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Abstract

We present a general framework for constructing non-interactive universally composable (UC) com-
mitment schemes that are secure against adaptive adversaries in the non-erasure setting under a single
re-usable common reference string. Previously, such “fully-equipped” UC commitment schemes are
only known in [7, 8], with an unavoidable overhead of O(κ); meaning that to commit λ bits, the
communication and computational costs are O(λκ), where κ denotes the security parameter. Efficient
construction of a fully-equipped UC commitment scheme was a long-standing open problem. We in-
troduce a new cryptographic primitive, called all-but-many encryptions (ABMEs), and prove that it
is a translation of fully-equipped UC commitment in the algorithmic level. We implement ABMEs
from two primitives, called probabilistic pseudo random functions and extractable sigma protocols, where
the former is a probabilistic version of pseudo random function and the latter is a special kind of
sigma (i.e., canonical 3-round public-coin HVSZK) protocols with some extractability. We provide
efficient fully-equipped UC commitment schemes from ABMEs under DDH and DCR-based assump-
tions, respectively. The former is 3 times faster than arguably the most efficient adaptively secure
UC commitment scheme [25] under the DDH assumption (that requires 5-round interaction and the
secure-erasure assumption) in the reasonable security parameters. The latter is the first fully-equipped
UC commitment scheme with optimal expansion factor O(1). We also construct a fully-equipped UC
commitment scheme from a general assumption (that trap-door permutations exist), which is far more
efficient than the previous construction [8], because our construction does not require non-interactive
zero-knowledge proof systems.

1 Introduction

Universal composability (UC) framework [6] guarantees that if a protocol is being proven secure in the
UC framework, it remains secure even if it is run concurrently with arbitrary (even insecure) protocols.
This composable property gives a designer a fundamental benefit, compared to the classic definitions,
which only guarantee that a protocol is secure if it is run in the stand-alone setting. In this work, we
focus on universally composable (UC) commitment schemes. As in the classic setting, UC commitments
are an essential building block to consturct high level UC-secure protocols. UC commitments imply UC
zero-knowledge protocols [7, 12], which play an essential role to construct UC-secure two-party and multi-
party computations [8]. Unfortunately, it is known that UC commitments cannot be realized without
an additional set-up assumption [7]. The common reference string (CRS) model is most widely used as
a set-up assumption when considering the UC framework. So, we also consider schemes in the common
reference model.

A commitment scheme is a two-phase protocol between two parties, a committer and a receiver. The
basic idea behind the notion of commitment is as follows: In the first phase (or the commitment phase),
a committer gives a receiver the digital equivalent of a sealed envelope containing value x, and, in the
second phase (or the opening phase), the committer reveals x in a way that the receiver can verify it.
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From the original concept, it is required that a committer cannot change the value inside the envelope
(the binding property), whereas the receiver can learn nothing about x (the hiding property) unless the
committer does not help the receiver opens the envelope 1.

Informally, a UC commitment scheme maintains the above binding and hiding properties under any
concurrent composition with arbitrary protocols. To achieve this, a UC commitment scheme requires
equivocability and extractability. Roughly, equivocability of a UC commitment scheme in the CRS model
can be interpreted as follows: An algorithm (called the simulator) that takes the secret behind the CRS
string can generate an equivocable commitment that can be opened correctly to any value. On the other
hand, extractability can be interpreted as follows: The simulator given the secret can correctly extract
the contents of any new valid commitment generated by any adversarial algorithm without given the
secret, even after it has given the adversary many equivocable commitments, where a commitment is said
valid if it can be opened correctly.

Several factors feature UC commitments such as non-interactivity, CRS re-usability, adaptive security,
and non-erasure.

Interaction. If an execution of a UC commitment scheme is completed simply by sending each one
message from the committer to the receiver in the commitment and opening phases, then it is called
non-interactive; Otherwise, interactive.

CRS Reusability. The CRS model assumes that CRS strings are generated in a trusted way and given
to every party. From the practical point of view, an important question in the CRS model is whether a
single CRS string can be fixed beforehand and it can be re-usable in unbounded times of executions of
cryptographic protocols. Otherwise, a new CRS string must be set up in a trusted way at some point
when a new execution of a protocol is invoked.

Adaptive Security. A typical question asked about UC-secure protocols is whether security of the
protocols is proven under static or adaptive adversaries. A static adversary can decide to corrupt parities
only before the protocols start, whereas an adaptive adversary can decide to corrupt the parties at any
point. If a protocol is proven UC-secure against adaptive adversaries, it is called adaptive UC-secure.

Non-Erasure. When a party is corrupted, the whole inner state of the party is revealed, including
the randomness being used. Some protocols are only proven UC-secure under the assumption that the
parties can securely erase their inner state. If such an assumption is unnecessary, the protocol is called
non-erasure.

Canetti and Fischlin [7] presented the first UC secure commitment scheme in the common reference
string model, which is “fully-equipped” – non-interactive, adaptively secure, and non-erasure under a
single re-usable common reference string. In [7], two independent public-keys, pk1 and pk2, of an IND-
CCA secure public-key encryption scheme and a claw-free trap-door permutation pair, (f0, f1), are put
in the common reference string. The committer sends the receiver a commitment (e,Ecca

pk0
(x0),E

cca
pk1

(x1)),
where Ecca denotes the IND-CCA secure public-key encryption algorithm. The committed secret is
one bit b such that e = fb(xb). An honest committer generates a commitment to bit b by picking up
random xb to compute e = fb(xb) and Epkb(xb), and sampling E1−b from the image of Ecca

pk1−b

2. When

1There are two different favors in hiding and binding, statistical and computational ones. In the statistically-binding
commitment schemes, the binding property holds against unbounded adversaries, whereas in the statistically-hiding com-
mitment schemes, the hiding property holds against unbounded adversaries. By construction, a commitment scheme in the
plain model satisfies at most either statistically-binding or statistically-hiding, not both.

2The public-key encryption scheme is assumed to be obliviously samplable [7].
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he open the commitment or is corrupted by the adversary, the committer reveals xb and E1−b, along
with the randomness behind Ecca

pkb
(xb). To be equivocable, the simulator computes both x0, x1 such

that e = f0(x0) = f1(x1) using the trap-door secret of the claw-free pair, and encrypts both of them.
On the contrary, extractability is guaranteed so that the adversary cannot generate x0, x1 such that
e = f0(x0) = f1(x1), hence, the simulator can extract bit b by decrypting both ciphertexts and finding b
such that e = fb(xb). By construction, it is clear that the above scheme requires O(κ) overhead, meaning
that, to commit to λ-bit secret, it requires O(λκ) bits.

Canetti et al. [8] proposed another fully-equipped UC commitment scheme only from trap-door per-
mutation. However, it is constructed in the same framework as in [7] and hence, expansion factor O(κ)
is unavoidable.

Damg̊ard and Nielsen [12] presented UC commitment schemes with expansion factor O(1). However,
their schemes require 3-move interaction between the committer and the verifier in the commitment
phase. In addition, their schemes require a common reference string that grows linearly with the num-
ber of parties. Damg̊ard and Groth [10, 20] later removed the long CRS problem by using so-called
simulation-sound commitments [17, 26, 18]. However, the simulation-sound commitment requires one-
time signatures. Therefore, the secure-erasure assumption might be possibly necessary in the adaptive
corruption. Nevertheless, it still requires 3-move interaction in the commitment phase.

Recently, Lindell [25] proposed an efficient adaptively secure UC commitment scheme with expansion
factor O(1), which is arguably the fastest scheme (by counting the computational time only, not including
time loss of interaction), when it is implemented on an appropriate elliptic curve cryptosystem 3. The
scheme requires 5-move interaction in the commitment phase and assumes that the committer may
securely erase his inner state. Very informally and loosely, the scheme is constructed as follows: In
the commitment phase, the committer first encrypts his secret x by using a CCA seucre public key
encryption (where the public-key is put in the CRS). Then the committer and receiver run a kind of non-
malleable zero-knowledge protocol (using dual-system encryption schemes [30]), but abort just before the
committer finally sends the receiver the last message proving that he knows the secrets committed to in
the encryption. The committer then erases his random coins of the encryption. In the decommit phase,
the committer reveals the final message in the above protocol. In this scheme, the committer does not
reveal the real witness of the UC commitment, while it only reveals a zero-knowledge proof that enables
the simulator to generate a simulated proof on any message. Therefore, the secure-erasure assumption is
crucial for this scheme.

Fischlin, Libert, and Manulis [14] replaced the interactive part with a non-interactive one, by using the
GS-proof techniques [21]. By construction, however, the secure-erasure assumption is still unavoidable.

Nishimaki, Fujisaki, and Tanaka [28] presented non-interactive, adaptively secure and non-erasure UC
commitment schemes. However, their schemes are simply one-time secure– they consume a new CRS in
each execution of commitment and hence, do not have CRS re-usability.

1.1 Our Contributions

We propose a general framework for constructing “fully-equipped” UC commitment schemes as mentioned
above. The essential component in the framework is a new cryptographic primitive that we call all-but-
many encryption (ABME), which is a translation of fully-equipped UC commitment in the algorithmic
level. We construct ABMEs from a unified view of combining two cryptographic primitives, called
probabilistic pseudo random functions and extractable sigma protocols, where the former is a probabilistic
version of pseudo random functions and the latter is a special kind of sigma (i.e., canonical 3-round
public-coin HVZK) protocols with some extractability.

3Although the current scheme has a flow, it is claimed that it can be fixed [25].
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We propose a fully-equipped UC commitment scheme only from the Decisional Diffie-Hellman (DDH)
assumption. From a practitioners’ point of view, it is 3 times faster than arguably the previous most
efficient adaptively secure UC commitment scheme [25] in the reasonable security parameters. See Table 1.

We also provide a fully-equipped UC commitment scheme with constant expansion factor O(1); mean-
ing that to commit O(κ) bits, the communication and computational costs are O(κ), where κ denotes the
security parameter. This is the first fully-equipped UC commitment scheme with the optimal expansion
factor of communication and computation. Only the CRS size is not optimal, O(κ2), which remains open.
To prove security of this scheme, we assume that Damg̊ard-Jurik homomorphic encryption scheme is not
multiplicatively hommorphic, which is similar to the assumption used in [22].

We also present a weak version of ABME, which can be constructed from a general assumption (that
trap-door permutations exist). We do not show that every weak ABME can be converted to a fully-
equipped UC commitment scheme, but prove that at least our concrete construction from the general
assumption is successfully converted so. Since it does not require non-interactive zero-knowledge proof
systems, it is far more efficient than the previous scheme [8]. See Table 2. This construction is given in
Appendix D.

1.1.1 Basic Idea

UC commitment schemes require equivocability and extractability. Therefore, a public key encryption
scheme with the following properties is very useful: For a person who does not know the secret key, it
looks a standard public key encryption scheme – If he encrypts a message under a public key properly,
the corresponding secret key holder can decrypt the valid ciphertext correctly. However, the secret-key
holder can generate a fake ciphertext under the public-key, which can be opened to any message along
with the consistent randomness. It should be difficult for a user who does not own the secret key to
distinguish a fake ciphertext from a real ciphertext even after the message and the randomness used
there are revealed. We also require that the encryption scheme is tag-based to fit the UC framework and
that the secret key holder can produce fake ciphertexts a-prior unbounded polynomially many times, but
nobody without given the secret key can produce a fake ciphertext on a fresh tag even after he has seen an
a-prior unbounded polynomially many number of fake ciphertexts. We call such encryptions all-but-many
encryptions (ABMEs).

To construct all-but-many encryptions, as the first step idea, we call instance-dependent commit-
ments [1, 23] to mind. An instance-dependent commitment scheme is an “instance-based” commitment
scheme that additionally takes x as input to commit to a message and behaves differently depending on
whether instance x belongs to NP language L or not: When x ∈ L, a honest committer always gen-
erates statistically-hiding commitments, whereas when x ̸∈ L, he always generates statistically-binding
commitments.

A non-interactive instance-dependent commitment scheme can be constructed if there exists a canoni-
cal three-move public-coin statistically zero-knowledge protocol, called the sigma protocol [9] 4, for an NP
language L and if the decision problem on L is hard: Let (a, e, z) be the transcript of the sigma protocol
on instance x. Let w be the witness of x (if it exists). When a honest committer wants to commit to
e, he runs the simulation algorithm of the sigma protocol on x with challenge e (regardless of whether
x ∈ L or not) and sends the receiver the first message a. To open the commitment, the committer reveals
(e, z). The receiver accepts it if (a, e, z) is an accepted conversation on x in the sigma protocol. By (spe-
cial) honest verifier statistical zero-knowledgeness, for every x ∈ L and every e, the transcript on (x, e),
i.e., (a, e, z), generated by the simulation algorithm of the sigma protocol is statistically indistinguishable
from the transcript on the same (x, e) generated by the real sigma protocol using witness w. This implies

4Precisely speaking, we require a slightly stronger variant of sigma protocols as described in Sec. 4.
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that when x ∈ L, a honest committer generates statistically hiding commitments. The computational
binding holds because it is difficult to find w from x. (Opening a commitment in two ways reveals w
due to special soundness.) On the contrary, when x ̸∈ L, the first message a, generated by any (possibly
dishonest) committer, is statistically binding to e, as long as there exists an accepted conversation for
a. This immediately follows from special soundness of sigma protocols. The (computational) hiding
property holds because it is hard to decide whether x ∈ L or not. Therefore, when x ̸∈ L, a committer
generates statistically-binding commitments.

When x ∈ L, it is obvious that we can construct a simulator that generates equivocable commitments
that are statistically indistinguishable from commitments generated by a honest committer. The simulator
runs the real sigma protocol with witness w and outputs the first message a in the commitment phase.
Since the real sigma protocol can produce answer z for any challenge e, using witness w along with the
randomness used when generating a, the simulator can open a into any value e in the opening phase.
Therefore, this instance-dependent commitment scheme is equivocable when x ∈ L. We note that to
commit to e, a honest committer runs the simulation algorithm of the sigma protocol on (x, e), whereas
the simulator runs the real sigma protocol on x with w.

On the contrary, can we extract e from a when x ̸∈ L (without randomness behind a)? For special
languages, it is possible. Fujisaki [16] has recently introduced a special kind of sigma protocol, in which,
letting Lpk be an NP language indexed by (a series of) pk, the simulator can efficiently check that “a
commits to e”, for given (x, a, e), where x ̸∈ Lpk, by using secret key sk behind pk (but no randomness
under a is required). Such a sigma protocol is called a weak extractable sigma protocol [16]. In this paper,
we require a strong variant, in which, given (x, a), the simulator can extract e by using sk. We call this
variant the extractable sigma protocols. Therefore, if there is an extractable sigma protocol for Lpk, we
have a non-interactive instance-dependent commitment scheme, which is equivocable when x ∈ Lpk and
extractable when x ̸∈ Lpk.

We now want that only the simulator is able to choose x ∈ Lpk while the adversary is forced to choose
x ̸∈ Lpk even after it has seen many different x̃’s that belong to Lpk. For this purpose, we consider
“tag-based” NP language Lpk = {x = (t, u) | t ∈ {0, 1}κ and u ∈ Lpk(t)}, with the following properties:

• (Pseudo-randomness) There is set U such that Lpk(t) ⊂ U for any t and it is easy to randomly
sample from U . It is infeasible to decide whether one may have access to oracle Lpk(·) or U(·) in an
unbounded polynomially many times, where oracle Lpk(t) returns random u from Lpk(t) and oracle
U(t) returns random u ∈ U 5.

• (Unforgeability) It is infeasible to produce x∗ = (t∗, u∗) in Lpk on fresh tag t∗ even if one may have
access to oracle Lpk(·) in an unbounded polynomially many times.

In fact, such a language can be constructed via a pseudo random function family and a public en-
cryption scheme. For instance,

Lpk = {x = (t, u) | ∃sk = (s, r) : u = Fs(t) and c = Epk′(s; r)}, where pk = (pk′, c).

If there exists an extractable sigma protocol for such Lpk, it can be converted to an all-but-many
(ABM) encryption scheme as follows: To encrypt e on tag t, a honest encryptor (without knowing sk)
chooses random u from U , generates commitment a on x = (t, u) by using the simulation algorithm of
the extractable sigma protocol, and finally outputs (x, a). With an overwhelming probability, it holds
that x ̸∈ Lpk. Therefore, the simulator given sk can extract e from a correctly. On the contrary, the
simulator (the secret-key holder) can generate x = (t, u) ∈ Lpk and produce a by using the real sigma

5If Lpk(·) is deterministic, then U returns the same u on t if it was previously queried.
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protocol with witness w of x 6, which is a fake ciphertext that can be opened correctly to any e along
with consistent z. By pseudo-randomness of Lpk and zero-knowledgeness of the sigma protocol, nobody
without given the secret-key sk can distinguish a real ciphertext from a fake ciphertext, even if message
e and randomness z are revealed. In addition, from unforgeability of Lpk and special soundness of the
sigma protocol, no dishonest encryptor can produce a fake ciphertext on a fresh t∗, even after he saw an
a-prior unbounded polynomially many number of fake encryptions on t, with t ̸= t∗.

Finally, we simply see the (real) ciphertext generated by an ABM encryption scheme as a UC commit-
ment, by putting the public key in the common reference string beforehand. To open the commitment,
the message and randomness used to be encrypted are revealed.

1.2 ABM Lossy Trap-door Functions

Hofheinz has recently proposed all-but-many lossy trap-door functions (ABM-LTDFs) [22], which are lossy
trap-door (deterministic) functions with (unbounded) many lossy tags. He has proposed two schemes
based on the DCR-based and q-strong DH assumptions, respectively. Our idea of viewing signatures
equipped with no public verification procedure (namely, the probabilistic pseudo random functions) as
equivocable tags is inspired by the idea of seeing encrypted signatures as lossy tags in [22]. Apparently,
both schemes seem quite different – ABM-LTDFs are deterministic whereas ABMEs are probabilistic
and, by construction, essentially require randomness. However, they are related in some sense: In [22],
a tag is a matrix M such that its determinant is an encryption of zero if a valid signature is embed.
If det(M) = Encpk(0), it is lossy; otherwise, it is injective. On the other hand, our construction is
obtained by simulating the first message of sigma protocols (with some extractability) for the languages of
signatures equipped with no public verification procedure, where the first message implies linear equations
when using a typical proof of knowledge protocols based on homomorphic functions. The determinant
derived from the linear equations turns out zero if and only if tags correspond signatures.

2 Preliminaries

Let N be the set of natural numbers. For n ∈ N, [n] denotes the set {1, . . . , n}. We denote by O, Ω,
and ω the standard notations to classify the growth of functions. We let poly(κ) denote an unspecified
function f(κ)= O(κc) for some constant c. We let negl(κ) to denote an unspecified function f(κ) such
that f(κ) = κ−ω(1), saying that such a function is negligible in κ. We write PPT and DPT algorithms
to denote probabilistic polynomial-time and deterministic poly-time algorithms, respectively. For PPT
algorithm A, we write y ← A(x) to denote the experiment of running A for given x, picking inner coins r
uniformly from an appropriate domain, and assigning the result of this experiment to the variable y, i.e.,
y = A(x; r). Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N be probability ensembles such that each Xκ and Yκ are
random variables ranging over {0, 1}κ. The (statistical) distance between Xκ and Yκ is Dist(Xκ, Yκ) ,
1
2 · |Prs∈{0,1}κ [X = s] − Prs∈{0,1}κ [Y = s]|. We say that two probability ensembles, X and Y , are

statistically indistinguishable (in κ), denoted X
s≈ Y , if Dist(Xκ, Yκ) = negl(κ). In particular, we denote

by X ≡ Y to say that X and Y are identical. We say that X and Y are computationally indistinguishable

(in κ), denoted X
c≈ Y , if for every non-uniform PPT D (ranging over {0, 1}), {D(1κ, Xκ)}κ∈N

s≈
{D(1κ, Yκ)}κ∈N. Let R = {(X,W )} be an NP relation, meaning that given (X,W ), it can be decided in
a polynomial-time in |X| if (X,W ) ∈ R. Here X is called a statement and W is called a witness of X.
Let us denote by LR the NP language characterized by R, meaning that LR = {X | ∃W : (X,W ) ∈ R}.

6In the above case, w = sk for any x ∈ Lpk.
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2.1 The Universal Composability Framework

We work in the standard universal composability (UC) framework of Canetti [6]. We concentrate on the
same model in [7] where the network is asynchronous, the communication is public but ideally authen-
ticated, and the adversary is adaptive in corrupting parties and is active in its control over corrupted
parties. Any number of parties can be corrupted and parties cannot erase any of their inner state. We
provide a brief description of the UC framework and the ideal commitment functionality for multiple
commitments in Appendix A.

3 Probabilistic Pseudo Random Functions

A probabilistic pseudo random function Spl is a probabilistic version of pseudo random function mapping
from domain {0, 1}κ to codomain U parameterized by public key pk. It takes message t and outputs u
(= Spl(sk, t; v)) under secret key sk with respects to pk. Informally, the requirement of PPRFs is that
(a) u looks at least pseudo-random on any t and (b) it is infeasible for any adversary to compute valid
u∗ on fresh t∗ even after it may have access to oracle Spl(sk, ·), where t∗ is called fresh if it has not been
queried. Now we formally define PPRFs. A PPRF (Genspl, Spl) consists of the following two algorithms:

• Genspl is a PPT algorithm that takes 1κ as input and outputs (pk, sk). Here pk uniquely determines
a set U , the codomain of Spl. For convenience sake, we assume that the description of pk contains
κ and the description of sk contains that of pk. W.l.o.g., we assume Genspl is an NP relation 7.

• Spl is a PPT algorithm that takes sk and t ∈ {0, 1}κ, picks up inner random coins v ← COINspl,
and computes u ∈ U , namely u = Spl(sk, t; v). COINspl denotes the inner coin space uniquely
determined by pk.

For our convenience, we define

Lpk = {(t, u) | ∃ sk, ∃ v ∈ COINspl : (pk, sk) ∈ Genspl(1
κ) and u = Spl(sk, t; v)}.

We require that PPRFs satisfy the following security requirements:

• Easy sampling: For every pk given by Genspl, it is easy to sample random elements from U .

• Pseudo randomness: For every non-uniform PPT adversary A, the advantage of A in the fol-
lowing distinguishing game is negligible in κ: (pk, sk)← Genspl(1

κ); A takes pk; A may submit an
a-prior unbounded polynomially many number of arbitrary messages in {0, 1}κ to either of two or-
acles, Spl(sk, ·) or U(·), where U is the following oracle: When Spl(sk, ·) is a deterministic function,
U : {0, 1}κ → U is a random oracle which returns the same value on the same input. When Spl(sk, ·)
is probabilistic, then U(·) picks up random u ← U every time for every query to return, even if it
was already queried. A finally distinguishes which oracle it has had access to. The probability is
taken over the inner coins of Genspl, Spl, A, and random sampling from U .

• Unforgeability: For every non-uniform PPT adversary A, the advantage of A in the following
forging game is negligible in κ: A takes pk generated by Genspl(1

κ); A may submit a series of
arbitrary messages in {0, 1}κ to oracle Spl(sk, ·); A finally outputs (t, u) such that (t, u) ∈ Lpk and
message t has not been queried to Spl(sk, ·). The probability is taken over the inner coins of Genspl,
Spl, and A.

We remark that if Spl(sk, ·) is a deterministic algorithm and sk is uniquely determined by pk, the
unforgeability requirement is implied by pseudo randomness and hence, can be removed from the require-
ments.

7Namely, given (pk, sk), one can easily check (pk, sk) ∈ Gen(1κ).
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3.1 Construction of PPRFs

A PPRF (Genspl,Spl) can be constructed in a straight-forward way from a pseudo random function
family F = {(Fi)i∈Iκ}κ∈N and a semantically secure (or IND-CPA) public-key encryption scheme Π =
(K,E,D) [19]: Genspl(1

κ) picks up (pk, sk) ← K(1κ) and i ← Iκ (an index of the pseudo-random
function family w.r.t. security parameter κ). It outputs PK = (pk,Epk(i; r)) and SK = (PK, i, r)
where r is a random string uniformly chosen from the coin space of the encryption scheme. Then, define
Spl(SK, t) := Fi(t). By construction, it is clear that pseudo-randomness holds. In addition, if there is an
adversary that breaks unforgeability, it should break pseudo randomnes of F or semantic security of Π.

We also propose probabilistic schemes. The idea behind our constructions is to use Waters signa-
ture [31] as a PPRF in a group equipped with no bilinear map. Let g be a generator of a multiplicative
group G of prime order q, on which the DDH assumption holds. For κ + 1 elements in G, let us define
H(t)= h0

∏κ
i=1 h

ti , where t = (t[1], . . . , t[κ])∈ {0, 1}κ in which t[i] ∈ {0, 1} denotes i-th bit representation
of string t. Genspl(1

κ) chooses g, h0, . . . , hκ ← G and x1, x2 ← Z/qZ to set g1 = gx1 , g2 = gx2 . outputs
pk = (G, g, q, λ, g1, g2, h0, . . . , hκ). and sk = (pk, x2), where U = G × G. Spl(sk, t; r) takes t ∈ {0, 1}κ,
picks up random r← Z/qZ, and computes ur = gr and ut = gx2

1 (H(t))r. It then outputs u = (ur, ut).

Theorem 3.1 The above construction is a PPRF under the DDH assumption.

Proof. Spl is the same as Waters signature scheme when applied for a non-pairing group. So, unforge-

ability is immediately guaranteed if the computational DH assumption holds true. Pseudo-randomness
is shown in a straightforward way: Suppose that (g, g1, g2,K) be a tuple of four group elements in G,
which is either a DDH instance (K = gx2

1 ) or a random tuple (K is a random element in G). To break

the DDH problem, a simulator picks up h⃗ = (h0, h1, . . . , hκ) at random. It then runs adversary A on the
above parameters, where A is an adversary to break pseudo-randomness. For any query t, the simulator
returns (ur, ut) such that ur = gr and ut = K ·H(t)r. The simulator outputs the same bit that A outputs.
The simulator’s advantage is the same as that of A. Therefore, under DDH assumption its advantage
is bounded in a negligible (in κ) function. Therefore, it also satisfies pseudo-randomness. Hence, the
scheme above is an instantiation of PPRFs if the DDH assumption holds true.

We further present another variant of PPRFs based on Waters signature, which can be constructed
from additively homomorphic IND-CPA public-key encryption schemes. We show the construction in
appendix C.

4 Extractable Sigma-Protocol

We introduce extractable sigma protocols. We note that in [16] we have introduced a similar primitive.
In this paper we require a slightly stronger variant.

First, we recall a sigma protocol [9]. Let R = {(X,W )} be an NP relation. Let LR be the NP
language characterized by R = {(X,W )}, namely, LR = {X | ∃W : (X,W ) ∈ R}. A sigma protocol
for NP relation R, Σ = (comΣ, chΣ, ansΣ, simΣ,Vrfy), is a canonical 3-round (public coin) interactive
proof system between the prover and the verifier. Let X ∈ L be a statement to be proven and W
denotes a witness of X such that (X,W ) ∈ R. X is given to both the prover and the verifier as common
input and W is given only to the prover in advance. A Σ-protocol on common input X is executed as
follows: The prover picks up random coins ra, computes a using statement X and witness W , denoted
a = comΣ(X,W ; ra), and sends it to the verifier. The verifier picks up a random challenge element
e ← chΣ, where chΣ is a publicly-samplable prescribed set, and sends it to the prover. The prover
responds with z = ansΣ(X,W, ra, e). The verifier accepts if Vrfy(X, a, e, z) = 1. We say that (a, e, z) is

8



an accepting conversation on X if Vrfy(X, a, e, z) = 1. We require that the sigma protocols satisfy the
following properties:

• Completeness: For every ra (in an appropriate specified domain) and every e ∈ chΣ, it always
holds that Vrfy (X, comΣ(X,W ; ra), e, ansΣ(X,W, ra, e)) = 1.

• Special Soundness: For every X ̸∈ LR and every a, there is the the unique e in chΣ if there is an
accepted conversation for a; that is, there is z such that Vrfy(X, a, e, z) = 1. In addition, one can
always efficiently compute witness W , given X and two different accepted conversations for a on
X, (a, e, z) and (a, e′, z′), with c ̸= c′. A pair of accepted two different conversations for the same
a on X, i.e., (a, e, z) and (a, e′, z′), with e ̸= e′, is called a collision on X. We insist that a collision
on X exists if and only if X ∈ LR.

• Enhanced Special Honest-Verifier Statistical Zero-Knowledge: simΣ is a PPT algorithm
that takes X and e ∈ chΣ as input and, picking up rz ← COINsim, outputs (a, e, z) = simΣ(X, e; rz).
Given every (X,W ) ∈ R and every e ∈ chΣ,

{simΣ(X, e; rz)}
s≈ {(comΣ(X,W ; ra), e, ansΣ(X,W, ra, e))},

where the probability of the left hand is taken over random variable rz and the right hand is taken
over random variable ra. In this paper, we require slightly more for our sigma protocol. We say
that Σ is enhanced special HVSZK if rz = z. Namely, (a, e, z) = simΣ(X, e; z). Then, we note that
Vrfy(X, a, e, z) = 1 if and only if (a, e, z) = simΣ(X, e; z), which means that one can instead use
simΣ to verify.

4.1 Extractable Sigma Protocol

We now introduce extractable sigma protocols. Let Genext = {(pk, sk)} be an NP relation. We de-
note by Rpk = {(X, (sk,W ))} an NP relation indexed by pk 8 such that if (X, (sk,W )) ∈ Rpk, then
(pk, sk) ∈ Genext. Let us denote by Lpk the NP languages characterized by Rpk, i.e., Lpk = {X | ∃(sk,W ) :
(X, (sk,W )) ∈ Rpk}.

A extractable sigma-protocol extΣ = (Σ,Dec) for NP relation Rpk w.r.t. Genext consists of the following
algorithms:

• Σ(pk) = (comΣ, chΣ, ansΣ, simΣ) is a sigma protocol for Rpk (for every sequence of {pk}κ∈N) with
the enhanced special honest-verifier statistical zero-knowledge mentioned above. We remove Vrfy from
Σ, because we can instead use simΣ for verification.

• Dec, the extract algorithm, is a DPT algorithm that takes sk, X, and a (presumably the first output
generated by simΣ(pk)(X, e)) and outputs e or ⊥.

We require that extΣ-protocols additionally satisfy the following property:
(Extractability) For every (pk, sk) ∈ Genext, every X ̸∈ Lpk, every e ∈ chΣ(pk), and every a such

that there is an accepted conversation (a, e, z) for a on X, it always hold that Dec(sk,X, a) = e.
Here, we note that if there is an accepted conversation (a, e, z) on X ̸∈ LR, e is unique for a, due to the

special soundness of the sigma protocols. Therefore, extractability is well defined, because e is uniquely
determined by a when X ̸∈ Lpk. Extractability implies that even if a is generated in an adversarial
way, there is a unique e consistent with a and it can be extracted from a using sk, as long as X ̸∈ Lpk

and a has an accepted conversation on X.
8Precisly speaking, we consider Rpk as an ensemble indexed by a sequence of public keys, {pk}κ∈N, where there is one pk

for every κ ∈ N.
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5 ABM Encryptions

All-but-many encryption scheme ABM.Enc = (ABM.gen,ABM.spl,ABM.enc,ABM.dec,ABM.col) consists
of the following algorithms:

• ABM.gen is a PPT algorithm on input 1κ outputs (pk, sk), where pk defines an efficiently samplable
set U , the codomain of ABM.spl. We let S = {0, 1}κ × U . For convenience’ sake, we assume that
the description of pk contains κ and the description of sk contains that of pk. W.l.o.g., we assume
ABM.gen is an NP relation; that is, given (pk, sk), one can easily check (pk, sk) ∈ Gen(1κ).

• ABM.spl is a PPT algorithm that takes sk and tag t ∈ {0, 1}κ, picks up inner random coins
v ← COINspl, and computes u ∈ U . COINspl denotes the inner coin space uniquely determined by
pk. We define

Lpk(t) = {u ∈ U | ∃ sk, ∃ v ∈ COINspl : (pk, sk) ∈ ABM.gen(1κ) and u = ABM.spl(sk, t; v)}.

We also define Lpk = {(t, u) | t ∈ {0, 1}κ and u ∈ Lpk(t)}.

• ABM.enc is a PPT algorithm that takes pk, (t, u) ∈ S, and message x ∈ MSP, picks up inner random
coins r ← COINenc, and computes c such that c = ABM.enc(t,u)(pk, x; r), where MSP denotes the
message space uniquely determined by pk, whereas COINenc denotes the inner coin space uniquely
determined by pk and x 9.

• ABM.dec is a DPT algorithm that takes sk, (t, u) ∈ S, and ciphertext c, and computes x =
ABM.dec(t,u)(sk, c).

• ABM.col= (ABM.col1,ABM.col2) is a pair of PPT and DPT algorithms, respectively, such that

– ABM.col1 takes sk, (t, u), and v ∈ COINspl such that t ∈ {0, 1}κ and u = ABM.spl(sk, t; v), and

outputs (c, ξ)← ABM.col
(t,u)
1 (sk, v)

– ABM.col2 takes ξ and x ∈ MSP, and outputs r∈ COINenc such that c = ABM.enc(t,u)(pk, x; r).

We require that all-but-many encryption schemes satisfy the following properties:

1. Adaptive All-but-many property: (ABM.gen,ABM.spl) is a probabilistic pseudo random func-

tion (PPRF). We note that for every pk, |Lpk| = O(κ) and
|Lpk|
|S| = negl(κ).

2. Dual mode property: For every κ ∈ N and every (pk, sk) ∈ ABM.gen(1κ),

• (Decryption mode) For every (t, u) ∈ S\Lpk, and every x ∈ MSP, it always holds that

ABM.dec(t,u)(sk,ABM.enc(t,u)(pk, x)) = x.

• (Trap-door mode) For every (t, u) ∈ Lpk, every v∈ COINspl such that u = ABM.spl(sk, t; v),

every (c, ξ) ∈ABM.col
(t,u)
1 (sk, v), and every x ∈ MSP, it always holds that

c = ABM.enc(t,u)(pk, x;ABM.col2(ξ, x)).

9We allow the inner coin space to depend on messages to be encrypted, because our concrete construction of weak ABM
encryption from general assumption in Sec. D requires the coin space to depend on messages.
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In addition,{(
ABM.col

(t,u)
1 (sk, v)[1], ABM.col2

(
ABM.col

(t,u)
1 (sk, v)[2], x

))}
s≈
{(

ABM.enc(t,u)(pk, x; r), r
)}

for every x ∈ MSP, every (t, u) ∈ Lpk, and every witness (sk, v) of (t, u) ∈ Lpk. Here

ABM.col
(t,u)
1 (sk, v)[1] denotes the first output of ABM.col

(t,u)
1 (sk, v), and ABM.col

(t,u)
1 (sk, v)[2]

denotes the second output of ABM.col
(t,u)
1 (sk, v). The probability of the light-hand side random

variable is taken over the random choice of r ∈ COINenc.

We say that a ciphertext c on (t, u) (∈ S) under public key pk is valid if there exist x ∈ MSP and
r ∈ COINenc such that c = ABM.enc(t,u)(pk, x; r). We say that a valid ciphertext c on (t, u) (∈ S) under
public key pk is real if (t, u) ∈ S\Lpk, otherwise fake if (t, u) ∈ Lpk.

We remark that as long as c is a real ciphertext, there is only one consistent x in MSP and it is
equivalent to ABM.dec(t,u)(sk, c), due to the correctness condition of the decryption mode. This means
that even if a ciphertext is generated by an adversary, it can be decrypted correctly as long as there exists
a pair of a message and randomness consistent with the ciphertext and (t, u) ∈ S\Lpk.

6 Construction of ABME from Extractable Sigma Protocol for PPRF

Suppose there is an extractable sigma protocol such that it can prove the possession of witness behind
the input and output relation of a pseudo-random function. Then, we can construct an all-but-many
encryption scheme. Let (Genspl, Spl) be a probabilistic pseudo random function (PPRF) defined above.
Let us define Rpk = {((t, u), (sk, v)) |u = Spl(sk, t; v)}, which is an NP relation indexed by (a sequence
of) {pk}κ∈N. For an extractable sigma protocol extΣ for Rpk, an ABM encryption scheme ABM.Enc is
constructed as follows:

• ABM.gen(1κ) = Genspl(1
κ). Let (pk, sk) be generated by ABM.gen. Let U be the codomain of Spl

determined by pk. Let S = {0, 1}κ × U .

• ABM.spl(sk, t; v) = Spl(sk, t; v), where t ∈ {0, 1}κ and v ∈ COINspl.

• ABM.enc(t,u)(pk, x; r) = simΣ(pk)(X,x; r)[1], where X = (t, u) ∈ S, x ∈ MSP (= chΣ(pk)), and
r ∈ COINenc (= COINsim).

Here simΣ(pk)(X,x; r)[1] denotes the first output of simΣ(pk)(X,x; r).

• ABM.dec(t,u)(sk, c) = Dec(sk,X, c), where X = (t, u), and c = ABM.enc(t,u)(pk, x; r).

• ABM.col
(t,u)
1 (sk, v; ra) = (c, ξ), such that c = comΣ(pk)(X,W ; ra) and ξ = (sk, t, u, v, ra), where

X = (t, u), W = (sk, v) and u = Spl(sk, t; v).

• ABM.col2(ξ, x) = ansΣ(pk)(X,W, ra, x), where ξ = (sk, t, u, v, ra), X = (t, u), W = (sk, v), and x
∈ MSP.

Here, Lpk = {(t, u) | ∃(sk, v) : (pk, sk) ∈ ABM.gen(1κ) and u = Spl(sk, t; v)}. By construction, it is
obvious that ABM.Enc satisfies the adaptive all-but-many property. The dual mode property also holds
because: (a) IfX = (t, u) ∈ S\Lpk, a ∈ simΣ1(pk)(X,x) is perfectly binding to x, due to special soundness
and x is extracted from (X, a) only using sk, due to extractability of extractable sigma protocols. (b) If
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X = (t, u) ∈ Lpk, ABM.col runs the real (extractable) sigma protocol (comΣ, ansΣ) with witness (sk, v).
Therefore, it can produce a fake commitment that can be opened in any way, while it is statistically
indistinguishable from that of the simulation algorithm simΣ (that is run by ABM.enc), due to enhanced
honest statistical zero-knowledgeness. Therefore, the resulting scheme is an all-but-many encryption
scheme.

7 UC Commitments from ABM Encryptions

We see an ABM encryption as an UC commitment by putting the publickey message in the common
reference string. To open the commitment, the commiter sends the message to be encrypted and the
randomness used there. We formally describe our UC commitment scheme in Fig. 1.

UC-commitment protocol from ABM.Enc
Common reference string: pk where (pk, sk)← ABM.gen(1κ).
We implicitly assume that there is injective map ι from {0, 1}κ to MSP such that ι−1 is efficiently
computable and ι−1(y) = ε for every y ̸∈ ι({0, 1}κ), and also assume that (sid, ssid, Pi, Pj)∈
{0, 1}κ.
The commit phase:

• Upon input (commit, sid, ssid, Pi, Pj , x) where x ∈ {0, 1}κ, party Pi proceed as follows: If
a tuple (commit, sid, ssid, Pi, Pj , x) with the same (sid, ssid) was previously recorded, Pi

does nothing. Otherwise, Pi sets t= (sid, ssid, Pi, Pj)∈ {0, 1}κ. It picks up u ← U and

r ← COIN, and encrypts message ι(x) to compute c = ABM.enc(t,u)(pk, ι(x); r). Pi sends
((t, u), c) to party Pj , and stores (sid, ssid, Pi, Pj , (t, u), x, r).

• Pj ignores the commitment if t ̸= (sid, ssid, Pi, Pj), u ̸∈ U , or a tuple
(sid, ssid, . . . ) with the same (sid, ssid) was previously recorded. Otherwise, Pj stores
(sid, ssid, Pi, Pj , (t, u), c) and outputs (receipt, sid, ssid, Pi, Pj).

The decommitment phase:

• Upon receiving input (open, sid, ssid), Pi proceeds as follows: If a tuple
(sid, ssid, Pi, Pj , x, r) was previously recorded, then Pi sends (sid, ssid, x, r) to Pj . Other-
wise, Pi does nothing.

• Upon receiving input (sid, ssid, x, r), Pj proceeds as follows: Pj outputs
(open, sid, ssid, Pi, Pj , x) if a tuple (sid, ssid, Pi, Pj , (t, u), c) with the same
(sid, ssid, Pi, Pj) was previously recorded and it holds that x ∈ {0, 1}κ, r ∈ COIN,

and c = ABM.enc(t,u)(pk, ι(x); r). Otherwise, Pj does nothing.

Figure 1: Framework for consturing UC commitment from ABM encryption

Theorem 7.1 The proposed scheme in Fig.1 UC-securely realizes the FMCOM functionality in the FCRS-
hybrid model in the presence of adaptive adversaries in the non-erasure setting.

Due to the space limitation, we provide the proof in Appendix B
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8 Instantiations of ABME

8.1 ABME from DDH Assumption

We first consider Waters signature [31] in a cyclic group equipped with no bilinear map and the DDH
assumption holds on the group. Let g be a generator of a multiplicative group G of prime order q, where
we assume that G is efficiently samplable. We let gi = gxi (i = 1, 2) and hj = gyj (j = 0, 1, . . . , κ),
where x1, x2, y0, y1, . . . , yκ ∈ Z/qZ. We write t = (t1, . . . , tκ)∈ {0, 1}κ where ti ∈ {0, 1} (i ∈ [κ]). We let
y(t)= y0+

∑κ
i=1 tiyi (mod q) and define H(t)= h0

∏κ
i=1 h

ti , that is, H(t) = gy(t). We let S = {0, 1}κ×G2.
Then we define the set of Waters signature under pk = (g1, g2,H(·)) as L = {(t, u) | (t, u) ∈ {0, 1}κ×Lu(t)}
such that Lu(t)= {(uv, ut) | ∃v : uv = gv and ut = gx2

1 H(t)v}. We note that as mentioned above, the
Waters signature defined on a cyclic group on which the DDH assumption holds constructs a PPRF.
Then we construct a extractable sigma protocol on Lpk, which turns out to be an ABME.

• ABM.gen(1κ): It generates g, (x1, x2), and (y0, . . . , yκ) independently and uniformly from the above
domains. It then computes g1, g2, h0, . . . , hκ, and sets (S,L) as above. It outputs pk = (G, g, q, λ,
(S,L), g1, g2, h0, . . . , hκ). and sk = (pk, x1, x2, y0, y1, . . . , yκ).

• ABM.spl(sk, t; v): It picks up at random v← Z/qZ, and computes uv = gv and ut = gx2
1 (H(t))v. It

then outputs u = (uv, ut).

• ABM.enc((t,u)(pk, x; (z, s)): To encrypt message x ∈ {0, 1}λ, where λ = c′ log κ for some constant
c′ > 0, it picks up z, s← Z/qZ independently, and then computes A = gz1H(t)suxt , a = gzgx2 , and
b = gsuxv . It outputs c = (A, a, b) as ciphertext.

• ABM.dec(t,u)(sk, c): To decrypt c = (A, a, b), it searches x ∈ {0, 1}λ such that

ax1

Ab−y(t)
· utu

−y(t)
v

gx1
2

= gx1 .

It aborts if it cannot find such x in a-priori bounded time T= Ω(2λ).

• ABM.col
(t,u)
1 (sk, v): It picks up at random ω, η← Z/qZ and computes A = gω1H(t)η, a = gω, and

b = gη. It outputs c = (A, a, b) and ξ = (sk, t, u, v, ω, η).

• ABM.col2(ξ, x): To open c to x ∈ {0, 1}λ, it computes z = ω − xx2 mod q and s = η − xv mod q
and outputs (z, s).

Roughly speaking, ABM.enc runs the simulation algorithm of a cannonical sigma protocol on L with
message (challenge) x and ABM.col runs the real protocol of the sigma protocol on L with witness (sk, v).

In the trap-door mode when (t, u) ∈ L, we can consider a canonical sigma protocol so that the prover
knows (x2, v) such that ut = gx2

1 H(t)v, g2 = gx2 , and ur = gv. Then, the first message of the canonical
sigma protocol is (A, a, b), where A = gω1H(t)η, a = gω, and b = gη over randomly chosen ω, η ∈ Z/qZ.
For any challenge x ∈ {0, 1}κ, the answer can be computed by z = ω − xx2 and s = η − xv. It is verified
as A = gz1H(t)suxt , a = gzgx2 , and b = gsuxv .

In the decryption mode when (t, u) ̸∈ L, the first message (A, a, b) from the simulator for the above
canonical sigma protocol commits to x in the perfect binding manner. We now define ω, η, r as a = gω,

b = gη, and ur = gr. Then, ω′ and x′2 are uniquely defined as A = gω
′

1 H(t)η and ut = g
x′
2

1 H(t)r. Since
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(t, u) ̸∈ L, x′2 ̸= x2. By special soundness, there is only one x, such that the relation ω − xx2 = ω′ − xx′2
holds. Therefore, x = (ω − ω′)(x2 − x′2)

−1. Notice that Ab−y(t) = gω
′

1 and utur
−y(t) = g

x′
2

1 . Hence,

ax1

Ab−y(t)
· utu

−y(t)
v

gx1
2

= g

ω−ω′
x2−x′2
1 .

Therefore, the decryptor can find short secret x ∈ {0, 1}λ from gx1 (= g

ω−ω′
x2−x′2
1 ) in Ω(2λ) steps.

Since (ABM.gen,ABM.spl) composes a PPRF (under the DDH assumption), the proposed scheme is
an instantiation of ABMEs.

Theorem 8.1 The scheme as above is an ABME if the DDH assumption holds true.

In the above construction, the message length is restricted to c′ log κ for some constant c′. To encrypt
a long message x ∈ {0, 1}λ, where λ = O(κ), one can simply divide it into ρ messages x = (x1, . . . , xρ),
where each xi ∈ {0, 1}λ0 with λ = ρ · λ0, and send parallelized ciphertexts as a ciphertext of x, i.e.,

c = ABM.enc(t,u)(pk, x1; (z1, s1)) ∥ · · · ∥ ABM.enc(t,u)(pk, xρ; (zρ, sρ)).

Here each inner randomness, (zi, si) are chosen uniformly and independently. This instantiation is also an
all-but-many encryption. From a practitioners’ point of view, this paralleized instantiation is a promising
candidate of UC commitment. Only the disadvantage of this scheme is that the decryption algorithm
is slow if λ0 is large. However, when it is used as UC commitment, the decryption algorithm is not
used among users. (Nobody knows the decryption key in the real world!) Only the simulator in the
ideal world needs to decrypt ciphertexts. Therefore, we can expect relatively large λ0. In fact, we can
apply the baby-step giant-step to solving the discrete logarithm problem with short exponents, which is
run in time Ω(

√
2λ0). So, we set λ0 = 80, where the task of solving the discrete log of 80-bit secret is

almost to compute 240 modular exponentiations, which is at most one-day task using a standard personal
computer. We compare our DDH-based scheme with other promising candidates in Table 1, in which we
allow simulator S to solve a discrete logarithm problem over G with 80-bit secret. Then our DDH-based
scheme is 3 times faster than arguably the most efficient UC commitment scheme [25] (which is interactive
and not non-erasure) when κ = 160 (80 bit security) and when κ = 320 (160 bit security).

8.2 ABME from Damg̊ard-Jurik with expantion factor O(1)

We propose an efficient ABM encryption scheme based on Damg̊ard-Jurik public-key encryption scheme [11]
(a generization of Paillier public-key encryption scheme [29]).

Let Π = (K,E,D) be Damg̊ard-Jurik (DJ) public-key encryption scheme, in which (N, v) is a public-
key and (P,Q) is a secret-key where let N = PQ be a composit number of large odd primes, P and Q,
and v ≥ 1 be a positive integer (where when v = 1 it is equivalent to Paillier). Let g = (1 + N). To
encrypt message x ∈ ZNv , one computes Epk(x;R)= gxRNv

(mod Nv+1) where R← ZNv+1 . DJ scheme
has the enhanced additively homomorphic property as defined in Appendix C. Namely, for x1, x2 ∈ ZNv

and R1, R2 ∈ ZNv+1 , one can compute R such that Epk(x1+x2;R) = Epk(x1;R1) ·Epk(x2;R2). Acutually
it can be done by computing R = gγR1R2 (mod Nv+1) where γ, 0 ≤ γ < N , is an integer such that
x1 + x2 = ((x1 + x2) mod Nv) + γNv.

Let g1 = E(x1;R1), g2 = E(x2;R2), and h⃗ = (h0, . . . , hκ) where hj ∈ ZNv+1 with j = 0, 1, . . . , κ. Let
us define H(t)= h0

∏κ
i=1 h

ti (mod Nv+1). Let us set S = {0, 1}κ × (ZNv+1)2 and L = {(t, (ur, ut)) | t ∈
{0, 1}κ and (ur, ut) ∈ Lu(t)}, where Lu(t)= {(ur, ut) | ∃(r,Rr, Rt) : ur = Epk(r;Rr) and ut = Epk((x1 ·
x2);Rt) · (H(t))r}. We now provide the description of our ABME construction:
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• ABM.gen(1κ): It gets (pk, sk) generated by the key generator of the DJ encryption scheme on
1κ, where pk = (N, v) and sk = (pk, P,Q). It generates x1, x2 ← ZNv to choose g1 ← Epk(x1)

and g2 ← Epk(x2). It chooses h⃗ from the above domains. It sets (S,L) as above. It outputs

PK= (N, v, (S,L), g1, g2, h⃗) and SK= (PK, (x1, x2)).

• ABM.spl(SK, t; (r,Rr)): It chooses random r← ZNs , and computes ur = Epk(r;Rr) and ut =
Epk((x1 · x2);Rt)(H(t))r. It then outputs u = (ur, ut).

• ABM.enc(t,(ur,ut))(x; (z, s, RA, Ra, Rb)): To encrypt message x ∈ ZNv , it chooses z, s← ZNv , RA, Ra, Rb

← ZNv+1 . It then computes A = gz1H(t)suxtR
Nv

A (mod Nv+1), a = E(z;Ra) · gx2 , and b =
E(s;Rb) · uxr . It outputs c = (A, a, b) as the ciphertext of x on (t, (ur, ut)).

• ABM.dec(t,(ur,ut))(sk, c): To decrypt c = (A, a, b), it computes ω = Dsk(a), η = Dsk(b), r =

Dsk(ur), ω
′ = Dsk(A·H(t)−η)

x1
mod Nv, and x′2 =

Dsk(ut·(H(t))−r)
x1

mod Nv. It outputs x= (ω−ω′)(x2−
x′2)

−1 mod Nv.

• ABM.col
(t,(ur,ut))
1 (sk, (r,Rr)): It picks up at random ω, η ← ZNv and R′

A, R
′
a, R

′
b ← ZNv+1 . It then

computes A = gω1H(t)η(R′
A)

Nv
, a = gω(R′

a)
Nv

, and b = gη(R′
b)

Nv
. It outputs c = (A, a, b) and

ξ = (sk, t, (ur, ut), r, ω, η,R
′
A, R

′
a, R

′
b).

• ABM.col2(ξ, x): To open c to x, it computes z = ω − xx2 mod Nv and s = η − xr mod Nv. Then,
it computes α = (ω − xx2 − z)/Nv and β = (η − xr − s)/Nv. It computes RA, Ra, and Rb as
R′

AR
−x
t gα1H(t)β, R′

aR
−x
2 gα, and R′

bR
−x
r gβ, respectively. It outputs (z, s,RA, Ra, Rb), which satisfy

A = gz1H(t)suxtR
Nv

A (mod Nv+1), a = E(z;Ra) · gx2 , and b = E(s;Rb) · uxr .

ABM.col runs the real sigma protocol on L with witness (sk, (r,Rr)). By construction, the trap-door
mode works correctly. On the contrary, ABM.enc runs the simulation algortithm of a canonical sigma
protocol on language L with message (challenge) x. It is known that Z×

Nv+1 is isomorphic to ZNv × Z×
N

(the product of a cyclic group of order Nv and a group of order ϕ(N)), and, for any v < P,Q, element
g = (1 + N), where N = PQ, has order Nv in Z×

Nv+1 [11]. By this, Dsk(α) ̸= ε for every α ∈ Z×
Nv+1 ,

meaning that every ur, ut in Z×
Nv+1 can be decrypted to messages in ZNv . Therefore, the decryption mode

works correctly.
We assume DJ scheme is IND-CPA 10 and the non-multiplication assumption (defined in Appendix C)

holds true. In addition, the image of Epk is Z×
Nv+1 and hence efficiently samplable. Therefore, (ABM.gen,

ABM.spl) is a PPRF (See Theorem C.2). We have the following theorem.

Theorem 8.2 The scheme constructed as above is an instantiation of ABMEs if Damg̊ard-Jurik public-
key encryption scheme is IND-CPA and the non-multiplication assumption defined in Appendix C holds.

The message size is v|N | and the ciphertext size is (v+1)|N |. The expansion factor is then O((1+1/v))
= O(1) for constant v ≥ 1 in the sense of both communication and computation. The public-key size
(i.e., the common reference string size) is O(κ2).
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A UC framework and Ideal Commitment Functionality

The UC framework defines a probabilistic poly-time (PPT) environment machine Z that oversees the
execution of a protocol in one of two worlds. In both worlds, there are an adversary and honest parties
(some of whom may be corrupted by the adversary). In the ideal world, there additionally exists a trusted
party (characterized by ideal functionality F) that carries out the computation of the protocol, instead of
honest parties. In the real world, the real protocol is run among the parties. The environment adaptively
chooses the inputs for the honest parties, interacts with the adversary throughout the computation, and
receives the honest parties’ outputs. Security is formulated by requiring the existence of an ideal-world
adversary (simulator) S so that no environment Z can distinguish the real world where it runs with the
real adversary A from the ideal world where it runs with the ideal-model simulator S.

In slightly more detail, the task of honest parties in the ideal world is only to convey inputs from
the environment to the ideal functionality and vice verca (the honest parties communicate only with
the environment and ideal functionalities). The environment may order the adversary to corrupt any
honest party in any timing during the execution of the protocol (addaptive corruption), and it may
receive the inner state of the honest party from the adversary. Therefore, the ideal-world simulator must
simulate the inner state of the honest party as if it comes from the real world, because the honest parties
in the ideal world do nothing except storing inputs to them). The inner state of the honest party includes
randomness it has used. We insist that honest parties may not erase any of its state (non-erasure
setting).

We denote by IdealF ,SA,Z(κ, z) the output of the environment Z with input z after an ideal execution
with the ideal adversary (simulator) S and functionality F , with security parameter κ. We will only
consider black-box simulators S, and so we denote the simulator by SA that means that it works with
the adversary A attacking the real protocol. Furthermore, we denote by Realπ,A,Z(κ, z) the output of
environment Z with input z after a real execution of the protocol π with adversary A, with security
parameter κ.

Our protocols are executed in the common reference string (CRS). model. This means that the
protocol π is run in a hybrid model where the parties have access to an ideal functionality Fcrs that
chooses a CRS according to the prescribed distribution and hands it to any party that requests it. We
denote an execution of π in such a model by HybridFcrs

π,A,Z(κ, z). Informally, a protocol π UC-realizes
a functionality F in the Fcrs hybrid model if there exists a PPT simulator S such that for every
non-uniform PPT environment Z and every PPT adversary A, it holds that

{IdealF ,SA,Z(κ, z)}κ∈N;z∈{0,1}∗
c≈{HybridFcrs

π,A,Z(κ, z)}κ∈N;z∈{0,1}∗ .

The importance of the universal composability framework is that it satisfies a composition theorem
that states that any protocol that is universally composable is secure when it runs concurrently with
many other arbitrary protocols. For more details, see [6].

We consider UC commitment schemes that can be used repeatedly under a single common reference
string (re-usable common reference string). The multi-commitment ideal functionality FMCOM from
[8] is the ideal functionality of such commitments, which is given in Figure 2.

As in many previous works, the UC framework we use assumes authenticated communication. If it is
not assumed, our protocols is executed in Fcrs and Fauth hybrid models. For simplicity and conciseness,
we simply assume communictation between parties are authenticated.
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Functionality FMCOM

FMCOM proceeds as follows, running with parties, P1, . . . , Pn, and an adversary S:

• Commit phase: Upon receiving input (commit, sid, ssid, Pi, Pj , x) from
Pi, proceed as follows: If a tuple (commit, sid, ssid, . . . ) with the same
(sid, ssid) was previously recorded, does nothing. Otherwise, record the tuple
(sid, ssid, Pi, Pj , x) and send (receipt, sid, ssid, Pi, Pj) to Pj and S.

• Reveal phase: Upon receiving input (open, sid, ssid) from Pi, proceed as
follows: If a tuple (sid, ssid, Pi, Pj , x) was previously recorded, then send
(reveal, sid, ssid, Pi, Pj , x) to Pj and S. Otherwise, does nothing.

Figure 2: The ideal multi-commitment functionality

B Proof of Theorem 7.1

For simplicity, we assume {0, 1}κ ⊂ MSP, without loss of generality, which enables us to remove the
injective map ι: {0, 1}κ → MSP from the scheme. In addition, we define L := Lpk for simplicity. The
description of the simulator’s task is described as follows:

The ideal-world adversary (simulator) S:

• Initialization step: S chooses (pk, sk)← ABM.gen(1κ) and sets CRS to be pk (along with (U, S)).

• Simulating ideal functionality FCRS: Since S simulates FCRS, every request (even from a honest
party) to achieve a common reference string comes to S, it returns the above-chosen CRS to the
requested party.

• Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input tape (as if coming from Z) and vice versa.

• Simulating the commit phase when Pi is honest: Upon receiving from FMCOM the receipt
message (receipt, sid, ssid, Pi, Pj), S generates u = ABM.spl(sk, t; v) so that (t, u) ∈ L, where

t = (sid, ssid, Pi, Pj), and computes (c, ξ) ← ABM.col
(t,u)
1 (sk, v), namely, c is a fake ciphertext

on (t, u). S sends (sid, ssid, (t, u), c) to adversary A, as it expects to receive from Pi. S stores
(sid, ssid, Pi, Pj , t, c, ξ). If Pj is uncorrupted and adversary A sends (sid, ssid, (t, u), c) to S, as it
expects to send to Pj , S runs the honest strategy of Pj .

• Simulating the decommit phase when Pi is honest: Upon receiving from FMCOM the message
(open, sid, ssid, Pi, Pj , x), S computes r = ABM.col2(ξ, x) and sends (sid, ssid, x, r) to adversary A.
If Pj is uncorrupted and adversary A sends (sid, ssid, x, r) to S, as it expects to send to Pj , S runs
the honest strategy of Pj .

• Simulating adaptive corruption of Pi after the commit phase but before the decommit
phase: When Pi is corrupted, S immediately read Pi’s stored value (sid, ssid, Pi, Pj , x), which
value previously came from Z and was sent to FMCOM, and then runs exactly the same as it does
after it has received (open, sid, ssid, Pi, Pj , x) in the decommit phase for honest Pi.

• Simulating the commit phase when the committer Pi is corrupted and the receiver Pj

is honest: Upon receiving (sid, ssid, (t, u), c) from A, S decrypts x = ABM.dec(t,u)(sk, c). If the
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decryption is invalid, then S sends a dummy commitment (commit, sid, ssid, Pi, Pj , ε) to FMCOM.
Otherwise, S sends (commit, sid, ssid, Pi, Pj , x) to FMCOM.

• Simulating the decommit stage when the committer Pi is corrupted and the receiver
Pj is honest: S runs the honest strategy of Pj with A controlling Pi.

• Simulating adaptive corruption of Pj after the commit phase but before the decommit
phase: When Pj has been corrupted, S simply sends (sid, ssid, (t, u), c) to adversary A as if it
comes from Pj .

We need to prove that the simulator described above satisfies that for every Z and every A,

{IdealFMCOM,SA,Z(κ, z)}κ∈N;z∈{0,1}∗
c≈{HybridFcrs

π,A,Z(κ, z)}κ∈N;z∈{0,1}∗ .

We now consider a sequence of the following games on which the probability spaces are identical, but
we change the rules of games step by step.

Hybrid Game 1: In this game, the ideal commitment functionality, denoted F1
MCOM, and the

simulator, denoted S1, work exactly in the same way as FMCOM and S do respectively, except for the
case that Pi is honest: In the commitment phase in Hybrid Game 1, F1

MCOM gives simulator S1 the
committed value x by a honest party Pi together with (receipt, sid, ssid, Pi, Pj). S1 then sets up (t, u) ∈ L

in the same way as S does (using sk), but S1 computes c (without using sk) as c = ABM.enc(t,u)(pk, x; r),
by picking up r ← COIN. When simulating the decommit phase or simulating adaptive corruption of Pi

before the decommit phase, S1 simply sends (sid, ssid, x, r) to adversary A.
Since (t, u) ∈ L, ABM.enc is in the trap-door mode, which means that for every v such that u =

ABM.spl(sk, t; v) and every x ∈ MSP, the first output of ABM.col
(t,u)
1 (sk, v) and ABM.enc(t,u)(pk, x) are

statistically indistinguishable even if the consistent randomness is revealed. Therefore,

{IdealFMCOM,SA,Z(κ, z)}κ∈N;z∈{0,1}∗
s≈{Hybrid1F1

MCOM,SA
1 ,Z(κ, z)}κ∈N;z∈{0,1}∗ .

Hybrid Game 2: In this game, the ideal commitment functionality F2
MCOM and the simulator S2

work exactly in the same way as the counterparts do in Hybrid Game 1, except for the case that Pi is
corrupted and Pj is honest in the commitment phase: In the commitment phase in Hybrid Game 2,
when S2 receives ((t, u), c) from Pi controlled by adversary A, where t = (sid, ssid, Pi, Pj) and u ∈ U ,
then S2 sends a dummy commitment (commit, sid, ssid, Pi, Pj , ε) to F2

MCOM. In the decommit phase, when

S2 receives (sid, ssid, x′, r) from Pi controlled by adversary A, S2 ignores if c ̸= ABM.enc(t,u)(pk, x′; r);
otherwise, it sends (open, sid, ssid, x′) to F2

MCOM. Then, F2
MCOM replaces the stored value ε with value x′

and sends (reveal, sid, ssid, Pi, Pj , x
′) to Pj and S2.

Let us define BDI as the event that the simmulator receives a fake ciphertext c on (t, u) from Pi

controlled by adversary A in Hybrid Game I, where I = 1, 2. Remember that a ciphertext c is called
fake if c is a valid ciphertext (i,e, there exist a pair of a message and randomness consistent with c) and
(t, u) ∈ L.

The rules of the hybrid games, 1 and 2, may change only when BD1 and BD2 occur in each game,
which means that ¬BD1 = ¬BD2 and thus, BD1 = BD2. So, we use the same notation BD to denote the
event such that the simulator receives a fake ciphertext from the adversary in the hybrid games, 1 and
2, namely, BD := BD1 = BD2.

By a simple evaluation such that Pr[A] − Pr[C] ≤ Pr[B] if Pr[A ∧ ¬B] = Pr[C ∧ ¬B], we have for
fixed κ and z,

Dist
(
Hybrid1F1

MCOM,SA
1 ,Z(κ, z),Hybrid

2
F2

MCOM,SA
2 ,Z(κ, z)

)
≤ Pr[BD],
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where the output of Z is (assumed to be) a bit.
We now show that Pr[BD] is negligible in κ.

Lemma B.1 Event BD occurs in Hybrid game 2 at most with probability qAϵ
uf , where qA denotes the

total number of A sending the commitments to honest parties and ϵuf denotes the maximum advantage
of an adversary breaking unforgeability of PPRF (ABM.gen,ABM.spl).

Proof. We construct the following algorithm B0 that takes pk from ABM.gen and simulates the roles

of S2 and F2
MCOM perfectly, interacting Z and A, by having access to ABM.spl(sk, ·) as follows: In the

case when Pi is honest: In the commitment phase when Z sends (commit.sid, ssid, Pi, Pj , x) to F2
MCOM

(via honest Pi), B0 submits t = (sid, ssid, Pi, Pj) to ABM.spl(sk, ·) to obtain u such that (t, u) ∈ L. Then

B0 computes fake ciphertext c ← ABM.enc(t,u)(pk, x) as commitment in the same way as S2 (= S1)
does. We note that c can be computed without sk as long as (t, u) is given. In the case where Pi

is corrupted and Pj is honest: In the commitment phase when corruptted Pi controlled by A sends
a commitment ((t, u), c) to S2 as it expects to send to honest Pj , B0 simply plays the roles of S2 and
F2
MCOM. Later, in the opening phase when corruptted Pi controlled by A sends (sid, ssid, x′, r) to S2 as

it expects to send to honest Pj , B0 simply plays the role of F2
MCOM.

We note that S2 uses sk only when it computes u← ABM.spl(sk, t). in the commitment phase when
Pi is honest. Since B0 may have access to oracle ABM.spl(sk, ·), B0 play the roles of S2 and F2

MCOM

identically, interacting with Z and A.
We now construct an algorithm Bχ, where χ ∈ [qA], that is the same as B0 except that it aborts and

outputs (t, u) when A generates χ-th (in total) commitment ((t, u), c) to a honest party. Here, qA denotes
the total number of A sending the commitments to honest parties. We note that

Pr[BD] ≤
qA∑
i=1

Pr[(t, u)← Bi(pk)
ABM.spl(sk,·),Z,A : (t, u) ∈ L]

The probability of Bi outputting (t, u) ∈ L is bounded by ϵuf . Therefore, we have Pr[BD] ≤ qAϵ
uf . 2

By this, we have

{Hybrid1F1
MCOM,SA

1 ,Z(κ, z)}κ∈N;z∈{0,1}∗
c
≈{Hybrid2F2

MCOM,SA
2 ,Z(κ, z)}κ∈N;z∈{0,1}∗ .

Hybrid Game 3: In this game, F3
MCOM works exactly in the same way as F2

MCOM. S3 works exactly
in the same way as S2 except for the case that Pi is honest in the commitment phase: In the
commitment phase when receiving (receipt, sid, ssid, Pi, Pj , x) from F3

MCOM, S3 picks up u ← U at
random, instead of generating u← ABM.spl(sk, t) so that (t, u) ∈ L, where t = (sid, ssid, Pi, Pj). It then

computes c = ABM.enc(t,u)(pk, x; r). Note that x is given from the ideal commitment functionality. We
note that in Hybrid Game 2, S2 makes use of sk only when it computes u← ABM.spl(sk, t), whereas in
Hybrid Game 3, S3 does not use sk any more. With an overwhelming probability, (t, u) ∈ S\L.

The computational difference of the views of environment Z between these two games is bounded by
pseudo-randomness of ABM.spl, because we can construct a distinguisher D, using Z and A as oracle
with having access to either of ABM.spl(sk, ·) or U(·), where oracle U(t) returns random u ∈ U on query
t, but if ABM.spl(sk, ·) is deterministic, then U(·) returns the same u on t if it was previously queried.
When D have access to ABM.spl(sk, ·), it simulates Hybrid Game 2; otherwise, it simulates Hybrid Game
3. Therfore, we have:

{Hybrid2F2
MCOM,SA

2 ,Z(κ, z)}κ∈N;z∈{0,1}∗
c
≈{Hybrid3F3

MCOM,SA
3 ,Z(κ, z)}κ∈N;z∈{0,1}∗ .

Game HybridFcrs
π,A,Z : The common reference string functionality FCRS parameterized by ABM.gen is

given in Figure 3. The ideal CRS functionality FCRS is replaced with by S3’s task simulating FCRS, which
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Functionality FCRS

FCRS parameterized by ABM.gen proceeds as follows:

• FCRS runs (pk, sk) ← ABM.gen(1κ); and sets CRS to be pk. Upon receiv-
ing message (common-reference-string, sid) with any sid, FCRS returns the
same CRS to the activating party.

Figure 3: The common reference string functionality

is identical to the task of the ideal functionality. Other tasks made by S3 is replaced with those by the
corresponding parties in the real world in the FCRS model. It is obvious from construction that both
corresponding tasks between two worlds are identical. We further observe that F3

MCOM simply convey
their input from a party to a party. Therefore, we can remove the ideal commitment functionality. Hence,
we have

{Hybrid3F3
MCOM,SA

3 ,Z(κ, z)}κ∈N;z∈{0,1}∗ ≡ {Hybrid
Fcrs
π,A,Z(κ, z)}κ∈N;z∈{0,1}∗ .

Therefore; in the end, we have

{IdealFMCOM,SA,Z(κ, z)}κ∈N;z∈{0,1}∗
c≈ {HybridFcrs

π,A,Z(κ, z)}κ∈N;z∈{0,1}∗ .

C PPRFs from Additive Hommorphic Encryption

Very recently in [22], Hofheinz has introduced a new assumption called the non-multiplication assumption
for Damg̊ard-Jurik public key encryption [11]. We propose a generalization of this assumption applied to
any additive homomorphic public key encryption scheme.

Let Π = (K,E,D) be a public-key encryption scheme in the standard sense. For given (pk, sk)
generated by K(1κ), let X be the message space and R be the coin space, with respects to pk. Let Y
be the image of Epk, i.e., Y = Epk(X;R). Here we assume that X is a commutative finite ring equipped
with an additive operation + and an multiplication operation ×. We also assume Y is a finite Abelian
group with ⋆ operation.

We say that Π is an additively homomorphic public key encryption scheme if for every pk generated
by K, every x1, x2 ∈ X, and every r1, r2 ∈ R, there exists r ∈ R such that

Epk(x1; r1) ⋆Epk(x2; r2) = Epk(x1 + x2; r).

In particular, we say that that Π is enhanced additively homomorphic if Π is additively homomorphic
and r ∈ R must be efficiently computable, given pk, and (x1, x2, r1, r2).

The mapping above is homomorphic in the mathematical sense – Namely, Epk(x1)⋆ · · ·⋆Epk(xn) ∈ Y

for every n ∈ Z and every x1, . . . , xn ∈ X. We write cz ∈ Y , for c ∈ Y and z ∈ Z, to denote

z︷ ︸︸ ︷
c ⋆ · · · ⋆ c.

What we want to assume is that Π is additively homomorphic, but not equipped with any efficient
multiplicative operation ⋄ such that Epk(x1)⋄Epk(x2) = Epk(x1×x2) for any given Epk(x1) and Epk(x2).
Formally, we define this property as follows:
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Assumption C.1 (Non-Mult Assumption) Let Π be an additively hommorphic public key encryption
scheme along with a ring (X,+,×) as the message space w.r.t. pk and a group (Y, ⋆) as the image of Epk.
We say that the non-multiplication assumption holds on Π if for every non-uniform PPT algorithm A,
Advmult

A (κ) = negl(κ), where Advmult
A (κ) ,

Pr[(pk, sk)← K(1κ); c1, c2 ← Y ; c∗ ← A(pk, c1, c2) : Dsk(c
∗) = Dsk(c1) ·Dsk(c2)].

We now construct a PPRF (Genspl, Spl). Let Π = (K,E,D) be an enhanced additively homomorphic
public-key encryption scheme. Let X, R, and Y be the same as mentioned above. In addition, let
group (X,+) be cyclic, i.e., (X,+) ≃ Z/nZ for some integer n. Let x1, x2 ∈ X. Let g1 ∈ Epk(x1) and
g2 ∈ Epk(x2). Let h0, h1, . . . , hκ ∈ Y . Let us define H(t)= h0 ⋆

∏κ
i=1 h

t[i] ∈ Y , where t = (t[1], . . . , t[κ]) ∈
{0, 1}κ is the bit representation of t. Let us define Lu(t) such that

Lu(t) = {(ur, ut) ∈ Y 2 | r = Dsk(ur) and x1 × x2 = Dsk(ut ⋆ H(t)−r)}.

We let S = {0, 1}κ × Y 2 and L = {(t, (ur, ut)) | t ∈ {0, 1}κ and (ur, ut) ∈ Lu(t)}.
A PPRF (Genspl, Spl) is constructed as follows:

• Gen(1κ): It runs K(1κ) and obtain (pk, sk). It generates x1, x2 ← X and h0, h1, . . . , hκ ← Y
uniformly. Set d = x1 × x2 ∈ X. It generates g1 ← Epk(x1) and g2 ← Epk(x2). It outputs
PK= (pk, g1, g2, h0, . . . , hκ) and SK = (PK, d).

• Spl(SK, t; r): It picks up r ← X, generates ur ← Epk(r) and ut ← Epk(d)⋆H(t)r, and then outputs
u = (ur, ut).

Theorem C.2 Let Π be an enhanced additively homomorphic public-key encryption scheme mentioned
above. Suppose that Π is IND-CPA and the non-multiplication assumption holds on Π. Then, the above
(Genspl, Spl) is a PPRF.

Proof. The proof of pseudo randomness is almost straight-forward: Suppose that pk is generated

by K(1κ). Let S be a simulator such that it breaks IND-CPA of Π using A, where A is an adversary
to output 1 if it determined that it has had access to a PPRF. We run S on pk. It picks up at random
x1, x2, x ← X, h0, h1, . . . , hκ ← Y , and sets g1 ← Epk(x1) and g2 ← Epk(x2). It sends (m0,m1) to the
challenger, where m0 = x, and m1 = x1 × x2 ∈ X. It then receives Epk(mb), where b is a random bit

chosen by the challenger. It then runs adversary A on PK = (pk, g1, g2, h⃗), where h⃗ = (h0, h1, . . . , hκ).
For any query t, the simulator picks up random r ← X and returns (ur, ut) such that ur = gr and
ut = Epk(mb) ⋆ (H(t))r. ut = Epk(x1 × x2) ⋆ (H(t))r. Finally, the simulator outputs the same bit that A
outputs.

Note that when b = 0, (ur, ut) is distributed uniformly over Y 2. On the other hand, when b = 1.

Since S outputs the same bit that A outputs, Advind-cpaΠ S(κ) = Pr[S = 1 | b = 1] − Pr[S = 1 | b = 0]

= Pr[A = 1 | b = 1]−Pr[A = 1 | b = 0] = AdvpprfA(κ). Therefore, AdvpprfA(κ) = Advind-cpaΠ S(κ) = negl(κ).
The proof of unforgeability on this scheme is substantially similar to that in [4, 31, 2]. We provide a

sketch of the proof.
Let G0 be the original unforgeability game, in which PK = (pk, g1, g2, h⃗) ← Gen(1κ); A takes PK,

queries, m1, . . . ,mqs , to Spl(sk, ·), and tries to outputm0 along with u ∈ Lu(m0) andm0 ̸∈ {m1, . . . ,mqs}.
Let us denote by ε0 the advantage of A in G0.

In game G1, we modify the choice of h⃗ as follows: Recall now that (X,+,×) is a finite commutative
ring such that (X,+) ≃ Z/nZ for some integer n. Let Gen1 be the generator in game G1. Let θ = O( qsε0 ),
where qs denotes the maximum number of queries A submits to Spl. Gen1 picks up (pk, g1, g2) as Gen does.
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It then picks up a0, a1, . . . , aκ ← Z/nZ. It picks up y1, . . . , yκ ← [0, · · · , (θ−1)] and y0 ∈ [0, . . . , κ(θ−1)].
It finally outputs PK = (pk, g1, g2, h⃗), by setting hi = gaigyi2 for i ∈ [0, · · · , κ]. Since (X,+) ≃ Z/nZ
and Epk is additively homomorphic, Y ⊂ Z/nZ. Hence, the distribution of h⃗ is identical to that in the
previous game, and this change is conceptual. Therefore, the advantage of A in G1, ε, is equal to ε0.

For t ∈ {0, 1}κ, let a(t) = a0 +
∑

t[i] · ai (mod n) and y(t) = y0 +
∑

t[i] · yi ∈ Z. Then we have H(t)

= ga(t)g
y(t)
2 .

Let γy⃗ : ({0, 1}κ)qs+1 → {0, 1} be a predicate such that γy⃗ (⃗t) = 1 if and only if y(t0) = 0 and
∧qsi=1y(ti) ̸= 0, where t⃗ = (t0, . . . , tqs) ∈ ({0, 1}κ)qs+1. Let Q(⃗t) be the event that at the end of game G1,
adversary A queries, t1, . . . , tqs and outputs t0 as the target message, on which A tries to generate the
output of Spl(sk, t0).

We now borrow the following lemmas due to [2].

Lemma C.3 [2]. Let Q(⃗t) be the event in game G1 mentioned above. Then,

Pr[Q(⃗t) ∧ (γy⃗ (⃗t) = 1)] = Pr[Q(⃗t)] Pr[γy⃗ (⃗t) = 1].

Here the probability is taken over A, Gen1, and Spl.

Lemma C.4 [2]. Let n, θ, κ be positive integers, such that κθ < n. Let y0, y1, . . . , yκ be elements in the
domains mentioned above and let y(t) = y0 +

∑
ti · yi ∈ Z. Then, for every t0, . . . , tκ ∈ {0, 1}κ, we have

1

κ(θ − 1) + 1

(
1− qs

θ

)
≤ Pr

y⃗
[γy⃗ (⃗t) = 1] ≤ 1

κ(θ − 1) + 1
,

where the probability is taken over random variable y⃗ = (y0, y1, . . . , yκ) uniformly distributed over the
specified domain mentioned above.

Now, in game G2 we modify the challenger as follows: When the event that γy⃗ (⃗t) ̸= 1 occurs in game
G2, the challenger aborts the game. Let ε2 be the advantage of A in game G2. It immediately follows
from the above lemmas that ε1 ·mint⃗{Pry⃗[γy⃗ (⃗t) = 1]} ≤ ε2.

In game G3, the challenger is given (pk, g1, g2) where pk ← K(1κ) and g1, g2 ← Y . It picks up a⃗ and

y⃗ as in game G2. When A queries t, it picks up r′ ← X (≃ Z/nZ) and selects ur ← g
− 1

y(t)

1 ⋆Epk(r
′) and

ut ← g
−a(t)

y(t)

1 ⋆Epk(0) ⋆ (H(t))r
′
.

Let r = Dsk(ur)= − x1
y(t) + r′. Then, it holds that for y(t) ̸= 0, there is v ∈ R such that ut =

Epk(x1 × x2; v) ⋆ (H(t))r, because the decryption of the righthand side under sk is

x1x2 + (a(t) + y(t)x2)r = x1x2 + (a(t) + y(t)x2) ·
(
− x1
y(t)

+ r′
)
= −a(t)

y(t)
· x1 + (a(t) + y(t)x2) · r′.

Therefore, the righthand side is g
−a(t)

y(t)

1 ⋆Epk(0; v)⋆(H(t))r
′
for some v ∈ R. This is substantially equivalent

to the technique of all-but-one simulation technique in [4]. As in game G2, the simulator always abort if
γy⃗ (⃗t) = 1 holds. Hence, the advantage of A in this game, denoted ε3, is equivalent to ε2.

In the final game, we construct a simulator S that breaks the non-multiplication assumption. Let
(pk, sk) ← K(1κ) and c1, c2 ← Y . S takes (pk, c1, c2) as input. Then, it sets g1 := c1 and g2 := c2 and
runs the challenger and adversary A in game G3 on (pk, g1, g2).

We note that when A outputs (ur(t0), ut(t0) ∈ Lu(t0) in this game, it holds that Dsk(ut(t0)) =
x1 × x2+r·(a(t0)+y(t0)x2)·r where r = Dsk(ur(t0)) ∈ Z/nZ and r·(a(t0)+y(t0)x2) denotes

∑r
i=1(a(t0)+

y(t0)x2). Since y(t0) = 0, S now have

ut(t0) = Epk(x1 × x2) ⋆ (ur)
a(t0).
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Finally, S outputs Epk(x1 × x2) by computing ut(t0)

u
a(t0)
r

. By construction, it is obvious that the advantage

of S is equivalent to ε3.

D Fully-Equipped UC Commitment from Trap-Door Permutations

If we can construct an ABME from trap-door permutation (family), it is done, but we have no idea how
to construct it. We instead construct a weak ABME from the same starting point. The only difference
of weak ABME from standard ABME is that when (t, u) ∈ L, the distibution of ABM.col on (t, u) is not
statistically but computationally indistinguishable from that of ABM.enc. More precisely,{(

ABM.col
(t,u)
1 (sk, v)[1], ABM.col2

(
ABM.col

(t,u)
1 (sk, v)[2], x

))}
c≈

{(
ABM.enc(t,u)(pk, x; r), r

)}
for x ∈ MSP, (t, u) ∈ L, and witness (sk, v) of (t, u) ∈ L.

We construct a weak ABM encryption scheme from trap-door permutations as follows.
Let F = {(f, f−1) | f : {0, 1}κ → {0, 1}κ}κ∈N be a trap-door permutation family and let b: {0, 1}κ →

{0, 1} be a hard-core predicate for a trap-door permutation f . Let Π = (K,E,D) be the Blum-Goldwasser
cryptosystem [3] that is a semantic secure public key encryption scheme, derived from the following
encryption algorithm Ef (x; r) = f (k+1)(r) || (x1 ⊕ b(r)) || . . . || (xk ⊕ b(f (k)(r))), where (x1, . . . , xκ), xi ∈
{0, 1}, denotes the bit representation of x. r ∈ {0, 1}κ denotes inner randomness of this encryption
and f (k) denotes k times iteration of f . We note that this public key encryption scheme is oblivious

samplable with respects to pseudo-ciphertext space {0, 1}κ+k [7], namely, {Ef (x)}
c≈ {Uκ+k} for every

message x ∈ {0, 1}κ, where Uκ+k denotes a uniform distribution over {0, 1}κ+k. Let us denote by
F : {0, 1}κ × {0, 1}κ → {0, 1}κ a pseudo-random function (constructed from f in the standard way).

• ABM.gen(1κ): It draws two trap-door permutations, (f, f−1) and (f ′, f ′−1), over {0, 1}κ uniformly
and independently from F . It then consturct the BG encryption scheme Π = (K,E,D) with
public key f and secret key f−1. It also consturct the BG encryption scheme Π′ = (K′,E′,D′)
with (f ′, f ′−1) and pseudo random function F from f ′. It then picks up random s ← {0, 1}κ and
encrypt it to e′ = E′(s; r). It outputs pk= (F,Π,Π′, e′) and sk = (pk, f−1, (s, r)). We define
S = {0, 1}κ × {0, 1}κ.

• ABM.spl(sk, t): It takes tag t ∈ {0, 1}κ and outputs u = Fs(t). We define

L := Lpk = {(t, u) | ∃(s, r) s.t. e′ = E′(s; r) andu = Fs(t)}.

• ABM.enc(t,u)(pk, x): It takes (t, u) and one bit message x ∈ {0, 1} along with pk, and first obtains
a graph G (of q nodes) so that finding a Hamiltonian cycle in G is equivalent to finding (s, r) such
that u = Fs(t) and e′ = E′(s; r), by using the NP-reduction. (If such (s, r) does not exist for given
(t, u), G so obtained does not have a Hamiltonian cycle.) This encryption procedure is the same
as the commitment described in [8], called the adaptive Hamiltonian commitment, except that in
our scheme a commitment is encrypted under a public key f independent of F and Π′, and an
encrypted permutation or a pseudo ciphertext is also sent to the verifier.

– To encrypt 0, it picks a random permutation π = (π1, . . . , πq) of q nodes, where πi ∈ {0, 1}log q,
and encrypts every πi and all the entries of the adjacency matrix of the permutated graph
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H = π(G). It outputs {Ai}i∈[q] and {Bi,j}i,j∈[q], such that Ai = Ef (πi) (∈ {0, 1}κ+log q) and
Bi,j = Ef (ai,j) (∈ {0, 1}κ+1) where ai,j∈ {0, 1} denotes the (i, j)-entry of the adjacency matrix
of H.

– To encrypt 1, it picks q random (κ + log q)-bit string Ai (i ∈ [q]) (corresponding to a pseudo
ciphertext of πi). It then chooses a randomly labeled Hamiltonian cycle, and for all the entries
in the adjacency matrix corresponding to edges on the Hamiltonian cycle, it encrypts 1’s. For
all the other entries, it picks up random κ+1-bit strings (corresponding to pseudo ciphertexts
of the entries). It outputs {Ai}i∈[q] and {Bi,j}i,j∈[q], where a Hamiltonian cycle is embedded
in {Bi,j}i,j∈[q], but the other strings are merely random strings.

• ABM.dec(t,u)(sk, c): To decrypt c = ({Ai}i∈[q], {Bi,j}i,j∈[q]), it firstly decrypt all elements to retreive
π and matrix H. Then it checks that H = π(G). If it holds, it outputs 0; otherwise, 1.

• ABM.col
(t,u)
1 (sk): It first obtains a graph G (of q nodes) so that finding a Hamiltonian cycle in G

is equivalent to finding (s, r) such that u = Fs(t) and e′ = E′(s; r), by using the NP-reduction. It
picks a random permutation π = (π1, . . . , πq) of q nodes and computes H = π(G). It encrypts under
f all πi’s and all the entries of the adjacency matrix of the permutated graph H = π(G). It outputs
c =({Ai}i∈[q], {Bi,j}i,j∈[q]) and the Hamiltonian cycle of G, denoted ζ, where ξ = (sk, t, u, ζ, π).

• ABM.col2(ξ, x): If x = 0, it open π and every entry of the adjacency matrix, otherwise if x = 1, it
opens only the entries corresponding to the Hamiltonian cycle in the adjacency matrix.

Then, we apply this weak ABME to our framework (Fig. 1).

Theorem D.1 The scheme in Fig.1 obtained by applying the above weak ABME UC-securely realizes the
FMCOM functionality in the FCRS-hybrid model in the presence of adaptive adversaries in the non-erasure
setting.

Proof. The only difference from the proof of Theorem 7.1 is when we compare the game of the

ideal world with Hybrid Game 1. In the proof of Theorem 7.1, the outcome from ABM.col is statistically
indistinguishable from the outcome from ABM.enc in the trap-door mode when (t, u) ∈ L. When using
a weak ABME, the difference is computational. Hence, we need to construct a polynomially bounded
distinguisher that tries to distinguish the two games where we cannot give sk to the distinguisher because
it includes witness of (t, u), while the distinguisher should be able to decrypt valid ciphertexts generated
by the adversary. Fortunately, in this construction, sk can be divided into (Π, f−1) and (Π′, e′, (s, r)),
where the former includes the decryption key and the latter includes the witness of (t, u). In addition,
both are independently generated. Therefore, we can give the distinguisher only (Π, f−1), which suffices
to decrypt a valid ciphertext, and do not give it (Π′, e′, (s, r)) in order to distinguish the outcome from
ABM.col from that of ABM.enc. By this, we can conclude that the views of the environment in both
games are computationally indistinguishable.

We note that if the common reference string must strictly come from the uniform distribution, we
require trap-door permutations with dense public descriptions. This construction does not require non-
interactive zero-knowledge proof systems. So, it is far more efficient than the previous fully-equipped UC
commitment scheme from trap-door permutation [8].

E Small Remarks on ABMEs

We remark that any ABM encryption scheme can be converted to IND-CPA tag-based public key en-
cryption scheme, by modifying the encryption algorithm to output (u, c) as a ciphertext of message x on
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tag t, as it picks up random u← U and computes c← ABM.enc(t,u)(pk, x). The proof is straightforward
from indistinguishability of (t, u) ∈ Lpk from (t, u′) ̸∈ Lpk.

We remark that a parallel encryptions of an ABM encryption scheme on the same (t, u) under the
same public key is also an ABM encryption. Let x be a message longer than |MSP|, i.e., |x| > |MSP|. To
encrypt x, simply divide x into m pieces, x⃗ = (x1, . . . , xm), where xi ∈ MSP, and compute ciphertexts of
each xi under the same public key pk with the same (t, u) as

ABM.enc(t,u)(pk, x⃗; r⃗) :=
(
ABM.enc(t,u)(pk, x1; r1), · · · , ABM.enc(t,u)(pk, xm; rm)

)
,

where r⃗ = (r1, . . . , rm) and each ri is chosen independently. It is easy to see that this parallel encryptions
defines a new all-but-many encryption scheme.

F Comparison

Throughout this section, κ denotes the security parameter. λ denotes the size of the secret committed to.
n denotes the number of all possible parties. In the column for # of rounds, a/b denotes the corresponding
scheme requires a rounds in the commit phase, and b rounds in the opening phase. T exp(κ) denotes the
cost of computing one modular exponentiation of κ bit string. Ttdp(k) denotes the cost of computing one
execution of trap-door permutation over {0, 1}k. CFP means Claw-free permutations. CRHF denotes
Collision-Resistant Hash. DDH means the Decisional DH assumption. DLIN means the Decisional Linear
Assumption. DCR denotes the Decesional Composit Residuosity assumption and Non-Mult is the non-
multiplication assumption defined at Assumption C.1.

Here, when the length of committed secret λ is short, for instance λ = 160, 320, the schemes imple-
mented in elliptic curve of small size have a great advantage over those based on factoring in terms of
communication and computational costs. We compare our scheme in Sec. 8.1 with other candidates based
on elliptic curve cryptosystems. In Table 1, G denotes a cyclic group implemented in elliptic curves. Ĝ
denotes a symmetric paring group and GT denotes the multiplicative group in a finite field defined by
pairing operation e(·, ·) : Ĝ × Ĝ → GT where the embedding degree is at most 6, i.e., |GT | ≤ 6|Ĝ|. ρ
= λ · λ0

−1, where λ0 = 80. For 80 bit security, κ = 160, λ = 160, |G| = 160, and |Ĝ| = 170 (so that
|GT | ≈ 1000). For 160 bit security, κ = 320, λ = 320, |G| = 320, and |Ĝ| = 512 (so that |GT | ≈ 3000).
We use the simultaneous modular exponentiation technique appearing in Section 14.6 in [27], in which it
is expected the cost of (1 + 1

3(1− (12)
k−1)) modular exponentiation to compute

∏k
i=1 g

xi
i for small k and

large κ = |xi|. Therefore, it is almost the cost of 11
6 exponentiation when k = 2 and 11

4 when k = 3. We
note that our proposal in Sec. 8.1 is 3 times faster than [25] and has less communication in the reasonable
security parameters.

In Table 2, we compare our construction in Sec. D with the scheme appeared in [8]. Both schemes
are fully-equipped UC commitments in the common reference string model and assumes only the exis-
tence of trap-door permutations. TNP denotes the cost of one NP reduction from one-way function to a
Hamiltonian graph. q denotes the number of the vertices of the Hamiltonian graph. Our scheme is far
more efficient than [8], because ours does not require non-interactive zero-knowledge proof systems.

In Table 3, we compare our schemes with the other fully equipped schemes. Expansion factor of
communication is evaluated by dividing the total size of communication in the commitment and opening
phases by security parameter κ. Expansion factor of complexity is evaluated by dividing the total number
of computing a basic cryptographic function on input of size κ by the security parameter – When schemes
are implemented in elliptic curve or factoring based cryptosystems, we consider that one basic crypto-
graphic computation is a modular exponentiation of size κ. When they are implemented from trap-door
permutations, we think that one basic cryptographic computation is one execution of the permutation
on {0, 1}κ.
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Schemes CRS size Communication Complexity # of Non- Assump.
rounds -Erasure?

CF01 [7] 7|G| 11λ|G| 8λT exp(|G|) 1/1 Yes DDH
(κ = 160) 1280 bit 35.2 KB 1280T exp(160) +CFP
(κ = 320) 2240 bit 140.8 KB 2560T exp(320)
Lin11 [25] 8|G| 13|G|+ 4κ 27 1

3T
exp(|G|) 5/1 No DDH

(κ = 160) 1280 bit 2720 bit 27 1
3T

exp(160) +CRHF
(κ = 320) 2560 bit 5440 bit 27 1

3T
exp(320)

FLM11 [14] 9|Ĝ| 21|Ĝ| ≫ 2T exp(|GT |) 1/1 No DLIN
(κ = 160) 1530 bit 3570 bit ≫ 432T exp(160) +CRHF
(κ = 320) 4608 bit 10752 bit ≫ 2 ∗ 885T exp(320)

Sec. 8.1 (κ+ 4)|G| (2 + 3ρ)|G| 3 7
12ρT

exp(|G|) 1/1 Yes DDH
(κ = 160, ρ = 2) 3.2 KB 1280 bit 7 1

6T
exp(160)

(κ = 320, ρ = 4) 13 KB 4800 bit 10 3
4T

exp(320)

Table 1: Practitioners’ Point of View: Comparison with the previous re-usable and
adaptive UC commitments (to λ bit secret).

Schemes CRS size Communication Complexity of each user Assumption

CLOS02 [8] ω(κ3 log(κ)) ω(λ · q2κ3 log κ) λq2TNP + ω(λq2Ttdp(κ
3 log κ)) TDP

Sec. D O(κ) O(λ · q2κ) TNP + λq2Ttdp(κ) TDP

Table 2: Fully-Equipped UC commitments (to λ bit secret) from general assumptions.

Schemes Expansion factor Expansion factor CRS size Fully-Equipped? Assumption
of communication of computation

CF01 [7] O(κ) O(κ) O(κ) Yes DDH+CRHF

CLOS02 [8] ω(κ5 log κ) ω(κ2 log κ
Ttdp(κ

3)
Ttdp(κ)

) ω(κ3 log κ) Yes TDP

Sec. 8.1 O( κ
log κ ) O( κ

log κ ) O(κ2) Yes DDH

Sec. 8.2 O(1) O(1) O(κ2) Yes DCR+Non-Mult
Sec D O(κ3) O(κ2) O(κ) Yes TDP

Table 3: Comparison among the fully equipped UC commitment schemes.
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