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Abstract. Recent block ciphers have been designed to be resistant against differential
cryptanalysis. Nevertheless it has been shown that such resistance claims may not be as
accurate as wished due to recent advances in this field. One of the main improvements to
differential cryptanalysis is the use of many differentials to reduce the data complexity. In
this paper we propose a general model for understanding multiple differential cryptanaly-
sis and propose new attacks based on tools used in multidimensional linear cryptanalysis
(namely LLR and χ2 statistical tests). Practical cases to evaluate different approaches for
selecting and combining differentials are considered on a reduced version of the cipher
PRESENT. We also consider the accuracy of the theoretical estimates corresponding to
these attacks.
Keywords: block cipher, multiple differential cryptanalysis, statistical test, data com-
plexity.

1 Introduction

Differential cryptanalysis has been introduced in 1990 by Biham and Shamir [2, 3] in
order to break the Data Encryption Standard block cipher. This statistical cryptanalysis
exploits the existence of a differential, i.e., a pair (α, β) of differences such that for a
given input difference α, the output difference after encryption equals β with a high
probability. This attack has been successfully applied to many ciphers and has been
extended to various attacks, such as truncated differential cryptanalysis or impossible
differential cryptanalysis, for instance.

In the original version of differential cryptanalysis [2], a unique differential is ex-
ploited. Then, Biham and Shamir improved their attack by considering several differ-
entials having the same output difference [3]. Truncated differential cryptanalysis intro-
duced by Knudsen [18] uses differentials with many output differences that are structured
as a linear space. A theoretical framework have recently been proposed to analyze attacks
using multiple differentials by summing the corresponding counters [8].

The motivation of this work is to investigate other different techniques for combin-
ing information from multiple differentials. As shown in the case of linear cryptanalysis,
different approaches may be used depending on the context. In 2004, Biryukov et al. pro-
posed a multiple linear cryptanalysis under the assumption that linear approximations
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are statistically independent3 [4]. Later Hermelin et al. introduced the multidimensional
linear cryptanalysis [13, 14]. Contrary to previous attacks, the multidimensional tech-
nique focuses on the distribution of the vector of parity bits obtained when applying
approximations to a single plaintext/ciphertext pair instead of considering the vector
of empirical biases. In that case, the independence assumption is removed but some
heuristic might be used when theoretically analyzing the attack. For both approaches,
classical statistical tools are used to distinguish the statistic corresponding to the correct
key guess from wrong ones. Again, the choice of the tool may depend on the context.
For instance, in [9], because of the hardness of profiling the distribution corresponding
to the correct key, the attack on PRESENT shows better results using χ2 than using
LLR statistic.

Our contributions. Our contributions are threefold. First, we introduce a general way
of formalizing differential attacks by defining the notion of partition functions (this cor-
responds to the way counters corresponding to output differences are gathered). Second,
we consider the χ2 and the LLR statistical tests used in multidimensional linear crypt-
analysis as tools for combining information from the groups of differentials determined
by the partition function. We derive estimates for the data complexities of the corre-
sponding differential attacks. Finally, we present a set of experiments that aim at (i)
evaluating the accuracy of the estimates derived, (ii) comparing χ2 and LLR combining
tools and (iii) comparing different partition functions.

The paper is organized as follows. In Section 2 we define the notations and recall
some results from order statistics that will be used to derive data complexity estimates.
Further, in Section 3 we present a general model for multiple differential cryptanalysis,
introduce the notion of partition function and link this notion with already published
differential attacks. Then, in Section 4, we present two tools for combining information
based on the LLR and the χ2 statistical tests. We derive estimates for the correspond-
ing data complexities and also discuss the way of choosing partition functions. Finally,
Section 5 contains the experiments that have been performed to compare the different
methods.

2 Theoretical Background

2.1 Differential Cryptanalysis Against SPN Ciphers

In this paper we consider SPN ciphers that form a subclass of iterated block ciphers.
Let m be the block size of the considered cipher E and K the key used for enciphering
samples: E : Fm2 −→ Fm2 , x 7→ EK(x). Then, since E is an iterated block cipher, it can
be expressed as EK(x) = FKr ◦· · ·◦FK1(x), where F is the round function parameterized
by round sub-keys K1, . . . ,Kr.

3 While not abusive for the DES cipher, this assumption is misleading for new ciphers.



The attack we are interested in is a member of the so-called last-round attacks, which
themselves constitute the major part of statistical cryptanalyses. These last-round4 at-
tacks use a particular behavior of FKr−1 ◦ · · · ◦ FK1 (that is often referred as statistical
characteristic) to partially recover the value of Kr. In the following we will use the com-
pact notation F r

′
K

def= FKr′ ◦ · · · ◦FK1 . The idea is to partially decipher ciphertexts using
different values for a part of Kr that we name candidates and denote by k. In the case of
an incorrect guess we obtain outputs corresponding to F−1

k ◦F
r
K while for the correct key

guess k0 the outputs correspond to F r−1
K and thus the statistical characteristic should

be observed if enough samples are available. Such attack relies on the assumption that
F r−1
K can be distinguished from the set of functions F−1

k ◦ F rK . In practical situations,
the latter functions behave as randomly chosen permutations as stated by the following
Wrong Key Randomization Hypothesis.

Hypothesis 1 (Wrong Key Randomization) Functions F−1
k ◦F

r
K for wrong key candi-

dates k are indistinguishable from randomly chosen permutations.

Assuming that this hypothesis does not hold would mean that r + 1 rounds of the
cipher are distinguishable and hence the attacker should be able to attack more rounds.
As a consequence, this hypothesis is quite reasonable as soon as the attacker targets the
largest number of rounds he is able to attack (which is typically the case). The resulting
attack consists of the following three steps.

1 Distillation. For each key candidate ciphertexts are partially deciphered. The num-
ber of occurrences of the characteristic is stored for each candidate.

2 Analysis. Key candidates are ranked according to the counters computed in the
Distillation step.

3 Search. Finally, all master keys corresponding to the most likely key candidate are
exhaustively tested. If the correct master key is not found then the search step is
performed again using the second most likely candidate and so on . . .

Differential cryptanalysis. Here we consider the basic differential cryptanalysis which is
a last-round attack where the statistical characteristic is an (r− 1)-round differential. It
is a pair of input/output differences (δ0, δr−1) and the corresponding probability p(δ0 →
δr−1),

p(δ0 → δr−1) def= PrX,K
[
F−1

Kr
(EK(X))⊕ F−1

Kr
(EK(X⊕ δ0)) = δr−1

]
.

Usually, it is assumed that for an incorrect key candidate the probability of observing
the differential is 1

2m−1 . Nevertheless, it has been recalled in [11] that considering that
F−1
k ◦F

r
K acts as a random permutation, the distribution of this probability is known to

be a Poisson distribution with parameter 1
2m−1 .

4 Notice that the attacker may be able to consider less rounds than r− 1 but for the sake of simplicity
we detail the attack assuming one round only is considered.



Using more than one characteristic. Using many characteristics allows the attacker to
extract more information from available samples what is of interest as soon as the in-
duced overhead (in both distillation and analysis steps) is negligible compared to the
gain in the final search step induced by the additional information obtained (due to the
better ranking of the correct key). Premise of this approach have already been proposed
in some papers by independently considering different differentials [3] (different analysis
phases for different characterics) or by summing the information coming from the dif-
ferent characterics to perform all in one step. In the context of linear cryptanalysis, the
method known as multiple linear cryptanalysis [17, 4, 12] considers each characteristic in-
dependently and proposes to analyze the vectors of information for each key candidate.
While the question of characteristics combination have been deeply studied for linear
cryptanalysis [17, 4, 12–14], the lack of a comprehensive study on this topic in the con-
text of differential cryptanalysis motivates the present work. In the following, and after
presenting the required background, we propose a general framework and instantiate it
with statistical tools already shown to be useful for linear cryptanalysis. Later on, we
present experiments we ran to determine what seems to be the best combining technique
in practice.

2.2 Order statistics for Gaussian variables

We propose here to recall a result on order statistics for normally distributed random
variables that have been used by Selçuk to derive estimates of the data complexity for
single linear5 cryptanalysis [21]. Let us model the attack as follows. We will see later
that, due to the tools used, scores obtained will fit into this model.

Model 1 Let S(k) be the score/statistic obtained for a key candidate k. Then,

S(k) ∼
{
N (µR, σ2

R), if k = k0,
N (µW , σ2

W ), otherwise.

Assuming that this model holds then the distributions of ordered wrong-key scores are
also normally distributed. This allows expressing the number of required samples for the
attack as a function of the minimum rank wished for the correct key and the probability
of this rank to be reached. Works have shown that the data complexity of an attack is
not influenced by n but by its advantage a [21, 7] that we define now.

Definition 1. Let 2n be the number of possible key candidates and ` the maximum
number of candidates that will be considered in the final search step. Then, the advantage
of such attack over exhaustive search is defined as:

a
def= n− log2(`).

The success probability of an attack Ps is the probability that the correct key candidate
is ranked among the ` first candidates at the output of analysis step.
5 While single differential cryptanalysis has also been studied in the mentioned paper, results are far

from being satisfying as admitted by the author. In that case Poisson distribution is more accurate
[11, 6].



The following result expresses the success probability of an attack in the Model 1
as a function of the parameters µR, σR, µW and σW . This result is the cornerstone of
further data complexity estimate derivations.

Lemma 1. Let a be the advantage of an attack and Ns be the number of available
samples, then, the success probability of the attack PS can be approximated by:

PS ≈ Φ0,1

 µR − µa√
σ2
a + σ2

R

 ,

where µa = µW + σWΦ
−1
0,1 (1− 2−a), and, σ2

a ≈
σ2

W 2−(n+a)

ϕ2
0,1(Φ−1

0,1(1−2−a))
.

Proof. The proof follows the one of Theorem 1 in [21].
�

Remark. For the different applications considered in this paper, σa turns out to be
negligible compared to σr and hence we will consider that σ2

a + σ2
R = σ2

R. Indeed, it can
be proved6 that 2−(n+a)

ϕ2
0,1(Φ−1

0,1(1−2−a))
≈ 2−n
√

2π
. In typical cases, n will be large enough for σ2

a to

be small compared to σ2
W . Since in the worst observed case, σ2

R ≈ σ2
W , then σ2

a will also
be negligible compared to σ2

R. Hence, we will use the following approximation for Ps:

PS = Φ0,1

(
µR − µW − σWΦ−1

0,1 (1− 2−a)
σR

)
. (1)

We will discuss this last point later in the respective sections and provide observed
values.

3 General Model for Multiple Differential Cryptanalysis

In simple differential cryptanalysis, one sample is composed of a pair of plaintexts
(x, x⊕ δ0) and the corresponding ciphertexts (y = EK(x), y′ = Ek(x⊕ δ0)). Eventually,
multiple input differences may be used to perform an attack and then structures should
be use to generate more samples from less plaintexts. In the following, we will study
the complexities of different attacks in terms of the number Ns of required samples to
avoid ambiguities. In the case where a single input difference is used then the corre-
sponding data complexity N will be N = 2Ns. If more than one input difference is used,
then plaintexts should be grouped into structures and then the coefficient 2 in the data
complexity may change.

6 This result can be derived from the Taylor series of the error function.



3.1 Partition in differential cryptanalysis

In this section, we propose a general model for multiple differential cryptanalysis. The
aim of such a model is to provide a common language to express various notions of
differential cryptanalysis (multiple, improbable, impossible, . . . ) in such a way that the
same analysis tools can be used to evaluate performance of the attacks. This model will
also help in the investigation for new techniques that handle multiple characteristics.

From a very abstract point of view, a differential cryptanalysis is composed of two
functions.

– First a sampling function processes, for each key candidate k, the Ns available sam-
ples (si)1≤i≤Ns and extracts the corresponding difference distributions qk by normal-
izing the counters. This function corresponds to the distillation step.

η : FNs

22m ×K → [0, 1]2
m
,
(
{s1, . . . , sNs}, k

)
7→ qk = (qkδ )δ∈F2m

where

qkδ =
1
Ns

#
{
si = (yi, y′i), F

−1
k (yi)⊕ F−1

k (y′i) = δ
}
.

– Second, a scoring function extract a score for the candidate k from the empirical
distribution qk of observed differences. This function corresponds to the first part of
the analysis step (then candidates are ordered from the most likely to the least one).

ψ : [0, 1]2
m → R, qk 7→ ψ(qk).

Since in actual ciphers m ≥ 64, the storage of distributions qk is not possible. The
solution is to consider smaller distributions. From a general point of view, this can be
done by projecting the observed differences on a set of smaller cardinality by partitioning
the space of output differences. We will show later how known attacks translate into this
model. We denote by π such partition function from F2m to a set V (we assume that
V = Im(π)). We can generalize the sampling and scoring functions by considering the
partition function π.

Model 2 In differential cryptanalysis, the score of a key candidate is obtained composing
the following two functions defined for a given mapping π from F2m to a set V .

ηπ : FNs

22m ×K → [0, 1]|V |,
(
{s1, . . . , sNs}, k

)
7→ qk = (qkv )v∈V

where

qkv
def=

1
Ns

#
{
si = (yi, y′i), π

(
F−1
k (yi)⊕ F−1

k (y′i)
)

= v
}
,

and
ψπ : [0, 1]|V | → R, qk 7→ ψπ(qk).



Scoring functions and difference distributions. Later in Section 4,we will instantiate
different scoring functions ψπ. Some of them are based on the knowledge of the theoretical
behavior of difference distributions qk. This behavior obviously depends on whether k
corresponds to the correct key or not. If yes, the distribution qk will be determined by
differential probabilities, while if not, Hypothesis 1 implies that qk follows a distribution
corresponding to what would be obtained when considering the output of a random
permutation. Hence, we place ourselves in the following model.

Model 3 Let k be a subkey candidate and qk the corresponding difference distribution
obtained by a sampling function ηπ. Then,

Pr
[
qkv = x

]
=
{

Pr [pv = x] , if k = k0,
Pr [θv = x] , otherwise,

where distributions p and θ are defined as

pv =
∑

d∈π−1(v)

p(δ0 → d) and θv =
1

#π−1(v)
.

Remark. An attack based on partitioning input and output spaces was proposed by
Harpes and Cramer in [16]. We would like to stress that such attack uses a partition of
the plaintext (ciphertext, resp.) space while we consider in this paper partitions of input
(output, resp.) difference space.

3.2 Partitions and Actual Attacks

Simple/Impossible/Improbable Differential Attacks. In these attacks, one considers a
single differential (δ0, δr−1) having an unexected behavior (eg. a too large or too small
probability of occurring). Such cryptanalyses can be represented in our model using the
following function identifying differences to the set indexed by V = {0, 1}.

π(d) =
{

1, if d = δr−1,
0, otherwise.

The corresponding scoring function is determined by the number of times the char-
acteristic occurred hence only takes into consideration the value q1 of the projected
distribution.

Truncated Differential Attacks. Truncated differential cryptanalysis [18] is similar to
differential cryptanalysis in the sense that usually only one truncated differential char-
acteristic (∆0, ∆r−1) is used. Such attacks can be represented in our model in the same
way that the previous ones i.e. using the projected space V = {0, 1} and a similar
partition function

π(d) =
{

1, if d ∈ ∆r−1,
0, otherwise.

Again, the corresponding scoring function only takes into consideration the value q1 of
the projected distribution.



Multiple Differential Attacks. To improve the performances of differential attacks, infor-
mation coming from different differentials may be combined. We consider here attacks
such that differentials used have the same input difference. We discuss at the end of
Section 5 how our model can be extended to the use of multiple input differences. As-
suming that the collection of differential

(
δ0, δ

(i)
r−1

)
i=1,...,A

is used, we model the attack

with projected space V = {0, 1, . . . , A} and partition function:

π(d) =

{
i, if d = δ

(i)
r−1,

0, otherwise.

4 Instantiations and Complexity Estimates

In this section, we provide instantiations of scoring functions and the corresponding
estimates for data complexities. Later, in Section 5 we experiment these scoring functions
using different partition functions by attacking a reduced version of PRESENT [5, 19]
and discuss the corresponding time and memory complexities.

4.1 The Sum-of-counters Scoring Function

This technique consists in summing counters corresponding to considered differentials.
Theoretical analysis of this method is done in [8]. Taking notations of the previous
section, the scoring function is determined by

∑A
i=1 qi or equivalently by the value 1−q0.

In this setting the scores cannot be approximated by a Gaussian distribution and even
Poisson approximation leads to pessimistic results. This has been explained in [8] where
a formula is given to obtain a better estimate than using Poisson distribution. For more
details please refer to [8].

4.2 The LLR Scoring Function

The Neyman-Pearson lemma [20] gives the optimal form of the acceptance region on
which is derived the LLR method. The optimality requires that both p and θ distributions
are known (or at least the values pv/θv).

Definition 2. Let p = [pv]v∈V be the expected probability distribution vector, θ the uni-
form one and qk the observed one for a key candidate k. For a given number of sample
Ns, the optimal statistical test consists in comparing the following statistic to a fixed
threshold.

LLR(qk, p, θ) def= Ns

∑
v∈V

qv log
(
pv
θv

)
.

An important remark here is that, similarly to the case presented in Section 4.1, the
LLR statistic can be computed with a memory complexity of one floating-point counter
per candidate. Indeed, this statistic is a weighted sum of counters for which weights
are known before attacking. This test has been applied in [1] by Baignères et al. in the



case of linear cryptanalysis. Applying the law of large numbers, they shown that the
LLR statistic tends toward a Gaussian distribution with different means and variances
according to the distribution q is extracted from. These means are expressed in terms of
relative entropy.

Definition 3. Let p and p′ be two probability distribution vectors over V . The relative
entropy (aka. Kullback-Leibler divergence) between p and p′ is

D
(
p||p′

) def=
∑
v∈V

pv log
(
pv
p′v

)
.

We also define the following metrics

D2

(
p||p′

) def=
∑
v∈V

pv log2

(
pv
p′v

)
, and ∆D

(
p||p′

) def= D2

(
p||p′

)
−D

(
p||p′

)2
.

Lemma 2. (Proposition 3 in [1]) The distributions of LLR(qk, p, θ) asymptotically tend
toward a Gaussian distribution as the number of samples Ns increases. If samples are ob-
tained from distribution p (θ, resp.), the LLR statistic tends toward N (µR, σ2

R) (N (µW , σ2
W ),

resp.), where

µR = NsD (p||θ) , µW = −NsD (θ||p) ,
σ2
R = Ns∆D (p||θ) , σ2

W = Ns∆D (θ||p) .

Then, we can use Lemma 1 to obtain the following result.

Theorem 1. Let a be the advantage of an attack then the number Ns of samples required
to reach success probability PS is

Ns =

[√
∆D (p||θ)Φ−1

0,1(PS) +
√
∆D (θ||p)Φ−1

0,1 (1− 2−a)
]2

[D (p||θ) +D (θ||p)]2
. (2)

Proof. The proof is based on Lemma 1 and can be found in Appendix A.1. �

4.3 The χ2 Scoring Function

The aforementioned LLR test is optimal when both distributions are known. In our
context, the knowledge of θ relies on Hypothesis 1 and the knowledge of p is based on
the possibility of the attacker to theoretically compute differential probabilities. Hence,
the use of an alternative statistic may be of interest when one of these two distributions is
unknown to the attacker. The χ2 method has already proved out to be useful particularly
in the context of linear cryptanalysis, where the correct-guess distributions vary a lot with
the key [9].Also in the differential case, obtaining a good estimate of the correct-guess
distribution may be impossible. The idea is then to compare the empirical distribution
to the wrong-guess distribution: the vector corresponding to the correct key-guess should
end up with one of the largest scores (i.e., the smallest probability of being drawn from
θ).



Definition 4. Let qk be an empirical distribution vector. The χ2 statistic used to de-
termine the probability of the vector to correspond to a realization from distribution θ
is

χ2(qk, θ) = Ns

∑
v∈V

(qkv − θv)2

θv
.

Notice that using χ2 method, all the counters should be stored since it is not possible
to compute the statistic on-the-fly as it was the case when summing counters or for
LLR. This results in an increased memory cost when using this technique. The following
quantity appears when considering the parameters of the χ2 score distributions.

Definition 5. Let p be a probability distribution vector over V . The capacity of this
vector is defined by

C(p) def=
∑

v∈V
(pv − θv)2

θv
.

Lemma 3. [15] The distribution of χ2(qk, θ) asymptotically tends toward a Gaussian
distribution as the number Ns of samples increases. If samples are obtained from distri-
bution p (θ, resp.), the χ2 statistic tends toward N (µR, σ2

R) (N (µW , σ2
W ), resp.) where,

µR = |V |+NsC(p) , µW = |V |,
σ2
R = 2|V |+ 4NsC(p) , σ2

W = 2|V |.

In [15], Hermelin et al. proposed an approximation of the data complexity of a χ2

statistical test. It turns out that, at least in the present context, the estimate proposed
in the following theorem is tighter.

Theorem 2. Let C(p) be the capacity of the correct-candidate probability vector p. Then,
the number Ns of samples of the corresponding attack with success probability PS and
advantage a can be estimated by

Ns =

√
2|V |b+ 2t2 + t(

√
2|V |+ 2b)

√
1 + 4 t2−b2

(
√

2|V |+2b)2

C(p)
, (3)

where b = Φ−1
0,1(1−2−a) and t = Φ−1

0,1(PS). Fixing the success probability to 0.5, we obtain
the following estimate for the number of samples:

Ns =

√
2|V |Φ−1

0,1(1− 2−a)
C(p)

. (4)

Proof. The proof is based on Lemma 1 and can be found in Appendix A.2.
�



4.4 Different Partition Functions

We present here two different types of partition functions. The first one encompass all
previously proposed attacks by projecting some considered differences to corresponding
elements of V and all others to 0. The second family of partition functions induce a
balanced partitioning of the difference space (the sets of differences that are projected
to elements of V are all of equal cardinality). This last type of partitioning has (to our
knowledge) never been investigated and seems to be the most promising one regarding
the motivation of this paper. We will now refer to these two techniques for building
partition functions as respectively balanced and unbalanced partitioning.

Let us recall that we consider that differentials used all have the same input difference,
we will explain later how different input differences can be handled.

Unbalanced Partitioning When the attacker knows the probability of some differentials
(δ0, δ

(i)
r−1)1≤i≤A, then the natural way of partitioning is to allocate a counter to each of

these differentials. A “trash” counter will gather all other output differences.

πunbal(d) =
{
i, if d = δi,
0, otherwise.

(5)

Let us denote by ∆r−1 the set of output differences ∆r−1
def= (δ(i)r−1)1≤i≤A. It is likely that

this set allows early discarding of the so-called wrong pairs, i.e., pairs (y, y′) such that, for
all candidates k, F−1

k (y)⊕F−1
k (y′) 6∈ ∆r−1. Using such sieving process allows to decrease

the number of partial decryptions in the attack and typically results in considering active
bits in the difference y ⊕ y′. In our model such wrong pairs will only account for the
counters qk0 . As

∑|V |−1
v=0 qkv = 1 (|V | = A+1), for each candidate k, qk0 can be derived from

the other values. The theoretical probability θ0 is equal to θ0 = 1−
∑|V |−1

v=1 θv = 1− |V |−1
2m−1

Balanced Partitioning This alternative results in a balanced partitioning of the space
of differences and hence the sieving process will not be as effective as in the case of
unbalanced partitioning (if needed at all). Balanced partition functions consider in the
experiments have a particular structure linked to truncated differentials. A support s to
indicate the set of targeted difference bits, s ⊂ {0,m−1}, is determined (|V | = 2|s|) and
the partition function consists of considering only bits belonging to this support:

πbal(d) = d|s =
|s|∑
i=0

2i · ds(i), (6)

where s(i) denote the i-th bit that belong to the support.
What may be considered as an advantage is that such partition functions make use

of all pairs of plaintexts. Hence more information may be available (at the potential cost
of higher time or memory requirements). In this balanced model the distribution θ of the
wrong key is uniform. That means, in the notation of Model 3, that the quantity θv is
equal, for all v ∈ V : θv = 2m

|V | .
The main drawback of this model is that the differentials are grouped, and depending
on the way this is done, the attack may be more or less efficient.



5 Experiments

In this section, we experiment different combinations of partition and scoring functions
on nine rounds of SMALLPRESENT-[8]7 a reduced-version of PRESENT presented in
[19]. The goal is to investigate the potential improvements mentioned in Section 4 and
to test their robustness in a real attack context (that is with potentially badly estimated
distributions). More details about the choices of experiment parameters can be found in
Appendix A.3.

5.1 On the Choice of Partition Functions

Depending on the targeted cipher, the structure of the possible partition functions may
differ a lot. Nevertheless, using both a balanced and an unbalanced partitioning, (see
Equations (6, and (5)) we expect to cover a large spectrum of attack possibilities in the
context of SPN ciphers.

About πunbal. Such unbalanced partition function is generally chosen in such a way
that an efficient sieve can be performed to discard wrong pairs. In our settings, see
Equation (5) , the discarded pairs correspond to the ones that increment counter q0 for
all key candidates. The use of such sieving process leads to an important gain in the
time complexity of the partial decryption phase.

The weakness of this kind of partition function is that only few pairs are really useful
to the attack (non-discarded pairs). More precisely, for Ns samples and a given index
value v 6= 0,

#
{

(y, y′)|πunbal
(
F−1
k (y)⊕ F−1

k (y′)
)

= v
}

= O
(
Ns
2m

)
, where Ns

2m ≤ 1.

In the context of classical simple differential cryptanalysis this phenomenon is related to
the thresholds that can be observed on curves representing success rate or advantage as
a function of the number of available samples. When using scoring techniques as the one
proposed in this paper, this may explain part of the discrepancies between theoretical
and empirical results, particularly in the context of χ2.

About πbal. In the case of balanced partition functions, the aforementioned behavior is
not observed since all pairs are taken into account. Indeed,

#
{

(y, y′)|πbal
(
F−1
k (y)⊕ F−1

k (y′)
)

= v
}

= O (Ns · θv) , while θv =
1
|V |

.

That means that for balanced partition functions, if Ns is larger than |V |, the noise
is reduced8. Nevertheless, in such context we generally cannot use an efficient sieving
process hence the time complexity of the resulting attack is more important: for each
sample a partial decryption of the last round has to be performed. Part of this drawback
is removed due to the smaller data complexity. Hence both approaches may be of interest
depending on the context.
7 It is an SPN cipher that processes 32-bit blocs using a 40-bit master key. One round is composed of

a key addition, a non-linear layer of 4-bit S-boxes and a bit permutation.
8 Intuitively: for a fixed value of |V |, the noise is decreasing as the number of sample is increasing



5.2 Experimental Results

The present work proposes to model multiple differential cryptanalysis as the combina-
tion of a partition and a scoring function. We derived estimates for the data complexity
corresponding to different scoring functions and introduced two families of partition func-
tions. Hence, there are many things that experiments may tell us about the relevance of
these tools. We will first discuss the accuracy of the estimates for the data complexity
we derived. Then, we will focus on the scoring functions and their robustness regarding
badly estimated distributions. Thus, we ran experiments in two different contexts:

(i) using “actual” correct-key distribution: this distribution was obtained by experimen-
tally computing differential probabilities for fixed keys and then averaging over 200
different keys9;

(ii) using estimated correct-key distribution: we model the fact that an attacker may
only have access to estimates of the differential probabilities by degrading the actual
correct-key distribution for a given error rate.

All experiments have been performed targeting nine rounds of the cipher. The main
reason is that the corresponding data complexities are high enough for the attack to
make sense and small enough for us to perform enough experiments. For the same reason,
we choose size of output spaces |V | in such a way that the counter storage of the resulting
attacks can be handled in RAM and that the number of key candidates is at most 216.

Accuracy of the data complexity estimates. Accuracy of the data complexity
estimates presented in Theorem 1 and Theorem 2 depends on different parameters (the
size of the output space, the partition function and so on). It also strongly depends on
the correctness of estimates used for the distributions. In order to focus on the validity
of provided formulas, we ran experiments in the setting (i)10 correct-key distribution
thus any observed deviation should not be attributed to an incorrect estimate of the
differential probabilities.

0.5

0.6

0.7

0.8

0.9

20 22 24 26

P
S

log2(N)

Ex. a = 4
Th. a = 4
Ex. a = 7
Th. a = 7

Set size 28

0.5

0.6

0.7

0.8

0.9

20 22 24 26

log2(N)

Set size 212

Fig. 1. Data complexities of attacks using χ2 scoring and balanced partitioning.

9 This technique has been shown to provide good results in [6].
10 Notice that for the χ2 scoring function, we first computed capacities for different fixed keys and then

averaged obtained values.
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Fig. 2. Data complexities of attacks using LLR scoring and balanced partitioning.

We observe that for both χ2 (Figure 1) and LLR (Figure 2), formulas provided by
Theorem 2 and Theorem 1 give rather good estimates for the data complexity.

Comparison of scoring functions (known distributions). We now consider Fig-
ure 1 and Figure 2 in a different way, since we aim at comparing both χ2 and LLR scoring
functions. Obviously the LLR scoring function has much smaller data requirement. For
instance, for an advantage a = 7 and an output space size |V | = 212, it only requires
218.7 plaintexts to reach a success probability of one half while 223.55 is required using
χ2. This is a natural result since LLR attacks are run with actual values of the differential
probabilities and hence have more information to process the available data.

Comparison of scoring functions (estimated distributions). In [9], Cho has
shown that if the attacker only has a badly estimated correct-key distribution then
using the LLR statistical test is not relevant anymore. We conducted experiments in that
direction assuming that the estimated probability distributions were biased. We emu-
lated this phenomenon by adding some random noise to the distribution estimate (that
is p̂v = pv ± pv

100) then normalizing p̂v.
We present in Figure 3 the results of our investigation in the case of a balanced

partition function with |V | = 28 (case were the best match is obtained between theory
and practice) when the attacker only knows a correct estimate of the distribution. Using
both LLR or χ2 scoring functions leads to inaccurate estimations of the data complexity.

It turns out that the noised distribution we obtained can be distinguished from the
corresponding uniform distribution θ more easily and hence theoretical expectations are
optimistic. For χ2 method, it can be seen by comparing capacities (the noised distribution
has a larger capacity than the actual one) and in the case of LLR method this can be
seen by looking at the relative entropy between θ and the noised distribution (that is
larger). The main information is that this badly estimated distribution does not affect
the attack using χ2 scoring function, what is quite natural since the distribution p is
not involved in the process, while for LLR scoring function this induces an overhead in
the data complexity. With only a 1% bias, χ2 scoring function achieve slightly better
performance than LLR (in terms of data complexity).
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Fig. 3. Data complexities for biased distribution (using balanced partitioning of a set of cardinality
|V | = 28 with advantage a = 4).

Notice that in practice, when instantiating attacks on real ciphers with large state
size, it is not so easy to obtain a good estimation of the correct-key distributions. A
folklore result is that the differential probability can be underestimated by adding prob-
abilities of corresponding differential trails found using a Branch-and-Bound algorithm.
The main difficulty comes from the choice made by designers known as “wide trail strat-
egy” [10]. Such strategy implies that the number of significant trails in a differential
(or linear approximation) exponentially increases with the number of rounds. Experi-
ments made (but not presented in this paper) show that even on SMALLPRESENT-[8]
estimating distributions directly using a Branch-and-Bound algorithm leads to an er-
ror drastically larger than 1%. Hence in practice, an attacker may favor the χ2 scoring
function.

Comparing partition functions. Let us now consider the impact of partition func-
tions used. Figure 1 and Figure 2 are related to experiments that have been performed
using the newly introduced balanced partitioning. We also ran experiments using the for-
mer unbalanced partitioning for which an efficient sieving process can be performed (see
Figure 4). We chose to perform attacks with an output set of size |V | = 216. The reason
is that for smaller sizes corresponding attacks require much more data. Hence, to fairly
compare partition functions we used best possible parameters that allow performing
enough attacks for plotting results in a given time.
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Fig. 4. Data complexities for an unbalanced partitioning (set of cardinality 216).



First we observe that due to the use of a sieving process, the theoretical estimates for
the data complexity are pretty optimistic (a sketch of explanation is given in Section 5.1).
Focusing on experimental curves, we can conclude that from a purely information theo-
retical point of view, using balanced partitioning allows extracting more information from
available samples than using unbalanced ones. Nevertheless, also the cost of memory and
time, see Appendix A.4, has to be considered when comparing both types of partition
functions.

On the use of differentials with different input differences. There are two
straightforward ways of extending this work to multiple input differences. The first one
is to consider the same partition function for each input difference so that only one
output distribution is considered. The second technique is orthogonal since it consists in
considering independently the distributions coming from different input differences. The
corresponding scoring functions boils down to summing scores obtain for each distribu-
tion.

We ran experiments using both approaches and surprisingly did not obtained rad-
ically better results than using a single input difference. Nevertheless, we observed a
strong correlation between the distributions obtained that should be exploited. This is
a very promising scope for further improvements of this work.

6 Conclusion

This paper builds on the work made on the topic of linear cryptanalysis using multiple
approximations. We investigate different statistical tests (namely LLR and χ2) to com-
bine information coming from a large number of differentials while, to our knowledge,
only summing counters was considered up to now. To analyze these tools, we introduce
a formal way of representing multiple differential cryptanalysis using partition functions
and present two different families of such functions namely balanced and unbalanced
partitioning (previous attacks being modelled as unbalanced partitioning). Finally, we
present experiments performed on a reduced version of PRESENT that confirm the accu-
racy of the data complexity estimates derived in some contexts. These experiments show
a relatively good accuracy of the estimates and illustrate the fact that using balanced
partitioning one is able to take profit of all available pairs.

Further research include exploiting the similarities observed between distributions
corresponding to different input differences and solving the challenging problem of esti-
mating correct-key distributions for actual ciphers.
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A Proofs

A.1 Proof of Theorem 1

We applied the result of the Lemma 1 to the LLR case. As previously mentioned11, we
consider that σ2

R � σ2
a and hence we neglect the term σ2

a to obtain the approximation
of PS given in (1)

PS = Φ0,1

(
µR − µW − σW Φ−1

0,1 (1− 2−a)
σR

)
,

Φ−1
0,1(PS) =

Ns [D (p||θ) +D (θ||p)]− σW Φ−1
0,1 (1− 2−a)

σR
,

√
Ns =

√
∆D (p||θ)Φ−1

0,1(PS) +
√
∆D (θ||p)Φ−1

0,1 (1− 2−a)
D (p||θ) +D (θ||p)

.

What finally yields (2) and finishes the proof.

A.2 Proof of Theorem 2

From Lemma 1 and assuming12 σ2
a � σ2

R, we can use (1)

PS = Φ0,1

(
µR − µW − σWΦ−1

0,1 (1− 2−a)
σR

)
.

Hence,

Φ−1(PS) =
NsC(p)−

√
2|V |Φ−1

0,1(1− 2−a)√
2|V |+ 4NsC(p)

.

We observe that the number of samples appears together with the capacity C(p). Let
us denote by X the value NsC(p) and express this equation as a degree-two polynomial
then solve it. To lighten notation we denote Φ−1

0,1(1− 2−a) by b and Φ−1
0,1(PS) by t:

X −
√

2|V |b√
2|V |+ 4X

= t,

X2 − 2X
√

2|V |b+ 2|V |b2

2|V |+ 4X
= t2,

X2 − 2X
√

2|V |b+ 2|V |b2 − t2(2|V |+ 4X) = 0,
X2 − 2X(

√
2|V |b+ 2t2) + 2|V |(b2 − t2) = 0

11 In Section 2 we promised figures to illustrate the fact that σ2
R � σ2

a. For instance, for a = 8 we have
σ2

R/σ
2
a ≥ 23 and for a = 35 we have σ2

R/σ
2
a ≥ 27.

12 In the case of χ2 method σ2
W is smaller than σ2

R by definition. Hence, regarding the discussion in
Section 2, it is obvious that this hypothesis actually holds.



As the data complexity is an increasing function of the success probability, and because
Ns = X

C(p) , the only meaningful root of this equation is:

X =
√

2|V |b+ 2t2 +
√

(
√

2|V |b+ 2t2)2 − 2|V |(b2 − t2),

=
√

2|V |b+ 2t2 + t

√
2|V |+ 4b

√
2|V |+ 4t2,

=
√

2|V |b+ 2t2 + t

√
(
√

2|V |+ 2b)2 + 4(t2 − b2),

=
√

2|V |b+ 2t2 + t(
√

2|V |+ 2b)

√
1 + 4

t2 − b2

(
√

2|V |+ 2b)2
.

In the reasonable case where PS = 0.5, then we obtain a simple formula for Ns that

is Ns = b
√

2|V |
C(p) . In the case where b is not too large compared to |V | then, we can use

Ns ≈
(b+t)·(

√
2|V |+2t)

C(p) . In other situations the square-root term should not be close to 1
and hence should not be neglected.

A.3 Details on experimental parameters
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Fig. 5. One round of SMALLPRESENT-[8]

In Section 5, we present different experiments on SMALLPRESENT-[8] (see. Fig-
ure 5). We provide here explanations and details about the different parameters that
were used to conduct these experiments.

Choice of the input difference. All experiments proposed in this paper were performed
using 8-round differentials of SMALLPRESENT-[8] all having the same input differ-
ence. We ran a Branch and Bound algorithm to find the best 8-round differentials but
restricted this search to input differences activating Sboxes in {S0, S1, S2, S3} or in
{S4, S5, S6, S7} (see. Figure 5). It turned out that best trails were corresponding to
input differences 0x7 and 0xF. The one of these two differences that was the more
promising when considering 8-round distributions was δ0 = 0x7 and hence we chose to
perform experiments using this difference.



Choice of the output space cardinality. As explain in Section A.4, the time and memory
complexities of an attack depend on the partition function used. For instance, for a
balanced partition function πbal, the time complexity increases with the number of Sboxes
that the attacker need to decipher. To conserve a practical time complexity we observed
that we can only decipher up to 3 Sboxes for data complexities of order 230. That is why
for the balanced partition functions we propose experiments with vectors of size up to
|V | = 212. For the unbalanced case the time complexity of the attack remains practical
as soon as |V | ≤ 216 and hence we choose to perform tests with |V | = 216.

Choice of S-boxes considered when partitioning. According to the structure of SMALLPRESENT-
[8], it seems reasonable to use nibble-oriented partitions. This method allows us to restrict
the partial decryption only on the targeted Sboxes and using a subspace of this output
differences will only reduce the information that we can collect without modifying a lot
the time and memory complexities. As SMALLPRESENT-[8] only have 8 Sboxes, an
exhaustive search for the best group of targeted differences was practical13 and thus has
been performed. Among all these combinations, we chose the ones that provided the
best expected capacities (hence corresponding to smaller data complexities with the χ2

scoring function). Summarizing, we chose distributions on 8 rounds to attack 9 rounds
of SMALLPRESENT-[8] which correspond to the following targeted Sboxes:

– For the balanced partition function πbal with |V | = 28 the targeted Sboxes are S7
and S6.

– For the balanced partition function πbal with |V | = 212 the targeted Sboxes are S7,
S6 and S5.

– For the unbalanced partition function πunbal with |V | = 216 the targeted Sboxes are
S7, S6, S5 and S4.

A.4 Time and memory complexities

When targeting a fixed number n of key-bits and a fixed advantage a, differences in the
time and memory complexities between partition functions and statistics mainly rely on
the score computation. Indeed, the complexities of the Analysis and Search phases are
then the same. The aims of this appendix is to give a rough idea of the time and memory
complexities of multiple differential attacks using the partition function πunbal or πbal
defined in Section 4.4 and using both statistics presented in this paper. Of course this
discussion remains very general since the result strongly depends on the block cipher
construction.

We assume here, as a reference, that the cost of a partial decryption can be evaluated
in terms of |V |14. Depending of the partition function the number of pairs (y, y′) that
we partially decipher is different:
13 This exhaustive search required at most the computation of the expected capacities or the expected

distribution vectors for
`
8
4

´
combinations.

14 In the case of our experiments on SMALLPRESENT-[8], as V corresponds to an union of Sboxes, the
cost can be measured in terms of the number of Sbox inversions.



– πunbal: Ns · |V |2m partial decryptions are performed.
– πbal: Ns partial decryptions are performed.

For each key candidate a score is computed and the memory complexity of this
computation depends on the used statistical: LLR or χ2 in our case. Indeed for the LLR
test the storage of the vector of counters is not necessary hence for each key a single
counter will be used while for χ2 technique a vector of size |V | will have to be stored for
each candidate. To summarize, in the analysis phase 2n|V | counters are required for χ2

while only 2n counters are needed for the LLR.


