
New Preimage Attacks on Hash Modes of AES-256

Deukjo Hong, Dong-Chan Kim, and Daesung Kwon

July 6, 2012

Abstract

We study the slow diffusion of the AES key schedule for 256-bit keys and find weakness which can be
used in the preimage attack on Davis-Meyer mode. Our preimage attack works for 8 rounds of AES-
256 with the computational complexity of 2124.9, while the best previous attack works for 7 rounds
of AES-256. It is also extended to the preimage attack on some well-known double-block-length hash
modes assuming the underlying block cipher is 8-round AES-256, whose computational complexity is
2252.9.

1 Introduction

Block ciphers and hash functions are widely used popular cryptographic primitives. Many hash functions
are often designed based on block-cipher-like components. Some of them can be regarded as hash modes
of block ciphers. PGV modes [21] are representative single-block-length (SBL) hash modes, where the
length of the chaining and hash values is the same as the block length of the underlying block cipher.
There are several double-block-length (DBL) hash modes, where the length of the chaining and hash value
is twice as long as the block length of the underlying block cipher.

Sasaki presented the preimage attacks on PGV modes of 7-round AES [23]. In Sasaki’s framework,
the pseudo-preimage attack on Davis-Meyer mode is firstly researched and then extended to preimage
attacks or second-preimage attacks on 12 secure PGV hash modes. His attack works for 7 rounds of
AES, regardless of key size because it does not use any properties from the key schedule. So, it can be
applied to 7 rounds of SQUARE [6] and CRYPTON [17], which are the block ciphers having almost same
encryption structure as AES. [10] and [20] apply Sasaki’s framework to reduced rounds of several block
ciphers — 5 rounds of ARIA, 7 rounds of Camellia, and 4 rounds of Serpent, and a few rounds of block
cipher structures — Feistel, generalized Feistel, Misty, and generalized Misty schemes, respectively. [19]
discusses the preimage and second-preimage resistance of various double-block-length hash modes based
on Sasaki’s framework.

In this paper, we study the slow diffusion of the AES key schedule for 256-bit keys to find some
weakness which can be used in the meet-in-the-middle preimage attack. Then, we shows a preimage
attack on Davis-Meyer mode with 8-round AES-256. It requires the computational complexity of 2124.9.
Our approach follows the previous preimage attacks on dedicated hash functions rather than block ciphers,
because our attack uses the neutral bytes from the round keys produced by the key schedule instead of
the internal state. For 256-bit keys, our result improves the previous Sasaki’s work. We also point out
this result can be extended to the preimage attacks on the well-known double-block-length hash modes
assuming the underlying block cipher is 8-round AES-256, whose computational complexity is 2252.9.

This paper is organized as follows. In Section 2, we give brief descriptions about treated algorithms
and schemes. In Section 3, we explain the previous work for the meet-in-the-middle preimage attack.
Section 4 presents a method to construct neutral bytes for the AES key schedule of 256-bit keys with 8
rounds. Sections 5 describes the preimage attacks on Davis-Meyer modes of 8-round AES-256, and its
complexities. In Section 6, we discuss the extension of our attack to the well-known DBL hash modes. In
Section 7, we conclude this paper.

1

2 Specifications

2.1 AES

Advanced Encryption Standards (AES) [8] is a 128-bit block cipher supporting three different key sizes
of 128, 192, and 256 bits. AES-256 has 14 rounds and a 256-bit key, which is two time larger than the
internal state. Since each round needs a 128-bit round key, the key schedule consists of only 7 rounds.
Let K be a 256-bit secret key and K[i] be the i-th byte of K for 0 ≤ i ≤ 31. The first two round keys
RK0 and RK1 are defined as RK0 = K[0]‖ · · · ‖K[15] and RK1 = K[16]‖ · · · ‖K[31], respectively. The
other round keys are generated as follows: for l = 0, 1, ...,

RK2l+2[i] ← S(RK2l+1[12 + (i + 1 mod 4)])
⊕RK2l[i]⊕RCl[i], 0 ≤ i ≤ 3;

RK2l+2[4i + j] ← RK2l+2[4(i− 1) + j]⊕RK2l[4i + j],
1 ≤ i ≤ 3, 0 ≤ j ≤ 3;

RK2l+3[i] ← S(EK2l+2[12 + i])⊕RK2l+1[i],
0 ≤ i ≤ 3;

RK2l+3[4i + j] ← RK2l+3[4(i− 1) + j]⊕RK2l+1[4i + j],
1 ≤ i ≤ 3, 0 ≤ j ≤ 3,

where S() and RCl stand for the S-box and the round-dependent constant, respectively.
In the encryption procedure, the internal state is represented by a 4 × 4 byte array, where the index

(i, j) of each entry is corresponded to the byte order 4i+ j for 0 ≤ i, j ≤ 3 (Fig. 1). The data is processed
as follows. After the key schedule generates 128-bit round keys RK0, RK1, ..., RK14, the plaintext is
translated to State00 via XORing with the first round key RK0. Then, a round function consisting of the
following operations is iteratively applied:

• SubBytes (SB): substitute each byte according to an S-box table. The output of this operation is
denoted by Statei1.

• ShiftRows (SR): apply the j-byte left rotation to each byte at row j. The output of this operation
is denoted by Statei2.

• MixColumns (MC): multiply each column by an MDS matrix. MDS guarantees that the number of
active bytes in the input and output of the MixColumns operation is at least 5 unless all bytes are
non-active. The output of this operation is denoted by Statei3. The MDS matrix and its inverse
matrix are defined as follows.

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


−1

=


ex bx dx 9x

9x ex bx dx

dx 9x ex bx

bx dx 9x ex

 .

• AddRoundKey (AK): apply XOR with the round key RKi+1. The output of this operation is
denoted by State(i+1)0.

Note that the MixColumns operation is not computed at the last round. We often denote several bytes
of a state Stateij by Stateij [a, b, ...] for the indices a, b, ... or Stateij [I] for the index set I = {a, b, ...}. For
example, 4 bytes in the right most column of State00 are denoted by State00[12, 13, 14, 15]. We apply the
same notation to bytes of round keys.

2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 1: Byte position

EHi

Mi

Hi+1

Figure 2: Davis-Meyer mode

2.2 Merkle-Damg̊ard Domain Extension

One popular method to build a hash function with variable-length inputs is to use a domain extension for
iteratively applying a compression function. The Merkle-Damg̊ard scheme [18] is a mostly used domain
extension in practice. It applies the padding to the input message M so that the last block includes the
original message length, and parses the padded message to M0‖M1‖...‖ML−1, where the size of each Mi

is the block length. In this paper, we assume the most popular padding rule, used in SHA-1 and SHA-2
[7]; appending the bit strings ‘100...’ and the 64-bit encode of the message length to the message. H0 is
fixed as an initial value, and Hi+1 = CF(Hi,Mi) is iteratively applied for i = 0, 1, ..., L− 1. Finally, HL

is output as a hash value of M .
Throughout this paper, we assume that we are given a hash function based on the Merkle-Damg̊ard

domain extension and the compression function CF. For a given hash value y, a preimage of the hash
function is a message M leading to the hash value y. For a randomly chosen message M , a second-
preimage of the hash function is a message M ′ leading to the same hash value for M . For a given output
y, a pseudo-preimage is a pair of (x, M), x 6= H0 such that CF(x, M) = y.

2.3 Davis-Meyer Mode

We denote a block cipher E with a key K by EK . Davis-Meyer mode [18, Algorithm 9.42] is a way to build
a single-block-length compression function from a block cipher for the application to Merkle-Damg̊ard
domain extension. It defines the compression function CF(Hi,Mi) as follows (Fig. 2):

CF(Hi,Mi) = EMi(Hi)⊕Hi. (1)

Davis-Meyer mode was proved to be collision-resistant and preimage-resistant in the ideal cipher model
[5], as one of secure PGV hash modes [21].

2.4 Double-block-length Hash Modes

We apply our attack results on AES-256 to DBL hash modes whose underlying block cipher has n-bit key
and 2n-bit block. Let E be a block cipher with n-bit key and 2n-bit block. For an n-bit plaintext P and
a 2n-bit key K = K0‖K1, we define a function G as follows:

G(P,K0,K1) = EK0‖K1
(P)⊕ P, (2)

In [9], Hirose presented a DBL hash mode whose compression function CF(Hi,Mi) = Hi+1 is defined
as follows (Fig. 3):

Hi+1,0 = G(Hi,0,Hi,1,Mi); (3)
Hi+1,1 = G(Hi,0 ⊕ Con, Hi,1,Mi), (4)

where Hi = Hi,0‖Hi,1 and Hi+1 = Hi+1,0‖Hi+1,1 are 2n-bit chaining variables, Mi is an n-bit message
block, and Con is an n-bit nonzero constant.

3

E

Hi,0

Mi

Hi+1,1

E Hi+1,0

Hi,1

Con

Figure 3: Hirose’s DBL mode

E

Hi,0

Mi

Hi+1,1

E Hi+1,0

Hi,1

Figure 4: Abreast-DM mode

E

Hi,0

Mi

Hi+1,1

E Hi+1,0

Hi,1

Figure 5: Tandem-DM mode

E

Hi,0

Hi,1 Hi+1,1

E Hi+1,0

Mi,1

Mi,0

s

´q

Figure 6: MJH mode

In [12], Lai and Massey proposed two DBL hash modes, Abreast-DM and Tandem-DM. In Abreast-
DM, the compression function CF(Hi,Mi) = Hi+1 is defined as follows (Fig. 4):

Hi+1,0 = G(Hi,0,Hi,1,Mi); (5)
Hi+1,1 = G(Hi,1,Mi,Hi,0)⊕ 1n, (6)

where Hi = Hi,0‖Hi,1 and Hi+1 = Hi+1,0‖Hi+1,1 are 2n-bit chaining variables, Mi is an n-bit message
block, 1n is all-1-bit string 11...1 with n-bit length, and X is the complement of any n-bit value X, i.e.,
X = X⊕1n. In Tandem-DM, the compression function CF(Hi,Mi) = Hi+1 is defined as follows (Fig. 5):

Hi+1,0 = G(Hi,0,Hi,1,Mi); (7)
Hi+1,1 = G(Hi,1,Mi,Hi,0 ⊕Hi+1,0). (8)

In [14], Lee and Stam proposed a DBL hash mode, MJH. It can use any block cipher with n ≤ k,
where n is block size and k is key size, but we fix k = 2n in order to apply our attack on AES-256. With
this setting, its compression function CF(Hi,Mi) = Hi+1 is defined as follows (Fig. 6):

Hi+1,0 = G(Hi,0 ⊕Mi,0,Hi,1,Mi,1); (9)
Hi+1,1 = G(σ(Hi,0 ⊕Mi,0),Hi,1,Mi,1) · θ ⊕Hi,0, (10)

where Hi = Hi,0‖Hi,1 and Hi+1 = Hi+1,0‖Hi+1,1 are 2n-bit chaining variables, Mi = Mi+1,0‖Mi+1,1 is a
2n-bit message block, σ is an involution map, and ·θ is a multiplication with a constant θ ∈ F2n \ {0, 1}.

The above DBL hash modes were proved to be collision-resistant in the ideal cipher model [9, 13, 14,
15]. Hirose, Abreast-DM, and Tandem-DM hash modes were also proved to be preimage-resistant in the
ideal cipher model [4].

3 Meet-in-the-middle Preimage Attack

The meet-in-the-middle (MITM) preimage attack framework developed by Aoki and Sasaki [2, 3] is based
on Leurent’s work [16]. The basic approach of this framework is the separation of the compression

4

function. The compression function is divided into backward and forward chunks such that a piece of the
input message affects only the backward chunk and another piece affects only the forward chunk. We
call such pieces of input message neutral words (or bytes or bits). This separation allows us to apply the
meet-in-the-middle technique.

Additionally, several techniques have been developed to extend this basic approach. The splice-and-
cut technique [3] regards that the first and last steps are consecutive, and thus any step can be the start
point or matching point of the MITM attack. However, the results become pseudo-preimages rather than
preimages. The partial-matching/-fixing techniques [3] and indirect partial-matching technique [1] allow
to check the match at several steps instead of a point, and so make the matching check of two chunks
efficient. Finally, the initial-structure technique [22] allow to start the meet-in-the-middle attack with
some skipped steps.

In n-bit narrow-pipe iterated hash functions based on Merkle-Damg̊ard domain extender, pseudo-
preimage attacks with a complexity of 2x, where x < n − 2, can be converted to preimage attacks with
a complexity of 2

n+x
2

+1 in generic [18, Fact 9.99]. If the pseudo-preimage attack is applied to the last
compression function and the padding rule can be satisfied with the message length of 2 blocks, the
conversion is briefly described as follows:

1. Perform the pseudo-preimage attack for the given hash value and 2
n−x

2 distinct settings of random
choices, and keep all the attack results (H1,M1) in a table.

2. Compute H ′
1 = CF(H0,M0) for the initial value H0 and 2

n+x
2 distinct random choices for the first

message block M0, and check whether each computation result (H ′
1,M0) has a match H ′

1 = H1 for
any entry (H1,M1) in the table. If a match is found, then the corresponding M0‖M1 is a preimage
for the given hash value.

It is easy to see the whole complexity is estimated as 2
n−x

2 · 2x + 2
n+x

2 = 2
n+x

2
+1. This conversion method

requires a memory for 2
n−x

2 values of (H1,M1), and can be modified to a memoryless method with the
computational complexity 2

n+x
2

+2 [18, Chapter 9]. However, we do not need to consider the memoryless
method since 2

n−x
2 is usually very small.

In [23], Sasaki presents how to apply MITM preimage attack to block ciphers. He fixes a key input
of the block cipher as a constant, and uses some pieces of an intermediate variable as neutral words to
perform a kind of meet-in-the-middle attack. Sasaki’s attack finds a pseudo-preimage of Davis-Meyer
mode for 7-round AES, regardless of key size. It leads to a preimage attack on Davis-Meyer mode with 7-
round AES. He also showed that if key size is fixed as 128 bits, then it can be used to estimate preimage or
second-preimage attack complexities for other PGV modes. This framework can be applied to 7 rounds of
SQUARE and CRYPTON, which are the block ciphers having almost same encryption structure as AES.
[10] and [20] exploited Sasaki’s framework to reduced rounds of several block ciphers — 5 rounds of ARIA,
7 rounds of Camellia, and 4 rounds of Serpent, and a few rounds of block cipher structures — Feistel,
generalized Feistel, Misty, and generalized Misty schemes, respectively. [19] discusses the preimage and
second-preimage resistance of various double-block-length hash modes using the Sasaki’s pseudo-preimage
attack on underlying block ciphers.

Since our approach in this paper exploits the slow diffusion of the key schedule for 256-bit keys, our
attack is similar to previous attack on dedicated hash functions rather than block ciphers.

4 Neutral Byte Arrangement

We arrange the neutral bytes as Fig. 7. We choose RK3[0, 1 ,2] as the neutral bytes for the forward chunk.
These bytes have effects on RK1[0, 1, 2, 4, 5, 6], RK5[all \ {3, 7, 11, 15}], RK6[all \ {2, 6, 10, 14}], RK7[all],
and RK8[all \ {2, 6, 10, 14}], where all means the set of all byte positions, i.e., {0, 1, ..., 15}. They are
colored in blue in Fig. 7. Furthermore, we minimize the effects of RK3[0, 1, 2] toward backward direction

5

Sub
+

Rot

Sub

Sub
+

Rot

Sub

Sub
+

Rot

Sub

RC0

RC1

RC2

Sub
+

Rot

RC3

: neutral byte for the backward chunk

: neutral byte for the forward chunk

: fixed constant

: unusable byte

Figure 7: Neutral bytes of AES-256

at the cost of the degree of freedom. We choose two 1-byte constants δ0 and δ1, and use the solutions to
the following equations for the neutral bytes:

ex ·RK3[0]⊕ bx ·RK3[1]⊕ 9x ·RK3[2] = δ0; (11)
9x ·RK3[0]⊕ ex ·RK3[1]⊕ dx ·RK3[2] = δ1. (12)

In backward computation, State30 goes to State23 by XORing with RK3, and State23 is translated into
State22 by the inverse of MixColumn. Since MixColumn is linear, the values of RK3[0, 1, 2] satisfying (11)
and (12) are related with only two bytes State22[2, 3].

We choose RK6[2] as the neutral byte for the backward chunk. It has effects on RK0[2, 6, 10, 14],
RK2[2, 6, 10], RK4[2, 6], and RK8[2, 6, 10, 14]. They are colored in red in Fig. 7, except RK8[2, 6, 10, 14],

6

which are colored white. Note that RK8[2, 6, 10, 14] cannot be considered as neutral bytes because they
are affected from both backward and forward neutral bytes. The other bytes in Fig. 7 are colored in gray.
Consequently, in Fig. 7, gray bytes are fixed as constants, and red and blue bytes do not interfere with
each other in the computations.

5 Preimage Attack on Davis-Meyer mode of 8-round AES-256

Fig. 8 depicts the overview of the pseudo-preimage attack on Davis-Meyer mode of 8-round AES-256. It
starts at State40, whose value is randomly chosen. The forward chunk consists of the forward computations
from State43 to State80 and from State00 to State02. The backward chunk consists of the backward
computations from State40 to State03. We have a partial-matching check between State02 and State03.
Firstly, we explain how to check the match between two chunks. Then, we describe whole procedure of
the pseudo-preimage attack.

5.1 Matching-Check Equation

We use an equation to check partially the match of the computation results in backward and forward
chunks. In our attack, we obtain 9 bytes State02[0, 4, 5, 7, 9, 11, 12, 13, 15] as the result of the forward
chunk computation and 5 bytes State03[3, 9, 10, 14, 15] as the result of the backward chunk computation.
From the definition of the MixColumns layer, we have the following equations for the fourth columns of
State02 and State03.

Y [2] = X[0]⊕X[1]⊕ 2x ·X[2]⊕ 3x ·X[3]; (13)
Y [3] = 3x ·X[0]⊕X[1]⊕X[2]⊕ 2x ·X[3], (14)

where X[0, 1, 2, 3] denote State02[12, 13, 14, 15] and Y [2, 3] denote State03[14, 15]. We can cancel X[2](=
State02[14]) by multiplying (14) by 2x and XORing the result with (13). Consequently, we get a matching-
check equation as follows.

Y [2]⊕ 2x · Y [3] = 7x ·X[0]⊕ 3x ·X[1]⊕ 7x ·X[3]. (15)

5.2 Pseudo-Preimage Attack Procedure

Let M be the 256-bit padded message block of the last compression function. The procedure finding a
pseudo-preimage for the last block is as follows.

1. Initialization: Initialize the message block M in terms of the round keys RKi as follows.

(a) RK1[7, ..15] are set such that they satisfy the padding rule of the message length of 2 blocks.

(b) RK0[all \ {2, 6, 10, 14}], RK1[3], RK2[14], RK3[4, 5, 6], RK4[10], and RK6[6] are fixed to
randomly chosen 1-byte constants.

(c) Choose the internal state State40 randomly and then compute State43.

(d) The constants δ0 and δ1 in (11) and (12) are randomly chosen.

2. Backward computation: For all possible 28 values of RK6[2],

(a) Compute the backward chunk from State40 to State03. Note that we have unknown values for
only two bytes at State22 due to (11) and (12).

(b) Compute the left hand side of (15) with State03[14, 15].

(c) Store the result in a table Tback.

7

Plaintext

AK

State00

SB

State01

SR

State02

MC

State03

AK

State10

SB

State11

SR

State12

MC

State13

AK

State20

SB

State21

SR

State22

MC

State23

AK

State30

SB

State31

SR

State32

MC

State33

AK

State40

SB

State41

SR

State42

MC

State43

AK

State50

SB

State51

SR

State52

MC

State53

AK

State60

SB

State61

SR

State62

MC

State63

AK

State70

SB

State71

SR

State72

AK

State80

Given Target

: values depending on neutral byte for the backward chunk

: values depending on neutral byte for the forward chunk

: fixed constant

: unknown value

Matching Check

Figure 8: Pseudo-preimage attack on Davis-Meyer compression function of 8-round AES-256

8

3. Forward computation: For all possible 28 values of RK3[0, 1, 2] satisfying (11) and (12),

(a) Compute the forward chunk from State43 to State02 according to Fig. 8.

(b) Compute the right hand side of (15) with State02[12, 13, 15].

(c) Check whether there exists an entry in Tback that matches the result of the step 3-b.

(d) If a match is found in the step 3-c, compute all bytes of State02 and State03 for the matched
pair, and check whether the other bytes match.

(e) If all bytes match, output the corresponding chaining value and message block (H,M).

4. Repetition: If the above steps do not succeed, go back to the step 1 and repeat the attack with
different setting of random choices.

5.3 Complexity

In the backward computation phase of the attack procedure, we estimate the computational complexities
of the steps for each trial as follows.

• Computation from State40 to State30: 1 round,

• Computation from State30 to State20: 14
16 round,

• Computation from State20 to State10: 8
16 round.

So, the complexity of the backward computation for one iteration of the attack procedure is estimated as
28 · 19

8 rounds.
Similarly, in the forward computation phase of the attack procedure, we estimate the computational

complexities of the steps for each trial as follows.

• Computation from State43 to State53: 1 round,

• Computation from State53 to State63: 12
16 round,

• Computation from State63 to State80: 9
16 round,

• Computation from State80 to State02: 9
16 round.

So, the complexity of the forward computation for one iteration of the attack procedure is estimated as
28 · 23

8 rounds.
The 8-bit partial matching in the step 3-c occurs with the probability 2−8. So, we expect 28 computa-

tions of step 3-d, whose complexity is estimated as 28 · 7
4 rounds. In total, the computational complexity

for one iteration of the attack procedure is estimated as

28 ·
(

19
8

+
23
8

+
7
4

)
= 28 · 7

rounds, which is translated to 27.8 encryptions of 8-round AES-256. For one iteration of the attack
procedure, a full-byte match occurs with the probability 216/2−128 = 2−112. So, we expect the number of
the repetition is close to 2112 until a match is found. It requires the computational complexity of 2119.8

and the memory for storing 28 bytes.
As explained in Section 3, we can convert this pseudo-preimage attack to a preimage attack on Davis-

Meyer mode with 8-round AES-256 with the computational complexity of 2(128+119.8)/2+1 = 2124.9.

9

6 Application to Hash Modes

In this section, we discuss the securities of the DBL hash modes mentioned in Section 2.4, assuming
8-round AES-256 is the underlying block cipher. For Hirose’s DBL hash mode, we apply our pseudo-
preimage attack on (3) while making the padding rule satisfied with the message length of 2 blocks, and
obtain the attack result, (H1,0,H1,1,M1). Then, (4) is expected to hold for (H1,0,H1,1,M1) with the
probability 2−128. So, we can iterate the above steps 2128 times to get a pseudo-preimage. It requires
the computational complexity of 2128+119.8 = 2247.8, and is converted to a preimage attack with the
complexity of 2(256+247.8)/2+1 = 2252.9. The same argument is applicable to Abreast-DM, Tandem-DM,
and MJH with 8-round AES-256.

7 Conclusion

We have presented the preimage attack on Davis-Meyer mode with 8-round AES-256, and extended it
to the DBL hash modes such as Hirose, Abreast-DM, Tandem-DM, and MJH. Our result improves the
previous preimage attack for AES-256, and shows that some weak property of the key schedule can be
used for the preimage attack on hash modes of block ciphers like the message schedules of the dedicated
hash functions.

References

[1] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki and L. Wang, “Preimages for Step-Reduced SHA-2,” In
M. Matsui (Ed.), ASIACRYPT 2009, LNCS 5912, pp. 578–597, Springer-Verlag, 2009.

[2] K. Aoki and Y. Sasaki, “Meet-in-the-Middle Preimage Attacks against Reduced SHA-0 and SHA-1,”
In S. Halevi (Ed.), CRYPTO 2009, LNCS 5677, pp. 70–89, Springer-Verlag, 2009.

[3] K. Aoki and Y. Sasaki, “Preimage Attacks on One-Block MD4, 63-Step MD5 and More,” In R. M.
Avanzi, L. Keliher, and F. Sica (Eds.), SAC 2008, LNCS 5381, pp. 103–119, Springer-Verlag, 2009.

[4] F. Armknecht, E. Fleischmann, M. Krause, J. Lee, M. Stam, J. Steinberger, “The Preimage Security
of Double-Block-Length Compression Functions,” In D. H. Lee and X. Wang (Eds.), ASIACRYPT
2011, LNCS 7073, pp. 233-251, Springer-Verlag, 2011.

[5] J. Black, P. Rogaway, and T. Shrimpton, “Black-Box Analysis of the Block-Cipher-Based Hash-
Function Construction from PGV,” In M. Yung (Ed.), CRYPTO 2002, LNCS 2442, pp. 320–335,
Springer-Verlag, 2002.

[6] J. Daemen, L. R. Knudsen, and V. Rijmen, “The Block Cipher Square,” In E.Biham (Ed.), FSE’97,
LNCS 1267, Springer-Verlga, pp. 149–165, 1997.

[7] Secure Hash Standard (SHS), Federal Information Processing Standards Publication 180-2, August
1, 2002. Amended February 25, 2004.

[8] Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197,
November 26, 2001.

[9] S. Hirose, “Some Plausible Constructions of Double-Block-Length Hash Functions,” In M. J. B.
Robshaw (Ed.), FSE 2006, LNCS 4047, pp. 231–246, Springer-Verlag, 2006.

[10] D. Hong, B. Koo, and D.-C. Kim, ”Preimage and Second-Preimage Attacks on PGV Hashing Modes
of Round-Reduced ARIA, Camellia, and Serpent,” IEICE Transactions on Fundamentals of Elec-
tronics, Communications, and Computer Sciences, Vol. 95-A, No. 1, pp. 372–380, 2012.

10

[11] J. Kelsey and B. Schneier, “Second Preimages in n-Bit Hash Functions for Much Less Than 2n
Work,” In R. Cramer (Ed.), EUROCRYPT 2005, LNCS 3494, pp. 474–490, Springer-Verlag, 2005.

[12] X. Lai and J. L. Massey, “Hash function based on block ciphers,” In R. A. Rueppel (Ed.), EURO-
CRYPT’92, LNCS 658, pp. 55–70, Springer-Verlag, 1993.

[13] J. Lee and D. Kwon, “The Security of Abreast-DM in the Ideal Cipher Model,” IEICE Transactions
on Fundamentals of Electronics, Communications, and Computer Sciences, Vol. 94-A, No. 1, pp.
104–109, 2011.

[14] J. Lee and M. Stam, “MJH: A Faster Alternative to MDC-2,” In A. Kiayias (Ed.), In A. Kiayias
(Ed.), CT-RSA 2011, LNCS 6558, pp. 213–236, Springer-Verlag, 2011.

[15] J. Lee, M. Stam, and J. P. Steinberger, “The Collision Security of Tandem-DM in the Ideal Cipher
Model,” In P. Rogaway (Ed.), CRYPTO 2011, LNCS 6841, pp. 561–577, Springer-Verlag, 2011.

[16] G. Leurent, “MD4 is not one-way,” In K. Nyberg (Ed.), FSE 2008, LNCS 5086, pp. 412–428, Springer-
Verlag, 2008.

[17] C. H. Lim, “A Revised Version of Crypton — Crypton V1.0,” In L. R. Knudsen (Ed.), FSE’99, LNCS
1636, Springer-Verlag, pp. 31–45, 1999.

[18] A. J. Menezes, P. C. Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press,
1997.

[19] D. Moon, D. Hong, B. Koo and S. Hong, “Security Evaluation of Double-Block-Length Hash Modes
with Preimage Attacks on PGV Schemes,” In the 2011 FTRA international Symposium on Advances
in Cryptography, Security and Applications for Future Computing.

[20] D. Moon, D. Hong, D. Kwon and S. Hong, “Meet-in-the-Middle Preimage Attacks on Hash Modes
of Generalized Feistel and Misty Schemes with SP Round Function,” IEICE Transactions on Fun-
damentals of Electronics, Communications, and Computer Sciences, Vol. 95-A, No. 8, 2012.

[21] B. Preneel, R. Govaerts and J. Vandewalle, “Hash Functions Based on Block Ciphers: A Synthetic
Approach,” In D. R. Stinson (Ed.), CRYPTO 1993, LNCS 773, pp. 363–378, Springer-Verlag, 1994.

[22] Y. Sasaki and K. Aoki, “Finding preimages in full MD5 faster than exhaustive search,” In A. Joux
(Ed.), EUROCRYPT 2009, LNCS 5479, pp. 134–152, Springer-Verlag, 2009.

[23] Y. Sasaki, “Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an Application to
Whirlpool,” In A. Joux (Ed.), FSE 2011, LNCS 6733, pp. 378–396, Springer-Verlag, 2011.

11

	Introduction
	Specifications
	AES
	Merkle-Damgård Domain Extension
	Davis-Meyer Mode
	Double-block-length Hash Modes

	Meet-in-the-middle Preimage Attack
	Neutral Byte Arrangement
	Preimage Attack on Davis-Meyer mode of 8-round AES-256
	Matching-Check Equation
	Pseudo-Preimage Attack Procedure
	Complexity

	Application to Hash Modes
	Conclusion

