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Abstract

We present a general framework for constructing non-interactive universally composable (UC) commitment
schemes that are secure against adaptive adversaries in the non-erasure setting under a single re-usable common
reference string. Previously, such “fully-equipped” UC commitment schemes are only known in [8, 9], with an
unavoidable overhead @(«) in the sense of communication and computational complexities; meaning that to
commit A bits, the communication and computational costs reqDit&), wherex denotes the security parame-
ter. Hiicient construction of a fully-equipped UC commitment scheme was a long-standing open problem. We
introduce a cryptographic primitive, calledl-but-many encryptions (ABMES), and prove that it is a translation of
fully-equipped UC commitment in the primitive level. We then construct ABMEs from cryptographic primitives
that we calla probabilistic pseudo random function family andextractable sigma protocols — the former is a prob-
abilistic version of a pseudo random function family and the latter is a special kind of sigma (i.e., canonical 3-round
public-coin HVSZK) protocols with some extractability. We provide fully-equipped UC commitment schemes from
ABMEs under DDH and DCR-based assumptions, respectively. In particular, the DCR-based scheme is the first
fully-equipped UC commitment schermgth optimal expansion factd®(1); to commitk bits, the communication
and computational costs af¥x). We further construct a fully-equipped UC commitment scheme from a general
assumption (in which trap-door permutations exist), which is far mfireient than the previous construction [9],
because, unlike [9], our construction does not require non-interactive zero-knowledge proof systems.

1 Introduction

Universal composability (UC) framework [7] guarantees that if a protocol is being proven secure in the UC framework,

it remains secure even if it is run concurrently with arbitrary (even insecure) protocols. This composable property gives
a designer a fundamental benefit, compared to the classic definitions, which only guarantee that a protocol is secure if
it is run in the stand-alone setting. In this work, we focus on universally composable (UC) commitment schemes. As
in the classic setting, UC commitments are an essential building block to construct high level UC-secure protocols.
UC commitments imply UC zero-knowledge protocols [8, 13], which play an essential role to construct UC-secure
two-party and multi-party computations [9]. Unfortunately, it is known that UC commitments cannot be realized
without an additional set-up assumption [8]. The common reference string (CRS) model is most widely used as a set-
up assumption when considering the UC framework. So, we also concentrate our schemes in the common reference
model.

A commitment scheme is a two-phase protocol between two parties, a committer and a receiver. The basic idea
behind the notion of commitment is as follows: In the first phase (or the commitment phase), a committer gives
a receiver the digital equivalent ofsealed envelopeontaining valuex, and, in the second phase (or the opening
phase), the committer revealsn a way that the receiver can verify it. From the original concept, it is required that a
committer cannot change the value inside the envelope (the binding property), whereas the receiver can learn nothing
aboutx (the hiding property) unless the committer does not help the receiver opens the efvelope

There are two dferent flavor in hiding and binding, statistical and computational ones. In the statistically-binding commitment schemes,
the binding property holds against unbounded adversaries, whereas in the statistically-hiding commitment schemes, the hiding property holds
against unbounded adversaries. By construction, a commitment scheme in the plain model satisfies at most either statistically-binding or
statistically-hiding, not both.



Informally, a UC commitment scheme maintains the above binding and hiding properties under any concurrent
composition with arbitrary protocols. To achieve this, a UC commitment scheme reqguescabilityand ex-
tractability. Roughly, equivocability of a UC commitment scheme in the CRS model can be interpreted as follows:
An algorithm (called the simulator) that takes the secret behind the CRS string can geneie/acalcommitment
that can be opened correctly to any value. On the other hand, extractability can be interpreted as the simulator can
correctly extract the contents of amglid commitment generated by any adversarial algorithm, even after it has given
the adversary many equivocal commitments, where a commitment is said valid if it can be opened correctly.

Several factors feature UC commitments, such as non-interactivity, CRS re-usability, adaptive security and non-
erasure.

Non-Interactivity. If an execution of a UC commitment scheme is completed simply by sending each one message
from the committer to the receiver in the commitment and opening phases, then it isallétteractive Otherwise,
interactive. From the practical point of view, non-interactivity is much more favorable — non-interactive protocols are
much easier to be implemented and more resilient to denial of service attacks than interactive ones. Even from the
theoretical viewpoint, non-interactive protocols generally make security proofs simpler when considering adaptive
UC-security.

CRS Reusability. The CRS model assumes that CRS strings are generated in a trusted way and given to every
party. From the practical point of view, it is very important that a single CRS string can be fixed beforehand and it can
bere-usablein unbounded times of executions of cryptographic protocols. Otherwise, a new CRS string must be set
up in a trusted way every time when a new execution of a protocol is invoked.

Adaptive Security. If an adversary must decide to corrupt parities only before the protocols start, it is called a
static adversary. On the other hand, if an adversary can decide to corrupt the parties at any point in the executions of
protocols, even revealing all their secrets, it is callecdaptiveadversary. If a protocol is proven UC-secure against
adaptive (resp. static) adversaries, it is callddptive(resp. static) UC-secure. Adaptive UC security provides a very
strong security guarantee.

Non-Erasure Model. When a party is corrupted, its complete inner state is revealed, including the randomness
being used. Some protocols are only proven UC-secure under the assumption that the parties can securely erase the
inner states at any point of an execution. If such an assumption is unnecessary, we say that the protocol is defined
in the non-erasuranodel. Since reliable erasure idttliult on a real system, it is desirable that a protocol is proven
secure in the non-erasure model.

Canetti and Fischlin [8] presented the first UC secure commitment schemes, one of which is “fully-equipped” —
non-interactive, adaptively secure, and non-erasure under a single re-usable common reference string. By construction
however, the proposal essentially requit¥s) overhead, meaning that, to commit¥it secret, the UC commitment
scheme require®(1x) communication bit an@(1x) computational cost. Canetti et al. [9] also proposed another fully-
equipped UC commitment scheme only from trap-door permutation. However, it is constructed in the same framework
as in [8] and hence, expansion fac€@i) is unavoidable.

So far, the above two are the only known fully-equipped UC commitments. All known subsequent constructions
of UC commitments [13, 11, 6, 25, 23, 15] have improvéitency, but do not support at least one or two of the above
requirements. Eciency of UC commitment can be measured by round complexity (i.e., the number of interaction in
the commitment and opening phases), communication complexity (i.e., the total amount of communication bits per
secret length), and computational complexity (i.e., the total amount of work performed by participants). In addition, a
CRS length also contributes to thfieiency of a UC commitment scheme.

1.1 Our Contributions

We present a general framework for constructing “fully-equipped” UC commitment schemes as mentioned above. The
essence in the framework is in a notionatifbut-many encryption (ABME), which is a translation of fully-equipped
UC commitments in the primitive level.
We construct ABMEs from two cryptographic primitives that we gatbbabilistic pseudo random functions
(PPRF) anckextractable sigma protocols (extX). The former is a probabilistic version of pseudo random functions
and the latter is a special kind of sigma (i.e., canonical 3-round public-coin HVZK) protocols with some extractability.
We present fully-equipped UC commitment schemes from ABMEs from the Decisioffig-Bliellman (DDH)



and Decisional Composite Residuosity (DCR) based assumptions, respectively. In particular, the DCR-based scheme
is the first fully-equipped UC commitment scheme with expansion faoft) in the communication and computa-

tional complexities. Namely, to comm@(«) bits, the communication and computational costs@fg. To prove

security of the DCR-based scheme, we assume slightly a stronger assumption than DCR such that Damgard-Jurik
(additive) homomorphic encryption scheme is not multiplicatively homomorphic, which is similar to the assumption
used in [21].

We also present a weak variant of ABME, which can be constructed only from a general assumption (that trap-
door permutations exist) and converted to a fully-equipped UC commitment schei®mce it does not require
non-interactive zero-knowledge proof systems, it is far mdieient than the previous scheme [9]. This construction
is given in Appendix D.

1.1.1 Basic Idea — All-But-Many Encryption

We consider a public key encryption scheme with the following special properties: For Alice who does not know
Bob's secret key, it works as a standard public key encryption scheme — when she encrypts a message under Bob's
public key properly, Bob, the secret key holder, can decrypt the valid ciphertext correctly, However, it is not the case
for Bob. He can generatefake ciphertext under his public-key, which can be opened to any message along with
the consistent randomness. It should k&dlilt for Alice to distinguish a fake ciphertext from a real ciphertext even

after Bob revealed the message and the randomness used there. We also require that Bob can produce fake ciphertex
a-prior unbounded polynomially many times, but Alice cannot produce a fake ciphertext (on a fresh tag) even after
she has received the fake ciphertexts. (To fit the UC framework, we assume that the encryption scheme is tag-based.
We call such encryption schemat-but-many encryptions (ABMES).

To construct ABMES, as the first step idea, we call instance-dependent commitments [1, 22] to mind. An instance-
dependent commitment scheme is an “instance-based” commitment scheme that additionally takesiastzupce:
to commit to a message and behavetedéntly depending on whethebelongs to NP languadeor not. Wherx € L,

a honest committer always generates statistically-hiding commitments, whereaxwhén he always generates
statistically-binding commitments.

It is known that a non-interactive instance-dependent commitment scheme can be constructed if there exists a
canonical three-move public-coin statistically zero-knowledge protocol, called the sigma protocl fldi0gn NP
languagel and if the decision problem onis hard: Let &, e,2) be the transcript of the sigma protocol on instance
X. Letw be the witness ok (if it exists). When a honest committer wants to commietde runs thesimulation
algorithm of the sigma protocol axwith challengee (regardless of whethere L or not) and sends the receiver the
first messagea. To open the commitment, the committer revealg), The receiver accepts it if e, z) is an accepted
conversation orx in the sigma protocol. By (special) honest verifier statistical zero-knowledgeness, forxewdry
and evernyg, the transcript onx, e), i.e., @ €, 2), generated by the simulation algorithm is statistically indistinguishable
from the transcript on the samg, €) generated by the real sigma protocol using witngsd his implies that when
X € L, a honest committer generates statistically hiding commitments. The computational binding holds because it is
difficult to findw from x. (Opening a commitment in two ways revealslue to special soundness.) On the contrary,
whenx ¢ L, the first message, generated by any (possibly dishonest) committer, is statistically bindiggamlong
as there exists an accepted conversatioraforhis immediately follows from special soundness of sigma protocols.

The (computational) hiding property holds because it is hard to decide whetheror not. Therefore, wher ¢ L,
a committer generates statistically-binding commitments.

Whenx € L, it is obvious that we can equivocate commitments. We first run the real sigma protocol with witness
w and outputs the first messag@ the commitment phase, which is statistically indistinguishable from a commitment
(i.e., the first message) generated by a honest commiitter (i.e., the simulation algorithm of the sigma protocol). Since
the real sigma protocol can produce answfar any challenges, using witnessv along with the randomness behind
a, the simulator can opeainto any valuee in the opening phase. Therefore, this instance-dependent commitment
scheme is equivocal whene L.

2An arbitrary weak ABME is transformed to a fully-equipped UC commitment scheme, by applying itffersdt, lessficient framework,
but our construction of a weak ABME from the general assumption is applied to the framework in Fig. 1.
3Precisely speaking, we require a slightly stronger variant of sigma protocols as described in Sec. 4.
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On the contrary, when ¢ L, we need to extraa from the first message (without randomness behiraj for
our purpose. If it is possible, we call the sigma protoexiractable More precisely, we consider a sigma protocol
on an NP languagkpk indexed by (a series ok, in which whenx ¢ Lk, a simulator can féiciently extract the
challenge=from the first message, for given (x, a, €), by using secret kegkbehindpk (but no randomness undears
required). We call iain extractable sigma protocol. We insist that many sigma protocols can be actually converted to
extractable sigma protocols. Indeed, mostftit@ent sigma protocols are implemented on Abelian groups associated
with homomorphic maps, in which the first message of such sigma protocols implies linear equatiandzfiwhich
also implies that the matrix derived from the linear equations is invertible if and omlyzifL . Therefore, if the
simulator knows the contents of matrix, it can solve the linear equations wkehp, and obtaire if the length of
eis logarithmic. For instance, ldt be a language of DDH. Leg(, g2, hy,hp) ¢ Lok, meaning thak; # x; where
X1 = logg,(h1) and x; := logg,(hz). The first messageA(, Az) of a canonical sigma protocol dnimplies linear

equations
a) (1 x z

(2)-(0 % )(E)
whereA; = gi‘l, A = ggz, andg; = g7. The above matrix is invertible if and only ¥ ¢ Lpk. We note thae is
expressed as a linear combinatioragfanday, i.e.,51a1 + B2a2, where the coicients are determined by the matrix.
Therefore, if the simulator knows the contents of the matrix and the lengghisfogarithmic, it can search by
computingg; = AﬁlAgz. In our actual constructions, the simulator does not always know the entire values of the
matrix. However, if the matrix is carefully made so tleatan be expressed adiaear combination of “unknown”
values, that is, unknown values do not appear with a quadratic form or more degree of forms in the equation, we can
still solve logarithmice. In some case, on the contrary, we can invert homomorphic maps, for instéace g2,
using a trap-door information. Then the simulator can obtaim, as well as the entire values of the matrix, and
extracte without the length restriction!

Finally, to construct ABMEs from (extractable) sigma protocols, we additionally require a langyeagas some
sort of “unforgeability” — The simulator can choog& L, whereas the adversary cannot choogel p (for a fresh
tagt) even after it has been given manytdrentxX’s that belong toLp. Such a language can be constructed from
probabilistic pseudo-random function families, which can be constructed by using a pseudo random function family
with a public key encryption scheme, but &fi@ent construction may be actually easier than pseudo random function
family. Later, we provide PPRF families, equipped with extractable sigma protocols.

By combining the above ideas together, we construct ABMEs. We first find a hard-decision lahguagth
“unforgeability” (defined over Abelian groups associated with homomorphic maps). We construct a sigma protocol
for Lk such that the first message of the sigma protocol (on instaneeplies linear equations ok(z). Then it
implies that the matrix derived from the linear equations is invertible if and ontygflL .. We carefully construct
the sigma protocol so thatcan be at least expressed as a linear combination of “unknown values”, which makes the
sigma protocol extractable (for logarithmic-sie If the associated homomorphic map is invertible (with trap-doors),
the extractable sigma protocol can extraetithout length restriction.

To construct a “fully-equipped” UC commitment scheme from an ABME, we simply see the ciphertext generated
by an ABM encryption scheme on random instares a UC commitment, where the public key is put in the common
reference string beforehand. To open the commitment, the message and randomness used to be encrypted are reveale

1.2 ABM Lossy Trap-door Functions

Hofheinz has recently proposed all-but-many lossy trap-door functions (ABM-LTDFs) [21], which are lossy trap-
door (deterministic) functions with (unboundedanylossy tags. He has proposed two schemes based on DCR-based
and g-strong DH assumptions, respectively. Our idea of viewing signatures equipped with no public verification
procedure (namely, the probabilistic pseudo random functions as described later) as equivocal tags is inspired by the
constructions of ABM-LTDF appeared in [21].



2 Preliminaries

Let N be the set of natural numbers. Fore N, [n] denotes the sefl,...,n}. We denote byO, Q, andw the
standard notations to classify the growth of functions. We let gplgénote an unspecified functidifx)= O(x°)

for some constant. We letnegl(x) to denote an unspecified functidifx) such thatf(x) = (), saying that
such a function is negligible irn. We write PPT and DPT algorithms to denote probabilistic polynomial-time and
deterministic poly-time algorithms, respectively. For PPT algorithmve writey « A(X) to denote the experiment
of running A for given x, picking inner coing uniformly from an appropriate domain, and assigning the result of
this experiment to the variablg i.e.,y = A(X;r). Let X = {X ey and¥Y = {Y,}«ev be probability ensembles
such that eaclX, andY, are random variables ranging o€ 1}*. The (statistical) distance betwe&p andY, is
Dist(X,, Y,) = %-l Precio,1<[X = 8| = Prsjo1[ Y = S]I. We say that two probability ensemblésandy, are statistically
indistinguishable (irx), denotedX N Y, if Dist(X,, Y,) = negl(x). In particular, we denote bX = Y to say thaiX and

Y are identical. We say that andY are computationally indistinguishable @) denotedX N Y, if for every non-
uniform PPTD (ranging ovel0, 1}), {D(1¥, X,)}cen N {D(1%, Y ) een- LEtR = {(X, W)} be an NP relation, meaning that
given (X, W), it can be decided in a polynomial-time|i| if (X, W) € R. HereXis called a statement aMi is called

a witness ofX. Let us denote byr the NP language characterizedRymeaning thatg = {X|aAW : (X, W) € R}.

2.1 The Universal Composability Framework

We work in the standard universal composability (UC) framework of Canetti [7]. We concentrate on the same model

in [8] where the network is asynchronous, the communication is public but ideally authenticated, and the adversary
is adaptive in corrupting parties and is active in its control over corrupted parties. Any number of parties can be

corrupted and parties cannot erase any of their inner state. We provide a brief description of the UC framework and
the ideal commitment functionality for multiple commitments in Appendix A.

3 Probabilistic Pseudo Random Functions

A probabilistic pseudo random functid®pl is a probabilistic version of pseudo random function mapping from
domain{0, 1}* to codomainU parameterized by public kegk. It takes messageand outputau (= Spl(skt;V))
under secret kegk with respects tgk. Informally, the requirement of PPRFs is that (alooks at least pseudo-
random on any and (b) it is infeasible for any adversary to compute vatidn fresht* even after it may have access

to oracleSpl(sk -), wheret* is called fresh if it has not been queried. Now we formally define PPRFs. A PPRF
(Gengyp, Spl) consists of the following two algorithms:

e Gengp is a PPT algorithm that take$ &s input and outputgk, sk). Here pk uniquely determines a s&, the
codomain ofSpl. For convenience sake, we assume that the descriptipk ©fntains« and the description of
skcontains that opk. W.I.0.g., we assum&engy, is an NP relatiorf.

e Splis a PPT algorithm that takesk andt € {0, 1}*, picks up inner random coins« COINs, and computes
u e U, namelyu = Spl(sk t; v). COINgp denotes the inner coin space uniquely determineghy

For our convenience, we define

Lok = {(t,u)|Isk Fv e COINgp : (pk sK € Gengp (1) andu = Spl(sk t; v)}.
We require that PPRFs satisfy the following security requirements:
e Easy sampling:For everypk given byGengy, it is easy to sample random elements from

e Pseudo randomness:For every non-uniform PPT adversafy the advantage oA in the following distin-
guishing game is negligible ir: (pk sk « Gengp(1°); A takespk; A may submit an a-prior unbounded

“Namely, given pk, sK), one can easily checlpk, sk) € Gen(1¥).



polynomially many number of arbitrary message$0yi}* to either of two oraclesSpl(sk -) or U(-), whereU

is the following oracle: Whespl(sk -) is a deterministic function) : {0,1} — U is a random oracle which
returns the same value on the same input. W8el(sk -) is probabilistic, therJ(-) picks up randonu <« U
every time for every query to return, even if it was already querfetinally distinguishes which oracle it has
had access to. The probability is taken over the inner coieat,, Spl, A, and random sampling froid.

e Unforgeability: For every non-uniform PPT adversaly the advantage o4 in the following forging game is
negligible in«: A takespk generated bysens,(1€); A may submit a series of arbitrary messagef0iri}“ to
oracleSpl(sk -); A finally outputs {, u) such that{, u) € Lok and messagehas not been queried 8pl(sk -).
The probability is taken over the inner coins@éngp, Spl, andA.

We remark that ifSpl(sk -) is a deterministic algorithm anskis uniquely determined bypk, the unforgeability
requirement is implied by pseudo randomness and hence, can be removed from the requirements.

3.1 Construction of PPRFs

A PPRF Gengp, Spl) can be constructed in a straight-forward way from a pseudo random function f@&msy
{(Fi)ie1, Jkenr and a semantically secure (or IND-CPA) public-key encryption schidme(K, E, D) [19]: Gengp(1°)
picks up pk, sk «— K(1¥) andi « I, (an index of the pseudo-random function family w.r.t. security paramgter
outputsPK = (pk, Epk(i; r)) andS K = (PK,i,r) wherer is a random string uniformly chosen from the coin space of
the encryption scheme. Then, defBgl(S K t) := F;(t). By construction, it is clear that pseudo-randomness holds.
In addition, if there is an adversary that breaks unforgeability, it should break pseudo randorfhes sémantic
security ofIT.

We also propose probabilistic schemes. The idea behind our constructions is to use Waters signature [27] as a
PPRF in a grougquipped with no bilinear map.et g be a generator of a multiplicative gro®of prime orderg, on
which the DDH assumption holds. Fer 1 elements irG, let us defineH(t)= ho [T, h', wheret = (t[1], ..., t[])€
{0, 1} in which t[i] € {0, 1} denotes-th bit representation of strinj Gens, (1) choosesy, ho,...,h, « G and
X1, X2 « Z/QZ to setg; = g™, g» = g*. outputspk = (G,0,0,41,091,92, ho,...,h). andsk = (pk x2), where
U = G x G. Spl(skt;r) takest € {0, 1}*, picks up randonm« Z/qz, and computes, = g" andu; = g’f’(H(t))f. It
then outputss = (ur, W).

Theorem 3.1 The above construction is a PPRF under the DDH assumption.

Proof. Spl is the same as Waters signature scheme when applied for a non-pairing group. So, unforgeability is

immediately guaranteed if the computational DH assumption holds true. Pseudo-randomness is shown in a straightfor-
ward way: Suppose that,(g1, g2, K) be a tuple of four group elements@ which is either a DDH instancé(= gf

or a random tupleK is a random element i@). To break the DDH problem, a simulator picks g (hg, hy, ..., hy)

at random. It then runs adversalyon the above parameters, wheéés an adversary to break pseudo-randomness.

For any queryt, the simulator returnsuf, u;) such thau, = ¢" andu, = K - H(t)". The simulator outputs the same bit

that A outputs. The simulator’s advantage is the same as that ®herefore, under DDH assumption its advantage

is bounded in a negligible (ik) function. Therefore, it also satisfies pseudo-randomness. Hence, the scheme above is
an instantiation of PPRFs if the DDH assumption holds trudl

We further present another variant of PPRFs based on Waters signature, which can be constructeditiraty
homomorphic IND-CPA public-key encryption schemes. We show the construction in appendix C.

4 Extractable Sigma-Protocol

We introduce extractable sigma protocols. We note that in [16] we have introduced a similar primitive. In this paper
we require a slightly stronger variant.

First, we recall sigma protocols [10]. L& = {(X, W)} be an NP relation. Lekgr be the NP language char-
acterized byR = {(X,W)}, namely,Lr = {X|3aW : (X,W) € R}. A sigma protocol for NP relatioRR, ¥ =



(comZX, chX, ansZ, simZ, Vrfy), is a canonical 3-round (public coin) interactive proof system between the prover and
the verifier. LetX € L be a statement to be proven antdenotes a withess of such that X, W) € R. X is given

to both the prover and the verifier as common input Wha given only to the prover in advance. 2protocol on
common inputX is executed as follows: The prover picks up random cojpsomputesa using statemenX and
witnessW, denoteda = comZ(X, W; ry), and sends it to the verifier. The verifier picks up a randtallenge ele-

mente « chX, wherechX is a publicly-samplable prescribed set, and sends it to the prover. The prover responds with
z = ansX(X,W.ra, €). The verifier accepts Nrfy(X, a, e, 2) = 1. We say thatd, e, 2) is an accepting conversation on

Xif Vriy(X, a, e, 2) = 1. We require that the sigma protocols satisfy the following properties:

Completeness:For everyr, (in an appropriate specified domain) and everychZ, it always holds thavrfy (X,
comZ(X, W, ry), € ansX(X,W,rg, €)) = 1.

Special SoundnessiFor everyX ¢ Lgr and everya, there is thethe unique e in chX if there is an accepted
conversation fom; that is, there iz such thatvrfy(X,a,e,2) = 1. In addition, one can alwaysheiently compute
witnessW, given X and two diferent accepted conversations éoon X, (a,e,2) and @, €, 7), with ¢ # ¢’. A pair of
accepted two dierent conversations for the samen X, i.e., @,e 2 and @, €,Z), with e # €, is calleda collision
on X. We insist that collision on X exists if and only if X € Lg.

Enhanced Special Honest-Verifier Statistical Zero-Knowledge:simX is a PPT algorithm that takes and
e € chX as input and, picking up, < COINgjm, Outputs &, e, 2) = simX(X, €, r,). Given every X,W) € Rand every
e e chx,

{simZ(X, g;r,)} N {(comZ(X, W, ry), e ansZ(X, W.ra, €))},

where the probability of the left hand is taken over random varigfded the right hand is taken over random variable
ra. In this paper, we require slightly more for our sigma protocol. We saytisatnhanced special HVSZK if r, = z
Namely, & e 2) = simZ(X, € 2). Then, we note thatrfy(X,a,e,z) = 1 if and only if (& e ,2) = simZ(X, & 2), which
means thabne can instead use simX to verify (a, g, 2).

We now introduceextractable sigma protocols. Let Geney = {(pk, sK} be an NP relation. We denote Rsk
= {(X, (sk W))} an NP relation indexed bgk ® such that if K, (sk W)) Rpk, then (pk, sk) € Geney;. Let us denote
by Lok the NP languages characterizedRy, i.e.,Lpk = {X|3A(sk W) : (X, (sk W)) € Rpk}.

A extractable sigma-protocektX = (Z, Dec) for NP relationRpk w.r.t. Geney; consists of the following algorithms:

e Y(pK) = (comX, chX, ansZ, simX) is a sigma protocol foRpy (for every sequence ¢pk}.cy) with theenhanced
special honest-verifier statistical zero-knowledge mentioned above. We remowgfy from X, because we can
instead usasimz for verification.

¢ Dec, the extract algorithm, is a DPT algorithm that také#isX, anda (presumably the first output generated by
simXZ(pK)(X, €)) and output® or L.

We require thaext-protocols additionally satisfy the following property:

Extractability: For every Pk sk € Geney, everyX ¢ Lok, everye € chZ(pk), and everya such that there is an
accepted conversation, g, 2) for aon X, it always hold thaDec(sk X, a) = e.

Here, we note that if there is an accepted conversatian®) on X ¢ Lg, eis unique fora, due to special soundness
of the sigma protocols. Therefore, extractability is well defined. In other words, extractability guarantees that even if
ais generatedh an adversarial waythere is a unique consistent witha and it can be extracted fromusingsk as
long asX ¢ Lk anda has an accepted conversationXan

5 ABM Encryptions

All-but-many encryption schem®M.Enc = (ABM.gen, ABM.spl, ABM.enc, ABM.dec, ABM.col) consists of the fol-
lowing algorithms:

e ABM.gen is a PPT algorithm on input‘loutputs @k, sK), wherepk defines an ficiently samplable sdtl, the
codomain ofABM.spl. We letS = {0, 1} x U. For convenience’ sake, we assume that the descriptiqok of

SPrecisly speaking, we consid@ as an ensemble indexed by a sequence of public kpltses, where there is onpk for everyx € N.
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contains and the description afk contains that opk. W.1.0.g., we assum&BM.gen is an NP relation; that is,
given (pk, sK), one can easily checlpk, sk € Gen(1¥).

e ABM.splis a PPT algorithm that takesk and tagt € {0, 1}*, picks up inner random coins < COINgp, and
computess € U. COINg, denotes the inner coin space uniquely determinegkoyVe define

Lpk(t) = {ue U |3 sk Jve COINg : (pk sk € ABM.gen(1*) andu = ABM.spl(sk t; v)}.
We also defind i = {(t,u) |t € {0, 1} andu € Lpk(t)}.

e ABM.enc is a PPT algorithm that takgsk, (t,u) € S, and messagg € MSP, picks up inner random coins
I « COINgnc, and computes such thatc = ABM.enc®¥(pk, x;r), whereMSP denotes the message space
uniquely determined bpk, whereasCOINe,. denotes the inner coin space uniquely determinegkogind x°.

e ABM.dec is a DPT algorithm that takesk (t,u) € S, and ciphertext, and computes = ABM.dec®™¥(sk c).
e ABM.col= (ABM.col;, ABM.coly) is a pair of PPT and DPT algorithms, respectively, such that

— ABM.col; takessk (t,u), andv € COINgy such thatt € {0,1} andu = ABM.spl(sk t;Vv), and outputs
(c,&) « ABM.coI(lt’“)(sk V)

— ABM.col, takes¢ andx € MSP, and outputse COINgnc such that = ABM.enc®(pk, x; r).
We require that all-but-many encryption schemes satisfy the following properties:

1. Adaptive All-but-many property: (ABM.gen, ABM.spl) is a probabilistic pseudo random function (PPRF).

We note that for everpk, % = negl(x).

2. Dual mode property: For everyk € N and every pk, sk € ABM.gen(1*),

o (Decryption mode)For every {,u) € S\Lpk, and everyx e MSP, it always holds that
ABM.dec®(sk ABM.enct¥(pk, X)) = x.

e (Trap-door mode) For every {,u) € Lpk, everyve COINgp such thatu = ABM.spl(sk t;V), every €, ¢)
eABM.coI(lt’“)(sk V), and everyx € MSP, it always holds that

¢ = ABM.enc®™(pk, x; ABM.colx (¢, X)).
In addition,
{(ABM.col{™(sk V)[1].  ABM.col, ( ABM.col{"(sk v)[2], x) )}
N {(ABM.enc™(pk x;T), r)}

for everyx e MSP, every ¢, u) € Lok, and every witnesssk v) of (t,u) € Lpx. HereABM.coI(lt’“)(sk V)[1]
denotes the first output othM.col(lt’“)(sk v), and ABM.coI(lt’“)(sk v)[2] denotes the second output of

ABM.coI(lt’“)(sK V). The probability of the light-hand side random variable is taken over the random choice
of r € COINgnc.

We say that a ciphertexton (t, u) (¢ S) under public keypk is valid if there existx € MSP andr € COINgnc
such thatc = ABM.enc®¥(pk x;r). We say that a valid ciphertexton (t,u) (¢ S) under public keypk is real if
(t,u) € S\Lpk, otherwisefake if (t,u) € Lpk.

We remark that as long asis a real ciphertext, there is only one consisterih MSP and it is equivalent to
ABM.dectY(sk c), due to the correctness condition of the decryption mddes means that even if a ciphertext is
generated by an adversary, it can be decrypted correctly as long as there exists a pair of a message and randomness
consistent with the ciphertext afgu) € S\L .

5We allow the inner coin space to depend on messages to be encrypted, because our concrete construction of weak ABM encryption from
general assumption in Sec. D requires the coin space to depend on messages.



6 ABME from extX for Language derived from PPRF

Suppose there is an extractable sigma protocol such that it can prove the possession of witness behind the input
and output relation of a PPRF. Then, we can construct an all-but-many encryption schem@ensgt $pl) be a
probabilistic pseudo random function (PPRF) defined above. Let us dgfine {((t,u), (sk v)) |u = Spl(sk t; v)},

which is an NP relation indexed by (a sequence{pk}.n. For an extractable sigma protoeodtX for Rpk, an ABM
encryption schemABM.Enc is constructed as follows:

e ABM.gen(1¥) = Gengp(19). Let (pk, sK be generated bixBM.gen. LetU be the codomain obpl determined
by pk. LetS = {0, 1} x U.

e ABM.spl(sk t;Vv) = Spl(sk t;v), wheret € {0, 1}* andv € COINgy.

o ABM.enc®(pk x;r) = simZ(pK)(X, x; )[1], whereX = (t,u) € S, x € MSP (= chz(pk)), andr € COINgnc
(= COINsim).

HeresimX(pk)(X, x; r)[1] denotes the first output aimX(pk)(X, X; ).
o ABM.dec®™(sk c) = Dec(sk X, c), whereX = (t,u), andc = ABM.encY(pk, x; r).

. ABM.coI(lt’“)(sKv; ra) = (¢, &), such thatc = comZ(pk)(X,W;rg) and¢ = (skt,u,v,ry), whereX = (t,u),
W = (sk v) andu = Spl(sk t; V).

e ABM.colx(&, X) = ansZ(pK)(X, W.ra, X), wheref = (skt,u,v,ry), X = (t,u), W = (sk v), andx € MSP.

Here,Lpk = {(t,u)|3(sk V) : (pk sk € ABM.gen(1*) andu = Spi(sk t;v)}. By construction, it is obvious that
ABM.Enc satisfies the adaptive all-but-many property. The dual mode property also holds becaus¥:<d}, o) €
S\Lpk, a€ simZY(pk)(X, x) is perfectly binding to, due to special soundness arig extracted fromX, a) only using
sk due to extractability of extractable sigma protocols. (bXI& (t,u) € Lok, ABM.col runs the real (extractable)
sigma protocol¢domZX, ansX) with witness €k v). Therefore, it can produce a fake commitment that can be opened in
any way, while it is statistically indistinguishable from that of the simulation algorgimnX (that is run byABM.enc),
due to enhanced honest statistical zero-knowledgeness. Therefore, the resulting scheme is an all-but-many encryptior
scheme.

7 UC Commitments from ABM Encryptions

The conversion from an ABME scheme to a fully-equipped UC commitment scheme is straight forward. We first put a
public keypk of ABME in the common reference string. A commit®rtakes tag = (sid, ssid P;, Pj) and a message

x committed to. It then picks up randomfrom U and compute an ABM encryption= ABM.encgi(“)(x; r) to send

(u, c) to receiverP;. To open the commitmen®; sends X, r) to P; andP; accepts if and only i€ = ABM.encgi(“)(x; r.
We formally describe our UC commitment scheme in Fig. 1.

Theorem 7.1 The proposed scheme in Fig.1 UC-securely realizeFhgm functionality in theFcrs-hybrid model
in the presence of adaptive adversaries in the non-erasure setting.

We provide a complete proof in Appendix B. Here we specially explain an essence to prove the following claim that
two views of the environmenf are computationally indistinguishable between Hybrid Gamel and Hybrid Game?2.
Since an ABME scheme uses teame skboth to decrypt ciphertext and to sampler* such that*,u*) € L, the
reader might be confused about how the security proof goes through. So, we briefly describe the essence of the proof
of the above statement, which is to show tiZ@s$ views in these games are computationally indistinguishable in the
following man-in-the-middle attack.

In Hybrid Gamel, the man-in-the-middle attack is as folloisgives to simulatorS; message<* along with
tagt*. S; computess* « ABM.spl(sk t*) usingsk where {*,u*) € L, andc* « ABM.encg;’”*)(x*) to send (*, c*)



UC-commitment protocol from ABM.Enc

Common reference string: pkwhere pk, sk «— ABM.gen(1¥).

We implicitly assume that there is injective mafyom {0, 1}* to MSP such that ! is efficiently com-
putable and~1(y) = ¢ for everyy ¢ ({0, 1}¥), and also assume thatig, ssid P;, Pj)e {0, 1}.

The commit phase:

%)

e Upon input commit, sid, ssid P;, Pj, X) wherex € {0, 1}, party P; proceed as follows: If a tuple
(commit, sid, ssid P;, Pj, X) with the same gid, ssid was previously recorded®; does nothing.
Otherwise P; setst= (sid, ssid P;, Pj)e {0, 1}“. It picks upu « U andr < COIN, and encrypts
message(x) to computec = ABM.enctY(pk, «(X); r). P; sends ({ u),c) to party P;, and stores
(sid, ssid Pj, Pj, (t,u), X, r).

e Pjignores the commitment {f« (sid, ssid P;, Pj), u ¢ U, or a tuple 6id, ssid . . .) with the same|
(sid, ssid was previously recorded. Otherwise; stores §id, ssid P, Pj, (t,u), c) and outputs
(receipt, sid, ssid P;, Pj).

The decommitment phase:

e Upon receiving inputdpen, sid, ssid), P; proceeds as follows: If a tuplsid, ssid P;, Pj, x,r) was
previously recorded, the sends §id, ssid x, r) to P;. Otherwise P; does nothing.

e Upon receiving inputgid, ssid x, r), Pj proceeds as follows?; outputs épen, sid, ssid P;, Pj, X)
if a tuple (sid, ssid Pj, Pj, (t, u), c) with the same¢id, ssid P;, P;) was previously recorded and|it
holds thatx € {0, 1}¥, r € COIN, andc = ABM.enc®(pk, «(x); r). Otherwise Pj does nothing.

Figure 1: Framework for consturing UC commitment from ABM encryption

to adversaryA. ThenA sends taS; (u, c) along witht, with t # t*. S; computes<™= ABM.dec"¥(sk c) using sk
and sends messagetoNfunctionalityﬂ}com. Then if Adv opens g, ¢) correctly, for example, withx,r). S; sends
(t, open) to Fl oy Frcoy SENdsstored X to environmentZ.

In Hybrid Gamez2, the man-in-the-middle attack is as follo@sgives to simulatoS; message* along with tag
t*. S, computess* «— ABM.spl(sk t*) using sk, where ¢*,u*) € L, andc* « ABM.ench’“*)(x*) to send (¥, c*) to
adversaryA. ThenA sends taS; (u, c) along witht, with t # t*. ThenS, instead sends to functionality
Then if Adv opens ¢, c) correctly, for example, withx,r). S; instead sendgt, X) to
environmentZ.

We should prove that the above tés views are computationally indistinguishable, assuming that PRBM (gen,
ABM.spl) is unforgeable, but as mentioned above, the simulator uses theskdroth to decrypt ciphertext and to
computeu* andskcannot be divided into mutually-independent decryption and sampling keys. Nevertheless, we can
prove the statement as follows: LBD, denote the event in Hybrid Gam€l € {1, 2}) that the simulator receives a
fakeciphertext @, ) on tagt, that is, ¢, u) € L. If the event does not happe#,s views in both games are identical,
which means-BD; = —-BD,. Hence, the dierence ofZ’s outputs in both games is bounded byB®], where
BD := BD;1 = BD,. We then evaluate FBD] in Hybrid Game2, not in Hybrid Gamel, where the simulator does not
decrypt any ciphertext. Hence, the probability is bounded by the advantage of unforgeabABM{En, ABM.spl).

2
TMCOM'

2 2
Fracom: Fucom Sendsx to

8 Instantiations of ABME

8.1 ABME from DDH Assumption

We consider Waters signature [27] in a cyclic graquipped with no bilinear maand the DDH assumption holds
on the group. Leg) be a generator of a multiplicative gro@of prime orderm, where we assume th@tis efficiently
samplable. We let = g* (i = 1,2) andh; = ¢¥ (j = 0,1,...,«), wherexy, X2, Yo, Y1, ..., Y« € Z/qZ. We write
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t=(t,....t)e {0, 1} wheret; € {0, 1} (i € [«]). We lety(t)= yo + 2i_; tiyi (mod q) and defineH(t)= ho [T;_; hit‘, that

is, H(t) = g?®. We letS = {0, 1}* x G2. Then we define the set of Waters signature urgles (g, g1, g, H(-)) as

L = {(t,u) | (t, u) € {0, 1}* x Ly(t)} such that.y(t)= {(U, U) | I(x2, V) : Uy = §*; U = g72H(1)"; g2 = g*2}. We note that

as mentioned above, the Waters signature defined on a cyclic group on which the DDH assumption holds constructs a
PPRF. We then construct an extractable sigma protocal erhich turns out to be an ABME.

e ABM.gen(1¥): It generates, (X1, X2), and §fo, ..., Y.) independently and uniformly from the above domains.
It then computeg, g2, ho, ..., h,, and sets$, L) as above. It outputpk = (G, g,q, 1, 91,92, ho, ..., h,). and
sk= (pK, X1, X2, Y0, V1. - - - » Yi), Whered = Q(log).

e ABM.spl(sk t;V): It picks up at randonv«— Z/gZ, and computes, = g" andu; = gf(H(t))". It then outputs
u = (Uy, U).

o ABM.enc™(pk, x; (z 9)): To encrypt message € {0, 1}*, whered = Q(log«), it picks upz s— Z/qZ inde-
pendently, and then computés= giH(t)uy, a = g’g}, andb = g°u;. It outputsc = (A, a, b) as ciphertext.

o ABM.dec®™(sk c): To decryptc = (A, a,b), it searchex € {0, 1}* such that

aeb® (gt \*
A :

B utu;y(t)
It aborts if it cannot find suck in a-priori bounded tim@ = Q(24).

. ABM.coI(lt’”)(sk, V). It picks up at randonw, n« Z/qZ and compute$\ = gyH(t)", a = g“, andb = g¢’. It
outputsc = (A, a,b) andé = (sk t,u, v, w, n).

e ABM.coly(¢, X): To openc to x € {0, 1}4, it computesz = w — xx% modq ands =  — xvmodq and outputs
(z9).

Roughly speakingABM.enc runs the simulation algorithm of a canonical sigma protocolLowith message
(challenge)x andABM.col runs the real protocol of the sigma protocollowith witness &, v).

In the trap-door mode whem, (1) € L, we can consider a canonical sigma protocol so that the prover kneyws (
such thatu; = g’l‘ZH(t)", g2 = g%, andu, = g'. Then, the first message of the canonical sigma protocd\,ia, b),
whereA = gyH(t)", a = g, andb = g7 over randomly chose@, € Z/gZ. For any challenge € {0, 1}*, the answer
can be computed by= w — xx ands = 5 — xv. Itis verified asA = giH(t)u, a = g’g}, andb = g°u;.

In the decryption mode whern, (1) ¢ L, the first messageA(a, b) from the simulator for the above canonical
sigma protocol commits t& in the perfect binding manner. We now defiagen, vasa = g*, b = ¢’, andu, = g".

Then, X, is uniquely defined ag; = gxéH(t)V. If (A, a, b) can be opened witteg(s, X), it implies that
X 1

IoggA J [ X1 Y(t) X1X, + y(tv ][ z ]
w = 1 0 X2 S
n 0 1 Y X

Since {,u) ¢ L, X, # x2 and hence, the determinant of the matrix above is non-zerozag) is unique.
Notice thatxjw + y(t)7 — logy A = X1(X2 — X,)x. Sincegy® = uguy YO,

axlby(t) _ ( g)z(l )Xl

A Ut u\;Y(t)

Therefore, the decryptor can find secxet {0, 1}* in Q(2%) steps, wherd = O(log«).
Since ABM.gen, ABM.spl) composes a PPRF (under the DDH assumption), the proposed scheme is an instantia-
tion of ABMEs.

Theorem 8.1 The scheme as above is an ABME if the DDH assumption holds true.
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8.2 ABME from Damgard-Jurik with expantion factor O(1)

We propose anflcient ABM encryption scheme based on Damgard-Jurik public-key encryption scheme [12] (a
generization of Paillier public-key encryption scheme [26]).

Let IT = (K, E,D) be Damgard-Jurik (DJ) public-key encryption scheme, in whidhv) is a public-key and
(P, Q) is a secret-key where I = PQ be a composit number of large odd prim&and Q, andv > 1 be a
positive integer (where when= 1 it is equivalent to Paillier). Leg = (1 + N). To encrypt message € Zyv, one
computesE p(x; R)= g*RN’ (mod N¥*1) whereR « Zyw1. DJ scheme has the enhanced additively homomorphic
property as defined in Appendix C. Namely, for, X € Zny andRy, Ry € Zyw1, one can comput® such that
Epk(X1 + X2; R) = Epi(X1; R1) - Epk(X2; Re). Actually it can be done by computirig= g”RiR, (mod NV*1) wherey,

0 <y < N, is aninteger such that + xo = (X1 + X2) mod NY) + yNY.

Letgr = E(Xy;Ry), 92 = E(x2; R2), andh = (ho,...,h) wherehj € Zyw: with j = 0,1,...,«. Let us define
H(t)= ho [T, hi (mod N¥*1). Let us setS = {0, 1}* x (Zyw1)? andL = {(t, (ur, U)) [t € {0, 1} and @, u) € Ly(t)},
whereLy(t)= {(ur,u) [3(r, R, R) @ ur = Ep(r;R) anduy = Epk((X1 - X2); R) - (H(1))"}. We now provide the
description of our ABME construction:

e ABM.gen(1¥): It gets (pk, sK) generated by the key generator of the DJ encryption schemé, evhérepk =
(N,v) andsk = (pk, P, Q). It generatexy, xo « Zyv to chooseg; « Epk(X1) andgy « Epk(x2). It choosesh
from the above domains. It setS, () as above. It outputBK= (N, v, (S, L), 01, 02, h) andS K= (PK, (X1, X2)).

e ABM.spl(SK t; (r,R/)): It chooses random— Zys, and computes, = Ep(r; Ry) anduy = Epi((x1-X%2); Re)(H(1))".
It then outputsu = (ur, W).

o ABM.enctU)(x: (z 5 Ra, Ra, Ry)): TO encrypt messagee Zyy, it chooseg, s— Zyv, Ra, Ra, Ry « Zywt. It
then computes\ = giH(t)SuﬁRﬁv (mod N¥*1), a = E(z Ry) - g3, andb = E(s;Rp) - uf. It outputsc = (A, a,b) as
the ciphertext ok on (t, (U, W)).

o ABM.dec®U-W)(sk c): To decryptc = (A, a, b), it outputs

_ x1D(@) + y(t)D(b) - D(A)

= XXz — (D) - yOD(u) N

. ABM.coI(lt’(““”‘))(sk (r,R)): It picks up at randonw, n — Zyv andR),, Ry, R « Zyw1. It then computes =
g’H®)"(RYN', a= g“(RYN', ando = g"(R)N". Itoutputsc = (A, a,b) and¢ = (sk t, (Ur, Uy), T, w, 7, Ry, R, RY).

e ABM.coly(¢, X): To opencto x, it computesz = w — X% modNY ands = n— xr modNY. Then, it computea =
(w—x%—2)/NYandB = (n— xr — s)/NV. It computeRa, Ry, andR;, asR, F{ngl’H(t)ﬁ, R,R; %9, andR R *¢f’,
respectively. It outputsz(s, Ra, Ra, Ro), Which satisfyA = gfH(t)uR}" (mod N*1), a = E(z Ra) - g5, and
b=E(sRp) - ur.

ABM.col runs the real sigma protocol dnwith witness 6K (r, R;)). By construction, the trap-door mode works
correctly. On the contrarABM.enc runs the simulation algorithm of a canonical sigma protocol on langLagiéh
message (challengg) It is known thatZy,., is isomorphic tdZnv x Z (the product of a cyclic group of ordét’ and
a group of ordep(N)), and, for anyw < P, Q, elementg = (1 + N), whereN = PQ, has ordelN" in ZEM [12]. By
this, Dsk(a@) # & for everya € Z7 .., meaning that every;, u; in ZX ., can be decrypted to messageZjy. Notice

that (A a,b) satisfies ofZy, w1
{ D(A) ] { X1 Y(t) XX + Y(t)D(ur) ][ . ]
D@ (= 1 O Yo s |.

D(b) 0 1 D(ur) X

whereD(uy) = x1x,+Yy(t)D(ur). The determinant of the above matrkg(X,—x2), is non-zero if and only ift( (ur, W)) ¢
L. Therefore, the decryption mode works correctly.
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We assume DJ scheme is IND-CPANd the non-multiplication assumption (defined in Appendix C) holds true.
In addition, the image OEy is Z§,,; and hence ficiently samplable. ThereforeABM.gen, ABM.spl) is a PPRF
(See Theorem C.2). We have the following theorem.

Theorem 8.2 The scheme constructed as above is an instantiation of ABMEs if Damgard-Jurik public-key encryption
scheme is IND-CPA and the non-multiplication assumption defined in Appendix C holds.

The message sizeWiN| and the ciphertext size is ¢ 1)|N|. The expansion factor is théd((1 + 1/v)) = O(1) for
constanv > 1 in the sense of both communication and computation. The public-key size (i.e., the common reference
string size) i90(x?). In the forthcoming paper, we provide schemes \@tk) sized public-key.
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A UC framework and Ideal Commitment Functionality

The UC framework defines a probabilistic poly-time (PPT) environment macitigat oversees the execution of
a protocol in one of two worlds. In both worlds, there are an adversary and honest parties (some of whom may
be corrupted by the adversary). In tigeal world, there additionally exists a trusted party (characterizeitibgl
functionality¥) that carries out the computation of the protocol, instead of honest parties. reaihgorld, the real
protocol is run among the parties. The environment adaptively chooses the inputs for the honest parties, interacts
with the adversary throughout the computation, and receives the honest parties’ outputs. Security is formulated by
requiring the existence of an ideal-world adversary (simulafosp that no environmerif can distinguish the real
world where it runs with the real adversafyfrom the ideal world where it runs with the ideal-model simula$or

In slightly more detail, the task of honest parties in the ideal world is only to convey inputs from the environment to
the ideal functionality and vice versa (the honest parties communicate only with the environment and ideal functional-
ities). The environment may order the adversary to corrupt any honest party in any timing during the execution of the
protocol @daptive corruption), and it may receive the inner state of the honest party from the adversary. Therefore,
the ideal-world simulator must simulate the inner state of the honest party as if it comes from the real world, because
the honest parties in the ideal world do nothing except storing inputs to them). The inner state of the honest party
includes randomness it has used. We insist that honest parties may not erase any of itsrstatasure setting.

We denote bydeals g7 7 (k, 2) the output of the environmerg with inputz after an ideal execution with the ideal
adversary (simulatory and functionalityF, with security parameter. We will only consider black-box simulators
S, and so we denote the simulator By that means that it works with the adversaflyattacking the real protocol.
Furthermore, we denote yeal, # z(x, Z) the output of environmenZ with input z after a real execution of the
protocolr with adversaryA, with security parametex.

Our protocols are executed in the common reference string (CRS). model. This means that the plistogol
in a hybrid model where the parties have access to an ideal functioffglityhat chooses a CRS according to the
prescribed distribution and hands it to any party that requests it. We denote an executionsafch a model by
Hybr|dﬂrs (x,2). Informally, a protocolr UC-realizes a functionality ¥ in the ¢ hybrid model if there exists a
PPT S|mulat015 such that for every non-uniform PPT environm&haind every PPT adversag, it holds that

{ldealy g7 7 (K, 2)}eerv;ze(0,2) = {Hyb“d('tch .z (K Dheerzeioy-

The importance of the universal composability framework is that it satisfies a composition theorem that states that
any protocol that is universally composable is secure when it runs concurrently with many other arbitrary protocols.
For more detalils, see [7].

We consider UC commitment schemes that can be used repeatedly under a single common referenee string (
usable common reference striny The multi-commitment ideal functionalitfycom from [9] is the ideal function-
ality of such commitments, which is given in Figure 2.

FunctionalityFmcowm

Fmcom proceeds as follows, running with parti€y, .. ., P,, and an adversar§:

e Commit phase: Upon receiving inputdommit, sid, ssid P;, Pj, x) from P;, proceed
as follows: If a tuple ¢ommi t, sid, ssid .. .) with the samegid, ssid was previously,
recorded, does nothing. Otherwise, record the tupié, §sid P;, Pj, x) and send
(receipt, sid, ssid P;, P;) to Pj andS.

e Reveal phase: Upon receiving input dpen, sid, ssid from P;, proceed ag
follows: If a tuple (sid, ssid P;,Pj,x) was previously recorded, then sepd
(reveal, sid, ssid P;, Pj, x) to P; andS. Otherwise, does nothing.

Figure 2: The ideal multi-commitment functionality
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As in many previous works, the UC framework we use assumes authenticated communication. If it is not as-
sumed, our protocols is executedfigs and ¥,y hybrid models. For simplicity and conciseness, we simply assume
communication between parties are authenticated.

B Proof of Theorem 7.1

For simplicity, we assumg), 1} c MSP, without loss of generality, which enables us to remove the injective map
¢ {0, 1} — MSP from the scheme. In addition, we defihe= Ly for simplicity. The description of the simulator’s
task is described as follows:

The ideal-world adversary (simulator) S:

Initialization step: S choosesk, sk — ABM.gen(1¥) and set<RS to be pk (along with U, S)).

Simulating ideal functionality Fcrs: SinceS simulatesfcrs, every request (even from a honest party) to
achieve a common reference string comes,td returns the above-chos@RS to the requested party.

Simulating the communication with Z: Every input value thas receives froniZ is written onA’s input tape
(as if coming fromZ) and vice versa.

Simulating the commit phase wherP; is honest: Upon receiving fron¥ucowm the receipt messagedceipt, sid, ssid P;,
S generatess = ABM.spl(skt;v) so that {,u) € L, wheret = (sid, ssid P;, Pj), and computesc(¢) «
ABM.coI(lt’”)(sk V), namely,c is a fake ciphertext ont,(u). S sends $id, ssid (t,u), c) to adversaryA, as it

expects to receive fror;. S stores 6id, ssid P, Pj,t,c,&). If P; is uncorrupted and adversam sends

(sid, ssid (t,u),c) to S, as it expects to send 8, S runs the honest strategy Bf.

Simulating the decommit phase wherP; is honest:Upon receiving fron¥ucom the messagepen, sid, ssid P;, Pj, X),
S computes = ABM.col(¢, X) and sendsg(d, ssid x, r) to adversaryA. If P; is uncorrupted and adversa#y
sends §id, ssid x,r) to S, as it expects to send #;, S runs the honest strategy Bf.

Simulating adaptive corruption of P; after the commit phase but before the decommit phaseWhenP; is
corrupted,S immediately readP;’s stored valuegid, ssid P;, Pj, X), which value previously came fro@ and
was sent tdFycom, and then runs exactly the same as it does after it has receigen, 6id, ssid P;, Pj, ) in
the decommit phase for hondat

Simulating the commit phase when the committerP; is corrupted and the receiverPj is honest:Upon re-
ceiving (sid, ssid (t, u), ¢) from A, S decryptsx = ABM.dec®™(sk c). If the decryption is invalid, thesS sends
a dummy commitmentdommi t, sid, ssid P;, P}, ) to Fucom. Otherwise,S sends ¢ommit, sid, ssid P;, P}, X)
t0 Fumcom.

Simulating the decommit stage when the committeP; is corrupted and the receiverPj is honest: S runs
the honest strategy &; with A controlling P;.

Simulating adaptive corruption of P; after the commit phase but before the decommit phaseWhenP;
has been corrupted, simply sends<id, ssid (t, u), c) to adversaryA as if it comes fronP;.

We need to prove that the simulator described above satisfies that for&\arg everyA,

C .
{ldeals, o577 (K, D}cervze(0.1 z{Hyb”dZ}rS{, 2 (& Dervize(0,1y-

We now consider a sequence of the following games on which the probability spaces are identical, but we change
the rules of games step by step.

Hybrid Game 1: In this game, the ideal commitment functionality, denof(;};éOM, and the simulator, denoted
S1, work exactly in the same way &ucom and S do respectively, except fdhe case thatP; is honest In the
commitment phase in Hybrid GameﬁN}COM gives simulatoS; the committed value By a honest party; together
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with (receipt, sid, ssid P;, Pj). S1 then sets upt(u) € L in the same way a$ does (usingsk), but S; computes ¢
(without using sk) as e ABM.enct"Y(pk, x; r), by picking up r— COIN. When simulating the decommit phase or
simulating adaptive corruption &% before the decommit phas8; simply sends<id, ssid x,r) to adversaryA.

Since €, u) € L, ABM.enc is in the trap-door mode, which means that for ewesuch thau = ABM.spl(sk t; V)
and everyx € MSP, the first output ofABM.col(lt’“)(sk v) and ABM.enctY(pk, x) are statistically indistinguishable
even if the consistent randomness is revealed. Therefore,

S iy
{ldealy, .57,z (K, Dhcerrzeiony ~{Hybrid e a7 (K, 2)lcentzeioy-

Hybrid Game 2: In this game, the ideal commitment functional'ﬁyﬁCOM and the simulatoS,; work ex-
actly in the same way as the counterparts do in Hybrid Game 1, excegphidarase thatP; is corrupted and
Pj is honest in the commitment phase:n the commitment phase in Hybrid Game 2, wh&nreceives ({ u), c)
from P; controlled by adversaryd, wheret = (sid, ssid P;, Pj) andu € U, thenS, sends a dummy commitment
(commit, sid, ssid P;, Pj, €) to ﬂﬁCOM. In the decommit phase, whe$y receives $id, ssid X', r) from P; controlled
by adversaryA, S, ignores ifc = ABM.enc¥)(pk, x'; r); otherwise, it sendsopen, sid, ssid X') to Then,
ﬂﬁCOM replaces the stored valuewith value X and sendsrfeveal, sid, ssid P;, Pj, X’) to Pj andSo.

Let us defineBD, as the event that the simulator receivefake ciphertextc on (, u) from P; controlled by
adversaryA in Hybrid Gamel, wherel = 1,2. Remember that a ciphertexts called fake ifc is a valid ciphertext
(i,e, there exist a pair of a message and randomness consisten) waitt ¢, u) € L.

The rules of the hybrid games, 1 and 2, may change only vi&BenandBD> occur in each game, which means
that—-BD; = -BD, and thusBD; = BD». So, we use the same notatiBb to denote the event such that the simulator
receives a fake ciphertext from the adversary in the hybrid games, 1 and 2, neBelyBD; = BD>.

By a simple evaluation such that Ri[- Pr[C] < Pr[B] if Pr[A A =B] = Pr[C A —B], we have for fixedc andz,

2
7:MCOM'

Dlst(Hybrld ﬁCOM,Siﬂ’Z(x, 2), Hybrid (FﬁcomsS?’Z(K’ z)) < Pr[BD],

where the output off is (assumed to be) a bit.
We now show that PED] is negligible in«.

Lemma B.1 EventBD occurs in Hybrid game at most with probability ge*', where g denotes the total number
of A sending the commitments to honest parties efdienotes the maximum advantage of an adversary breaking
unforgeability of PPREABM.gen, ABM.spl).

Proof. We construct the following algorithnBy that takespk from ABM.gen and simulates the roles &>

and?—',jCOM perfectly, interactingZ andA, by having access tdBM.spl(sk -) as follows: In the case whenP; is
honest: In the commitment phase whegi sends ¢ommi t.sid, ssid P;, Pj, X) to TﬁCOM (via honestP;), By submits

t = (sid, ssid P;, Pj) to ABM.spl(sk -) to obtainu such that{,u) € L. ThenBg computes fake ciphertext «
ABM.enct¥(pk, x) as commitment in the same way8s(= S1) does. We note thatcan be computed withoskas
long as {, u) is given.In the case whereP; is corrupted and Pj is honest:In the commitment phase when corrupted
Pi controlled byA sends a commitmentt((), ¢) to S, as it expects to send to honéjt By simply plays the roles
of S andﬂﬁCOM. Later, in the opening phase when corrupRdaontrolled byA sends §id, ssid X', r) to S, as it
expects to send to honef, By simply plays the role oﬁﬁCOM.

We note thatS, usesskonly when it computes «— ABM.spl(sk t). in the commitment phase whéhis honest.
SinceBy may have access to orad&M.spl(sk -), By play the roles ofS, and identically, interacting withZ
andA.

We now construct an algorithfd,, wherey < [ga], that is the same a8 except that it aborts and outputs()
whenA generateg-th (in total) commitment ((u), c) to a honest party. Here,, denotes the total number A
sending the commitments to honest parties. We note that

2
7:MCOM

Q7
Pr[BD] < ) Pr{(t,u) « Bi(pk)*®M P2 (1) € L]
i=1
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The probability ofB; outputting (, u) € L is bounded by". Therefore, we have BP] < qz€e*’. o
By this, we have

.1 E s 42
{Hybrid Tnﬁcowsf{vz(K’ 2)}een:zefo.1y = {Hybrid ﬁ%cows?’Z(K’ 2) bee:z(0,1)* -

Hybrid Game 3: In this game,‘i—’ﬁCOM works exactly in the same way ﬁcowr S3 works exactly in the same
way asS, except forthe case thatP; is honest in the commitment phaseln the commitment phase when receiving
(receipt, sid, ssid Pj, Pj, X) from T,SCOM, S3 picks up u— U at random instead of generating < ABM.spl(sk t)
so that (,u) € L, wheret = (sid, ssid P;, P;). It then computes = ABM.enc®(pk, x;r). Note thatx is given
from the ideal commitment functionality. We note that in Hybrid Gam&2makes use ofkonly when it computes
u <« ABM.spl(sk t), whereas in Hybrid Game &3 does not usesk any more. With an overwhelming probability,
(t,u) € S\L.

The computational dierence of the views of environme@@ between these two games is bounded by pseudo-
randomness ofABM.spl, because we can construct a distinguisBeusing Z and A as oracle with having access
to either of ABM.spl(sk -) or U(-), where oracldJ(t) returns randomu € U on queryt, but if ABM.spl(sk -) is
deterministic, thetJ (-) returns the same ont if it was previously queried. Wheb have access tABM.spl(sk ), it
simulates Hybrid Game 2; otherwise, it simulates Hybrid Game 3. Therfore, we have:

.2 c 43
{Hybrid TI\%COM’S?’Z(K’ 2) been:zefo,1y = {Hybrid ﬁioows?’z(,(’ 2)}ken:ze(0,1)* -

Game Hybridf;z: The common reference string functionalifizrs parameterized byABM.gen is given in
Figure 3. The ideal CRS functionalif§icrs is replaced with byS3’s task simulatingFcrs, which is identical to the

Functionality‘FCRs

Fcrs parameterized bBM.gen proceeds as follows:

e Fcrs runs Pk, sk «— ABM.gen(1¥); and setRS to bepk. Upon receiving message
(common-reference-string, sid) with any sid, #crs returns the sameRrsS to the
activating party.

Figure 3: The common reference string functionality

task of the ideal functionality. Other tasks made&yis replaced with those by the corresponding parties in the
real world in theFcrs model. It is obvious from construction that both corresponding tasks between two worlds are
identical. We further observe thﬁﬁCOM simply convey their input from a party to a party. Therefore, we can remove
the ideal commitment functionality. Hence, we have

. —_— 1 ?CI'S
{Hybrldsfﬁcom’S?’Z(K’ D een:ze(0.1) = {Hyb”dﬂ’g{,z(’(, 2) bee:ze(0,1)* -

Therefore; in the end, we have

C .
{ldeals, .57z (K, D}cervze(0ay ~ {Hybrld:}fi 2 (K D}ervize(,1y-

C PPRFs from Additive Homomorphic Encryption
Very recently in [21], Hofheinz has introduced a new assumption called the non-multiplication assumption for Damgard-

Jurik public key encryption [12]. We propose a generalization of this assumption applied to any additive homomorphic
public key encryption scheme.
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LetIl = (K, E, D) be a public-key encryption scheme in the standard sense. For gikesk( generated b¥K (1¥),
let X be the message space dhle the coin space, with respectsgio LetY be the image oE, i.e.,Y = Ep(X; R).
Here we assume that is a commutative finite ring equipped with an additive operatioand an multiplication
operationx. We also assum¥ is a finite Abelian group with« operation.

We say thatl is an additively homomorphic public key encryption scheme if for eyargenerated b, every
X1, X2 € X, and everyy, r; € R, there exists € Rsuch that

Epk(X1; r1) * Epk(X; r2) = Ep(X1 + X2; 1).

In particular, we say that that is enhancedadditively homomorphic i1 is additively homomorphic and e R
must be éiciently computable, givepk, and (i, X, r1, r2).
The mapping above is homomorphic in the mathematical sense — Napg(y) * - - - * Epk(Xn) € Y for every
z

ne Z and everyxy, ..., X, € X. We writec* € Y, forc e Y andz € Z, to denotec % - - - % C.

What we want to assume is thdtis additively homomorphic, but not equipped with arffi@ent multiplicative
operatione such thatEpi(x1) ¢ Epk(X2) = Epk(X1 X X2) for any givenEpk(x1) andEpk(x2). Formally, we define this
property as follows:

Assumption C.1 (Non-Mult Assumption) LetII be an additively homomorphic public key encryption scheme along
with a ring (X, +,x) as the message space w.r.t. pk and a gr¢¥pr) as the image oEp. We say that the
non-multiplication assumption holds am if for every non-uniform PPT algorithm AAva”'t(K) = negl(x), where
AdVEUIt(K) =

Pr{(pk, sk « K(1%); c1,c2 « Y; ¢ « A(pk, C1, C) : Dsk(C") = Dsk(C1) - Dsk(C2)].

We now construct a PPREBEéngp, Spl). LetIl = (K, E, D) be an enhanced additively homomorphic public-key
encryption scheme. LeX, R, andY be the same as mentioned above. In addition, let gréup)(be cyclic, i.e.,
(X, +) =~ Z/nZ for some integen. Let Xy, Xo € X. Letgs € Epk(X1) andgs € Epk(X2). Lethg,hy,...,he € Y. Letus
defineH(t)= ho * [T, 'l € Y, wheret = (t[1],...,t[«]) € {0, 1}* is the bit representation of Let us defineL(t)
such that

Lu(t) = {(tr, ) € Y?|r = Dgi(Ur) andxq x Xz = DU x H({H)™)).

We letS = {0, 1} x Y2 andL = {(t, (ur, u)) |t € {0, 1}* and {r, W) € Ly(t)}.
A PPRF Gengyp, Spl) is constructed as follows:

e Gen(1): It runs K(1¥) and obtain pk, sK). It generatesq, X « X andhg, hy,...,h, « Y uniformly. Set
d = X1 X X2 € X. It generateg); < Epk(x1) andgy < Epk(X2). It outputsPK= (pk, g1, 92, ho,...,h.) and
SK= (PK,d).

e SpI(SKt;r): It picks upr « X, generates, « Ep(r) andu « Epc(d) x H(t)", and then outputs = (ur, W).

Theorem C.2 LetII be an enhanced additively homomorphic public-key encryption scheme mentioned above. Sup-
pose thafl is IND-CPA and the non-multiplication assumption holddbrirhen, the abovéGensy, Spl) is a PPRF.

Proof. The proof of pseudo randomness is almost straight-forward: Suppospkisagenerated b (1¢). Let

S be a simulator such that it breaks IND-CPAIGfusing A, whereA is an adversary to output 1 if it determined
that it has had access to a PPRF. We $uon pk. It picks up at randonx;, Xo, X « X, hg, hy,..., h, < Y, and sets
01 < Epk(x1) andge « Epk(x2). It sends Ko, my) to the challenger, whengg = x, andm, = X3 x X € X. It then
receivesE ,(my), whereb is a random bit chosen by the challenger. It then runs advefsan/PK = (pk, g1, g2, h),
whereh = (hg, hy, ..., h,). For any query, the simulator picks up random— X and returnsi;, u;) such that, = ¢'
andu; = Ep(mp) x (H(1))". ur = Epi(X1 X X2) % (H(t))". Finally, the simulator outputs the same bit thadutputs.
Note that wherb = 0, (U, U;) is distributed uniformly oveY?2. On the other hand, whdn= 1. SinceS outputs the
same bit thai\ outputs,Adv'gd‘cpaS(K) =Pr[S=1|b=1]-Pr[S=1|b=0]=Pr[A=1|b=1]-Pr[A=1|b = 0]
= AdVpprtA(K). Therefore AdvppA(k) = Advii* P2 S(k) = negl(x).
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The proof of unforgeability on this scheme is substantially similar to that in [4, 27, 2]. We provide a sketch of the
proof.

Let G be the original unforgeability game, in whidPK = (pk, 01,02, h) « Gen(1¥); A takesPK, queries,

., Mg, to Spl(sk -), and tries to outputy along withu € Ly(mp) andmg ¢ {my, ..., my}. Let us denote by
the advantage ok in G.

In gameG;, we maodify the choice oh as follows: Recall now that¥X, +, x) is a finite commutative ring such
that (X, +) ~ Z/nZ for some integen. Let Gen; be the generator in gant®,. Leto = O(g—;), whereqs denotes the
maximum number of queries submits taSpl. Gen; picks up @k, g1, g2) asGen does. It then picks upg, a, ..., a,

«— Z/nZ. It picks upys, .. .,yK [0,---,(@—21)] andyp € [O,...,«(0 — 1)]. It finally outputsPK = (pk, g1, g2, h), by

settingh; = g""*g2 fori € [0,---,«]. Since K, +) =~ Z/nZ andE is additively homomorphicY c Z/nZ. Hence, the
distribution ofh is identical to that in the previous game, and this change is conceptual. Therefore, the advantage of
Ain Gy, ¢, is equal taeg.

Fort € {0, 1}%, leta(t) = ag + X t[i] - & (modn) andy(t) = yo + X t[i] - yi € Z. Then we havéd(t) = a(t)gy(t)

Letyy : ({0, 1 ¥)9*1 — {0, 1} be a predicate such thay(t) = 1 if and only ify(to) = O and/\qsly(t) # 0, where
t=(to,....tg) € {0, 1 K)q8+1 Let Q(t) be the event that at the end of gafg adversaryA queriesty, ..., t; and
outputsty as the target message, on whislries to generate the output 8pl(sk tp).

We now borrow the following lemmas due to [2].

Lemma C.3 [2]. Let Q(t) be the event in gameGnentioned above. Then,

PrQ(t) A (yy(t) = 1)] = PriQ(t)] Prlyy(t) = 1].
Here the probability is taken over &eny, andSpl.

Lemma C.4 [2]. Let n,d,« be positive integers, such tha® < n. Let y,V1,...,Y, be elements in the domains
mentioned above and lefty = yo + >  t; - y; € Z. Then, for everygt ..., t, € {0, 1}¥, we have
1 ( qs 1

KO-1)+1 2) <Py =1< KO-+ 1

where the probability is taken over random varialgle (yo, Y1, .. ., Y) uniformly distributed over the specified domain
mentioned above.

Now, in gameG, we modify the challenger as follows: When the event thgtt) # 1 occurs in gamé,, the
challenger aborts the game. Lsstbe the advantage @& in gameG,. It immediately follows from the above lemmas
thatey - ming{Pry[yy(t) = 1]} < 2.

In gameGs, the challenger is giverpk, g1, g2) wherepk « K(1¥) andgl, 02 < Y. It picks upaandy as in game
_am

G». WhenA querieg, it picks upr’ « X (= Z/nZ) and selects, « g1 5 * Epi(r’) andug « g, x Ep(0)* (H(t)".
Letr = Dg(uy)= —y’zl) +r’. Then, it holds that foy(t) # 0, there isv € Rsuch thaty = Epk(X1 X X2; V) * (H(t))",
because the decryption of the righthand side ursités

ﬁ_i_r/): ()

y(t) vt @O +y0x) T

X1z + (a(t) + Y(OX)r = Xa%p + (a(t) + Y(O)%) - (-

a(t)
Therefore, the righthand side gém * Epk(0;V) % (H(t)" for somev € R. This is substantially equivalent to the
technique of all-but-one simulation technique in [4]. As in ga@e the simulator always abort #fy(t) = 1 holds.
Hence, the advantage Afin this game, denotesk, is equivalent ta.

In the final game, we construct a simula®that breaks the non-multiplication assumption. Lygk 6K « K(1¥)
andcy, ¢ « Y. Stakes Pk, c1, cp) as input. Then, it sety := ¢ andg, := ¢, and runs the challenger and adversary
Ain gameGs on (pk, 01, 92)-

We note that wher\ outputs (I (to), Ut(to) € Lu(to) in this game, it holds thdDg(ui(to)) = X1 X X2 + 1 - (a(tg) +
Y(to)X2) - r wherer = Dgi(Ur (to)) € Z/nZ andr - (a(to) + y(to)Xx2) denotesy;_; (a(to) + y(to)x2). Sincey(to) = 0, S now
have

Ur(to) = Ep(Xa X X2) * (ur)*®).
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Finally, S outputsE pk(x1 x X2) by computing—“;((fg)). By construction, it is obvious that the advantag&aé equivalent
U
to e3.

D Fully-Equipped UC Commitment from Trap-Door Permutations

If we can construct an ABME from trap-door permutation (family), it is done, but we have no idea how to construct
it. We instead construct weak ABME from the same starting point. The onlyfi¢irence of weak ABME from
standard ABME is that whert,{) € L, the distribution ofABM.col on (t, u) is not statistically butomputationally
indistinguishable from that ofBM.enc. More precisely,

{(ABM.col{(sk V)[1].  ABM.col, ( ABM.col{"(sk v)[2], x))}
< {(ABM.enc(t’”)(pk, X 1), r)}

for x e MSP, (t,u) € L, and witnessgk v) of (t,u) € L.

We construct a weak ABM encryption scheme from trap-door permutations as follows.

LetF = {(f,fH|f : {0,1) = {0,1}"},ar be a trap-door permutation family and ket {0, 1} — {0, 1} be
a hard-core predicate for a trap-door permutatiorLet IT = (K, E, D) be the Blum-Goldwasser cryptosystem [3]
that is a semantic secure public key encryption scheme, derived from the following encryption aldgerithm) =
FEEDE) | (xe@b(n) 1] - ... 1| x@b(fR(r))), where i, .. ., X, % € {0, 1}, denotes the bit representationof € {0, 1}
denotes inner randomness of this encryption &fftidenotesk times iteration off. We note that this public key
encryption scheme isblivious samplablavith respects to pseudo-ciphertext sp#@el}** [8], namely,{Et(x)} N
{U..x} for every message € {0, 1}, whereU,.x denotes a uniform distribution ové®, 1}**K. Let us denote by
F: {0, 1} x {0, 1}* — {0, 1} a pseudo-random function (constructed frérm the standard way).

e ABM.gen(1¥): It draws two trap-door permutationd, f 1) and (f’, f’~1), over{0, 1} uniformly and indepen-
dently from¥ . It then construct the BG encryption scheiie= (K, E, D) with public key f and secret key
f~1. It also construct the BG encryption schefite= (K’, E’, D’) with (f’, f"~1) and pseudo random function
F from f’. It then picks up randors < {0, 1} and encrypt it t&@ = E’(s; r). It outputspk= (F,IL,IT’, ¢) and
sk= (pk, %, (s r)). We defineS = {0, 1}* x {0, 1}*.

e ABM.spl(sk t): It takes tag € {0, 1} and outputal = F¢(t). We define

Li=Lpk={(t,u)l3(sr)s.t. € =E'(sr)andu = F(t)}.

o ABM.enc™(pk, x): It takes ,u) and one bit message € {0, 1} along with pk, and first obtains a grap®
(of g nodes) so that finding a Hamiltonian cycle@is equivalent to findingg r) such thatu = F(t) and
€ = E’(s;r), by using the NP-reduction. (If suck, () does not exist for givert,(u), G so obtained does not
have a Hamiltonian cycle.) This encryption procedure is the same as the commitment described in [9], called
the adaptive Hamiltonian commitment, except that in our scheme a commitment is encrypted under a public key
f independent oF andIT’, and an encrypted permutation or a pseudo ciphertext is also sent to the verifier.

— Toencrypt 0, it picks a random permutatior (71, . . ., mq) of g nodes, where; € {0, 1}'°99, and encrypts
everyn; and all the entries of the adjacency matrix of the permutated giapht(G). It outputs{A}ic[q
and{B j}i je(q, Such thath, = E¢(m) (€ {0, 1}<!°99) and B ; = E¢(aj) (€ {0, 1)**1) wherea je {0, 1}
denotes thei( j)-entry of the adjacency matrix &f.

— To encrypt 1, it pickgg random & + logq)-bit string A; (i € [q]) (corresponding to a pseudo ciphertext
of m). It then chooses a randomly labeled Hamiltonian cycle, and for all the entries in the adjacency
matrix corresponding to edges on the Hamiltonian cycle, it encrypts 1's. For all the other entries, it picks
up randonk + 1-bit strings (corresponding to pseudo ciphertexts of the entries). It outfgitsg and
{Bi,j}i,je[q» Where a Hamiltonian cycle is embeddedBj j}i jc[q, but the other strings are merely random
strings.
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o ABM.dec®™(sk c): To decryptc = ({Ailierqp» {Bi.jli,je[q), it firstly decrypt all elements to retrieveand matrix
H. Then it checks thatl = #(G). If it holds, it outputs O; otherwise, 1.

° ABM.coI(lt’“)(sk): It first obtains a grapfs (of g nodes) so that finding a Hamiltonian cycleGris equivalent to
finding (s,r) such thatu = F(t) ande = E’(s;r), by using the NP-reduction. It picks a random permutation
n = (my,...,mqg) of g nodes and computdsd = 7(G). It encrypts underf all ni’s and all the entries of the
adjacency matrix of the permutated gragh= 7(G). It outputsc =({Ai}i¢[q, {Bi,j}i,je[qq) @and the Hamiltonian
cycle of G, denoted’, where¢ = (skt,u, Z, x).

e ABM.colx(¢, X): If x = 0, it openr and every entry of the adjacency matrix, otherwise#f 1, it opens only the
entries corresponding to the Hamiltonian cycle in the adjacency matrix.

Then, we apply this weak ABME to our framework (Fig. 1).

Theorem D.1 The scheme in Fig.1 obtained by applying the above weak ABME UC-securely realizBgcthe
functionality in theFcrs-hybrid model in the presence of adaptive adversaries in the non-erasure setting.

Proof. The only diference from the proof of Theorem 7.1 is when we compare the game of the ideal world

with Hybrid Game 1. In the proof of Theorem 7.1, the outcome fi&BM.col is statistically indistinguishable from

the outcome fromABM.enc in the trap-door mode when, (i) € L. When using a weak ABME, the fiierence is
computational. Hence, we need to construct a polynomially bounded distinguisher that tries to distinguish the two
games where we cannot gigkto the distinguisher because it includes witnesg,af)( while the distinguisher should

be able to decrypt valid ciphertexts generated by the adversary. Fortunately, in this constekatiam be divided

into (I1, 1) and (T’, €, (s,r)), where the former includes the decryption key and the latter includes the witness of
(t,u). In addition, both are independently generated. Therefore, we can give the distinguishdi,dni¥),(which

suffices to decrypt a valid ciphertext, and do not givélt, €, (s, r)) in order to distinguish the outcome froABM.col

from that ofABM.enc. By this, we can conclude that the views of the environment in both games are computationally
indistinguishable. W

We note that if the common reference string must strictly come from the uniform distribution, we require trap-
door permutations with dense public descriptions. This construction does not require non-interactive zero-knowledge
proof systems. So, it is far morgheient than the previous fully-equipped UC commitment scheme from trap-door
permutation [9].
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