinguishing AES (with a secret key) from a uniform random permutation. Of
course, AES can also be replaced with other block ciphers, as discussed above.

We see three reasons that the security proofs for these AES-based authen-
tication systems are more satisfactory than the security proof for Lapin. First,
the Lapin proof is limited to “active” attacks (obtaining information from the
tag and then attempting to fool a reader) while the AES proofs cover a wider
class of “man-in-the-middle” attacks (interacting with the tag and the reader in
parallel); the “man-in-the-middle” attack in [15, Appendix] suggests that Lapin
is actually less secure than Ring-LPN. Second, the AES proofs are based on
a problem that seems difficult after extensive cryptanalysis, namely the AES
PRP-distinguishing problem, while the Lapin proof is based on the obviously
much less mature Ring-LPN problem. Third, even if there is no further progress
in attacks, the quantitative security-performance tradeoff will be considerably
worse for Ring-LPN than for AES.

We are puzzled by the claims in [15] that Lapin is “provably secure” while
AES-based protocols are “ ‘merely’ computationally secure with respect to known
attacks”. There are certainly reasons to avoid describing the AES-based proto-
cols as “provably secure”, but all of the same reasons also apply to Lapin. The
AES proofs begin with an unproven hypothesis, namely that the AES PRP-
distinguishing problem is difficult, but the Lapin proofs also begin with an un-
proven hypothesis, namely that the Ring-LPN problem is difficult. There could
be better attacks against the AES PRP-distinguishing problem and the AES-
based protocols, but there also could be better attacks against the Ring-LPN
problem and the Lapin protocol. We are unaware of any reason to prefer Ring-
LPN over AES as a foundation for security.

Acknowledgments. Thanks to the anonymous referees for their comments. We
acknowledge one referee in particular for the random-bits comment above.

2 LPN, Ring-LPN, and Lapin

The learning parity with noise (LPN) problem was introduced as a basis of
cryptographic authentication schemes by Hopper and Blum in [16]. Here is the
basic protocol they describe: The parameters are m,n ∈ Z and τ, τ ′ ∈ Q with
0 < τ ≤ τ ′ < 1/2. The authentication tag and the reader share an n-bit secret
s ∈ Fn

2 . To authenticate the tag to the reader the reader sends an n-bit challenge
c to the tag; the tag computes the dot product y = c · s, puts e = 0 with
probability 1 − τ and e = 1 with probability τ , and responds with t = y + e.
The reader computes e = t + c · s. The tag is accepted if after m repetitions of
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the basic protocol the number of repetitions with e 6= 0 is no larger than τ ′m.
Obviously one can merge the m executions into a single step by changing the
challenge c to an m× n matrix C and requesting the tag to compute Cs + e for
some error vector e ∈ Fm

2 in which each bit of e is set with probability τ .
LPN refers to learning the secret s under the noise e; the distinguishing version

is given a sequence of pairs (c, b) and should distinguish whether it comes from
(c, c · s + e) or (c, b) for random b. When HB was proposed, H̊astad had shown
in [14] that LPN is NP-hard and the best known attack at that time, due to
Blum, Kalai and Wasserman [2], took 2Ω(n/ log n) challenge-response pairs and
time 2Ω(n/ log n). However, in the above protocol an active attacker impersonating
the reader can determine s bit-by-bit by setting c to be the ith unit vector several
times until bit i of s is known with sufficiently high probability. Similarly, many
subsequent HB variants have been broken because of the way that they use LPN,
rather than because LPN is much easier than thought.

The past 10 years have seen various changes to the HB protocol which differ
in the number of passes and in how the tags introduce extra randomness to avoid
the basic attack; also some progress on solving the computational LPN problem
has been made. At FSE 2012, Heyse et al. [15] presented a 2-pass authentication
protocol based on the Eurocrypt 2011 2-pass protocol by Kiltz et al. [19] and
some modifications for more efficient implementation. We first describe a matrix
variant of their protocol and then state their changes to reduce communication
and computation complexity.

The tag and the reader share 2 secret vectors s, s′ ∈ Fn
2 . For each run of

the protocol, the reader generates an n × n challenge matrix C, and the tag
generates a random n × n matrix R. Challenged with C, the tag replies with
(R,R(Cs + s′) + e). The reader deduces e and accepts the tag as authentic if R
is invertible and the Hamming weight of e is smaller than nτ ′.

The scheme described so far is based on the LPN problem. The authors of [15]
introduce a new problem called the “Ring-LPN” problem. Take the ring F2[x]/f
for some polynomial f of degree n and embed n-bit vectors (s0, s1, . . . , sn−1) as
ring elements

∑
six

i. The Ring-LPN problem is to reconstruct s given pairs
(r, rs+ e), where the computations take place modulo f and the bits of e are set
with probability τ . In the decision version the distribution of (r, rs + e) should
be distinguished from (r, y) for random y’s in F2[x]/f .

Using a ring has the advantage that the product of two vectors, interpreted
as a ring element, gives another vector. Hence the n× n matrices C and R can
be replaced by ring elements c and r, reducing the communication cost from
2n2 + n to 3n and reducing the need for random bits. Furthermore, the ring
operations can be implemented more efficiently. To reduce the communication
complexity further, c is derived from a shorter bit string by some deterministic
function π : {0, 1}λ → F2[x]/f . In the Lapin-n scheme the answers from the tag
have the form (r, z) = (r, r(sπ(c)+s′)+e). The reader verifies that r is invertible
and that z + r(sπ(c) + s′) has Hamming weight less than nτ ′.

To relate the Ring-LPN version to the LPN version note that R can be ob-
tained from r as the matrix which for 0 ≤ i ≤ n − 1 has the coefficients of
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rxi mod f in column i, starting with the coefficient of x0. This way the embed-
ding of Rs into the ring gives rs mod f .

For the attacks we note that the reader controls c and thereby π(c). If an at-
tacker can solve the Ring-LPN problem, i.e. find s from observing pairs (rj , rjs+
ej), then he can break the Lapin scheme by running the attack twice, once
with c1 and once with c2 (for which (π(c1) + π(c2)) is invertible): The first at-
tack reveals s1 = sπ(c1) + s′ and the second one s2 = sπ(c2) + s′ which give
s = (s1 + s2)/(π(c1) + π(c2)) and s′ = (s1π(c2) + s2π(c1))/(π(c1) + π(c2)).

The authors of [15] present 2 versions of Lapin-n which differ in whether or not
f is irreducible; the attacks presented in the following section are independent
of the properties of f , so we skip the review of these considerations.

3 The attack

This section states an attack against Ring-LPN. The attack has several param-
eters introduced in this section and optimized in the next section.

Initial queries. Query the Ring-LPN oracle repeatedly, obtaining a sequence
(r1, r1s + e1), (r2, r2s + e2), . . . , (rq, rqs + eq). Here q, the number of queries, is
an attack parameter. As in the previous section, s is the oracle’s secret; each rj

is a uniform random ring element; each bit of each ej is set with probability τ ;
and all of the random choices made here are independent. Define δ = 1− 2τ .

Targeting ei. Choose i ∈ {1, . . . , q}. The remaining steps of the attack hope
that ri is an invertible ring element (which is overwhelmingly likely) and that
ei does not have many bits set (which has a noticeable chance, depending on
various parameters).

Compute 1/ri in the ring; if this fails, stop. For each j 6= i, compute rj/ri

and then (rj/ri)(ris + ei) + (rjs + ej) = (rj/ri)ei + ej .
This computation transforms the original Ring-LPN oracle for s into a Ring-

LPN oracle for ei: the sequence of pairs (rj/ri, (rj/ri)ei + ej) has exactly the
same distribution as a sequence of Ring-LPN outputs for ei. This transformation
is useful because searching through the likely possibilities for ei is much faster
than searching through the possibilities for s, especially when τ is small.

The idea of this transformation was introduced by Kirchner in [20, Section
4.3.2] in the context of LPN. Starting from LPN outputs (r1, r1·s+e1), . . . , (rq, rq·
s + eq), Kirchner selects a target set T of n indices i, hoping that the n rows
ri for i ∈ T form an invertible n × n matrix (probability about 30%) and that
the n noise bits ei for i ∈ T do not have many bits set. Kirchner then applies
the inverse of the matrix to replace the LPN oracle for s with an LPN oracle for
these n bits ei.

Our Ring-LPN variant is simpler and, more importantly, faster: ring multi-
plication is faster than matrix multiplication. We comment, however, that for
small q the LPN transformation has an interesting feature not pointed out in
[20]: it provides tremendous flexibility in the choice of n rows to combine into
an invertible matrix. Exploiting the Ring-LPN structure means that our only
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potential targets are e1, e2, . . . , eq, whereas the analogous LPN transformation
is free to target any set of n positions. See Section 4 for an example.

Forgetting the ring structure. For each j 6= i, and for each k ∈ {0, . . . , n− 1},
define vj,k ∈ F{0,1,...,n−1}

2 as the vector whose `th bit is the coefficient of xk in
the ring element (rj/ri)x`. Then the coefficient of xk in the known quantity
(rj/ri)ei + ej is exactly vj,k · ei + ej,k, where ej,k means the coefficient of xk in
ej . We now have (q − 1)n vectors vj,k and noisy dot products vj,k · ei + ej,k.

Clearing bits. Build a table of 2b vectors as follows, where b is another algo-
rithm parameter. For each of the above (q−1)n vectors vj,k in turn, use the first
b bits of vj,k as a table index, and store vj,k, together with its noisy dot product,
at the corresponding table position. If there is already a vector at that position
in the table, do not overwrite that vector; instead xor it into vj,k, and xor its
noisy dot product into vj,k · ei + ej,k.

Now discard all the vectors in the table. There are at least (q−1)n−2b vectors
not in the table, and each of them now has its first b bits all set to 0. Each noisy
dot product has become more noisy: if two bits ej,k are each set independently
with probability (1− δ)/2 then their xor is set with probability (1− δ2)/2.

The table requires 2b(n− b + 2) bits of storage: each entry has n bits, minus
b bits implicit from the table position, plus 1 bit for a noisy dot product, plus
1 bit to say whether the table entry is used. The list of vectors not in the table
overwrites the original list of vectors without consuming any extra space.

We comment that, unless (q − 1)n is much larger than 2b, one expects some
table entries to be unused, so the (q − 1)n− 2b bound is somewhat pessimistic.
We also repeat a comment from Levieil and Fouque [22, Section 4]: starting from
t ≈ (q−1)n/2b different vectors sharing their first b bits, one can build t(t−1)/2
differences having their first b bits clear, rather than just t − 1 differences with
a single vector; this expands the pool of vectors beyond the original number of
samples. For simplicity we avoid this option.

Clearing more bits. Repeat the above table-building process a total of a times,
where a is another algorithm parameter. This produces a sequence of at least
(q−1)n−2ba vectors v, each having its first ab bits clear and each accompanied by
a noisy dot product v ·ei+· · · , where the noise is set with probability (1−δ2a

)/2.
(In the extreme case a = 0, these vectors are the original (q−1)n vectors with

noise probability (1− δ)/2. No storage is required for the table in this case, and
the vectors can be compressed to the ring elements rj/ri.)

This bit-clearing procedure, without the initial transformation from s to ei,
was introduced by Blum, Kalai, and Wasserman in [3]. Blum, Kalai, and Wasser-
man cleared n − 1 bits, obtaining noisy dot products (0, . . . , 0, 0) · s + · · · and
(0, . . . , 0, 1) · s + · · · , and then computed the last bit of s by a majority vote of
the (0, . . . , 0, 1) · s + · · · dot products.

Guessing the remaining bits of ei. The algorithm hopes at this point that
ei has Hamming weight ≤ W in its final n−ab− ` positions, where W and ` are
two more algorithm parameters.
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The first ab bits of ei are not relevant to the noisy dot products v · ei for the
vectors v constructed above. We thus consider possible patterns for the remaining
bits of ei, i.e., patterns of n bits that have Hamming weight 0 in their first ab
positions and Hamming weight ≤ W in their final n − ab − ` positions. There
are exactly 2`

∑
w≤W

(
n−ab−`

w

)
such patterns.

For each pattern p, compute the number of vectors v such that the noisy dot
product v · ei + · · · matches v · p. If this number is large enough (see the next
subsection) then p is overwhelmingly likely to match the final n − ab positions
of ei. If this number is not large enough for any choice of p then the algorithm
stops.

Carrying out this computation separately for each pattern would require
counting a total of V 2`

∑
w≤W

(
n−ab−`

w

)
dot products, where V ≥ (q− 1)n− 2ba

is the number of vectors v. For W ≥ 2 it is much better to share work between
similar patterns. The idea is simple: if p, p′ differ in only one bit, say pb 6= p′b,
then the number of v with v · p = v · ei + · · · is the sum of

– the number of v with v · p = v · ei + · · · and vb = 1 and
– the number of v with v · p = v · ei + · · · and vb = 0,

while the number of v with v · p′ = v · ei + · · · is the sum of

– the number of v with v · p 6= v · ei + · · · and vb = 1 (the complement of the
first summand above) and

– the number of v with v · p = v · ei + · · · and vb = 0 (the same as the second
summand above).

Repeating the same split ` times obtains 2` patterns as a “fast Walsh transform”
of 2` summands, each involving V/2` vectors on average. The summands require
counting only V

∑
w≤W

(
n−ab−`

w

)
dot products.

Levieil and Fouque in [22] used the extreme case ` = n−ab to search through
all possibilities for n − ab bits of s. Kirchner in [20] used smaller `, and W <
n − ab − `, but required ei to have Hamming weight ≤ W in its final n − ab
positions; our variant has higher success probability.

Statistics: filtering out the noise. If ei = p then v · ei + · · · matches v · p
exactly when the noise · · · equals 0. Recall that this occurs with probability
(1 + δ2a

)/2. In a pool of V vectors one expects an average of V (1 + δ2a

)/2
matches, with a standard deviation proportional to

√
V .

If the final n−ab bits of ei do not match p then presumably v ·ei + · · ·+v ·p =
v · (ei + p) + · · · is set with probability 1/2. (We do not claim that this analysis
is provable.) In a pool of V vectors one then expects an average of V/2 matches,
again with a standard deviation proportional to

√
V .

If the difference of averages, namely V δ2a

/2, is an order of magnitude larger
than

√
V then these two distributions have negligible overlap. The simplest

strategy here is to define “large enough” as, e.g., V/2 + 10d
√

V e (and require
δ2a

/2 ≥ 20d
√

V e) so that there is negligible chance of ever encountering a false
positive; asymptotically 10 should be replaced by something growing (subloga-
rithmically) with the number of tests. A more complicated strategy is to define
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“large enough” as, e.g., V/2 + 2d
√

V e, and to put more work into analyzing the
occasional false positives.

Finishing up. At this point the final n−ab positions of ei are known. Eliminate
those positions from the original vectors vj,k, obtaining a new problem with n
replaced by ab, and solve that problem recursively.

4 Analysis and optimization

This section analyzes the attack of the previous section, and gives several exam-
ples of reasonable parameter choices.

Success probability and cost. The chance that ri is invertible depends on
the selected ring but is indistinguishable from 1 for all Lapin proposals. The
chance that ei has Hamming weight ≤ W in its final n − ab − ` positions is
exactly

∑
w≤W

(
n−ab−`

w

)
τw(1 − τ)n−ab−`−w: for any particular weight w there

are
(
n−ab−`

w

)
choices of positions for w bits, chance τ of each of those bits being

set, and chance 1−τ of each of the other bits being clear. If
√

V is sufficiently large
compared to 2/δ2a

then any such ei will in fact be recognized with overwhelming
probability.

Each multiplication of rj by 1/ri costs ≤ 4n2 bit operations by standard
techniques (and asymptotically n1+o(1) bit operations); the exact cost depends
on the selected ring. Similar comments apply to the multiplication of rj/ri by
ris + ei, and to the computation of vj,k, a “dual” multiplication. The initial
computation of 1/ri is easily amortized into 3 + o(1) multiplications. Overall
there are 3q multiplications involved in computing the vectors vj,k and ≤ 2q
additions, for a total of ≤ 12q(n2 + n) bit operations.

Clearing bits involves at most a(q−1)n2 bit xors. One of the factors n here is
unnecessarily pessimistic: the first clearing xors only n − b + 1 bits, the second
clearing xors only n− 2b + 1 bits, etc.

The dot products count at most V
∑

w≤W

(
n−ab−`

w

)
w bits. The fast Walsh

transforms involve `2`
∑

w≤W

(
n−ab−`

w

)
additions of integers bounded by V . Each

Walsh transform is performed separately, using a table of size 2`.
If ei is not successful then the attack can try again, as many as q times, without

any additional queries. If ei is successful then the final recursion, determining
the remaining bits of ei, has negligible cost for any reasonable parameters.

An attack against n = 512 with τ = 1/8. Take n = 512, τ = 1/8,
q = 5 · 235 +3 · 221 +1, a = 5, b = 44, W = 4, and ` = 24. Here n− ab− ` = 268,
and the chance that ei has Hamming weight ≤ 4 in its final 268 positions is∑

w≤4

(
268
w

)
(1/8)w(7/8)268−w ≈ 2−35.055. (For comparison: Requiring ei to have

Hamming weight ≤ 4 in its final n− ab = 292 positions, as in [20], would have
chance only about 2−39.194.)

The initial q oracle outputs (ri, ris+ei) consume 1024q bits of memory, about
5 · 242 bytes. The (q − 1)n expanded vectors vj,k, together with their noisy dot
products, consume 513(q − 1)n bits of memory, about 5 · 253 bytes. The table
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adds fewer than 250 bytes. The computation of these vectors costs approximately
258.910 bit operations. (For comparison: If we did not exploit the Ring-LPN
structure then we would have to perform approximately q multiplications of
n×n matrices, costing approximately 265.3 bit operations by schoolbook matrix
multiplication or somewhat fewer bit operations by fast matrix multiplication.)

Clearing ab = 220 bits produces at least (q − 1)n − 2ba = 3 · 230 vectors; we
discard any extra vectors so that V = 3 · 230. The bias decreases to (3/4)32 ≈
2−13.28, but 3·230 vectors easily filter out this level of noise. This clearing involves
at most a(q − 1)n2 ≈ 257.644 bit operations.

The dot products count approximately 261.248 bits, the main bottleneck in
the computation. The Walsh transforms use 256.254 additions.

This computation is repeated 235.055 times on average, for a total of about
297.5 bit operations. We comment that all of these bit operations are easily
vectorized. Once the final 292 bits of ei are known, the Ring-LPN outputs for ei

are converted into Ring-LPN outputs for the first 220 bits of ei, which are found
recursively at much less cost. Once all of ei is known, computing s is trivial.

To summarize, this attack finds the Ring-LPN-512 secret using <256 bytes of
memory, <238 queries, and <298 bit operations, as announced in Section 1.

We chose these parameters to emphasize memory at some cost in bit opera-
tions. Instead taking q = 262 + 261 + 251, a = 6, b = 69, W = 5, and ` = 40
would use <278 bytes of memory, <263 queries, and <288 bit operations, beating
the algorithm of [22] both in space and in time.

An attack against n = 1024 with τ = 1/20. The following example illus-
trates the impact of τ . Take n = 1024, τ = 1/20, q = 10, a = 2, b = 12, W = 2,
and ` = 2. Here n− ab− ` = 998, and the chance that ei has Hamming weight
≤ 2 in its final 998 positions is

∑
w≤2

(
998
w

)
(1/20)w(19/20)998−w ≈ 2−63.369.

The initial q oracle outputs consume 2560 bytes of memory, the (q − 1)n
expanded vectors consume 1180800 bytes of memory, and the table consumes
519168 bytes of memory. The computation of these vectors costs approximately
226.909 bit operations. Clearing ab = 24 bits produces at least (q − 1)n− 2ba =
1024 vectors, easily filtering out a bias of 0.94 = 0.6561; this clearing involves at
most a(1− q)n2 ≈ 224.170 bit operations. The dot products count approximately
228.927 bits. The Walsh transforms use 221.927 additions.

Overall one iteration of the attack uses 229.373 bit operations. Running 263.369

iterations of the attack uses <221 bytes of memory, <264 queries (with q itera-
tions for each batch of q queries), and <293 bit operations.

For comparison, [22] says that n = 1024 and τ = 1/20 take 2118 bytes of
memory; the number of bit operations is even larger. We emphasize that the
drastic reduction in memory consumption, and most of the reduction in bit
operations, should be credited to Kirchner’s paper [20].

A variant of the same attack is somewhat slower but reduces the total number
of queries to just 10 and still fits into <221 bytes of memory. Instead of targeting
1 of 10 noisy vectors (producing 9 noisy vectors) and then forgetting the ring
structure (producing 4608 noisy bits), first forget the ring structure (produc-
ing 5120 noisy bits) and then target 512 noisy bits (also producing 4608 noisy
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bits). The remaining steps are exactly as before. This variant requires matrix
multiplications instead of ring multiplications, but has the advantage of allowing(
5120
512

)
≈ 22395 targets from the same 10 queries, far more than the 263.369 tar-

gets needed on average. The same variant also works for LPN, using just 5120
queries.
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