
Infiltrate the Vault: Security Analysis and Decryption of Lion Full Disk
Encryption

Omar Choudary
University of Cambridge
omar.choudary@cl.cam.ac.uk

Felix Gröbert ∗

groebert@google.com

Joachim Metz ∗

joachim.metz@gmail.com

Abstract

With the launch of Mac OS X 10.7 (Lion), Apple has
introduced a volume encryption mechanism known as
FileVault 2. Apple only disclosed marketing aspects of
the closed-source software, e.g. its use of the AES-XTS
tweakable encryption, but a publicly available security
evaluation and detailed description was unavailable until
now.

We have performed an extensive analysis of
FileVault 2 and we have been able to find all the
algorithms and parameters needed to successfully read
an encrypted volume. This allows us to perform forensic
investigations on encrypted volumes using our own
tools.

In this paper we present the architecture of FileVault 2,
giving details of the key derivation, encryption process
and metadata structures needed to perform the volume
decryption. Besides the analysis of the system, we have
also built a library that can mount a volume encrypted
with FileVault 2. As a contribution to the research and
forensic communities we have made this library open
source.

Additionally, we present an informal security evalua-
tion of the system and comment on some of the design
and implementation features. Among others we analyze
the random number generator used to create the recovery
password. We have also analyzed the entropy of each
512-byte block in the encrypted volume and discovered
that part of the user data was left unencrypted.

∗The opinions expressed in this paper are mine alone and do not
reflect the opinions of my employer or affiliates of my employer unless
otherwise explicitly stated.

1 Introduction

Since the launch of Mac OS X 10.7, also known as Lion,
Apple includes a volume encryption software named
FileVault 2 [8] in their operating system. While the pre-
vious version of FileVault (introduced with Mac OS X
10.3) only encrypted the home folder, FileVault 2 can en-
crypt the entire volume containing the operating system
(this is commonly referred to as full disk encryption).
This has two major implications: first, there is now a
new functional layer between the encrypted volume and
the original file system (typically a version of HFS Plus).
This new functional layer is actually a full volume man-
ager which Apple called CoreStorage [10] Although this
full volume manager could be used for more than volume
encryption (e.g. mirroring, snapshots or online storage
migration) we don’ t currently know of any other appli-
cations. Therefore in the rest of this paper we will use the
term CoreStorage for the combination of the encrypted
volume and the functional layer that links this volume to
the actual HFS Plus filesystem.

The second implication is that the boot process is
slightly modified since the user password or other token
must be retrieved before being able to decrypt the data.

Apple’ s volume encryption is equivalent to solu-
tions such as PGP Whole Disk Encryption [12], True-
Crypt [13], Sophos SafeGuard [20], Credant [21], Win-
Magic SecureDoc [22], or Check Point FDE [23]. All
these solutions can be used on corporate laptops, which
generally contain sensitive data that must be protected at
all times (even when the computer is turned off).

To the best of our knowledge, Apple has not released
any documentation or source code on FileVault 2, which
obstructs security experts and consumers to assess the
security of the system. Also, the missing documentation
and interfaces effectively limit the development of any
third-party tools that can help in data recovery or forensic
investigations.

In this paper we present the results of our analysis

1

of FileVault 2: we were able to find most of its algo-
rithms and parameters to the extent that we are able to
read and mount a CoreStorage volume on a Linux ma-
chine. In the following sections we describe in detail
the key derivation mechanisms and the encryption pro-
cess. There remains unknown information in the volume
header and metadata, that we believe is used for verifica-
tion routines or other functionality of CoreStorage which
does not seem to affect the read of the contents of the en-
crypted volume.

Based on these findings, we have developed a cross-
platform library that reads and mounts CoreStorage vol-
umes. Such a library can be used to analyse the contents
of a particular file (or block) from an encrypted volume,
without having to use Mac OS or even without having
physical access to the Apple computer in question (e.g.
by booting from a Linux live CD and connecting to the
machine via the network).

Our work provides the security and forensic commu-
nity with an open source library that can be used to anal-
yse CoreStorage volumes, having the user password or
recovery password. It is also possible to recover the data
from a CoreStorage volume using a private key but our
library does not support this yet. However, this merely
involves updating the key derivation process, which we
fully describe in this paper.

As part of our analysis we have also done an (informal)
assessment of the security of the encryption mechanisms,
including the random number generator mechanism used
to create the recovery password. We found that some
data is unnecessary protected (however weakly) while
some other basic mechanisms such as code mangling are
not used at all. We have also performed an entropy test
on each 512-byte block of the encrypted volume and we
found that part of the user data was left unencrypted.

1.1 Goals and motivations

Our primary goal has been to determine how FileVault 2
operates. As we will detail in the next section, this task
involves finding how and where the encrypted volume
master key is stored, how this key can be obtained from
the user password or another token, what other data (the
metadata) is available and how is used, and finally how
the disk encryption and decryption are performed.

As part of this process we created an open source tool
that can read and decrypt a CoreStorage volume.

Our motivation is twofold. First of all we needed a tool
for digital forensic investigations. When a computer is
suspected of malware or some malicious access we need
to obtain certain files from the disk. If the computer is
at a distant location it might not be feasible or conve-
nient to send the computer or disk (for a Mac Book Air
is not even trivial to remove the disk) in order to anal-

yse it at the forensic laboratory. Even if we had physical
access to a computer, we would not trust the operating
system to extract the necessary files since malware could
tamper with the OS. With FileVault 2 enabled, we cannot
read the disk contents unless the Mac OS is running. Al-
though it is possible to access the disk of a Mac computer
with another Mac computer using a FireWire connection,
many times we use forensic tools on another operating
system than Mac OS and we cannot rely on remote lo-
cations having spare Mac computers for this task. Hav-
ing cross-platform software to read encrypted volumes
solves these problems. We can simply boot the Mac com-
puter from a Linux live CD and use the software either
locally or remotely to access the necessary files.

The second part of the motivation has been our de-
sire to have a security assessment of the system. Since
FileVault 2 can be used on corporate machines we
needed to make sure that using this system instead of
other known encryption solutions will not introduce vul-
nerabilities.

The next paragraphs provide a brief background on
full disk encryption after which the details of FileVault 2
are discussed.

2 Background

Commonly a hard disk is logically organised in multi-
ple sections, often referred to as either partitions or vol-
umes. These volumes can be used for various purposes,
and they are often structured according to a file system
format (e.g. NTFS, FAT, HFS, etc.). It is possible to
have a single disk with 3 volumes, where the first volume
is formatted with NTFS and contains a Windows operat-
ing system, the second volume is formatted with EXT3
and contains an installation of a Linux distribution, while
the third volume is formatted with FAT and only contains
data (no operating system). The reader is encouraged to
check the excellent book by Brian Carrier [28] for more
details on the topic.

Volume encryption is a mechanism used to encrypt
the contents of an entire volume. This is sometimes
referred to as full disk encryption, which is mis-
leading, since a physical disk can actually contain mul-
tiple volumes, each encrypted independently. The term
full disk encryption is incorrectly used in the case
of FileVault 2 and other systems such as BitLocker, that
in fact perform volume encryption. Nonetheless, due
to its popularity, we will continue to use the term full

disk encryption in the remaining of this paper.
Now, here is one the main problems: since we are en-

crypting the entire volume, and this volume might be the
volume containing the operating system, there is no un-
encrypted code left to actually boot the system. There-
fore the minimum code required to decrypt the operating

2

Encrypted volume

encrypted volume
metadata

encrypted key
blob intermediary key

key
derivation

full volume master
key

decrypt

Decrypted volume

Figure 1: General framework for key derivation used in
full disk encryption. The metadata containing the en-
crypted version of the volume master key is generally
isolated from the actual encrypted volume, although it
could exist in the same logical volume.

system (or an initial subset of it, enough to initialise the
file system and read the OS) must reside somewhere else.
This is a problem that is tackled differently by the many
implementations of full disk encryption. In the next sec-
tions we describe how FileVault 2 deals with this prob-
lem.

Another very important matter is the key derivation.
The volume is generally encrypted using some algorithm
that relies on AES or other symmetric cipher (asym-
metric cryptography would impact the read/write perfor-
mance too much). Therefore, there must be a key that
can unlock this encrypted volume.

A typical AES key is 128 or 256 bits, too long for
users to remember or type every time they boot the ma-
chine: 128 bits can be represented with a minimum of 22
characters using base64 although base32 or hexadecimal
are more user-friendly, each requiring 26 or 32 charac-
ters respectively. As a result, most full disk encryption
schemes actually store this key (known as the volume

master key) in an encrypted blob (usually by encrypt-
ing or hashing the key along with some additional infor-
mation several times). This blob can only be decrypted
using an intermediary key that is derived from the user
password or another user-trusted input, e.g. a private key
stored on a USB stick, a smart card, or a trusted platform
module (TPM) linked to the encrypted volume (see Fer-
guson’ s paper [1] for a detailed discussion on how to use
these methods). This process is depicted in figure 1.

As you can observe from figure 1, the blob containing

the encrypted volume master key is stored in a metadata
section. This metadata is generally stored in the same
disk as the encrypted volume, but on a different location.
In the next sections we will explain exactly how this is
done in FileVault 2.

The third important aspect of full disk encryption, per-
haps among most important from a security perspective,
is the encryption operation itself. It can be tempting to
think that simply using AES in a standard mode of oper-
ation such as CBC might work. However there are some
issues to be taken into consideration.

File systems generally work with disk allocations
(known as blocks) of 512 bytes or multiples of this size
(e.g. 4096 bytes). This is mainly because traditional
disks (those using magnetized platters) have their hard-
ware and software drivers optimized for accessing blocks
of 512 bytes (these are referred to as sectors). Therefore,
in order to minimize the access time to a disk (which
is probably the slowest operation done by a computer
program), we should work with blocks multiple of this
size. This requirement might hold even with new tech-
nologies such as solid state drive (SSD), since they use
the same interface and logical block addressing (LBA) as
older disks.

As a consequence of the 512 byte access restriction,
full disk encryption is generally performed also on data
chunks multiple of 512 bytes. If we decide to apply AES
in CBC mode to each chunk we need to deal with a few
issues. Using the same initial value (IV) for each en-
crypted block would lead to identical encrypted blocks
for the same data, therefore allowing an attacker to wa-
termark the disk and to determine the existence of certain
data (i.e. breaking CPA security). We can improve this
by using the block number, eventually encrypted under a
key, as the IV. Although this approach can work (and is
actually used in several full disk encryption implemen-
tations such as Linux Unified Key Setup [2]), it has the
disadvantage that flipping one bit in the encrypted block
will result in one bit flipped in the unencrypted version
of the block, along with 16 corrupted bytes. For more
details on these problems the reader in encouraged to see
the work of Clemens [2] and Ferguson [1].

Bitlocker, the full disk encryption mechanism imple-
mented in Windows since the version of Vista, deals
with the flipping problem by adding a mechanism called
Elephant Diffuser. FileVault 2 instead uses a tweak-
able encryption scheme known as AES-XTS. We detail
this method in the next sections but for the moment we
mention that it has several advantages over AES in CBC
mode with a block-derived IV, and solves most of the
problems discussed earlier.

The last important problem we should mention refers
to the storage of the volume master key during system
operation and sleep modes. As we mentioned earlier,

3

Figure 2: the recovery password shown by Mac OS when
FileVault 2 is enabled.

during the boot process the volume master key is derived
from the user password or another token. Once this key
is derived, the OS stores it in memory in order to read
and write blocks efficiently without having to derive this
key on every disk access. Halderman et al. [3] explain
how an attacker with temporary access to a running sys-
tem can scan the memory in order to retrieve the volume
master key and therefore decrypt the contents of the disk.
As far as we know this problem is still largely unsolved
although computer manufacturers may use proprietary
methods (such as on-board tamper resistant memories)
to mitigate such attacks.

Having discussed the basic concepts used in full disk
encryption, we move to the core of this paper, presenting
the details of FileVault 2. A summary of the system is
given in section 3.6.

3 FileVault 2 architecture

3.1 Enabling FileVault 2

In Mac OS X Lion, after FileVault 2 is enabled, a series
of events take place. First of all the user is presented with
a 24 character recovery password (see figure 2). This
password can be used to access the encrypted volume
even if the user password is lost. We comment later on
the security of this recovery method.

Next, the file system in the main volume is con-
verted from the native HFSPlus type to CoreStorage (en-
crypted). During this operation, the user can still use
the system at will and the ConversionStatus field in
the EncryptedRoot.plist file (details below) contains the
string Converting. After the encryption process is com-
plete the string changes to Complete.

At the moment we do not know how the Mac OS
keeps track of the encrypted blocks during the conver-
sion process, so our tool cannot correctly mount vol-
umes that are in a Converting state. This information
could exist only somewhere in the last blocks of the vol-
ume, since all the data before the encrypted volume is
zeroed (details in section 4). Comparing data from a par-
tially encrypted volume with one fully encrypted we see

Figure 3: output of diskutil list run on a Mac Book Air
with FileVault 2 enabled.

that the encrypted metadata (see details later) is identi-
cal, while the Disk Label metadata only differs in some
bytes. While these bytes might be related to the encryp-
tion status, we believe the information, if available, is
actually found near the encrypted metadata, in one of the
encrypted chunks that follow the encrypted volume (see
figure 9).

In addition to the encryption itself, a new volume gen-
erally called Recovery HD appears alongside the main
Macintosh HD existing volume. This new partition con-
tains the encrypted volume master key, as described be-
low.

3.2 The new volume, boot process and
EncryptedRoot.plist file

Running the command diskutil list on a Mac OS
installation with FileVault 2 enabled will show an output
similar to figure 3.

In figure 3 you can see the encrypted volume
(disk0s2), the new volume (disk0s3), the original un-
modified EFI volume (disk0s1), and also the unlocked
(unencrypted) version of the main volume (disk1). There
is also an additional partition (disk0s4) which we created
just for testing purposes.

The new Recovery HD volume contains a series of
new files, including new EFI boot code to deal with the
encrypted volume. The EFI (Extensible Firmware Inter-
face), now known as UEFI (Unified EFI) [24], is a recent
standard meant to replace the traditional BIOS system
to boot a computer. It contains all the necessary POST
routines to check the hardware and the necessary code to
locate the volume that has an operating system and start
booting from there. Around 2006 Apple switched to the
Intel architecture and decided to use EFI instead of the
traditional BIOS [25]. When FileVault 2 is enabled, the
existing EFI code (generally divided between a separate
non-volatile memory location on the main board and a
volume containing a FAT file system named EFI) is sup-
plemented with code available in the new Recovery HD

volume. This new code allows the system to display a UI
where the user can type its password in order to unlock
the encrypted volume key and load the actual OS.

Among all the files available in the new volume

4

the most important for FileVault 2 operation is the
EncryptedRoot.plist.wipekey file 1, which con-
tains all the information needed to extract the volume
master key from the user’ s password or a recovery to-
ken.

The EncryptedRoot.plist.wipekey file is en-
crypted using AES-XTS (details later) with an all-zeros
tweak key, but the encryption key is easily available in
the header (first block) of the CoreStorage volume (see
table 2 in Appendix). Among other data, the header
block contains also the size of the entire volume (in-
cluding metadata), another UUID which is used as a key
to decrypt part of the metadata (see details later), and a
CRC32 checksum. The actual polynomial that is used
for the CRC32 calculation is currently unknown to us.
However the open source code contains the precomputed
computed CRC table found during the analysis. The
CRC32 checksum is used to validate the values in the
FileVault 2 metadata structures.

Once decrypted, the file EncryptedRoot.plist has
an XML structure with the following important entries:

• PassphraseWrappedKEKStruct(1)

– 284 byte structure for recovery password.

• PassphraseWrappedKEKStruct(2)

– 284 byte structure for user password.

• KEKWrappedVolumeKeyStruct(1)

– unused.

• KEKWrappedVolumeKeyStruct(2)

– contains wrapped volume master key.

We mention that if multiple users are registered on
the same machine then the EncryptedRoot.plist file
will have a separate PassphraseWrappedKEK structure
for each user.

In the following we present the key derivation mecha-
nisms.

3.3 Key derivation
The volume master key is derived from the user pass-
word, a private key token or the recovery password.
Since the volume master key is the same but the ini-
tial input is different, FileVault 2 uses an intermediary
key that is decrypted under different inputs: password or
recovery token. This intermediary key, which decrypts
the volume master key, is called the volume key Key-
Encryption-Key (KEK). The overall key derivation pro-
cess is depicted in figure 4.

1found in com.apple.boot.X/System/Library/Caches/com.apple.corestorage/

(where X changes randomly between R, S and P)

In this section we describe the key derivation process
in the case of a volume master key derived from the user
password. The first step is to derive the intermediary vol-
ume key KEK from the given password; this in turn is ac-
complished in two stages. We first need to use PBKDF2
to derive a key from the user password and then we need
to decrypt the AES-wrapped version of the volume key
KEK with this key.

PBKDF2 [15] is an algorithm used to derive a standard
cryptographic key (of any length) from a user password
(i.e. a written language text). The main objective of this
algorithm is to make it difficult for an attacker to brute-
force all possible values of the user password (which
could be short or easy to guess). This is done by the
use of two counter-measures: a salt and a large number
of iterations. A random salt is required to avoid rainbow
tables; such tables can be used to create precomputed re-
sults of a cryptographic operation on various inputs such
as dictionary keywords. The number of iterations speci-
fies how many times to apply a pseudo-random function
such as HMAC-SHA1 [14] on the user password (and
derived results) before creating the final key; this step ef-
fectively slows down any attacker trying to brute-force
the user password (see section 4 for a discussion on this
matter).

The salt value for PBKDF2 is found in the
PassphraseWrappedKEK structure (see table 3 in Ap-
pendix) related to the user. However the number of
PBKDF2 iterations is not defined there. In our analy-
sis we initially found that FileVault 2 derived the num-
ber of iterations based on the amount of time required
to compute a multiple of 1000 PBKDF2 computations.
We have later seen there is a default of 41000 iterations
if the precomputed value is lower, and this appears to be
always the case on current hardware. Probably the static
value will be used most of the time, since a variable value
might lead to incompatibility between devices (now you
can access the encrypted volume of an Apple computer
from another device via FireWire) and even blocked ac-
cess to your machine if it performs slower or faster in
time. For completeness we mention that the pseudo-
random function used by FileVault 2 with PBKDF2 is
HMAC-SHA256.

Once we have derived the PBKDF2 key we can use
this key to unwrap the intermediary KEK using the AES
Wrap algorithm [16]. This algorithm is used to wrap
(encrypt) a cryptographic key under another key. In the
case of FileVault 2, the PBKDF2 key is used to decrypt
the intermediary volume key KEK, which in turn is used
to decrypt the volume master key (also encrypted using
the AES Wrap algorithm). The volume master key is
wrapped under the intermediary KEK to support its main
goal: only authorised users should be able to decrypt the
disk contents (hence to access this key), while the in-

5

+HDGHU�RI�&RUH6WRUDJH�
9ROXPH

(QFU\SWHG5RRW�SOLVW�ZLSHNH\�ILOH�
RQ�5HFRYHU\�9ROXPH $(6�;76����

.(.:UDSSHG9ROXPH.H\

3DVVSKUDVH:UDSSHG.(. .H\:UDSSHG.(.

)LOH9DXOW0DVWHU�3ULYDWH�.H\

5)&�����
.H\XQZUDSSLQJ

5)&�����
.H\XQZUDSSLQJ

3%.')��
������[�6+$����

56$�3.&6�
(QFU\SWHG�
.(.�%ORE

5HFRYHU\�
.H\

(QFU\SWHG5RRW�SOLVW

SDVVZRUG�HQWU\ ���E\WH�
VDOW

.(.�

5)&�����
.H\XQZUDSSLQJ

9ROXPH.H\

.H\�(QFU\SWLRQ�.H\V

Figure 4: FileVault 2 key derivation process.

termediary KEK is again wrapped (instead of deriving
it directly from the user password) under different keys
to support multiple inputs: password, private key or re-
covery password. It could have been possible to simply
use different intermediary keys, which represented the
volume master key encrypted under different inputs, but
(we can only speculate here) Apple probably decided to
use this design in order to have more flexibility.

The AES Wrap algorithm has several properties which
make it useful to wrap (encrypt) a key under another
key. Firstly, we can concatenate other data to the key
in question before encryption. Secondly, even if no other
data is added, the algorithm uses a somewhat large num-
ber of iterations of the cryptographic operation (AES-
CBC) to remove any correlation between input and out-
put but also to slow down any potential brute-force at-
tack. Thirdly, the algorithm uses a standard initial value
(generally eight bytes with the value 0xA6) which can be
used to recognize if the unwrapping operation has been
successful.

After deriving the volume key KEK using the AES
Wrap algorithm (applying the unwrap operation), we can
use this key to unwrap the volume master key from the
KEKWrappedVolumeKey structure (see table 4 in Ap-
pendix).

In both unwrapping operations (to obtain the interme-
diary KEK and the volume master key), the wrapped data
has 24 bytes but the unwrapped key has only 16 bytes.
That is because the first 8 bytes of the unwrapped data ac-
tually contain the initial value of 0xA6 (a different value
indicates a wrong decryption key), leaving only 16 bytes
for the actual unwrapped key.

Figure 5: Example of an EncryptedRoot.plist when
a private key is used.

The key derivation process can be summarised as:

p = get_user_password()

salt = get_salt_from_PassphraseWrappedKEK()

iterations = 41000

pk = pbkdf2(p, salt, iterations, HMAC-SHA256)

kek_wrapped = get_kek_from_PassphraseWrappedKEK()

kek = aes_unwrap(kek_wrapped, pk)

vmk_wrapped = get_vmk_from_KEKWrappedVolumeKey()

vmk = aes_unwrap(vmk_wrapped, kek)

The recovery password shown in figure 2 can be used
exactly as the user password, with the mention that one
must include the dashes as well.

If instead we use a private key from a recovery
certificate, we need to get the intermediary KEK
from the KeyWrappedKEK structure (instead of the
PassphraseWrappedKEK, as depicted in figure 4). In or-
der to unwrap the KeyWrappedKEK one needs to ex-
tract the recovery key which is used as input to the
AES unwrapping algorithm. The recovery key is saved
as an encrypted blob in the EncryptedRoot.plist,
protected using RSA and PKCS#1 padding. The en-
crypted blob is added along the ExternalKeyProps to
the EncryptedRoot.plist when a certificate is used
for recovery (see figure 5 for an example). The re-
covery key can be extracted from the encrypted blob
using a private key which is stored in a FileVault-
Master certificate, installed generally under the path
/Library/Keychains/FileVaultMaster.cer.

Next we describe the encryption algorithm, AES-XTS,
and present the last missing piece: the tweak key.

3.4 AES-XTS
AES-XTS [18] is the encryption mechanism used by
FileVault 2 to encrypt a volume. The overall architecture
of AES-XTS is shown in figure 6. AES-XTS is a type
of tweakable encryption, using AES [19] as the block ci-
pher. The XTS construction for tweakable encryption is
based on Rogaway’s XEX [7]. It allows each block on

6

AES-enc

Key_2

i

a^j

T

P

AES-enc

PP

Key_1

CC

C

Figure 6: AES-XTS encryption.

the volume to be encrypted differently, even if the plain-
text is the same, based on a tweak value.

The AES-XTS encryption operation is performed per
block (of arbitrary size, although multiples of 128-bit are
generally used). For each data block to be encrypted the
algorithm expects two keys named key1 and key2 (also
known as the tweak key), which can be either 128 or 256
bits long, and a 128-bit tweak value i which is usually
derived from the block offset. The input data block is
partitioned by the algorithm into 128-bit units (the last
unit can have less than 128 bits). Each of these data units
is assigned a sequential number j starting from 0, and is
encrypted as follows: first the tweak value is converted to
little endian and encrypted under key2 using AES in ECB
mode (this only needs to be done once per data block),
then each byte of the encrypted tweak value is left shifted
by j bits (this is the group multiplication shown in the di-
agram) with a possible addition of a carry and a special
value of 135 on the first byte. The shifted result T (the
encrypted tweak) is xor-ed into the corresponding input
data unit P and the output is then encrypted under key1
using AES-ECB. The result is then xor-ed with the same
encrypted tweak yielding the final encrypted data unit.
The complete encrypted data block is simply the con-
catenation of all the encrypted data units. Decryption is
done similarly, replacing the second AES encryption by
decryption.

AES-XTS has several advantages over alternatives
such as AES in CBC: there is no requirement for an ini-
tialization vector (the tweak key can be derived from the
block number); each block is encrypted differently (since
the tweak value will be different); and unlike AES-CBC,
AES-XTS prevents an attacker from changing one spe-
cific bit in a data unit by xor-ing each AES input with a
different shifted version of the encrypted tweak.

FileVault 2 uses AES-XTS in several places, always

with 128-bit keys, as shown in table 1. It is used to en-
crypt the EncryptedRoot.plist file, where key1 is avail-
able on the main volume header and key2 is 128 bits
of zero (i.e. 16 zero bytes); the tweak value is 0 and
the whole file is treated as one large block. AES-XTS
is also used to encrypt part of the metadata (details be-
low), where key1 is the same key used to encrypt the
EncryptedRoot.plist file but key2 is another value,
known as Physical Volume UUID, also found on the vol-
ume header. Finally, perhaps most importantly, AES-
XTS is used to encrypt the main volume. In the previous
section we have shown how to derive the volume mas-
ter key, which is used as key1 with AES-XTS. However
we have not said anything about key2 (the tweak key).
Finding this tweak key was probably one of the most dif-
ficult parts in our search. The tweak key turned out to be
derived from the volume master key and another value,
known as the Logical Volume Family UUID, which
is found in the encrypted metadata.

The AES-XTS encryption might be used in other
places as well, since we found unknown key values dur-
ing live debugging for unknown data. We have indica-
tions that these keys are used to encrypt paged data or
other memory contents.

Next we present the metadata structures used in
FileVault 2, how to derive the volume tweak key and how
to use these data to decrypt the volume.

3.5 Metadata structures
The structures needed to decrypt the main volume, along
with a header and other additional information, are stored
inside the CoreStorage volume listed in figure 3. The
layout of these structures within the volume is shown in
figure 8.

There are two essential metadata structures needed to
decrypt the main volume: the Disk Label metadata and
the encrypted metadata. The Disk Label metadata
block offset can be found from the CoreStorage volume
header (64-bit little endian value at byte offset 104, see
table 2 in Appendix). This offset can be multiplied with
the 32-bit block size value at byte offset 96 in the vol-
ume header to obtain the byte offset within the volume.
The block size is generally 4096 (0x1000), which is also
the standard block size for the HFSPlus file system. The
size of the Disk Label metadata is given in the volume
header, but in our experiments all the data of interest was
available within the first 8704 bytes (i.e. seventeen 512-
byte blocks).

We show the most important fields of the Disk Label

metadata in table 5 in Appendix. The Disk Label meta-
data provides the offset of the encrypted metadata using
the formula:

o f f set = disk label[disk label[220]+32]

7

Table 1: Parameters for AES-XTS when used with different parts of FileVault 2.

data key1 key2 tweak start block size
EncryptedRoot.plist offset 176 in CS header 0 0 entire file
Encrypted metadata offset 176 in CS header PV UUID 0 8192 bytes
Main volume volume master key volume tweak key 0 512 bytes

Figure 7: Example of data in the first xml metadata struc-
ture.

The encrypted metadata, as our given name im-
plies, is encrypted. We found that we can decrypt its
contents using AES-XTS with key1 and key2 from the
CoreStorage volume header (see table 2 in Appendix),
starting with a tweak value of 0 and using an 8192-byte
block size.

The contents of the encrypted metadata structure are
shown in table 6 in Appendix. The essential details are:
the encrypted volume size (which equals the size of the
decrypted volume – this is smaller than the size of the
entire CoreStorage volume), the encrypted volume off-
set, and the offset of the first xml metadata which con-
tains the Logical Volume Family UUID (under the
xml key com.apple.corestorage.lv.familyUUID).

The first, second and third xml metadata structures
contain various UUIDs and other information related to
the encrypted volume. However for decryption purposes
we only need the lv.familyUUID (i.e. the Logical

Volume Family UUID) which is available in both the
first and third xml metadata structures. An example of
the first xml metadata is shown in figure 7.

Using the Logical Volume Family UUID we can de-
rive the full disk encryption tweak key by applying SHA-
256 on the concatenation between the volume master key
and this UUID, and then retaining only the first 16 bytes:

key2 = MSB16(SHA256(volume master key|lv. f amilyUUID))

GPT
header

Recovery HD
(HFS Plus)

Machintosh HD
(CoreStorage) ... others

Entire disc

Encrypted plist
CS Header

Encrypted
Volume

Encrypted
Metadata

Disk Label
Metadata

AES Key 1 PV UUID
AES-XTS

Decrypted plist

password
OR

recovery key
OR

private key

Key derivation

Volume master
key

AES-XTS

LV FAMILY UUID

SHA-256

Volume tweak key

Decrypted
Volume

(HFSPlus)A
E

S
-X

TS

Figure 8: Diagram of FileVault 2 architecture.

3.6 Full disk encryption and decryption

Now that we have presented the building blocks of
FileVault 2 we can describe the entire volume decryp-
tion process, as depicted in figure 8. Firstly we need to
decrypt the EncryptedRoot.plist file using the key
from the volume header. Then, using the user’ s pass-
word or a recovery token we can extract the volume mas-
ter key. We can now derive the full disk encryption tweak
key from the encrypted metadata and the volume master
key. At this point we can use the volume master key
as key1 and the full disk encryption tweak key as key2
with AES-XTS to decrypt the main volume, with a tweak
value starting from 0 and a block size of 512 bytes.

4 Security analysis:
problems and solutions

In this section we present the results of our informal se-
curity analysis of FileVault 2.

4.1 Random number generator and
recovery password

Naturally, the security of the complete FileVault 2 system
relies on the quality of the encryption keys. While some
keys are derived from the user provided password, as ex-

8

plained earlier, other keys are randomly generated, for
example the recovery password, key encryption keys and
volume keys. Using the recovery password, it is possible
to mount and decrypt the complete CoreStorage volume.

FileVault 2 features two recovery tokens: an RSA key
and a recovery password. The asymmetric key recovery
for corporate deployments is done using the same mech-
anism as in the first FileVault implementation: a File-
VaultMaster certificate is installed in the system’ s key-
chain and the public key of the certificate is used to en-
crypt the intermediary KEK key, which is then added to
the EncryptedRoot.plist file.

In this section we will take a closer look at the sec-
ond recovery mechanism, the recovery password, tar-
geted at consumers. When activating FileVault 2, the
System Preferences application displays a randomly gen-
erated 120 bit password, encoded with base32, to the end
user and advises them to securely store the password for
recovery (see figure 2). The recovery password is read
from /dev/random (through libcsfde and SecCreateRe-
coveryPassword() in Security.framework).

Therefore, the security of the FileVault 2 system can
be reduced to the security of the pseudo random num-
ber generator (PRNG) used in Mac OS X Lion for
/dev/random. Mac OS relies on Counterpane’ s imple-
mentation of the Yarrow PRNG [6] with modifications by
Apple available as open source [9]. The Yarrow PRNG
design has been obsoleted by Fortuna [11], written by the
original authors.

To evaluate the strength of Apple’ s implementation
of Yarrow, we evaluated the seeding of the PRNG. Be-
cause the state of the PRNG is kept between reboots,
we assume a scenario in which the end user activates
FileVault 2 right after the first boot after operating sys-
tem installation. This is a worst-case scenario, in which
the PRNG has only been seeded with the least amount
of entropy. During boot-time the PRNG is seeded with
8, 20 and 332 bytes. After boot-time, the PRNG is peri-
odically seeded with 332 bytes every 10 minutes. If an
attacker could guess the content of the seed, he would be
able to recreate the PRNG’ s state and predict its output,
and hence determine the recovery password. The sources
for the seeding are as follows:

• 8 bytes boot seed: this seed is deterministic because
it is the value of the current microtime() during
boot.

• 20 bytes boot seed: this is read from the
SystemEntropyCache file which contains the pre-
vious state of the PRNG before reboot. The file
is written by EntropyManager every 6 hours and
during shutdown. It contains 20 byte output from
/dev/random. This seed is deterministic in our

above scenario because the system has booted the
first time.

• 328 byte boot and periodic seed: this seed is
triggered by securityd and the seed’ s contents
are collected in the kernel’ s kdbg getentropy()

function. It is the core seed for the PRNG. The data
contains 41 samples of mach absolute time(),
which returns an 8 byte nano-precision time offset
for different kernel threads. During 1000 reboots,
we sampled the entropy seed of the PRNG. Our es-
timate is that the total seeding entropy is 40 sam-
ples of 8 bits of mach absolute time. This would
result in 320 bits of total entropy because the nano-
precision timestamps are only unpredictable in the
lower bits and higher byte values have clearly re-
occurring patterns. Thus, this represents a search
space which is suboptimal, i.e. not every input to
the seed is unpredictable and the amount of en-
tropy input is less than what other operating sys-
tems seed [4, 5]. However, the search space is large
enough that it is not brute-force-able.

For highly security-critical scenarios, the PRNG
should be reseeded by manually writing entropy to
/dev/random before activation of FileVault 2.

4.2 Plaintext bits in encrypted volume
Once we found most of the details about FileVault 2 op-
eration we computed the entropy of each 512-byte block
of the CoreStorage volume to verify our assumptions and
also to make sure we were not missing any data. A
bitmap of the volume is shown in figure 9, where blue
corresponds to plain text, red to encrypted data and white
to data with zero entropy (i.e. all bytes have the same
value, such as all bytes 0x00 or 0xFF).

As you can see from the bitmap in figure 9, there is a
large block of zero data (with the exception of the first
header block) at the beginning of the disk, then a large
portion of encrypted data corresponding to the encrypted
volume, and at the end there is a mix of plain text, en-
crypted and zero data corresponding to the metadata, en-
crypted metadata and related structures, and the backup
header (last block).

When we first looked at this data using the previous
version of OS X (10.7.1), we discovered two interest-
ing facts: firstly, there was a mix of plain text, zero
and encrypted data at the beginning of the disk. Part
of this data looked like unencrypted HFSPlus file sys-
tem structures. We could observe what seemed to be
valid HFSPlus headers, allocation and extents files. This
led us to think for a moment that FileVault 2 might be
a file based encryption mechanism rather than volume
based. We could observe an allocation file unencrypted,

9

CoreStorage volume sections

header section

plaintext section

end section

zoom in sections

end of diskmetadata

encrypted metadata

header block

backup header

Figure 9: Entropy bitmap of the CoreStorage volume cre-
ated by Mac OS X 10.7.2. Each pixel corresponds to
a 512-byte block. Blue corresponds to plain text (low
entropy), white to zero or other constant data (zero en-
tropy), and red to encrypted data (very high entropy).

but the extents file was located inside an encrypted area.
The plain text allocation file was still of interest and we
thought that it may be used to track which blocks are en-
crypted (since during initial encryption one can still use
the OS, which has to access both encrypted and unen-
crypted blocks). However this data turned out to be just
a reminder of the original unencrypted volume. We dis-
cussed this matter with Judson Powers, Computer Foren-
sics Director at ATC-NY, and he later reported this issue
to Apple, who has now fixed this issue in the 10.7.2 up-
date [26]. After the fix, all the data at the beginning of
the volume is zeroed (see figure 9), which invalidates our
assumption about the allocation file.

The second interesting fact about the volume data was
a significant portion of plaintext (around 250 MB) in
the middle of the encrypted volume. The plaintext blob
contains code, dictionaries, journal metadata, error mes-
sages, debug messages and some user data.

Our best guess is that this is data from the base OS
installation which has been encrypted elsewhere, but
has not been wiped from the disk. We determined that
long-used clear volumes could contain personal data in
that part of the encrypted volume after activation of
FileVault 2. We think this data should be analysed in
more detail, and Apple should scrutinize its functionality,
since any plaintext can be easily targeted by an attacker.
We have advised Apple about this issue 2.

2Apple Product Security was contacted February 9th 2012, ticket id
191364581.

4.3 Possible attacks on the user password

In section 3.3 we mentioned that PBKDF2 is used to
slow down an attacker that is trying to brute-force the
user password. Let us now analyse the concrete case
of FileVault 2. As Raeburn explains [17], for a given
number of iterations N and a known salt, a 2GHz ma-
chine can perform approximately 217/N PBKDF2 iter-
ations per second. Therefore, this machine would re-
quire about N · 232−17 = N · 215 seconds to test all pos-
sible inputs in a large password set containing 232 pos-
sible words. In the case of FileVault 2 we know the salt
(from the EncryptedRoot.plist file) and we also
know N = 41000 (between 215 and 216). With N = 41000
the machine can do about 4 attempts per second and in
order to try all the 232 values the machine needs around
230 seconds (or about 34 years). This situation is well
above most security requirements.

However, let us look into a more attacker-favorable
case, which might be common enough to be consid-
ered. Let us assume the password is a weak 6 charac-
ter common word thus limiting the search to about 216

possibilities. This effectively reduces the search to only
N · 216−17 = N/2 = 20500 seconds, or 5.6 hours (even
less with a better machine). This should be taken in con-
sideration when trusting the user data is completely se-
cure simply because FileVault 2 is enabled.

The details provided in this paper enable an organi-
zation to verify that FileVault 2 users have secure pass-
words, without requiring them to disclose their pass-
word. The site administrator could use a tool that tries
to brute-force the user password against a defined set as
described above. If the password is revealed then the
administrator could request the user to choose a better
password and then perform the check again. This step
will ensure that users do not employ known weak pass-
words with FileVault 2.

The problem described above is inherent when a user
password protects the underlying encryption. We are not
aware of how we could improve this system without in-
creasing the number of PBDKF2 iterations (which would
increase the login delay) or requiring additional login to-
kens.

In contrast, Bitlocker does not have the same prob-
lem since it relies on an external TPM module to unlock
the volume master key. The assumption here is that the
user password is protected by the OS, which in turn can
only be unlocked by the TPM. Therefore, you cannot get
an image of the disk data and try to brute-force the key
derivation because you do not have the TPM key (typi-
cally 256 bits).

10

4.4 Extracting keys from memory
As we point out in section 2, Halderman et al. [3] have
shown that is possible to extract encryption keys from
memory under many circumstances. FileVault 2 does not
protect against extracting the keys from memory while
the system is running: we have been able to retrieve
all the necessary keys from memory using the standard
GNU debugger (gdb).

Compared to Bitlocker in TPM mode, FileVault 2 is
more resistant to key extraction attacks when the com-
puter is turned off. That is because the volume master
key is never loaded in memory unless the user provides
the correct authentication token. On the other hand, Bit-
locker loads the volume master key from the TPM with-
out the need of the user password. For completeness we
mention that Bitlocker can also be used with a recovery
key instead of the TPM but this is not very common.

Maximillian Dornseif has shown that it is possible to
also extract keys from memory using Firewire in DMA
mode [27]. This enables any attacker with physical ac-
cess to a running system to easily extract the memory
contents, bypassing the OS and CPU since the transfer
takes place via DMA. Apple has now blocked this fea-
ture with the OS X 10.7.2 update [26].

4.5 Obfuscation features
While analysing FileVault 2 we were a bit con-
fused by some design decisions. We are not sure
of the real advantage introduced by encrypting the
EncryptedRoot.plist file. This file contains the keys
in an encrypted blob (therefore security measures have
already been taken), but the key to decrypt the file is
available as plain text in the header of the CoreStorage
volume (so any attacker can do that; for a dictionary at-
tack, as detailed earlier, an attacker only needs to decrypt
this file once). We believe that the main intend of en-
crypting the EncryptedRoot.plist file is obfuscation
of the FileVault 2 system’ s working, an approach con-
trary to Kerckhoff’ s principle.

5 Conclusions

In this paper we have presented in detail the architecture
of FileVault 2, the full disk encryption mechanism de-
ployed by Apple with Mac OS X 10.7 (Lion), based on a
broad analysis of the system components.

Our work allows any forensic investigator to use ar-
bitrary tools to decrypt any data from a FileVault 2 en-
crypted volume, when the user password or a recovery
token of the system are known. Further more, we have
implemented an open source library and tooling to ana-
lyze and mount volumes encrypted with FileVault 2.

We have also made an informal security analysis of the
system and found, among others, that the entropy of the
recovery password can be improved and that part of the
user data is available in the clear.

6 Acknowledgements

We are very thankful to Darren Bilby for his support in
this work. We also thank Germano Caronni, Michael
Cohen, Jan Monsch and Frank Stajano for many useful
comments and discussions.

Omar Choudary is a recipient of the Google Europe
Fellowship in Mobile Security, and this research is sup-
ported in part by this Google Fellowship. The opinions
expressed in this paper do not represent the views of
Google unless otherwise explicitly stated.

7 Availability

Our library to mount FileVault 2 encrypted volumes is
available on Google Code:

http://code.google.com/p/libfvde/

These web pages also contain documents with full
specs of the metadata used by FileVault 2.

References

[1] Niels Fergusson, “AES-CBC + Elephant di-
fusser: A disk encryption algorithm for Win-
dows Vista”, Microsoft Corp, 2006

[2] Clemens Fruhwirth, “New methods in hard disk
encryption”, Institute for Computer Languages,
Theory and Logic, 2005

[3] Halderman, J. Alex and Schoen, Seth D. and
Heninger, Nadia and Clarkson, William and
Paul, William and Calandrino, Joseph A. and
Feldman, Ariel J. and Appelbaum, Jacob and
Felten, Edward W., “Lest we remember: cold
boot attacks on encryption keys”, in Proceedings
of the 17th conference on Security symposium,
USENIX Association, pp 45–60, 2008

[4] Zvi Gutterman, Benny Pinkas, Tzachy Reinman,
“Analysis of the Linux Random Number Gener-
ator”, in IEEE Symposium on Security and Pri-
vacy, 2006.

[5] Leo Dorrendorf, Zvi Gutterman, Benny Pinkas,
“Cryptanalysis of the random number genera-
tor of the Windows operating system”, in ACM
Trans. Inf. Syst. Secur., 2009.

11

[6] Kelsey, John and Schneier, Bruce and Ferguson,
Niels, “Yarrow-160: Notes on the Design and
Analysis of the Yarrow Cryptographic Pseudo-
random Number Generator”, Selected Areas in
Cryptography, 2000, Springer LNCS vol. 1758,
pp 13–33

[7] P. Rogaway. “Efficient instantiations of tweak-
able blockciphers and refinements to modes
OCB and PMAC”, in Advances in Cryptology,
ASIACRYPT 2004, Springer LNCS vol. 3329.

[8] Apple, “FileVault 2 features”, at http:

//www.apple.com/macosx/whats-new/

features.html#filevault2

[9] “Apple implementation of Yarrow”, at
http://opensource.apple.com/source/

xnu/xnu-1699.24.8/bsd/dev/random/

[10] “Mac OS X Lion Adds CoreStor-
age, a Volume Manager ” http:

//blog.fosketts.net/2011/08/04/

mac-osx-lion-corestorage-volume-manager/

[11] Niels Ferguson and Bruce Schneier, Practical
Cryptography, Wiley 2003.

[12] “PGP Whole Disk Encryption”, at
http://www.symantec.com/business/

whole-disk-encryption

[13] “True Crypt open source project”, at http://
www.truecrypt.org

[14] “HMAC: Keyed-Hashing for Message Authenti-
cation”, RFC 2104

[15] “PKCS #5: Password-Based Cryptography
Specification Version 2.0”, RFC 2898

[16] “Advanced Encryption Standard (AES) Key
Wrap Algorithm”, RFC 3394

[17] “Advanced Encryption Standard (AES) Encryp-
tion for Kerberos 5”, RFC 3962

[18] “The XTS-AES Tweakable Block Cipher”, IEEE
Std 1619-2007

[19] “Advanced Encryption Standard”, FIPS 197

[20] “Sophos SafeGuard”, at http://www.sophos.
com/de-de/products/encryption/

safeguard-disk-encryption-for-mac.

aspx

[21] “Credant”, at http://www.credant.com/

products/cmg-enterprise-edition/

cmg-enterprise-edition-for-mac.html

[22] “WinMagic SecureDoc”, at http:

//www.winmagic.com/products/

full-disk-encryption-for-mac

[23] “Check Point FDE”, at http://

www.checkpoint.com/products/

full-disk-encryption/index.html

[24] “Unified Extensible Firmeware Interface”, at
http://www.uefi.org

[25] “A Brief History of Apple and EFI”, at
http://refit.sourceforge.net/info/

apple_efi.html

[26] “Apple OS X 10.7.2 security update”, at http:
//support.apple.com/kb/HT5002

[27] Maximillian Dornseif, “0wned by an iPod”, in
PacSec, 2004

[28] Brian Carrier, “File System Forensic Analysis”,
Addison-Wesley 2010

12

Appendix

Table 2: CoreStorage volume header structure. All integer values are in little endian. Missing fields are either unknown
or not essential and removed for brevity.

byte offset length
(bytes)

data

0 8 Checksum CRC32 for bytes 8..511, aligned to 64 bits with CRC32 at
first bytes

8 40 Version number and other verification values
48 8 Disk sector size in bytes (generally 512).
64 8 Number of bytes in entire volume (including header and metadata sec-

tions)
88 2 Version String (0x43 0x53 = CS)
96 4 block size in bytes (generally 0x1000 = 4096)
100 4 disklabel metadata block size
104 8 block offset for disklabel metadata
168 4 key length (seen 0x10)
172 4 crypto algorithm version (seen 0x02)
176 16 AES-XTS key1 used for the EncryptedRoot.plist file and the encrypted

metadata
304 16 PhysicalVolume UUID. AES-XTS key2 (tweak key) used for the en-

crypted metadata
320 16 LogicalVolumeGroup UUID

Table 3: PassphraseWrappedKEK structure, total length is 284 bytes. Integers in little endian.

byte offset length
(bytes)

data

0 8 Uncertain. May be tag and len of next field.
8 16 PBKDF2 salt.
24 8 Uncertain. May be tag and len of next field.
32 24 AES-wrapped volume KEK (used to unwrap the volume key).
56 228 Unknown.

13

Table 4: KEKWrappedVolumeKey structure, total length is 256 bytes. Integers in little endian.

byte offset length
(bytes)

data

0 8 Uncertain. May be tag and len of next field.
8 24 AES-wrapped volume key.
32 224 Unknown.

Table 5: Disk Label metadata structure. Integers represented in little endian. Missing fields are unknown or removed
for brevity.

byte offset length
(bytes)

data

0 8 CRC32 padded to 64-bit.
168 1 Block size in bytes as a power of 2 (e.g. 0x0c means 212 = 4096).
220 4 Offset in this header where to look for the offset of the encrypted meta-

data. Usually 8192 (0x2000).
240 8 CoreStorage Physical volume size in units as defined in offset 168.
variable 8 Block offset of encrypted metadata:

position = disk label[220]+32.

Table 6: structure of the encrypted metadata structure. Integer values are in little endian. Omitted fields are unknown
or removed for brevity.

byte offset length
(bytes)

data

248 8 block offset of data concerning the encrypted volume (start and size).
Block size is 4096 (0x1000)

280 8 block offset of first xml metadata
variable 8 encrypted volume size in blocks

position = encrypted metadata[248]∗4096+72
variable 8 block offset of beginning of the encrypted volume

position = encrypted metadata[248]∗4096+80
variable 4 byte offset within current block of first xml metadata

position = encrypted metadata[280]∗4096+128
variable 4 size of first xml metadata
variable from above first xml metadata

position = encrypted metadata[280] ∗ 4096 +
byte o f f set(f irst xml metadata)

variable variable second xml metadata. Not essential. Third xml metadata also available
at later offset but is not essential. Can be found by using a command
like grep xml in the metadata contents

14

