
All-But-Many Encryptions:

A New Framework for Fully-Equipped UC Commitments

Eiichiro Fujisaki

NTT Secure Platform Laboratories
fujisaki.eiichiro@lab.ntt.co.jp

Abstract

We present a general framework for constructing non-interactive universally composable (UC) com-
mitment schemes that are secure against adaptive adversaries in the non-erasure model under a re-usable
common reference string. Previously, such “fully-equipped” UC commitment schemes have been known
only in [CF01, CLOS02], with a strict overhead of O(κ); meaning that to commit λ bits, the communi-
cation and computational costs strictly require O(λκ), where κ denotes the security parameter. Efficient
construction of a fully-equipped UC commitment scheme is a long-standing open problem. We introduce the
notion of all-but-many encryption (ABME), and prove that it is a translation of fully-equipped UC com-
mitment in the primitive level. We propose a compact ABME scheme from the DCR based assumptions
and thereby the first fully-equipped UC commitment scheme with optimal expansion factor Ω(1) in commu-
nication and computation. We also construct a ABME scheme from the DDH assumption with overhead
O(κ/log κ). We further present a fully-equipped UC commitment scheme from a weak ABME scheme
under the general assumption (where trapdoor permutations exist), which is far more efficient than the
previous work [CLOS02] under the same assumption.

As a side result, we present an all-but-many lossy trapdoor function (ABM-LTF) [Hof12] from our
DCR-based ABME scheme, with a better lossy rate.

Keywords: All-but-many Encryptions; non-interactive, non-erasure, and adaptively UC secure com-
mitment schemes in a single, global, and re-usable common reference string; and all-but-many lossy trapdoor
functions.

1 Introduction

1.1 Motivating Application: Fully-Equipped UC Commitments

Universal composability (UC) framework [Can01] guarantees that if a protocol is proven secure in the UC
framework, it remains secure even if it is run concurrently with arbitrary (even insecure) protocols. This
composable property gives a designer a fundamental benefit, compared to the classic definitions, which only
guarantee that a protocol is secure if it is run in the standalone setting. UC commitments are an essential
ingredient to construct high level UC-secure protocols, which imply UC zero-knowledge protocols [CF01,
DN02] and UC oblivious transfers [CLOS02], thereby meaning that any UC-secure two-party and multi-
party computations can be realized in the presence of UC commitments. Since UC commitments cannot
be realized without an additional set-up assumption [CF01], the common reference string (CRS) model is
widely used. A commitment scheme consists of a two-phase protocol between two parties, a committer
and a receiver. In the commitment phase, a committer gives a receiver the digital equivalent of a sealed
envelope containing value x, and, in the opening phase, the committer reveals x in a way that the receiver
can verify it. From the original concept, it is required that a committer cannot change the value inside the
envelope (the binding property), whereas the receiver can learn nothing about x (the hiding property) unless
the committer helps the receiver opens the envelope. Informally, a UC commitment scheme maintains the
above binding and hiding properties under any concurrent composition with arbitrary protocols. To achieve

1

this, a UC commitment scheme requires equivocability and extractability. Informally, equivocability of a UC
commitment scheme in the CRS model can be interpreted as follows: An algorithm (called the simulator) that
takes the secret behind the CRS string can generate an equivocal commitment that can be opened correctly
to any value. On the other hand, extractability can be interpreted as the simulator can correctly extract the
contents of any valid commitment generated by any adversarial algorithm, even after the adversary received
many equivocal commitments. Several factors as shown below feature UC commitments:

Non-Interactivity. If an execution of a commitment scheme is completed, simply by sending each one
message from the committer to the receiver both in the commitment and opening phases, then it is called
non-interactive; Otherwise, interactive. From the practical point of view, non-interactivity is definitely
favorable – non-interactive protocols are much easier to implement and more resilient to real threats such
as denial of service attacks. Even from the theoretical viewpoint, non-interactive protocols generally make
security proofs simpler against adaptive adversaries.

CRS Re-usability. The CRS model assumes that CRS strings are generated in a trusted way and given
to every party. From the practical point of view, it is very important that a global single CRS string can
be fixed beforehand and it can be re-usable in unbounded times of executions of cryptographic protocols.
Otherwise, a new CRS string must be set up in a trusted way every time when a new execution of a protocol
is invoked.

Adaptive Security. If an adversary should decide to corrupt parities only before the protocols start,
it is called a static adversary. On the other hand, if an adversary can decide to corrupt the parties at any
point in the executions of protocols, it is called an adaptive adversary. The attacks by adaptive adversaries
are more realistic in the real world. So, adaptive UC security is desirable.

Non-Erasure Model. When a party is corrupted, its complete inner state is revealed, including the
randomness being used. Some protocols are only proven UC-secure under the assumption that the parties
can securely erase their inner states at any point of an execution. However, reliable erasure is a difficult task
on a real system. So, it is desirable that a non-erasure protocol is proven secure.

Previous Works Canetti and Fischlin [CF01] presented the first UC secure commitment schemes. One
of their proposals was “fully-equipped” – non-interactive, adaptively secure, and non-erasure under a single
re-usable common reference string. By construction, however, the proposal strictly requires O(κ) overhead,
meaning that, to commit to λ-bit secret, the UC commitment scheme requires O(λκ) communication bit and
O(λκ) computational cost. Canetti et al. [CLOS02] also proposed another fully-equipped UC commitment
scheme only from trapdoor permutations. However, it is constructed in the same framework as in [CF01]
and hence, expansion factor O(κ) is still unavoidable.

So far, these two have been the only known fully-equipped UC commitment schemes. The known
subsequent constructions of UC commitments [DN02, DG03, CS03, NFT12, Lin11, FLM11] have improved
efficiency, but sacrifice at least one or a few requirements 1.

Efficient construction of a fully-equipped UC commitment scheme is a long-standing open problem.

1.2 Our Contribution

We introduce a special tag-based public key encryption scheme (Tag-PKE) that we call all-but-many encryp-
tions (ABMEs), and prove that it implies a fully-equipped UC commitment scheme. We provide a unified
framework for constructing ABMEs. Our main result is the first fully-equipped UC commitment scheme
with optimal expansion factor Ω(1) from our DCR-based ABME scheme. We also present a fully-equipped
UC commitment scheme under the general assumption (where the trapdoor permutation exists), more ef-
ficient than the prior construction [CLOS02]. As a side result, we present an all-but-many lossy trapdoor
function (ABM-LTF) [Hof12] from our DCR-based ABME scheme, with a better lossy rate.

1Only [NFT12] and [FLM11] satisfy all but one. [NFT12] does not satisfy CRS re-usability, whereas [FLM11] does not
support non-erasure.

2

1.2.1 Our Approach: All-But-Many Encryption and Idea of Construction

As discussed above, UC commitment schemes should simultaneously satisfy equivocability and extractability.
In an ABME scheme, a secret-key holding user (the simulator in the UC framework) can generate a fake
ciphertext, which can be opened to any message with consistent randomness. On the other hand, it must
be difficult for a user without the secret key (the adversary in the UC framework) (1) to distinguish a fake
ciphertext from a real (honestly generated) ciphertext, even after the message and randomness are revealed,
and (2) to produce a fake ciphertext (on a fresh tag) even given many fake ciphertexts.

To consider such schemes, we first divide its functionality into two primitives, called probabilistic pseudo
random function families (PPRF) and extractable sigma protocols (extΣ). The former is a kind of a probabilistic
version of pseudo random function families in the public parameter model. The latter is a special sigma
(i.e., canonical 3-round public-coin HVZK) protocol [CDS94] with some extractability. The concept of
extractable sigma protocol is not completely new, which has been already used in [Fuj12], where the author
informally introduced a weak version of extractable sigma protocol to obtain simulation sound trapdoor
commitments [GPY03, MY04, Gen04]. In this paper, we use new (strong) extractable sigma protocols in a
different framework. If two primitives can be successfully combined, an ABME scheme is constructed. We
discuss more in the following.

Probabilistic Pseudo-Random Function Families (PPRFs). A PPRF is a kind of a probabilistic
version of a pseudo random function in the public parameter model. Let PPRF = (Genspl,Spl) be a pair of the
following two algorithms: Genspl(1

κ) generates a pair of public-key/seed (pk, w), and Spl is a PPT algorithm
that takes (pk, w, t) to output u ← Spl(pk,w, t). Let us define Lpk(t) := {u|∃(w, v) : u = Spl(pk, w, t, v)}.
Informally, a PPRF requires that (a) u looks pseudo-random on any t and (b) it is infeasible for any adversary
to sample u∗ from some super set L̂pk(t

∗) on any fresh t∗, such that Lpk(t
∗) ⊆ L̂pk(t

∗), even after it
has access to oracle Spl(pk,w, ·). For instance, PPRF is constructed by using pseudo random function
family F = {(Fi)i∈Iκ}κ∈N and semantically secure PKE Π = (K,E,D) [GM84], where Genspl(1κ) picks up
(pke, ske) ← K(1κ), and i ← Iκ to outputs pk = (pke,Epke(i; r)) and w = (i, r), and Spl(pk,w, t) outputs
Fi(t). We can also obtain a PPRF scheme by applying Waters signature scheme [Wat05] to an algebraic
structure equipped with no bilinear map. We will present more instantiations in the subsequent sections.

Extractable Sigma Protocols. An extractable sigma protocol is a special sigma protocol associated
with a language-generation algorithm and a decryption algorithm. Recall the sigma protocols [CDS94]. A
sigma protocol Σ on NP language L is a canonical 3-round public coin interactive proof system such that
the prover can convince the verifier that he knows the witness w behind common input x ∈ L, where the
prover first sends commitment a; the verifier sends back challenge (public-coin) e; the prover responds with
z; and the verifier finally accepts or rejects the conversation (a, e, z) on x. A sigma protocol is associated
with a simulation algorithm simΣ that takes x (regardless of whether x ∈ L or not) and challenge e, and
produces an accepting conversation (a, e, z) ← simΣ(x, a, e), without witness w. It is guaranteed that, if
x ∈ L, the distributions (a, e, z) produced by simΣ(x, a, e) on random e is statistically indistinguishable from
the transcript generated between the honest prover and the honest verifier (called honest-verifier statistically
zero knowledge (HVSZK)). If x 6∈ L, for every a, there is unique e if there is an accepting conversation
(a, e, z), which is called special soundness.

In an extractable sigma protocol extΣ = (Genext,Σ,Dec), we require the following two more algorithms:

• Genext is a language-generation algorithm that takes 1κ and produces a pair of public/secret keys,
(pk, sk), where pk determines two disjoint languages Lpk and Lext

pk , i.e., Lpk ∩ Lext
pk = ∅, such that the

sigma protocol Σ works on Lpk and decryption algorithm Dec works on Lext
pk .

• Dec is a decryption algorithm that takes (sk, x, a) and always extracts challenge e if x ∈ Lext
pk such that

there is z such that (a, e, z) is an accepting conversation on x. We note that e is uniquely determined
when x 6∈ Lpk, due to special soundness; Hence the decryption algorithm is well defined.

Construction of ABMEs. We can construct an ABME scheme if there is an extractable sigma protocol
on Lpk derived from PPRF. More precisely, if, for (Lpk, L

ext
pk) generated by Genext, Σ works on Lpk, Dec works

on Lext
pk , and Condition (b) of PPRF holds on L̂pk := U ′pk\Lext

pk , where U ′pk denotes the entire set, then we

3

can construct an ABME scheme. We convert an extractable sigma protocol into an ABME scheme as
similarly as [BMO90, IOS94] have converted a sigma protocol into an instance-dependent commitment. To
encrypt message e on tag t, a sender picks random u, runs simΣ on instance (t, u) with challenge e, to get
(a, e, z)← simΣ(pk, (t, u), a), and finally outputs (t, u, a). Due to Condition (b) (unpredictability) of PPRF,
it holds that (t, u) ∈ U ′pk\L̂pk with an overwhelming probability, even if u is maliciously chosen. Then, e
is uniquely determined given ((t, u), a), as long as an accepting conversation (a, e, z) exists on (t, u). By
our precondition, we can decrypt (t, u, a) using sk, as e = Dec(sk, (t, u), a) because (t, u) ∈ Lext

pk . On the
other hand, a fake ciphertext on tag t is produced using (w, v) as follows: one sets u := Spl(pk,w, t; v), with
random v, where (t, u) ∈ Lpk, and computes a, as similarly as an honest prover computes the first message
on common input (t, u) with witness (w, v). To open a to e, he produces the third message z in the sigma
protocol. It is obvious by construction that he can open a to any e because (t, u) ∈ Lpk.

How to Construct Extractable Sigma Protocols Although sigma protocols (with HVSZK) exist on
many NP languages, it is not known how to extract the challenge as discussed above. The following is
our key observation to obtain such protocols. Sigma protocols are often implemented on Abelian groups
associated with homomorphic maps, in which the first message of such sigma protocols implies a system of
linear equations with e and z. Hence, there is a matrix derived from the linear systems. Due to completeness
and special soundness, there is an invertible (sub) square matrix if and only if x 6∈ Lpk (provided that the
linear system is defined in a finite field). Therefore, if one knows the contents of the matrix, one can solve
the linear systems when x 6∈ Lpk and obtain e if its length is logarithmic. Suppose for instance that Lpk is
the language of DDH, which does not form a PPRF, but a toy case to explain how to extract the challenge.
Let (g1, g2, h1, h2) 6∈ Lpk, meaning that x1 6= x2 where x1 := logg1(h1) and x2 := logg2(h2). The first message
(A1, A2) of a canonical sigma protocol on Lpk implies linear equations(

a1

a2

)
=

(
1 x1

α αx2

)(
z
e

)
where A1 = ga11 , A2 = ga22 , and g2 = gα1 . The above matrix is invertible if and only if (g1, g2, h1, h2) 6∈ Lpk.
We note that e is expressed as a linear combination of a1 and a2, i.e., β1a1 + β2a2, where the coefficients
are determined by the matrix. Therefore, if the decryption algorithm takes (α, x1, x2) and the length of e is

logarithmic, it can find out e by checking whether ge1 = Aβ11 A
β2
2 or not. In a more realistic case when a partial

information on the values of the matrix is given, the decryption algorithm can still find logarithmic-length e
if the matrix is made so that e can be expressed as a linear combination of unknown values – the unknown
values do not appear with a quadratic form or more degree of forms in the equation.

In some case, the decryption algorithm might be luckily capable of inverting homomorphic maps such
as f(a) = ga, using trap door f−1. It can then obtain (a1, a2) as well as the entire values of the matrix
and hence extract the entire (polynomial-length) e. This corresponds to our DCR based implementation.
However, the corresponding linear system is defined not on a finite field but on a finite ring, such as Znd .
In that case, there is a super set of Lpk, say L̂pk, such that the underlying matrix is invertible if and only if

x 6∈ L̂pk. We then require unpredictability not on Lpk but on super set L̂pk, so that we make an adversary

output x = (t, u) in Lext
pk = U ′pk\L̂pk.

Acutual Instantiations We present ABME schemes from three different types of PPRFs.
We propose a PPRF from Waters signature scheme [Wat05] defined over a ring equipped with no bilinear

map. As a homomorphic map, we employ Damg̊ard-Jurik (DJ) PKE [DJ01]. The output of the Waters
signature based PPRF looks a pseudo random due to semantic security of DJ PKE. The construction
inherits unforgeability (i.e., Condition (b) above) from Waters signature scheme under an analogue of the
DH assumption in the additive homomorphic encryption. Precisely, we require one more assumption related
to DJ PKE, because we require unforgeability on some super set of the language derived from the PPRF. We
construct an extractable sigma protocol on the language derived from the PRRF. Since the homomorphic
map is invertible with a secret key of DJ PKE, we obtain a compact ABME scheme and hence the first

4

fully-equipped UC commitment scheme with optimal expansion factor Ω(1) in terms of communication and
computational cost. An alternative construction of PPRF is given by combining a semantic secure PKE
scheme with IND-CCA secure Tag-PKE scheme. We combine ElGamal PKE with tag-based Twin Cramer-
Shoup PKE [CKS08] and construct an ABME scheme from the PPRF under the DDH assumption. Although
the expansion factor of this scheme is Ω(κ/log κ), it is still better than the prior works (with Ω(κ)). This
scheme has a short public key. As already mentioned, we can construct a pseudo random function family
and a semantically secure PKE scheme to construct a PPRF. We employ this type of PPRFs to construct
a UC commitment scheme from general assumptions. Due to the space limitation, the second and third
schemes appear in Appendices, D and E.

1.3 Other Related Works

Simulation-based selective opening CCA (SIM-SO-CCA) secure PKEs [FHKW10, Hof12] is related to
ABMEs, but both are incomparable. Indeed, the SIM-SO-CCA secure PKE scheme in [FHKW10] does
not meet the notion of ABME, while our implementations do not satisfy the requirement of SIM-SO-CCA,
because ours does not support CCA attacks. Although it does not meet the notion of ABME, the scheme
in [FHKW10] could be converted into a fully-equipped UC commitment scheme. However, it cannot go
through the barrier of expansion factor O(κ), because the underlying PKE costs O(λκ) bits to encrypt λ
bit.

Hofheinz has presented the notion of all-but-many lossy trapdoor functions (ABM-LTFs) [Hof12], mainly
to construct indistinguishable-based selective opening CCA (IND-SO-CCA) secure PKEs. ABM-LTFs are
lossy trapdoor functions (LTFs) [PW08] with (unbounded) many lossy tags. The relation between ABM-
LTFs and ABMEs is a generalized analogue of LTFs and lossy encryptions [PVW08, BHY09] with unbounded
many loss tags. However, ABMEs always have an efficient “opening” algorithm that can open a ciphertext on
a “lossy” tag to any message with consistent randomness, unlike lossy encryptions. Hofheinz has proposed
two schemes. One is based on DCR and the other is based on pairing groups of a composite order. In
the DCR-based ABM-LTF, lossy tags are Waters signatures defined in DJ PKE. Such tags are carefully
embedded in a matrix so that the matrix can be non-invertible if tags are lossy; otherwise invertible. We
are inspired by his lossy tag idea and generalize it as PPRF. In the latest e-print version [Hof12], Hofheinz
has shown that his DCR-based ABM-LTF can be converted to SIM-SO-CCA PKE, by sacrificing efficiency.
We will show in Sec. 8 that Hofheinz’s DCR-based ABM-LTF can be converted to an ABME scheme. In
addition, it enjoys expansion factor Ω(1). However, compared to our DCR-based ABME scheme in Sec. 7,
Hofheinz’s ABM-LTF based ABME is inefficient. Indeed, its expansion rate of ciphertext length per message
length is ≥ 45. In addition, you must use a modulus of ≥ n9. In our DCR-based ABME, the expansion rate
is (5 + 1/d) and you can use modulus of nd+1 for any d ≥ 1. We compare them in Sec. 8. We remark that
Hofheinz has not shown that any of his schemes implies a UC commitment scheme.

2 Preliminaries

For n ∈ N, [n] denotes the set {1, . . . , n}. We denote by O, Ω, and ω the standard notations to classify the
growth of functions. We let negl(κ) to denote an unspecified function f(κ) such that f(κ) = κ−ω(1), saying
that such a function is negligible in κ. We write PPT and DPT algorithms to denote probabilistic polynomial-
time and deterministic poly-time algorithms, respectively. For PPT algorithm A, we write y ← A(x)
to denote the experiment of running A for given x, picking inner coins r uniformly from an appropriate
domain, and assigning the result of this experiment to the variable y, i.e., y = A(x; r). Let X = {Xκ}κ∈N and
Y = {Yκ}κ∈N be probability ensembles such that each Xκ and Yκ are random variables ranging over {0, 1}κ.
The (statistical) distance between Xκ and Yκ is Dist(Xκ, Yκ) , 1

2 ·|Prs∈{0,1}κ [X = s]−Prs∈{0,1}κ [Y = s]|. We

say that two probability ensembles, X and Y , are statistically indistinguishable (in κ), denoted X
s
≈ Y , if

Dist(Xκ, Yκ) = negl(κ). We say that X and Y are computationally indistinguishable (in κ), denoted X
c
≈ Y ,

if for every non-uniform PPT D (ranging over {0, 1}), {D(1κ, Xκ)}κ∈N
s
≈ {D(1κ, Yκ)}κ∈N. Let A and B be

5

PPT algorithms that both take x ∈ {0, 1}∗. We write {A(x)}x∈{0,1}κ,κ∈N
s
≈ {B(x)}x∈{0,1}κ,κ∈N to denote

{A(xn)}n∈N
s
≈ {B(xn)}n∈N for every sequence {xn}n∈N = {x1, . . . , xn, . . . } such that |xn| = n.

3 Building Blocks: Definitions

We now formally define probabilistic pseudo random function families and extractable sigma protocols.

3.1 Probabilistic Pseudo Random Function Family (PPRF)

PPRF = (Genspl, Spl) consists of the following two algorithms:

• Genspl, the key generation algorithm, is a PPT algorithm that takes 1κ as input, creates pk and picks
up w ← KSPspl

pk to outputs (pk,w), where pk uniquely determines KSPspl
pk .

• Spl, the sampling algorithm, is a PPT algorithm that takes (pk, w) and t ∈ {0, 1}κ, picks up inner
random coins v ← COINspl, and outputs u.

Here we require that pk determines set Upk. Let us define U ′pk = {0, 1}κ×Upk, Lpk(t) = {u ∈ Upk | ∃w, ∃ v :
u = Spl(pk, w, t; v)}, and Lpk = {(t, u) | t ∈ {0, 1}κ and u ∈ Lpk(t)}. We are only interested in the case that
Lpk is relatively small in U ′pk, to avoid sampling from U ′pk by chance. We require that PPRFs satisfy the
following security requirements:

Efficiently samplable and explainable domain: For every pk given by Genspl, set U is efficiently
samplable and explainable [FHKW10], that is, there is an efficient sampling algorithm on U that takes
random coins R and output u uniformly from Upk. In addition, for every u ∈ Upk, there is an efficient
explaining algorithm that takes u and outputs random coins R behind u, where R is uniformly distributed
subject to sample(Upk;R) = u.

Pseudo randomness: Any adversary A, given pk generated by Genspl(1κ), cannot distinguish whether
it has had access to Spl(pk,w, ·) or U(·). Here U is the following oracle: If Spl(pk,w, ·) is a determin-
istic algorithm, U : {0, 1}κ → Upk is a random oracle. (Namely, it returns the same (random) value

on the same input.) If Spl(pk,w, ·) is probabilistic, then U(·) picks up a fresh randomness u
U← Upk

for each query t. We say that PPRF is pseudo random if, for all non-uniform PPT A, AdvprfPPRF,A(κ) =∣∣∣Pr[ExptprfPPRF,A(κ) = 1]− Pr[ExptprfU,A(κ) = 1]
∣∣∣ is negligible in κ, where

ExptprfPPRF,A(κ):

(pk, w)← Genspl(1κ)
b← ASpl(pk,w,·)(pk)
return b.

ExptprfU,A(κ):

(pk,w)← Genspl(1κ)
b← AU(·)(pk)
return b.

Unforgeability: Let L̂pk(t) be some super set of Lpk(t), whose meaning will be clear later. Let L̂pk =

{(t, u) | t ∈ {0, 1}κ and u ∈ L̂pk(t)}. We define the game of unforgeability on L̂pk as follows: An adversary
A takes pk generated by Genspl(1κ) and may have access to Spl(pk, w, ·). The aim of the adversary is to
output (t∗, u∗) ∈ L̂pk such that t∗ has not been queried. We say that PPRF is unforgeable on L̂pk if, for

all non-uniform PPT A, Adveuf-L̂PPRF,A(κ) = Pr[Expteuf-L̂PPRF,A(κ) = 1] (where Expteuf-L̂PPRF,A is defined in Fig. 1) is
negligible in κ.

In some application, we require a stronger requirement, where in the same experiment above, it is difficult
for the adversary to output (t∗, u∗) in L̂pk, which did not appear in the query/answer list QA. We say that

PPRF is strongly unforgeable on L̂pk if, for all non-uniform PPT A, Advseuf-L̂PPRF,A(κ) = Pr[Exptseuf-L̂PPRF,A(κ) = 1]

(where Exptseuf-L̂PPRF,A is defined in Fig. 1) is negligible in κ.

6

We remark that (strong) unforgeability implies (1) that L̂pk should be small enough in U ′pk to avoid

sampling from L̂pk by chance, and (2) that, if Spl is a DPT algorithm and L̂pk = Lpk, it is implied by pseudo
randomness.

Expteuf-L̂PPRF,A(κ):

(pk, w)← Genspl(1κ)
(t∗, u∗)← ASpl(pk,w,·)(pk)
If t∗ has not been queried

and u∗ ∈ L̂pk(t∗),
return 1; otherwise 0.

Exptseuf-L̂PPRF,A(κ):

(pk,w)← Genspl(1κ)
(t∗, u∗)← ASpl(pk,w,·)(pk)
(t∗, u∗) 6∈ QA

and u∗ ∈ L̂pk(t∗),
return 1; otherwise 0.

Figure 1: The experiments of unforgeability (in the left) and strong unforgeability (in the right).

3.2 Extractable Sigma Protocol

We introduce extractable sigma protocols. An extractable sigma protocol, extΣ = (Genext, comΣ, chΣ, ansΣ,
simΣ, Vrfy,Dec) is a sigma protocol, associated with two algorithms, Genext and Dec, with the following
properties.

• Genext is an PPT algorithm that takes 1κ and outputs (pk, sk), such that pk defines the entire set U ′pk,
and two sub disjoint sets, Lpk and Lext

pk , i.e., Lpk ∪Lext
pk ⊂ U ′pk and Lpk ∩Lext

pk = ∅. We also require that
Lpk determines binary efficiently recognizable set Rpk such that Lpk = {x|∃w : (x,w) ∈ Rpk}.

• comΣ is a PPT algorithm that takes pk and (x,w) ∈ Rpk, picks up inner coins ra, and outputs a.

• chΣ(pk) is a publicly-samplable set determined by pk.

• ansΣ is a DPT algorithm that takes (pk, x, ra, e), where e ∈ chΣ(pk), and outputs z.

• Vrfy is a DPT algorithm that accepts or rejects (pk, x, a, e, z).

• simΣ is a PPT algorithm that takes (pk, x, e) and outputs (a, e, z) = simΣ(pk, x, e; rz), where rz ←
COINsim. We additionally require that rz = z. Namely, (a, e, rz) = simΣ(pk, x, e; rz).

• Dec is a DPT algorithm that takes (sk, x, a) and outputs e or ⊥.

We require that extΣ satisfies the following properties:
Completeness: For every (pk, sk) ∈ Genext(1κ), every (x,w) ∈ Rpk, every ra (in an appropriate specified

domain) and every e ∈ chΣ(pk), it always holds that Vrfy(x, comΣ(x,w; ra), e, ansΣ(x,w, ra, e)) = 1.
Special Soundness: For every (pk, sk) ∈ Genext(1κ), every x ∈ U ′pk\Lpk and every a, there is unique

e ∈ chΣ(pk) if there is an accepting conversation for a on x. We say that a pair of two different accepting
conversations for the same a on x, i.e., (a, e, z) and (a, e′, z′), with e 6= e′, is a collision on x. Special soundness
additionally requires that one can efficiently compute witness w, if a collision on x is given.

Enhanced Honest-Verifier Statistical Zero-Knowledgeness (eHVSZK): For every (pk, sk) ∈
Genext(1κ), every (x,w) ∈ Rpk, and every e ∈ chΣ(pk), the following ensembles are statistically indistin-
guishable in κ:

{simΣ(pk, x, e; rz)}(pk,sk)∈Genext(1κ), (x,w)∈Rpk, e∈chΣ(pk), κ∈N
s
≈{(comΣ(pk, x, w; ra), e, ansΣ(pk, x, w, ra, e))}(pk,sk)∈Genext(1κ), (x,w)∈Rpk, e∈chΣ(pk), κ∈N

Here the probability of the left-hand side is taken over random variable rz and the right-hand side is taken
over random variable ra. We remark that since (a, e, rz) = simΣ(pk, x, e; rz), we have Vrfy(pk, x, a, e, z) = 1
if and only if (a, e, z) = simΣ(pk, x, e; z). Therefore, one can instead use simΣ to verify (a, e, z) on x.

7

Extractability: For every (pk, sk) ∈ Genext(1κ), every x ∈ Lext
pk , and every a such that there is an

accepting conversation for a on x, Dec always outputs e = Dec(sk, x, a) such that (a, e, z) is an accepting
conversation on x. We note that, when x 6∈ Lpk, e is unique given a, due to the special soundness property.
Therefore, the extractability is well defined because Lpk ∩ Lext

pk = ∅.

4 ABM Encryptions

All-but-many encryption scheme ABM.Enc = (ABM.gen,ABM.spl,ABM.enc,ABM.dec,ABM.col) consists of
the following algorithms:

• ABM.gen is a PPT algorithm that takes 1κ and outputs (pk, (sk, w)), where pk defines a set Upk. We
let U ′pk = {0, 1}κ×Upk. pk also determines two disjoint sets, Ltd

pk and Lext
pk , such that Ltd

pk ∪Lext
pk ⊂ U ′pk.

• ABM.spl is a PPT algorithm that takes (pk,w, t), where t ∈ {0, 1}κ, picks up inner random coins
v ← COINspl, and computes u ∈ Upk. We write Ltd

pk(t) to denote the image of ABM.spl on t under pk,
i.e.,

Ltd
pk(t) := {u ∈ Upk | ∃w, ∃ v : u = ABM.spl(pk,w, t; v)}.

We require Ltd
pk = {(t, u) | t ∈ {0, 1}κ and u ∈ Ltd

pk(t)}. We set L̂td
pk := U ′pk\Lext

pk . Since Ltd
pk ∩ Lext

pk = ∅,
we have Ltd

pk ⊆ L̂td
pk ⊂ U ′pk.

• ABM.enc is a PPT algorithm that takes pk, (t, u) ∈ U ′pk, and message x ∈ MSP, picks up inner random

coins r ← COINenc, and computes c = ABM.enc(t,u)(pk, x; r), where MSP denotes the message space
uniquely determined by pk, whereas COINenc denotes the inner coin space uniquely determined by pk
and x 2.
• ABM.dec is a DPT algorithm that takes sk, (t, u), and ciphertext c, and outputs x= ABM.dec(t,u)(sk, c).
• ABM.col = (ABM.col1,ABM.col2) is a pair of PPT and DPT algorithms, respectively, such that

– ABM.col1 takes (pk, (t, u), w, v) and outputs (c, ξ) ← ABM.col
(t,u)
1 (pk,w, v), where v ∈ COINspl.

– ABM.col2 takes ((t, u), ξ, x), with x ∈ MSP, and outputs r ∈ COINenc.

We require that all-but-many encryption schemes satisfy the following properties:

1. Adaptive All-but-many property: (ABM.gen,ABM.spl) is a probabilistic pseudo random function
(PPRF) as defined in Sec. 3.1 with unforgeability on L̂td

pk(= U ′pk\Lext
pk).

2. Dual mode property:

• (Decryption mode) For every κ ∈ N, every (pk, (sk, w)) ∈ ABM.gen(1κ), every (t, u) ∈ Lext
pk ,

and every x ∈ MSP, it always holds that

ABM.dec(t,u)(sk,ABM.enc(t,u)(pk, x)) = x.

• (Trapdoor mode) Define the following random variables: distenc(t, pk, sk, w, x) denotes random
variable (u, c, r) defined as follows: v ← COINspl; u = ABM.spl(pk, w, t; v); r ← COINenc; c =
ABM.enc(t,u)(pk, x; r). distcol(t, pk, sk, w, x) denotes random variable (u, c, r) defined as follows:

v ← COINspl; u = ABM.spl(pk,w, t; v); (c, ξ) = ABM.col
(t,u)
1 (pk,w, v); r = ABM.col

(t,u)
2 (ξ, x).

Then, the following ensembles are statistically indistinguishable in κ:{
distenc(t, pk, sk, w, x)

}
(pk,(sk,w))∈ABM.gen(1κ),t∈{0,1}κ,x∈MSP,κ∈N

s
≈
{

distcol(t, pk, sk, w, x)
}

(pk,(sk,w))∈ABM.gen(1κ),t∈{0,1}κ,x∈MSP,κ∈N

2We allow the inner coin space to depend on messages to be encrypted, in order to be consistent with our weak ABM
encryption scheme from general assumption in Sec. E, which requires the coin space to depend on messages.

8

Remember that by {A(x)}x∈{0,1}κ,κ∈N
s
≈ {B(x)}x∈{0,1}κ,κ∈N, we denote {A(xκ)}κ∈N

s
≈ {B(xκ)}κ∈N for every

sequence {xκ}κ∈N = {x1, . . . , xκ, . . . }.
We say that a ciphertext c on (t, u) under pk is valid if there exist x ∈ MSP and r ∈ COINenc such that

c = ABM.enc(t,u)(pk, x; r). We say that a valid ciphertext c on (t, u) under pk is real if (t, u) ∈ Lext
pk , otherwise

fake. We remark that as long as c is a real ciphertext, regardless of how it is generated, there is only one
consistent x in MSP and it is equivalent to ABM.dec(t,u)(sk, c).

5 ABMEs from Extractable Sigma Protocols

Let PPRF = (Genspl,Spl) be a PPRF and let Lpk = {(t, u) | ∃(w, v) : t ∈ {0, 1}κ, u = Spl(pk,w, t; v)},
which is the NP language derived from PPRF. Suppose that there is an extractable sigma protocol extΣ on
Ltd
pk := Lpk with extractability on Lext

pk . Then, we can construct an ABME scheme as described in Fig. 2, if

Genext(1κ) outputs (pk, sk) such that the first output is distributed identically to the first output of Genspl(1κ)
and PPRF is unforgeable on L̂pk, where L̂pk := U ′pk\Lext

pk .

• ABM.gen(1κ) runs Genext(1κ) to output (pk, sk). It chooses w ← KSPspl
pk and finally outputs

(pk, (sk, w)). We note that by a precondition the distribution of pk from Genext(1κ) is identical to
that of Genspl(1κ).

• ABM.spl(pk, w, t; v) outputs u := Spl(pk,w, t; v) where v
U← COINspl.

• ABM.enc(t,u)(pk,m; r) runs (a,m, r) ← simΣ(pk, (t, u),m; r) to return the first output a, where

r
U← COINenc

pk (:= COINsim
pk).

• ABM.dec(t,u)(sk, c) outputs m = Dec(sk, x, c).

• ABM.col
(t,u)
1 (pk, w, v; ra) outputs (c, ξ) such that c := comΣ(pk, (t, u), w; ra), and ξ :=

(pk,w, t, u, v, ra).

• ABM.col
(t,u)
2 (ξ,m) outputs r := ansΣ(pk, (t, u), w, ra,m), where ξ = (pk,w, t, u, v, ra).

Figure 2: ABME from extΣ on language derived from PPRF

By construction, the adaptive all-but-many property holds in the resulting scheme. The dual mode
property also holds because: (a) If (t, u) ∈ Lext

pk , the first output of simΣ(pk, (t, u),m) is perfectly binding to

challenge m due to the special soundness property (because Lext
pk ⊂ U ′pk\Ltd

pk), and m can be extracted given

(pk, (t, u), a) using sk due to the extractability. (b) If (t, u) ∈ Ltd
pk, ABM.col runs the real sigma protocol

with witness (w, v). Therefore, it can produce a fake commitment that can be opened in any way, while it
is statistically indistinguishable from that of the simulation algorithm simΣ (that is run by ABM.enc), due
to enhanced HVSZK. Therefore, the converted scheme is an ABME scheme.

6 Fully-Equipped Universally Composable Commitments from ABMEs

We show that ABMEs implies “fully-equipped” UC commitment schemes.
We work in the standard universal composability (UC) framework of Canetti [Can01]. We concentrate

on the same model in [CF01] where the network is asynchronous, the communication is public but ideally
authenticated, and the adversary is adaptive in corrupting parties and is active in its control over corrupted
parties. Any number of parties can be corrupted and parties cannot erase any of their inner state. We provide
a brief description of the UC framework and the ideal commitment functionality for multiple commitments
in Appendix B.1.

The conversion from an ABME scheme to a fully-equipped UC commitment scheme follows. We first put
a public key pk of ABME in the common reference string. A committer Pi takes tag t = (sid, ssid, Pi, Pj)
and a message x committed to. It then picks up random u from Upk and compute an ABM encryption

c = ABM.enc(t,u)(pk, x; r) to send (t, u, c) to receiver Pj , which outputs (receipt, sid, ssid, Pi, Pj). To

9

open the commitment, Pi sends (x, r) to Pj and Pj accepts if and only if c = ABM.enc(t,u)(pk, x; r). If Pj
accepts, he outputs x, otherwise do nothing. We provide the formal description of our UC commitment
scheme in Fig. 4.

Theorem 6.1 The proposed scheme in Fig.4 UC-securely realizes the FMCOM functionality in the FCRS-
hybrid model in the presence of adaptive adversaries in the non-erasure model.

Games Pi(S)
(t,u,c)−→ Corr. Pi′(A)

(t′,u′,c′)−→ Pj(S)
(t′,x̃)−→ FMCOM

u = ABM.spl(pk,w, t; v)

Ideal (c, ξ) = ABM.col
(t,u)
1 (pk, w, v) (t′, u′, c′) x̃ = ABM.dec(t

′,u′)(sk, c′) x̃

open: x, r = ABM.col
(t,u)
2 (ξ, x) open: (x′, r′)

u← ABM.spl(pk,w, t)

Hybrid1 c = ABM.enc(t,u)(pk, x, r) (t′, u′, c′) x̃ = ABM.dec(t
′,u′)(sk, c′) x̃

open: x, r open: (x′, r′)
u← ABM.spl(pk,w, t)

Hybrid2 c = ABM.enc(t,u)(pk, x, r) (t′, u′, c′) x̃ = ε x′

open: x, r open: (x′, r′)
u← Upk

Hybrid3 c = ABM.enc(t,u)(pk, x, r) (t′, u′, c′) x̃ = ε x′

open: x, r open: (x′, r′)

Pi
(t,u,c)−→ Corr. Pi′(A)

(t′,u′,c′)−→ Pj Pj
u← Upk

HybridFcrs c = ABM.enc(t,u)(pk, x, r) (t′, u′, c′) x′

open: x, r open: (x′, r′)

Table 1: The man-in-the-midle attack in the hybrid games

Here t = (sid, ssid, Pi, Pi′) and t′ = (sid′, ssid′, Pi′ , Pj). The view of Z consists of the view of A plus the
contents in the rightest column.

Proof (Sketch). The formal proof is given in Appendix B.3. We here sketch the essence. First, let see

Sec. B.1 about the basic UC framework and the ideal commitment functionality FMCOM. We consider the
man-in-the-middle attack, where we show that the view of environment Z in the real world (in the CRS
model) can be simulated in the ideal world. Let Pi, Pj be honest players and let Pi′ be a corrupted player
controlled by adversary A. In the man-in-the-middle attack, Pi′ (i.e., A) is simultaneously participating in
the left and right interactions. In the left interactions, A interacts with Pi, as playing the roll of the receiver.
In the right interactions, A interacts with Pj , as playing the roll of the committer.

The following sketch corresponds to security proof in the (static) man-in-the-middle attack above. Ap-
parently, it seems very restrictive, but it is not difficult to handle any adaptive case if this case has been
proven secure.

In the ideal world, A actually interacts with simulator S in both interactions, where S pretends to
be Pi and Pj respectively. In the left interactions, environment Z sends (commit, sid, ssid, Pi, Pj , x) to the
ideal commitment functionality FMCOM (via honest Pi). After receiving (receipt, sid, ssid, Pi, Pi′) from
FMCOM, S starts the commitment protocol as the committer without given message x. It sends to A (u, c) on
t = (sid, ssid, Pi, Pi′) as computed in Table 1. In the decommitment phase when Z sends (open, sid, ssid)

to FMCOM (via honest Pi), S receives x from FMCOM and then computes r = ABM.col
(t,u)
2 (ξ, x) to send

(t, x, r) to A. In the right interactions, S receives (t′, u′, c′) from A where t′ = (sid′, ssid′, Pi′ , Pj). It then

extracts x̃ = ABM.dec(t′,u′)(sk, c′) to send to FMCOM. FMCOM then sends (receipt, sid, ssid, Pi′ , Pj) to
environment Z (via honest Pj). In the decommitment phase when A opens (t′, u′, c′) correctly with (x′, r′),
S sends (open, sid, ssid) to FMCOM; otherwise, do nothing. Upon receiving (open, sid, ssid), if the same

10

(sid, ssid, ..) was previously recorded, FMCOM sends stored x̃ to environment Z (via honest Pj); otherwise,
do nothing. We note that in the ideal world, honest parties convey inputs from Z to the ideal functionalities
and vice versa. The view of Z consists of the view of A plus the value sent by FMCOM.

In HybridFcrs (the real world in the CRS model), A interacts with real (committer) Pi and (receiver)
Pj . In the right interactions, at the end of the decommitment phase, Pj sends x′ to Z if A has opened
(t′, u′, c′) correctly with (x′, r′). The view of Z consists of the view of A plus the value sent by Pj .

The goal is to prove that the two views of Z above are computationally indistinguishable.
As usual, we consider a sequence of hybrid games on which the probability spaces are identical, but we

change the rules of games step by step. See Table 1 for summary.
Hybrid Game 1 is identical to the ideal world except that in the left interactions, at the beginning of

the commitment phase, S (as Pi) is given message x on tag t = (sid, ssid, Pi, Pi′) by FMCOM. S computes
u← ABM.spl(pk,w, t), and c = ABM.enc(t,u)(pk, x; r), picking up random r, to send (t, u, c) to adversary A.
In the decommitment phase, S sends (t, x, r) to A.

Hybrid Game 2 is identical to Hybrid Game 1 except that in the right interactions, after receiving
(t′, u′, c′), S2 sends ε to FMCOM. In the decommitment phase when A opens (t′, u′, c′) correctly with (x, r), S
sends (open, sid, ssid, x′) to FMCOM. FMCOM sends x′ to environment Z (via ideal P̃j), instead of sending ε.

Hybrid Game 3 is identical to Hybrid Game 2 except that in the left interactions, S instead picks up
random u← Upk and computes c = ABM.enc(t,u)(pk, x; r), to send (t, u, c) to A.

[Ideal⇒ Hybrid1] The two views of Z between the ideal world and Hybrid1 are statistically close, due to
the trapdoor mode property.

[Hybrid1 ⇒ Hybrid2] We note that the distance of the two views of Z between Hybrid1 and Hybrid2 is
bounded by the following event. Let BDI denote the event in Hybrid Game I (I ∈ {1, 2}) that S receives a
fake ciphertext (t′, u′, c′) from A, i.e., (t′, u′) ∈ Ltd

pk, in the right intersections. If this event does not occur,
the view of Z in both games are identical, which means ¬BD1 = ¬BD2. Hence, the distance of the views of
Z in the two games is bounded by Pr[BD], where BD := BD1 = BD2. We then evaluate Pr[BD] in Hybrid
Game 2. (We note that we might not generally evaluate the probability in Hybrid Game 1, because S must
decrypt (t′, u′, c′), which seems that it needs sk, but knowing sk implies some information on w.) We want to
suppress Pr[BD] by using the assumption that (ABM.gen, ABM.spl) is unforgeable on L̂td

pk. In Hybrid Game

2, we can construct an adversary B that breaks unforgeability of (ABM.gen,ABM.spl) on L̂td
pk as follows. In

the left and right interactions, B simulates the role of S and interacts with A. B uses ABM.spl(pk, w, ·)
as oracle to play the role of S in the left interaction. After A halts, B outputs (t′, u′) at random from the
communication with A in the right interactions. We note that, since the communication channel is fully
authenticated, it holds that t′ 6= t for all t, t′, because t = (?, ?, Pi, Pi′) and t′ = (?, ?, Pi′ , Pj). If (t′, u′) ∈ L̂td

pk,

B succeeds in breaking unforgeability on L̂td
pk, which is upper-bounded by some negligible function. Since

event BD occurs at most with the success probability of B. Hence, its probability is negligible, too.
[Hybrid2 ⇒ Hybrid3] It is obvious by construction that the distance of the two views of Z between Hybrid2

and Hybrid3 is bounded by the advantage of pseudo-randomness of (ABM.gen, ABM.spl).
[Hybrid3 ⇒ HybridFMCOM] By construction, the two views of Z between Hybrid3 and HybridFMCOM are

identical.
Therefore, the two views of Z between the ideal world and HybridFMCOM are computationally close.

7 Instantiations of Compact ABMEs from Damg̊ard-Jurik PKE

We present a DCR-based ABME scheme with compact ciphertexts and hence the first fully-equipped UC
commitment scheme with optimal expansion factor Ω(1). We start by recalling Damg̊ard-Jurik public-key
encryption scheme (DJ PKE) [DJ01].

Damg̊ard-Jurik PKE. Let Π = (K,E,D) be a tuple of algorithms of Damg̊ard-Jurik (DJ) PKE [DJ01].
A public key of DJ PKE is pkdj = (n, d) and the corresponding secret-key is skdj = (p, q) where n = pq is
a composite number of distinct odd primes, p and q, and 1 ≤ d < p, q is a positive integer (when d = 1 it

11

is Paillier PKE [Pai99]). We often write Π(d) to clarify parameter d. We let g := (1 + n) throughout this

paper. To encrypt message x ∈ Znd , one computes Epkdj(x;R) = gxRn
d

(mod nd+1) where R← Z×n 3. For
simplicity, we write E(x) instead of Epkdj(x), if it is clear. DJ PKE is enhanced additively homomorphic as
defined in Appendix C.3. Namely, for every x1, x2 ∈ Znd and every R1, R2 ∈ Z×n , one can efficiently compute
R such that E(x1 + x2;R) = E(x1;R1) · E(x2;R2). Actually it can be done by computing R = gγR1R2

(mod n), where γ is an integer such that x1 + x2 = γnd + ((x1 + x2) mod nd). It is known that Z×
nd+1 is

isomorphic to Znd × Z×n (the product of a cyclic group of order nd and a group of order φ(n)), and, for any
d < p, q, element g = (1 +n) has order nd in Z×

nd+1 [DJ01]. Therefore, Z×
nd+1 is the image of E(·; ·). We note

that it is known that Z×
nd+1 is efficiently samplable and explainable [DN02, FHKW10]. It is also known that

DJ PKE is IND-CPA if the DCR assumption holds true [DJ01].

Construction Idea (ABM.gen,ABM.spl) below forms Waters-like signature scheme based on DJ PKE,
where there is no verification algorithm and the signatures look pseudo random assuming that DJ PKE is
IND-CPA. We then construct an extractable sigma protocol on the language derived from (ABM.gen,ABM.spl),
as discussed in Sec. 1.2.1. Here, the decryption algorithm works only when the matrix below in (2) is in-
vertible, which is equivalent to that (t, (ur, ut)) ∈ Lext

pk , where

Lext
pk = {(t, (ur, ut))|D(ut) 6≡ x1x2 + y(t)D(ur) mod p ∧ D(ut) 6≡ x1x2 + y(t)D(ur) mod q}.

Therefore, we require that (ABM.gen,ABM.spl) should be unforgeable on L̂td
pk(= U ′pk\Lext

pk). To prove this
statement, we additionally require two more assumptions on DJ PKE, called the non-multiplication assumption
and the non-trivial divisor assumption. The first one is an analogue of the DH assumption in an additively
homomorphic encryption. If we consider unforgeability on Ltd

pk, this assumption suffices, but we require

unforgeability on L̂td
pk. Then we need one more assumption. We define these assumptions in Appendix C

due to the space limitation. We note that these assumptions are originally introduced in [Hof12] to obtain
a DCR-based ABM-LTF.

7.1 ABME from Damg̊ard-Jurik with Optimal Expansion Factor Ω(1)

• ABM.gen(1κ): It gets (pkdj, skdj) ← K(1κ) (the key generation algorithm for DJ PKE), where pkdj =

(n, d) and skdj = (p, q). It then picks up x1, x2
U← Znd , R1, R2

U← Z×
nd+1 , and computes g1 = E(x1;R1)

and g2 = E(x2;R2). It then picks up h̃ ← E(1) and computes h = (h0, . . . , hκ) such that hj := h̃yj

where yj
U← Znd+1 for j = 0, 1, . . . , κ. Let H(t) = h0

∏κ
i=1 h

ti
i (mod nd+1) and let y(t) = y0 +

∑κ
i=1 yiti

(mod nd), where (t0, . . . , tκ) represents the bit string of t. We note that H(t) = h̃y(t). It outputs
(pk, (sk, w)) where pk := (n, d, g1, g2,h), sk := (p, q) and w := x2, where we define U ′pk := {0, 1}κ ×
(Z×

nd+1)2 that contains the disjoint sets of Ltd
pk and Lext

pk as described below.
• ABM.spl(pk, x2, t; (r,Rr, Rt)): It chooses r ← Znd and outputs u := (ur, ut) such that ur := E(r;Rr)

and ut := gx21 E(0;Rt) ·H(t)r where Rr, Rt ← Z×
nd+1 . We let

Ltd
pk = {(t, (ur, ut)) | ∃(x2, (r,Rr, Rt)) : ur = E(r, ;Rr) and ut = gx21 E(0;Rt)H(t)r}.

We then define

Lext
pk = {(t, (ur, ut))|D(ut) 6≡ x1x2 + y(t)D(ur) mod p ∧ D(ut) 6≡ x1x2 + y(t)D(ur) mod q}.

Since (t, (ur, ut)) ∈ Ltd
pk holds if and only if D(ut) ≡ x1x2 + y(t)D(ur) (mod nd), it implies that

D(ut) ≡ x1x2 + y(t)D(ur) (mod n). Hence, Ltd
pk ∩ Lext

pk = ∅.

3In the original scheme, R is chosen from Z×
nd+1 . However, since Z×n is isomorphic to the cyclic group of order nd in Z×

nd+1

by mapping R ∈ Z×n to Rn
d

∈ Z×
nd+1 , we can instead choose R from Z×n .

12

• ABM.enc(t,(ur,ut))(pk,m; (z, s,RA, Ra, Rb)): To encrypt message m ∈ Znd , it chooses z, s
U← Znd and

computes A := gz1H(t)sumt R
nd

A (mod nd+1), a := E(z;Ra) · gm2 (mod nd+1) and b := E(s;Rb) · umr
(mod nd+1), where RA, Ra, Rb

U← Z×
nd+1 . It outputs c := (A, a, b) as the ciphertext of m on (t, (ur, ut)).

• ABM.dec(t,(ur,ut))(sk, c): To decrypt c = (A, a, b), it outputs

m :=
x1D(a) + y(t)D(b)−D(A)

x1x2 − (D(ut)− y(t)D(ur))
mod nd. (1)

• ABM.col
(t,(ur,ut))
1 (pk, x2, (r,Rr, Rt)): It picks up ω, η

U← Znd , R′A, R′a, R′b
U← Z×

nd+1 . It then computes

A := gω1 ·H(t)η ·R′A
nd (mod nd+1), a := gωR′a

nd (mod nd+1), and b := gηR′b
nd (mod nd+1). It outputs

c := (A, a, b) and ξ := (x2, (r,Rr, Rt), (ur, ut), ω, η,R
′
A, R

′
a, R

′
b).

• ABM.col2(ξ,m): To open c to m, it computes z = ω − mx2 mod nd, s = η − mr mod nd, α =
b(ω−mx2− z)/ndc, and β = b(η−mr− s)/ndc. It then sets RA := R′A ·R

−m
t · gα1 ·H(t)β (mod nd+1),

Ra := R′a·R−m2 ·gα (mod nd+1), andRb := R′b·R−mr ·gβ (mod nd+1). It outputs (z, s,RA, Ra, Rb), where

A = gz1H(t)sumt R
nd

A (mod nd+1), a = E(z;Ra) · gm2 (mod nd+1), and b = E(s;Rb) · umr (mod nd+1).

We note that ABM.col runs a canonical sigma protocol on Ltd
pk to prove that the prover knows (x2, (r,Rr, Rt))

such that ur = Epk(r;Rr) and ut = gx21 Epk(0;Rt)H(t)r. Hence, the trapdoor mode works correctly when
(t, (ur, ut)) ∈ Ltd

pk. On the contrary, ABM.enc runs a simulation algorithm of the sigma protocol with message
(challenge) x. Notice that (A, a, b) implies the following linear system on Znd , D(A)

D(a)
D(b)

 =

 x1 y(t) D(ut)
1 0 x2

0 1 D(ur)

 z
s
m

 (2)

The matrix is invertible if

D(ut) 6= (x1x2 + y(t)D(ur)) (mod p) and D(ut) 6= (x1x2 + y(t)D(ur)) (mod q),

which means that (t, (ur, ut)) ∈ Lext
pk . Hence, the decryption mode works correctly.

Lemma 7.1 (Implicit in [Hof12]) (ABM.gen,ABM.spl) is PPRF with unforgeability on L̂td
pk(= U ′pk\Lext

pk),
under the assumptions, C.1, C.2 and C.4.

The proof is given in Sec. C.4. By this lemma, we have:

Theorem 7.2 The scheme constructed as above is an ABME scheme if the DCR assumption (Assumption
C.1), the non-tirvial divisor assmuption (Assumption C.2), and the non-multiplication assumption (Assump-
tion C.4) hold true.

This scheme has a ciphertext consisting of only 5 group elements (including (ur, ut)) and optimal ex-
pansion factor Ω(1). This scheme requires a public-key consisting of κ+ 3 group elements along with some
structure parameters.

8 ABM-LTF based ABME and Vice Versa

Hofheinz has presented the notion of all-but-many lossy trapdoor functions (ABM-LTFs) in [Hof12]. We
give the definition of ABM-LTFs in Appendix F. We remark that ABM-LTFs require that, in our words,
(ABM.gen, ABM.spl) be strongly unforgeable, whereas ABMEs only require it be unforgeable. However,
as shown in [Hof12], unforgeable PPRFs can be converted into strongly unforgeable PPRFs, by using a
chameleon commitment scheme and a collision-resistant hash function family. Therefore, this difference is
not important. We note that we can regard Hofheinz’s DCR-based ABM-LTF (with only unforgeability) as

13

a special case of our DCR-based ABME scheme that fixes a part of the coin space as (RA, Ra, Rb) = (1, 1, 1).
Although the involved matrix of his original scheme is slightly different from ours, the difference is not
essential. In the end, we regard Hofheinz’s DCR-based ABM-LTF as

ABM.eval(t,(ur,ut))(pk, (m, z, s)) := ABM.enc(t,(ur,ut))(pk,m; (z, s, 1, 1, 1)),

where (m, z, s) denotes a message. This ABM-LTF has ((d − 1) log n)-lossyness. In the latest e-print
version [Hof12], Hofheinz has shown that his DCR-based ABM-LTF can be converted to SIM-SO-CCA
PKE. To construct the SIM-SO-CCA PKE, Hofheinz implicitly considered the following encryption scheme
such that

ABM.enc(t,(ur,ut))(pk,M ; (m, z, s)) := (ABM.eval(t,(ur,ut))(pk, (m, z, s)),M ⊕H(m, z, s)),

where H is a suitable 2-universal hash function from (Znd)3 to {0, 1}κ (or Z/nZ). According to his analysis
in Sec. 7.2 in [Hof12], if d ≥ 8, it can open an ciphertext arbitrarily using Barvinok’s alogorithm, when
(t, (ur, ut)) ∈ Lloss. Then it meets the requirements of an ABME scheme. However, the expansion rate of
ciphertext length per message length is not good. Indeed, it is ≥ 45 and at least a modulus of n9 is required.
The opening algorithm is also costly. Table 2 shows comparison.

ABME expansion factor ciphertext-length message-length pk-length

ABME from [Hof12] ≥ 45∗ 5(d+ 1) log n log n (κ+ 3) log n

Sec. 7.1 (d ≥ 1) 5 + 1/d 5(d+ 1) log n d log n (κ+ 3) log n

Sec. D 5κ/log κ (5`+ 4) log q ` log κ 7 log q

Table 2: Comparison among ABMEs

∗ : d ≥ 8 is needed.

On the contrary, our DCR-based ABME (strengthened with strong unforgeability) can be converted to
ABM-LTF 4. Remember that (A, a, b) = ABM.enc(t,(ur,ut))(pk,m; (z, s,RA, Ra, Rb)). It is obvious that we
can extract not only message m but (z, s) by inverting the corresponding matrix, but we point out that we
can further retrieve (RA, Ra, Rb), too. This mean that our DCR based ABME turns out ABM-LTF. Indeed,

after extracting (m, z, s) from (A, a, b), we have (RA)n
d

mod nd+1, (Ra)
nd mod nd+1, and (Rb)

nd mod nd+1,
where RA, Ra, Rb ∈ (Z/nZ)×. We remark that RA, Ra, Rb lie not in Z×

nd+1 but in (Z/nZ)×. Notice that,

letting α = rn
d

mod nd+1 where r ∈ (Z/nZ)×, r = α(nd)−1
mod n is efficiently solved by φ(n). Hence, we

retrieve (RA, Ra, Rb) along with (z, s,m). Then, our DCR based ABME becomes ABM-LTF with (d log n)-
lossyness for any d ≥ 1, whereas Hofheinz’s DCR based ABM-LTF is ((d− 1) log n)-lossy.

ABM-LTF expansion factor output-length input-length lossyness

[Hof12] 5/3 5(d+ 1) log n 3d log n (d− 1) log n

ABM-LTF from Sec. 7 5/3 5(d+ 1) log n 3(d+ 1) log n d log n

Table 3: Comparison among ABM-LTF

References

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In Antoine Joux, editor, EUROCRYPT
2009, volume 5479 of Lecture Notes in Computer Science, pages 1–35. Springer-Verlag, 2009.

4Henway and Ostrovsky [HO13] have recently shown that if the message space of lossy encryption is one bit longer than the
coin space, the lossy encryption can be converted to a lossy trapdoor function (LTF). Our DCR based proposal satisfies this
condition and hence can be converted to ABM-LTF. However, there is a much better method for our proposal.

14

[BMO90] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. Perfect zero-knowledge in constant rounds.
In STOC ’90, pages 482–493. ACM, 1990.

[BR09] Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified proof
and improved concrete security for waters’ ibe scheme. In Antoine Joux, editor, EUROCRYPT
2009, volume 5479 of Lecture Notes in Computer Science, pages 407–424. Springer-Verlag, 2009.

[BG85] M. Blum and S. Goldwasser. An efficient probabilistic public-key encryption scheme which hides
all partial information. In George Robert Blakley and David Chaum, editors, CRYPTO ’84,
volume 196 of Lecture Notes in Computer Science, pages 289–299. Springer-Verlag, 1985.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of Lecture Notes in Computer Science, pages 223–238. Springer-Verlag, 2004.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete
logarithms. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 126–144. Springer-Verlag, 2003.

[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2001), pages 136–
145. IEEE Computer Society, 2001. The full version available at at Cryptology ePrint Archive
http://eprint.iacr.org/2000/067.

[CF01] R. Canetti and M. Fischlin. Universally composable commitments. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 19–40. Springer-
Verlag, 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In STOC 2002, pages 494–503. ACM, 2002. The full
version is available at http://eprint.iacr.org/2002/140.

[CKS08] D. Cash, E. Kiltz, and V. Shoup. The twin diffie-hellman problem and applications. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages
127–145. Springer-Verlag, 2008.

[CDS94] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified design
of witness hiding protocols. In Yvo G. Desmedt, editor, CRYPTO ’94, volume 839 of Lecture
Notes in Computer Science, pages 174–187. Springer-Verlag, 1994.

[CS04] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM Journal of Computing, 33(1):167–226, 2004.
Early version in CRYPTO’98.

[DJ01] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In Kwangjo Kim, editor, PKC 2001, volume 1992 of Lecture
Notes in Computer Science, pages 125–140. Springer-Verlag, 2001.

[DG03] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable commitment
schemes. In STOC 2003, pages 426–437. ACM, 2003.

[DN02] Ivan Damg̊ard and Jesper Buus Nielsen. Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In Moti Yung, editor, CRYPTO
2002, volume 2442 of Lecture Notes in Computer Science, pages 581–596. Springer-Verlag, 2002.
The full version is available at http://www.brics.dk/RS/01/41/.

15

[FHKW10] Serge Fehr, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Encryption schemes secure against
chosen-ciphertext selective opening attacks. In Henri Gilbert, editor, EUROCRYPT 2010, vol-
ume 6110 of Lecture Notes in Computer Science, pages 381–402. Springer-Verlag, 2010.

[FLM11] Marc Fischlin, Benôıt Libert, and Mark Manulis. Non-interactive and re-usable universally
composable string commitments with adaptive security. In Dong Hoon Lee and Xiaoyun Wang,
editors, ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 468–485.
Springer-Verlag, 2011.

[Fuj12] Eiichiro Fujisaki. New constructions of efficient simulation-sound commitments using encryption
and their applications. In Orr Dunkelman, editor, CT-RSA, volume 7178 of Lecture Notes in
Computer Science, pages 136–155. Springer-Verlag, 2012.

[GPY03] Juan A Garay, Philip P.Mackenzie, and Ke Yang. Strengthening zero-knowledge protocols using
signatures. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 177–194. Springer-Verlag, 2003.

[Gen04] R. Gennaro. Multi-trapdoor commitments and their applications to proofs of knowledge secure
under concurrent man-in-the-middle attacks. In Matthew K. Franklin, editor, CRYPTO 2004,
volume 3152 of Lecture Notes in Computer Science, pages 220–236. Springer-Verlag, 2004. The
full version available at at Cryptology ePrint Archive http://eprint.iacr.org/2003/214.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984.

[HO13] B. Hemenway and R. Ostrovsky. Building lossy trapdoor functions from lossy encryption. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT (2), volume 8270 of Lecture Notes in
Computer Science, pages 241–260. Springer-Verlag, 2013.

[Hof12] Dennis Hofheinz. All-but-many lossy trapdoor functions. In David Pointcheval and Thomas Jo-
hansson, editors, EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
209–227. Springer-Verlag, 2012. (last revised 18 Mar 2013 at http://eprint.iacr.org/2011/230).

[IOS94] Toshiya Itoh, Yuji Ohta, and Hiroki Shizuya. Language dependent secure bit commitment. In
Yvo G. Desmedt, editor, CRYPTO ’94, volume 839 of Lecture Notes in Computer Science, pages
188–201. Springer-Verlag, 1994.

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi and Tal
Rabin, editors, TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages 581–600.
Springer-Verlag, 2006.

[Lin11] Yehuda Lindell. Highly-efficient universally-composable commitments based on the DDH as-
sumption. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of Lecture Notes
in Computer Science, pages 446–466. Springer-Verlag, 2011. The full version available at at
Cryptology ePrint Archive http://eprint.iacr.org/2011/180.

[MRY04] Philip MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability: Defini-
tions, constructions, and applications (extended abstract). In Moni Naor, editor, TCC 2004,
volume 2951 of Lecture Notes in Computer Science, pages 171–190. Springer-Verlag, 2004.

[MY04] Philip MacKenzie and Ke Yang. On simulation-sound trapdoor commitments. In Christian
Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 382–400. Springer-Verlag, 2004.

[NFT12] Ryo Nishimaki, Eiichiro Fujisaki, and Keisuke Tanaka. An efficient non-interactive universally
composable string-commitment scheme. IEICE Transactions, 95-A(1):167–175, 2012.

16

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Jacques
Stern, editor, EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages
223–238. Springer-Verlag, 1999.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of Lecture
Notes in Computer Science, pages 554–571. Springer-Verlag, 2008.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Richard E.
Ladner and Cynthia Dwork, editors, STOC 2008, pages 187–196. ACM, 2008.

[Sho01] Victor Shoup. A proposal for an ISO standard for public key encryption. Cryptology ePrint
Archive, Report 2001/112, December 2001.

[Wat05] B. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 114–127.
Springer-Verlag, 2005.

A Definitions

A.1 Collision-Resistant Hash Function Family

Let H = {Hι}ι∈I be a keyed hash family of functions Hι : {0, 1}∗ → {0, 1}κ indexed by ι ∈ Iκ (= I∩{0, 1}κ).
A keyed hash-function family H is called collision-resistant (CR) if, for every non-uniform PPT adversary
C, Pr[ι← Iκ; (x, y)← Cκ(Hι) : x 6= y ∧ Hι(x) = Hι(y)] = negl(κ).

A.2 Chameleon Commitment

A chameleon commitment CH = (CHGen,CHEval,CHColl) consists of three algorithms: CHGen is a PPT
algorithm that takes as input security parameter 1κ and outputs a pair of public and trapdoor keys (pk, tk).
CHEval is a PPT algorithm that takes as input pk and message x ∈ {0, 1}κ, drawing random r from coin
space COINpk, and outputs chameleon hash value c = CHEval(pk, x; r). Here COINpk is uniquely determined
by pk. CHColl is a DPT algorithm that takes as input (pk, tk), x, x′ ∈ {0, 1}κ and r ∈ COINpk, and outputs
r′ ∈ COINpk such that CHEval(pk, x; r) = CHEval(pk, x′; r′). We require that for every (pk, tk) generated
by CHGen(1κ), every x, x′ ∈ {0, 1}κ, and every r ∈ COINpk, there exists a unique r′ ∈ COINpk such that
CHEval(pk, x; r) = CHEval(pk, x′; r′), and CHColl(pk, tk, x, x′, r) always computes r′ in time poly(κ+|x|+|x′|).
In addition, for any x, x′, if r is uniformly distributed, then so is r′. We require CH is collision-resistance in
the following sense: For every non-uniform PPT adversary A,

Pr

[
(pk, tk)← CHGen(1κ); (x1, x2, r1, r2)← A(pk) :
CHEval(pk, x1; r1) = CHEval(pk, x2; r2) ∧ (x1 6= x2)

]
= negl(κ).

A.3 Tag-Based PKEs

A Tag-PKE Π = (Tag.Gen,Tag.Enc,Tag.Dec) is a tag-based PKE [Sho01, MRY04, Kil06] that consists of
three polynomial-time algorithms: Tag.Gen, the key-generation algorithm, is a PPT algorithm which on
input 1n outputs a pair of the public and secret keys, (pk, sk). Tag.Enc, the encryption algorithm, is a PPT
algorithm that takes public key pk, a tag t ∈ {0, 1}p(κ) for some fixed polynomial p and message m ∈ MSP,

and produces c ← Tag.Enc(pk, t,m; r), picking up r
U← COIN, where MSP and COIN denote the message

space and the coin space determined by pk, respectively. Tag.Dec, the decryption algorithm, is a deter-
ministic polynomial-time algorithm that takes a secret key sk, t, and a ciphertext c ∈ {0, 1}∗, and outputs
Tag.Dec(sk, t, c). We require that for (sufficiently large) every k ∈ N, every t ∈ {0, 1}p(κ) every (pk, sk) gen-
erated by Tag.Gen(1k), and every message m ∈ MSP, it always holds Tag.Dec(sk, t,Tag.Enc(pk, t,m)) = m.

17

A.3.1 IND-CCA Security

We recall CCA security for Tag-PKEs [MRY04], called weak CCA security [Kil06]. We simply call it IND-
CCA (for Tag-PKEs), because we only consider tag-PKEs.

We define IND-CCA security for tag-PKEs as follows. To an adversary A = (A1, A2) and b ∈ {0, 1}, we
associate the following experiment Exptind-cca

Π,A,b (κ).

Exptind-cca
Π,A,b (κ):

(pk, sk)← Tag.Gen(1κ)

(t∗,m0,m1, st)← ADsk
1 (pk)

c∗ ← Tag.Enc(pk, t∗,mb)

b′ ← A
Tag.Decsk
2 (st, t∗, c∗)

Return b′.

The adversary A2 is restricted not to query decryption oracle Tag.Dec(sk, ·, ·) with (t∗, ?). We define the
advantage of A in the experiment as

Advind-cca
Π,A (κ) = Pr[Exptind-cca

Π,A,1 (κ) = 1]− Pr[Exptind-cca
Π,A,0 (κ) = 1].

We say that Π is IND-CCA secure if Advind-cca
Π,A (κ) = negl(κ) for every PPT A.

B UC Framework and Fully-Equipped UC Commitments from ABME

B.1 UC framework and Ideal Commitment Functionality

The UC framework defines a probabilistic poly-time (PPT) environment machine Z that oversees the exe-
cution of a protocol in one of two worlds. In both worlds, there are an adversary and honest parties (some
of whom may be corrupted by the adversary). In the ideal world, there additionally exists a trusted party
(characterized by ideal functionality F) that carries out the computation of the protocol, instead of honest
parties. In the real world, the real protocol is run among the parties. The environment adaptively chooses
the inputs for the honest parties, interacts with the adversary throughout the computation, and receives
the honest parties’ outputs. Security is formulated by requiring the existence of an ideal-world adversary
(simulator) S so that no environment Z can distinguish the real world where it runs with the real adversary
A from the ideal world where it runs with the ideal-model simulator S.

In slightly more detail, the task of honest parties in the ideal world is only to convey inputs from
the environment to the ideal functionality and vice versa (the honest parties communicate only with the
environment and ideal functionalities). The environment may order the adversary to corrupt any honest
party in any timing during the execution of the protocol (adaptive corruption), and it may receive the
inner state of the honest party from the adversary. Therefore, the ideal-world simulator must simulate the
inner state of the honest party as if it comes from the real world, because the honest parties in the ideal
world do nothing except storing inputs to them). The inner state of the honest party includes randomness
it has used. We insist that honest parties may not erase any of its state (non-erasure setting).

We denote by IdealF ,SA,Z(κ, z) the output of the environment Z with input z after an ideal execution
with the ideal adversary (simulator) S and functionality F , with security parameter κ. We will only consider
black-box simulators S, and so we denote the simulator by SA that means that it works with the adversary
A attacking the real protocol. Furthermore, we denote by Realπ,A,Z(κ, z) the output of environment Z with
input z after a real execution of the protocol π with adversary A, with security parameter κ.

Our protocols are executed in the common reference string (CRS). model. This means that the protocol
π is run in a hybrid model where the parties have access to an ideal functionality Fcrs that chooses a CRS
according to the prescribed distribution and hands it to any party that requests it. We denote an execution
of π in such a model by HybridFcrs

π,A,Z(κ, z). Informally, a protocol π UC-realizes a functionality F in the

18

Fcrs hybrid model if there exists a PPT simulator S such that for every non-uniform PPT environment Z
every PPT adversary A, and every polynomial p(·), it holds that

{IdealF ,SA,Z(κ, z)}z∈{0,1}p(κ),κ∈N
c
≈{HybridFcrs

π,A,Z(κ, z)}z∈{0,1}p(κ),κ∈N.

The importance of the universal composability framework is that it satisfies a composition theorem that
states that any protocol that is universally composable is secure when it runs concurrently with many other
arbitrary protocols. For more details, see [Can01].

We consider UC commitment schemes that can be used repeatedly under a single common reference
string (re-usable common reference string). The multi-commitment ideal functionality FMCOM from
[CLOS02] is the ideal functionality of such commitments, which is given in Figure 3.

Functionality FMCOM

FMCOM proceeds as follows, running with parties, P1, . . . , Pn, and an adversary S:

• Commit phase: Upon receiving input (commit, sid, ssid, Pi, Pj , x) from Pi, proceed
as follows: If a tuple (commit, sid, ssid, . . .) with the same (sid, ssid) was previously
recorded, does nothing. Otherwise, record the tuple (sid, ssid, Pi, Pj , x) and send
(receipt, sid, ssid, Pi, Pj) to Pj and S.

• Reveal phase: Upon receiving input (open, sid, ssid) from Pi, proceed as
follows: If a tuple (sid, ssid, Pi, Pj , x) was previously recorded, then send
(reveal, sid, ssid, Pi, Pj , x) to Pj and S. Otherwise, does nothing.

Figure 3: The ideal multi-commitment functionality

As in many previous works, the UC framework we use assumes authenticated communication. If it is
not assumed, our protocols is executed in Fcrs and Fauth hybrid models. For simplicity and conciseness, we
simply assume communication between parties are authenticated.

B.2 Fully-Equipped UC Commitments from ABMEs

We formally describe our UC commitment scheme from ABME here in Fig. 4.

B.3 Proof of Theorem 6.1

Theorem 6.1 (restated) The proposed scheme in Fig.4 UC-securely realizes the FMCOM functionality in
the FCRS-hybrid model in the presence of adaptive adversaries in the non-erasure model.

For simplicity, we assume {0, 1}κ ⊂ MSP, without loss of generality, which enables us to remove the
injective map ι : {0, 1}κ → MSP from the scheme. The description of the simulator’s task is described as
follows:

The ideal-world adversary (simulator) S:

• Initialization step: S chooses (pk, sk) ← ABM.gen(1κ) and sets CRS to be pk (along with Upk and
U ′ = {0, 1}κ × Upk).

• Simulating ideal functionality FCRS: Since S simulates FCRS, every request (even from a honest
party) to achieve a common reference string comes to S, it returns the above-chosen CRS to the
requested party.

• Simulating the communication with Z: Every input value that S receives from Z is written on
A’s input tape (as if coming from Z) and vice versa.

19

UC-commitment protocol from ABM.Enc
Common reference string: pk where (pk, sk)← ABM.gen(1κ).
pk uniquely determines U ′pk = {0, 1}κ×Upk. We implicitly assume that there is injective map ι :{0, 1}κ →
MSP such that ι−1 is efficiently computable and ι−1(y) = ε for every y 6∈ ι({0, 1}κ), and also assume that
(sid, ssid, Pi, Pj)∈ {0, 1}κ.
The commitment phase:

• Upon input (commit, sid, ssid, Pi, Pj , x) where x ∈ {0, 1}κ, party Pi proceed as follows: If a tuple
(commit, sid, ssid, Pi, Pj , x) with the same (sid, ssid) was previously recorded, Pi does nothing.
Otherwise, Pi sets t= (sid, ssid, Pi, Pj)∈ {0, 1}κ. It picks up u ← Upk and r ← COINenc, and

encrypts message ι(x) to compute c = ABM.enc(t,u)(pk, ι(x); r). Pi sends (t, u, c) to party Pj , and
stores (sid, ssid, Pi, Pj , (t, u), x, r).

• Pj ignores the commitment if t 6= (sid, ssid, Pi, Pj), u 6∈ Upk, or a tuple (sid, ssid, . . .) with
the same (sid, ssid) was previously recorded. Otherwise, Pj stores (sid, ssid, Pi, Pj , (t, u, c)) and
outputs (receipt, sid, ssid, Pi, Pj).

The decommitment phase:

• Upon receiving input (open, sid, ssid), Pi proceeds as follows: If a tuple (sid, ssid, Pi, Pj , x, r)
was previously recorded, then Pi sends (sid, ssid, x, r) to Pj . Otherwise, Pi does nothing.

• Upon receiving input (sid, ssid, x, r), Pj proceeds as follows: Pj outputs
(open, sid, ssid, Pi, Pj , x) if a tuple (sid, ssid, Pi, Pj , (t, u, c)) with the same (sid, ssid, Pi, Pj)
was previously recorded, and it holds that x ∈ {0, 1}κ, r ∈ COINenc, and c

= ABM.enc(t,u)(pk, ι(x); r). Otherwise, Pj does nothing.

Figure 4: Our Fully-Equipped UC commitment protocol from ABM encryption

• Simulating the commit phase when Pi is honest: Upon receiving from FMCOM the receipt
message (receipt, sid, ssid, Pi, Pj), S generates u = ABM.spl(pk,w, t; v) so that (t, u) ∈ Ltd

pk, where

t = (sid, ssid, Pi, Pj), and computes (c, ξ) = ABM.col
(t,u)
1 (pk, w, v), namely, c is a fake ciphertext

on (t, u). S sends (sid, ssid, (t, u, c)) to adversary A, as it expects to receive from Pi. S stores
(sid, ssid, Pi, Pj , (t, u, c), ξ).

• Simulating the decommit phase when Pi is honest: Upon receiving from FMCOM the message

(open, sid, ssid, Pi, Pj , x), S computes r = ABM.col
(t,u)
2 (ξ, x) and sends (sid, ssid, x, r) to adversary

A.

• Simulating adaptive corruption of Pi after the commit phase but before the decommit
phase: When Pi is corrupted, S immediately read Pi’s stored value (sid, ssid, Pi, Pj , x), which value

previously came from Z and was sent to FMCOM, and then computes r = ABM.col
(t,u)
2 (ξ, x) and reveals

(sid, ssid, Pi, Pj , x, r) to A.

• Simulating the commit phase when the committer Pi is corrupted and the receiver Pj
is honest: Upon receiving (sid, ssid, (t, u), c) from A, S decrypts x = ABM.dec(t,u)(sk, c). If the
decryption is invalid, then S sends a dummy commitment (commit, sid, ssid, Pi, Pj , ε) to FMCOM.
Otherwise, S sends (commit, sid, ssid, Pi, Pj , x) to FMCOM.

• Simulating the decommit stage when the committer Pi is corrupted and the receiver Pj is
honest: Upon receiving (sid, ssid, x′, r′) fromA, as it expects to send to Pj , S sends (open, sid, ssid)
to FMCOM. (FMCOM follows its codes: If a tuple (sid, ssid, Pi, Pj , x) with the same (sid, ssid) was
previously stored by FMCOM, FMCOM sends (sid, ssid, Pi, Pj , x) to Pj and S.)

• Simulating adaptive corruption of Pj after the commit phase but before the decommit
phase: When Pj has been corrupted, S simply reveals (sid, ssid, (t, u, c)) to adversary A as if it

20

comes from Pj .

We remark that in the ideal world, honest parties simply convey inputs from environment Z to the ideal
functionalities and vice versa. Therefore, when FMCOM sends something to honest Pj , it is immediately sent
to Z.

We will prove that there is an ideal-world simulator S such that for every Z, every A, and every
polynomial p(·),

{IdealFMCOM,SA,Z(κ, z)}z∈{0,1}p(κ),κ∈N
c
≈{HybridFcrs

π,A,Z(κ, z)}z∈{0,1}p(κ),κ∈N.

To prove this, we then consider a sequence of the following games on which the probability spaces are
identical, but we change the rules of games step by step.

Hybrid Game 1: In this game, the ideal commitment functionality, denoted F1
MCOM, and the simulator,

denoted S1, work exactly in the same way as FMCOM and S do respectively, except for the case that Pi
is honest: In Hybrid Game 1, at the beginning of the commitment phase, F1

MCOM gives simulator S1 the
committed value x via a honest party Pi together with (receipt, sid, ssid, Pi, Pj). S1 then sets up (t, u) ∈ Ltd

pk

in the same way as S does (using w), but S1 instead computes c as c = ABM.enc(t,u)(pk, x; r), by picking up

r
U← COINenc. When simulating the decommitment phase or simulating adaptive corruption of Pi before the

decommit phase, S1 simply sends (sid, ssid, x, r) to adversary A.
The distribution of (u, c, r) on t = (sid, ssid, Pi, Pj) as generated in Hybrid Game 1 is statistically

indistinguishable to those on the same t as generated in the ideal world, because the two distribution
ensembles, {distcol(t, pk, sk, w, x)}κ∈N and {distenc(t, pk, sk, w, x)}κ∈N, defined in Sec. 4, are statistically in-
distinguishable in κ, for every (ensemble) (pk, (sk, w)) ∈ ABM.gen(1κ), every (ensemble) t ∈ {0, 1}κ, and
every (ensemble) x ∈ MSP(κ). Therefore, we have

{IdealFMCOM,SA,Z(κ, z)}z∈{0,1}p(κ),κ∈N
s
≈{Hybrid1

F1
MCOM,S

A
1 ,Z

(κ, z)}z∈{0,1}p(κ),κ∈N.

Hybrid Game 2: In this game, the ideal commitment functionality F2
MCOM and the simulator S2 work

exactly in the same way as the counterparts do in Hybrid Game 1, except for the case that Pi is corrupted
and Pj is honest in the commitment phase: In the commitment phase in Hybrid Game 2, when S2

receives (t, u, c) from Pi controlled by adversary A, where t = (sid, ssid, Pi, Pj) and u ∈ Upk, then S2 sends
a dummy commitment (commit, sid, ssid, Pi, Pj , ε) to F2

MCOM. In the decommit phase, when S2 receives

(sid, ssid, x′, r) from Pi controlled by adversary A, S2 ignores if c 6= ABM.enc(t,u)(pk, x′; r); otherwise,
it sends (open, sid, ssid, x′) to F2

MCOM. Then, F2
MCOM replaces the stored value ε with value x′ and sends

(reveal, sid, ssid, Pi, Pj , x
′) to Pj and S2.

Let us define BDI as the event that the simulator receives a fake ciphertext c on (t, u) from Pi controlled
by adversary A in Hybrid Game I, where I = 1, 2. Remember that a ciphertext c is called fake if (t, u) ∈ Ltd

pk

and c is a “valid” ciphertext (which means that there is a pair of message/randomness consistent with c).
The rules of the hybrid games, 1 and 2, may change only when BD1 and BD2 occur in each game, which

means that ¬BD1 = ¬BD2 and thus, BD1 = BD2. So, we use the same notation BD to denote the event
such that the simulator receives a fake ciphertext from the adversary in the hybrid games, 1 and 2, namely,
BD := BD1 = BD2.

By a simple evaluation such that Pr[A]− Pr[C] ≤ Pr[B] if Pr[A ∧ ¬B] = Pr[C ∧ ¬B], we have for fixed
κ and z,

Dist
(

Hybrid1
F1

MCOM,S
A
1 ,Z

(κ, z), Hybrid2
F2

MCOM,S
A
2 ,Z

(κ, z)
)
≤ Pr[BD],

(where the output of Z is assumed to be a bit).
We show that Pr[BD] is negligible in κ.

Lemma B.1 Event BD occurs in Hybrid Game 2 at most with probability qAε
euf , where qA denotes the total

number of A sending the commitments to honest parties and εeuf denotes the maximum advantage of an
adversary breaking unforgeability of PPRF = (ABM.gen,ABM.spl) on L̂td

pk.

21

Proof. We construct the following algorithm B0 that takes pk from ABM.gen and simulates the roles of

S2 and F2
MCOM perfectly, interacting Z and A, by having access to ABM.spl(pk,w, ·) as follows: In the case

when Pi is honest: In the commitment phase when Z sends (commit.sid, ssid, Pi, Pj , x) to F2
MCOM (via

honest Pi), B0 submits t = (sid, ssid, Pi, Pj) to ABM.spl(pk, w, ·) to obtain u such that (t, u) ∈ Ltd
pk. Then

B0 computes fake ciphertext c ← ABM.enc(t,u)(pk, x) as commitment in the same way as S2 (= S1) does.
In the case where Pi is corrupted and Pj is honest: In the commitment phase when corrupted Pi
controlled by A sends a commitment (t, u, c) to S2 as it expects to send to honest Pj , B0 simply plays the roles
of S2 and F2

MCOM. Later, in the opening phase when corrupted Pi controlled by A sends (sid, ssid, x′, r)
to S2 as it expects to send to honest Pj , B0 simply plays the role of F2

MCOM.
We note that S2 uses w only when it computes u ← ABM.spl(pk, w, t). in the commitment phase when

Pi is honest. Since B0 may have access to oracle ABM.spl(pk,w, ·), B0 play the roles of S2 and F2
MCOM

identically, interacting with Z and A.
We now construct an algorithm Bχ, where χ ∈ [qA], that is the same as B0 except that it aborts and

outputs (t, u) when A generates χ-th (in total) commitment (t, u, c) to a honest party. Here, qA denotes the
total number of A sending the commitments to honest parties. We note that

Pr[BD] ≤
qA∑
i=1

Pr[(t, u)← Bi(pk)ABM.spl(sk,·),Z,A : (t, u) ∈ L̂td
pk]

The probability of Bi outputting (t, u) ∈ L̂td
pk is bounded by εeuf . Therefore, we have Pr[BD] ≤ qAεeuf . 2

By this, we have

{Hybrid1
F1

MCOM,S
A
1 ,Z

(κ, z)}z∈{0,1}p(κ),κ∈N
c
≈{Hybrid2

F2
MCOM,S

A
2 ,Z

(κ, z)}z∈{0,1}p(κ),κ∈N

Hybrid Game 3: In this game, F3
MCOM works exactly in the same way as F2

MCOM. S3 works exactly in
the same way as S2 except for the case that Pi is honest in the commitment phase: In the commitment
phase when receiving (receipt, sid, ssid, Pi, Pj , x) from F3

MCOM, S3 picks up u ← Upk at random, instead
of generating u ← ABM.spl(pk,w, t) so that (t, u) ∈ Ltd

pk, where t = (sid, ssid, Pi, Pj). It then computes

c = ABM.enc(t,u)(pk, x; r). Note that x is given from the ideal commitment functionality at the beginning
of the commitment phase. We note that in Hybrid Game 2, S2 makes use of w only when it computes
u← ABM.spl(pk,w, t), whereas in Hybrid Game 3, S3 does not use w any more.

The computational difference of the views of environment Z between these two games is bounded by
pseudo-randomness of (ABM.gen,ABM.spl), because we can construct a distinguisher D, using Z and A as
oracle with having access to either of ABM.spl(sk, ·) or U(·), where oracle U(t) returns random u ∈ U on
query t, but if ABM.spl(sk, ·) is deterministic, then U(·) returns the same u on t if it was previously queried.
When D have access to ABM.spl(sk, ·), it simulates Hybrid Game 2; otherwise, it simulates Hybrid Game 3.
Therfore, we have:

{Hybrid2
F2

MCOM,S
A
2 ,Z

(κ, z)}z∈{0,1}p(κ),κ∈N
c
≈{Hybrid3

F3
MCOM,S

A
3 ,Z

(κ, z)}z∈{0,1}p(κ),κ∈N.

Game HybridFcrs
π,A,Z : This is the real world in the CRS model (or in the CRS hybrid model), where a

honest party activated for the commitment functionality follows the code of the protocol in Fig. 4. The
common reference string functionality FCRS parameterized by ABM.gen is given in Figure 5. The ideal CRS
functionality FCRS is replaced with by S3’s task simulating FCRS, which is identical to the task of the ideal
functionality. Other tasks made by S3 is replaced with those by the corresponding parties in the real world
in the FCRS model. It is obvious by construction that both corresponding tasks between two worlds are
identical. We further observe that F3

MCOM simply convey their input from a party to a party. Therefore, we
have

{Hybrid3
F3

MCOM,S
A
3 ,Z

(κ, z)}z∈{0,1}p(κ),κ∈N ≡ {HybridFcrs
π,A,Z(κ, z)}z∈{0,1}p(κ),κ∈N.

22

Functionality FCRS

FCRS parameterized by ABM.gen proceeds as follows:

• FCRS runs (pk, sk) ← ABM.gen(1κ); and sets CRS to be pk. Upon receiving
message (common-reference-string, sid) with any sid, FCRS returns the
same CRS to the activating party.

Figure 5: The common reference string functionality

Therefore; in the end, we have

{IdealFMCOM,SA,Z(κ, z)}z∈{0,1}p(κ),κ∈N
c
≈ {HybridFcrs

π,A,Z(κ, z)}z∈{0,1}p(κ),κ∈N

C PPRF from Damg̊ard-Jurik PKE

In this section, we provide the formal proof of Lemma 7.1. Although the proof is implicitly shown in [Hof12],
we provide it for completeness.

To prove the statement, we require two more assumptions related to DJ PKE, along with the standard
DCR assmption, called the non-multiplication assumption and the non-trivial divisor assumption, which origi-
nally appeared in [Hof12]. We first prove that our target scheme is a PPRF with unforgeability on Ltd

pk (not

on L̂td
pk) under the DCR assumption and the non-multiplication assumption. We prove this in a more gener-

alized case that DJ PKE is replaced with an arbitrary enhanced additive homomorphic encryption scheme.
We then prove that the resulting scheme has unforgeability on L̂pk, additionally assuming the non-divisor
assumption.

C.1 Assumptions and Some Useful Lemmas

Let us write Π(d) to denote DJ PKE with parameter d.

Assumption C.1 We say that the DCR assumption holds if for every PPT A, there exists a key generation
algorithm K such that AdvdcrA (κ) =

Pr[Exptdcr−0
A (κ) = 1]− Pr[Exptdcr−1

A (κ) = 1]

is negligible in κ, where

Exptdcr−0
A (κ) :

n← K(1κ); R
U← Z×

n2

c = Rn mod n2

Return A(n, c).

Exptdcr−1
d,A (κ) :

n← K(1κ); R
U← Z×

n2

c = (1 + n)Rn mod n2

Return A(n, c).

Assumption C.2 ([Hof12]) We say that the non-trivial divisor assumption holds on Π(d) if for every PPT
A, Advdivisor

A,Π(d)(κ) = negl(κ) where

Advdivisor
A,Π(d)(κ) = Pr[(pk, sk)← K(1κ); A(n) = c : 1 < gcd(D(c), n) < n].

This assumes that an adversary cannot compute an encryption of a non-trivial divisor of n, i.e., E(p),
under given public-key pkdj only. Since the adversary is only given pkdj, the assumption is plausible.

23

Lemma C.3 If A is an adversary against Π(d), there is adversary A′ against Π(1) such that

Advdivisor
A,Π(d)(κ) ≤ Advdivisor

A′,Π(1)(κ).

Assumption C.4 ([Hof12]) We say that the non-multiplication assumption holds on DJ PKE Π(d) if for
every PPT adversary A, the advantage of A, Advmult

A,Π(d)(κ) = negl(κ), where

Advmult
A,Π(d)(κ) = Pr[(pk, sk)← K(1κ); c1, c2 ← Z×

nd+1 ; c∗ ← A(pk, c1, c2) : Dsk(c
∗) = Dsk(c1) ·Dsk(c2)].

This assumes that an adversary cannot compute E(x1 · x2) for given (pkdj,E(x1),E(x2)). If the mul-
tiplicative operation is easy, DJ PKE turns out a fully-homomorphic encryption (FHE), which is unlikely.
Although breaking the non-multiplication assumption does not mean that DJ PKE turns out a FHE, this
connection gives us some feeling that this assumption is plausible.

Lemma C.5 If A is an adversary against DJ PKE Π(d), there is an adversary A′ against Π(1) such that

Advmult
A,Π(d)(κ) ≤ Advmult

A′,Π(1)(κ).

Lifting-Up and Re-Randomization. We give very useful lemmas below, which are implicitly used in
[DJ01] to prove that Π(d) for any d ≥ 1 is IND-CPA secure under the DCR assumption. In order to prove
Lemmas, C.3 and C.5, these lemmas are essential.

Lemma C.6 (from [DJ01, Hof12]) Let n be a public key of both DJ PKE Π(d), where d ≥ 1, and DJ
PKE Π(1). We let τ : Z×n2 → Z×

nd+1 be the canonical embedding map defined by τ(c) = c mod nd+1 where

c ∈ Z×n2 is canonically interpreted as an integer in {0, . . . , n2−1}. We let π : Z×
nd+1 → Z×

n2 be the canonical

homomorphism defined by π(ĉ) = ĉ mod n2 where ĉ ∈ Z×
nd+1 is canonically interpreted as an integer in

{0, . . . , nd+1 − 1}. We then have:

• π ◦ τ is the identity map over Z×
n2.

• For every c ∈ Z×
n2, D(1)(c) ≡ D(d)(τ(c)) (mod n).

• For every ĉ ∈ Z×
nd+1, D(1)(π(ĉ)) ≡ D(d)(ĉ) (mod n).

Based on Lemma C.6, we have the following lemma.

Lemma C.7 (from [DJ01, Hof12]) There is an algorithm B that takes any public-key pk = (n, d) (d > 1)
and any ciphertext c ∈ Z×

n2 for Π(1), and efficiently samples random ĉ ∈ Z×
nd+1 conditioned on D(1)(π(ĉ)) =

D(1)(c) (mod n).

Proof. B is constructed as follows: Given c ∈ Z×
n2 , choose random y

U← {0, 1, . . . , nd−1 − 1}; set

ĉ = τ(c) ·E(d)(yn); output ĉ.

τ(c) ∈ Z×
nd+1

re-randomize
=⇒ ĉ = τ(c) ·E(yn) ∈ Z×

nd+1

τ ↑ ↓ π

c ∈ Z×
n2

D(1)(c)=D(1)(π(ĉ))⇐⇒ π(ĉ) ∈ Z×
n2

Figure 6: Diagram of Lifting up and Re-Randomization

24

C.2 Proof of Lemmas, C.3 and C.5

By using algorithm B, random instances given to adversary A are converted into proper random instances
given to adversary A′. Letting the output of A′ be ĉ, we output π(ĉ) as the output of A, which obtains the
lemmas, C.3 and C.5.

C.3 PPRF from Waters Signature on Additively Homomorphic Encryptions

We define enhanced additive homomorphic encryptions, which is a generalization of Damg̊ard-Jurik PKE.
Let Π = (K,E,D) be a public-key encryption scheme in the standard sense. For given (pk, sk) generated

by K(1κ), let X be the message space and R be the coin space, with respects to pk. Let Y be the image of
Epk, i.e., Y = Epk(X;R). Here we assume that X is a commutative finite ring equipped with an additive
operation + and an multiplication operation ×. We also assume Y is a finite Abelian group with ? operation.

We say that Π is an additively homomorphic public key encryption scheme if for every pk generated by
K, every x1, x2 ∈ X, and every r1, r2 ∈ R, there exists r ∈ R such that

Epk(x1; r1) ?Epk(x2; r2) = Epk(x1 + x2; r).

In particular, we say that that Π is enhanced additively homomorphic if Π is additively homomorphic
and r ∈ R must be efficiently computable, given pk, and (x1, x2, r1, r2).

The mapping above is homomorphic in the mathematical sense – Namely, Epk(x1) ? · · · ? Epk(xn) ∈ Y

for every n ∈ Z and every x1, . . . , xn ∈ X. We write cz ∈ Y , for c ∈ Y and z ∈ Z, to denote

z︷ ︸︸ ︷
c ? · · · ? c.

What we want to assume is that Π is additively homomorphic, but not equipped with any efficient
multiplicative operation � such that Epk(x1) � Epk(x2) = Epk(x1 × x2) for any given Epk(x1) and Epk(x2).
Formally, we define this property as follows:

Assumption C.8 (Non-Multiplication Assumption) Let Π be an additively homomorphic public key
encryption scheme along with a ring (X,+,×) as the message space w.r.t. pk and a group (Y, ?) as the image
of Epk. We say that the non-multiplication assumption holds on Π if for every non-uniform PPT algorithm
A, Advmult

A (κ) = negl(κ), where Advmult
A (κ) ,

Pr[(pk, sk)← K(1κ); c1, c2 ← Y ; c∗ ← A(pk, c1, c2) : Dsk(c
∗) = Dsk(c1) ·Dsk(c2)].

This assumption is a generalized version of Assumption C.4.
We now construct a PPRF (Genspl, Spl). Let Π = (K,E,D) be an enhanced additively homomorphic

public-key encryption scheme. Let X, R, and Y be the same as mentioned above. In addition, let group
(X,+) be cyclic, i.e., (X,+) ' Z/nZ for some integer n. Let x1, x2 ∈ X. Let g1 ∈ Epk(x1) and g2 ∈ Epk(x2).
Let h0, h1, . . . , hκ ∈ Y . Let us define H(t)= h0 ?

∏κ
i=1 h

t[i] ∈ Y , where t = (t[1], . . . , t[κ]) ∈ {0, 1}κ is the bit
representation of t. Let us define Lu(t) such that

Lu(t) = {(ur, ut) ∈ Y 2 | r = Dsk(ur) and x1 × x2 = Dsk(ut ? H(t)−r)}.

We let S = {0, 1}κ × Y 2 and L = {(t, (ur, ut)) | t ∈ {0, 1}κ and (ur, ut) ∈ Lu(t)}.
A PPRF (Genspl,Spl) is constructed as follows:

• Gen(1κ): It runs K(1κ) and obtain (pk, sk). It generates x1, x2 ← X and h0, h1, . . . , hκ ← Y
uniformly. Set d = x1 × x2 ∈ X. It generates g1 ← Epk(x1) and g2 ← Epk(x2). It outputs
PK= (pk, g1, g2, h0, . . . , hκ) and SK = (PK, d).

• Spl(SK, t; r): It picks up r ← X, generates ur ← Epk(r) and ut ← Epk(d) ? H(t)r, and then outputs
u = (ur, ut).

Theorem C.9 Let Π be an enhanced additively homomorphic public-key encryption scheme mentioned
above. Suppose that Π is IND-CPA and the non-multiplication assumption holds on Π. Then, the above
(Genspl,Spl) is a PPRF with unforgeability on Lu.

25

Proof. The proof of pseudo randomness is almost straightforward: Suppose that pk is generated by

K(1κ). Let S be a simulator such that it breaks IND-CPA of Π using A, where A is an adversary to output
1 if it determined that it has had access to a PPRF. We run S on pk. It picks up at random x1, x2 ← X,
h0, h1, . . . , hκ ← Y , and sets g1 ← Epk(x1) and g2 ← Epk(x2). It sends (m0,m1) to the challenger, where
m0 = 0, and m1 = x1×x2 ∈ X. It then receives Epk(mb), where b is a random bit chosen by the challenger.
It then runs adversary A on PK = (pk, g1, g2,h), where h = (h0, h1, . . . , hκ). For any query t, the simulator
picks up random r ← X and returns (ur, ut) such that ur = Epk(r) and ut = Epk(mb) ? (H(t))r. Finally,
the simulator outputs the same bit that A outputs.

When b = 0, (ur, ut) is computationally indistinguishable from a uniform distribution over Y 2, because
Epk(0) is computationally indistinguishable from a uniform distribution over Y . On the other hand, when

b = 1. Since S outputs the same bit that A outputs, Advind-cpa
Π S(κ) = Pr[S = 1 | b = 1] − Pr[S = 1 | b = 0]

= Pr[A = 1 | b = 1]− Pr[A = 1 | b = 0] = AdvpprfA(κ). Therefore, AdvpprfA(κ) = Advind-cpa
Π S(κ) = negl(κ).

The proof of unforgeability on this scheme is substantially similar to that in [BB04, Wat05, BR09]. We
provide a sketch of the proof.

Let G0 be the original unforgeability game, in which PK = (pk, g1, g2,h) ← Gen(1κ); A takes PK,
queries, m1, . . . ,mqs , to Spl(sk, ·), and tries to output m0 along with u ∈ Lu(m0) and m0 6∈ {m1, . . . ,mqs}.
Let us denote by ε0 the advantage of A in G0.

In game G1, we modify the choice of h as follows: Recall now that (X,+,×) is a finite commutative
ring such that (X,+) ' Z/nZ for some integer n. Let Gen1 be the generator in game G1. Let θ = O(qsε0),
where qs denotes the maximum number of queries A submits to Spl. Gen1 picks up (pk, g1, g2) as Gen does.
It then picks up a0, a1, . . . , aκ ← Z/nZ. It picks up y1, . . . , yκ ← [0, · · · , (θ − 1)] and y0 ∈ [0, . . . , κ(θ − 1)].
It finally outputs PK = (pk, g1, g2,h), by setting hi = gaigyi2 for i ∈ [0, · · · , κ]. Since (X,+) ' Z/nZ and
Epk is additively homomorphic, Y ⊂ Z/nZ. Hence, the distribution of h is identical to that in the previous
game, and this change is conceptual. Therefore, the advantage of A in G1, ε, is equal to ε0.

For t ∈ {0, 1}κ, let a(t) = a0 +
∑
t[i] · ai (mod n) and y(t) = y0 +

∑
t[i] · yi ∈ Z. Then we have H(t)

= ga(t)g
y(t)
2 .

Let γy : ({0, 1}κ)qs+1 → {0, 1} be a predicate such that γy(t) = 1 if and only if y(t0) = 0 and
∧qsi=1y(ti) 6= 0, where t = (t0, . . . , tqs) ∈ ({0, 1}κ)qs+1. Let Q(t) be the event that at the end of game
G1, adversary A queries, t1, . . . , tqs and outputs t0 as the target message, on which A tries to generate the
output of Spl(sk, t0).

We now borrow the following lemmas due to [BR09].

Lemma C.10 [BR09]. Let Q(t) be the event in game G1 mentioned above. Then,

Pr[Q(t) ∧ (γy(t) = 1)] = Pr[Q(t)] Pr[γy(t) = 1].

Here the probability is taken over A, Gen1, and Spl.

Lemma C.11 [BR09]. Let n, θ, κ be positive integers, such that κθ < n. Let y0, y1, . . . , yκ be elements in
the domains mentioned above and let y(t) = y0 +

∑
ti · yi ∈ Z. Then, for every t0, . . . , tκ ∈ {0, 1}κ, we have

1

κ(θ − 1) + 1

(
1− qs

θ

)
≤ Pr

y
[γy(t) = 1] ≤ 1

κ(θ − 1) + 1
,

where the probability is taken over random variable y = (y0, y1, . . . , yκ) uniformly distributed over the specified
domain mentioned above.

Now, in game G2 we modify the challenger as follows: When the event that γy(t) 6= 1 occurs in game
G2, the challenger aborts the game. Let ε2 be the advantage of A in game G2. It immediately follows from
the above lemmas that ε1 ·mint{Pry[γy(t) = 1]} ≤ ε2.

In game G3, the challenger is given (pk, g1, g2) where pk ← K(1κ) and g1, g2 ← Y . It picks up a and

y as in game G2. When A queries t, it picks up r′ ← X (' Z/nZ) and selects ur ← g
− 1
y(t)

1 ? Epk(r
′) and

ut ← g
−a(t)
y(t)

1 ?Epk(0) ? (H(t))r
′
.

26

Let r = Dsk(ur)= − x1
y(t) + r′. Then, it holds that for y(t) 6= 0, there is v ∈ R such that ut =

Epk(x1 × x2; v) ? (H(t))r, because the decryption of the righthand side under sk is

x1x2 + (a(t) + y(t)x2)r = x1x2 + (a(t) + y(t)x2) ·
(
− x1

y(t)
+ r′

)
= −a(t)

y(t)
· x1 + (a(t) + y(t)x2) · r′.

Therefore, the righthand side is g
−a(t)
y(t)

1 ?Epk(0; v) ? (H(t))r
′

for some v ∈ R. This is substantially equivalent
to the technique of all-but-one simulation technique in [BB04]. As in game G2, the simulator always abort
if γy(t) = 1 holds. Hence, the advantage of A in this game, denoted ε3, is equivalent to ε2.

In the final game, we construct a simulator S that breaks the non-multiplication assumption. Let
(pk, sk)← K(1κ) and c1, c2 ← Y . S takes (pk, c1, c2) as input. Then, it sets g1 := c1 and g2 := c2 and runs
the challenger and adversary A in game G3 on (pk, g1, g2).

We note that when A outputs (ur(t0), ut(t0)) ∈ Lu(t0) in this game, it holds that Dsk(ut(t0)) = x1 × x2 +
r · (a(t0) + y(t0)x2) · r where r = Dsk(ur(t0)) ∈ Z/nZ and r · (a(t0) + y(t0)x2) denotes

∑r
i=1(a(t0) + y(t0)x2).

Since y(t0) = 0, S has now
ut(t0) = Epk(x1 × x2) ? (ur)

a(t0).

Finally, S outputs Epk(x1 × x2) by computing ut(t0)

u
a(t0)
r

. By construction, it is obvious that the advantage of S

is equivalent to ε3.

C.4 Proof of Lemma 7.1

We now complete the proof of Lemma 7.1. We note that we have already proved in Theorem C.9 that
the scheme is a PPRF with unforgeability on Ltd

pk under Assumption C.1 and Assumption C.8 because
Assumption C.8 is a generalized version of Assumption C.4. We now show the following.
Lemma 7.1 (restated) PPRF = (ABM.gen,ABM.spl) is a PPRF with unforgeability on L̂td

pk := U ′pk\Lext
pk ,

under the assumptions, C.1, C.2 and C.4.
Proof. Let PPRF = (ABM.gen,ABM.spl) be defined on Π(d). For pk generated by ABM.gen and integer

f ≥ 1, we let

L
(f)
pk :=

{
(t, (ur, ut)) | D(ut) ≡ x1x2 + y(t)D(ur) (mod nf)

}
,

where D is the decryption algorithm of Π(d). By construction, it is clear that L
(d)
pk = Ltd

pk. We remark that

Ltd
pk ⊂ L

(1)
pk . We note that L̂td

pk is the union of disjoint sets, L
(1)
pk and Ldivisor such that

Ldivisor :=

{
(t, (ur, ut)) | 1 < gcd

(
D

(
ut

gx21 u
y(t)
r

)
, n

)
< n

}
.

We first show that our target PPRF has unforgeability on L
(1)
pk . In the proof of Theorem C.9, we change

the proof as follows: In the final game, the simulator instead takes (pkdj, c1, c2) where pkdj = (n, 1) is a public
key of DJ PKE Π(1) and (c1, c2), where ci ∈ Z×

n2 , is an instance of the non-multiplication problem on Π(1).
The simulator sets pk′dj := (n, d) and lifts up (c1, c2) to (g1, g2) ∈ (Z×

nd+1)2 using algorithm B in Lemma C.6.
Then the simulator start game G3 with (pk′dj, g1, g2) by playing the role of the challenger. When adversary

A outputs (t0, (ur, ut)) ∈ L(1)
pk , the simulator can solve the non-multiplication problem on Π(1) by computing

ut(t0)

u
α(t0)
r

mod n. Therefore, the probability of A outputting such pairs is negligible; otherwise, it contradicts

Assumption C.4.
We next prove that our target PPRF has unforgeability on Ldivisor. We directly construct an algorithm

C that breaks the non-trivial divisor assumption on Π(d). We let C take pkdj from Π(d). Then, C sets up
all public parameter consistent with pkdj and the corresponding secret key except skdj. We note that C can
sample (ur, ut) on arbitrary t under the public key, because skdj is not needed to sample (ur, ut). C runs

27

adversary A and finally obtain (t∗, (u∗r , u
∗
t)) ∈ Ldivisor. Then, it outputs c∗ :=

u∗t
g
x2
1 (u∗r)y(t

∗) . (t∗, (u∗r , u
∗
t)) ∈

Ldivisor, means that 1 < gcd(Dskdj(c
∗), n) < n. Therefore, the probability that (t∗, (u∗r , u

∗
t)) ∈ Ldivisor is

negligible; otherwise, it contradicts Assumption C.2.

D Instantiation of ABME from Twin Cramer-Shoup

We construct an ABME scheme from the DDH assumption. The expansion factor of this scheme is not
optimal but Ω(κ/log κ). However, this expansion rate is still better than the previous works (with Ω(κ)).
This scheme also has a short public key.

We first construct a PPRF. Let H = {H : {0, 1}∗ → {0, 1}κ}κ∈N be an ensemble of collision-resistant
hash families. Let g be a generator of a multiplicative group G of prime order q, where we assume that G is
efficiently samplable and the DDH assumption holds on the group. Let TwinCS = (CS.gen, CS.enc, CS.dec).
be a tag-based twin DDH version of Cramer-Shoup PKE [CS04, CKS08], where

• CS.gen(1κ): Via (pkcs, skcs) ← CS.gen(1κ), it picks up hash H
U← Hκ, a generator of G, g, and

sets X = gx, X̂ = gx̂, Y = gy, and Ŷ = gŷ, where x, x̂, y, ŷ ← Z/qZ, and finally outputs pkcs
:= (H, g,X, X̂, Y, Ŷ) and skcs := (pk, x, x̂, y, ŷ).

• CS.enc(pkcs, t,m): Via c ← CS.enc(pkcs, t,m), where message m ∈ G, and tag t ∈ {0, 1}κ, it outputs
c = (d, e, πx, πy), by computing d := gv, e := m ·Xv, τ := H(t, d, e), πx := (Xτ X̂)v, and πy := (Y τ Ŷ)v,

where v
U← Z/qZ.

• CS.dec(skcs, t, c): Via m ← CS.dec(skcs, t, c), where c := (d, e, πx, πy), it checks if πx
?
= dτx+x̂ and

πy
?
= dτy+ŷ, where τ = H(t, d, e) and outputs m := e · d−x if the above equations both hold, otherwise

⊥.

TwinCS is a IND-CCA secure Tag-PKE scheme if the DDH assumption holds true and H is an ensemble
of collision-resistant hash families. The proof is omitted.

PPRF = (Genspl, Spl) from TwinCS is constructed as follows:

• Genspl(1κ): It picks up (pkcs, skcs)← CS.gen(1κ), where pkcs = (H, g,X, X̂, Y, Ŷ) and skcs = (pk, x, x̂, y, ŷ).

It picks up ζ
U← G×, v0

U← Z/qZ, and computes (d0, e0) = (gv0 , ζ−1Xv0). It finally outputs pk :=
(pkcs, d0, e0) and w := (ζ, v0).

• Spl(pk,w, t): It takes (pk,w, t) where w = (ζ, v0) and outputs u = (d, e, πx, πy) = CS.enc(pkcs, t, ζ; v)

where v
U← Z/qZ.

Here, we let U ′ := {0, 1}κ ×G4 and

Ltd
pk := {(t, (d, e, πx, πy)) | ∃ (ζ, v0, v) : (d0, e0) = (gv0 , ζ−1Xv0) and (d, e, πx, πy) = CS.enc(pkcs, t, ζ; v)}.

We let L̂td
pk := {(t, (d, e, πx, πy)) | ∃ (ṽ, v) : (d0d, e0e) = (gṽ, X ṽ) and (d, πx, πy) = (gv, (Xτ X̂)v, (Y τ Ŷ)v)},

where ṽ = v0+v and τ = H(t, d, e). We note that Ltd
pk = L̂td

pk. We note that PPRF consists of two encryptions
of El Gamal and Twin Cramer-Shoup encrypting the same message.

Lemma D.1 The scheme obtained above is a PPRF with unforgeability on L̂td
pk if the DDH assumption

holds true and H is an ensemble of collision-resistant hash families.

Proof. By construction, it is obvious that the above scheme satisfies pseudo randomness. The unforge-

ability follows from the following analysis.
Let us define G0 as the original unforgeability game, in which the simulator sets up all secrets and public

parameter pk = (pkcs, d0, e0). The simulator returns (d, e, πx, πy)← CS.enc(pkcs, t, ζ) for every query t that

28

the adversary A submits as query. Let ε0 be the advantage of A in game G0, i.e., the probability that it
outputs (d′, e′, π′x, π

′
y) ∈ CS.enc(pkcs, t

′, ζ) where t′ is not queried.
We consider a sequence of q + 1 games, G1,0, . . . ,, G1,q, where q denotes the number of queries that

A submits. We define Game G1,0 as G0. Let t1, . . . , tq be a sequence of queries from A. In game G1,i,
where i ∈ {0, . . . , q}, the simulator returns (d, e, πx, πy) ← CS.enc(pkcs, tj , 0

|ζ|) for j ≤ i, whereas returns
(d, e, πx, πy)← CS.enc(pkcs, tj , ζ) for j > i. Let ε1,i be the advantage of A in game G1,i, i.e., the probability
that it outputs (d′, e′, π′x, π

′
y) ∈ CS.enc(pkcs, t

′, ζ) where t′ is not queried.
The difference of the adversary’s advantage, ε1,i − ε1,i+1, between each two games, G1,i and G1,i+1, for

every i ∈ {0, . . . , q − 1}, is evaluated by the advantage of IND-CCA security for TwinCS. Namely, we
construct an algorithm B using A as oracle that breaks IND-CCA security for TwinCS.

B takes pkcs and chooses ζ
U← G× and sets (d0, e0) := (gv0 , ζ−1Xv0) where v0

U← Z/qZ. For the first j
queries of A, with j ≤ i, B returns CS.enc(pkcs, tj , 0

|ζ|). When A submits the i+ 1-th query ti+1, B submits
(0|ζ|, ζ) to the encryption oracle, and receives the challenge ciphertext (d∗, e∗, π∗x, π

∗). For the remaining
queries, B returns CS.enc(pkcs, tj , ζ) where i+ 1 < j.

When A outputs c′ = (d′, e′, π′x, π
′
y) for a fresh tag t′, B queries c′ to the decryption oracle. If the

decryption oracle returns ζ, B outputs bit 0; otherwise 1. By construction, we have ε1,i(κ) − ε1,i+1(κ) ≤
Advind-cca

TwinCS,A(κ), for every i ∈ {0, . . . , q − 1}, which is negligible in κ if the DDH assumption holds and H is
a collision resistant hash families.

We note that B needs the decryption oracle only once, to check that c′ is a ciphertext of ζ.
In Game G2, the simulator behaives as follows: It is given pkcs and |ζ| as input, chooses a random t, and

obtains ciphertext (d, e, πx, πy) of a random message ζ−1 on tag t. It then sets (d0, e0) := (d, e). Here, the
simulator is not given ζ. For every query ti of A, 1 ≤ i ≤ q, the simulator returns CS.enc(pkcs, ti, 0

|ζ|). Let
ε2 be the advantage of A in game G2. Since this change is conceptual from G1,q ε1,q = ε2.

Game G3 is the same game as G2 except that when A finally outputs c′ = (d′, e′, π′x, π
′
y) on a fresh

tag t′, the simulator submits it to the decryption oracle and outputs its reply. We note that the simulator
does not reveal any information on t to A. Hence, it holds that t′ 6= t with (overwhelming) probability
1 − 1

q . If c′ is a ciphertext of ζ, the simulator results in decrypting c = (d, e, πx, πy) on tag t, which is
bounded by the advantage of an adversary that breaks one-wayness of TwinCS in the chosen-ciphertext
attacks. The advantage is bounded by twice of that of IND-CCA security of TwinCS. Hence, we have
ε0(κ) ≤ (q + 2)Advind-cca

TwinCS,B(κ) + 1
q .

We now construct an ABME scheme from the Twin-Cramer-Shoup based PPRF scheme .

• ABM.gen(1κ): It gets (pkcs, skcs)← CS.gen(1κ) (the key generation algorithm of Twin Cramer-Shoup),

where pkcs = (H, g,X, X̂, Y, Ŷ) and skcs = (x, x̂, y, ŷ). It chooses ξ
U← G×, v0

U← Z/qZ, and computes
d0 := gv0 , and e0 := ξ−1Xv0 . It sets λ = O(log κ). It finally outputs pk, (sk, w)), where pk :=
(pkcs, d0, e0, λ), sk := skcs, and w := (ζ, v0). We let U ′pk := {0, 1}κ×G4 that contains the disjoint sets,

Ltd
pk and Lext

pk , as defined below.

• ABM.spl(pk, w, t; v): It takes (pk,w, t) where w = (ζ, v0), picks up v
U← Z/qZ, and outputs u :=

(d, e, πx, πy) = CS.enc(pkcs, ζ; v), where τ := H(t, d, e). Here we define U ′pk := {0, 1}κ × G4 and

Ltd
pk = L̂td

pk =

{(t, (d, e, πx, πy)) | ∃ (ṽ, v) : d0d = gṽ, e0e = hṽ, d = gv, πx = (Xτ X̂)v, and πy = (Y τ Ŷ)v}.

We note that ṽ = v0 + v. We define Lext
pk = U ′pk\L̂td

pk.

• ABM.enc(t,u)(pk,m; (ẑ, z)): To encrypt message m ∈ {0, 1}n, it parses m as (m1, . . . ,m`) where ` =

n/λ and mi ∈ {0, 1}λ. It picks up vectors, z̃, z
U← G`, where z̃ = (z̃1, . . . , z̃`) and z = (z1, . . . , z`), and

computes 2-by-` matrix A 3-by-` matrix B such that

A =

(
g d0d
X e0e

)(
z̃1 . . . z̃`
m1 . . . m`

)
, and B =

 g d

Xτ X̂ πx
Y τ Ŷ πy

(z1 . . . z`
m1 . . . m`

)
. (3)

29

It finally outputs c = (A,B).

• ABM.dec(t,u)(sk, c): Let A = (a1, . . . ,a`) and B = (b1, . . . , b`), where ai = (a1,i, a2,i)
T and bi =

(b1,i, b2,i, b3,i)
T. For all i ∈ [`], it searches “consistent” mi ∈ {0, 1}λ such that

(a1,i)
x

a2,i
=
((d0d)x

e0e

)mi
if e0e 6= (d0d)x,

(b1,i)
τx+x̂

b2,i
=
(dτx+x̂

πx

)mi
if πx 6= dτx+x̂,

and
(b1,i)

τy+ŷ

b3,i
=
(dτy+ŷ

πy

)mi
if πy 6= dτy+ŷ, where τ = H(t, d, e). (4)

It aborts if it find no mi or “inconsistent” one for some i ∈ [`]; otherwise outputs m = (m1, . . . ,m`) ∈
{0, 1}n.

• ABM.col
(t,u)
1 (pk, t, ((ζ, v0), v); (w̃,w)): It picks up w̃i, wi

U← Z/qZ for i ∈ [`]. It sets a1,i := gw̃i ,
a2,i := Xw̃i , b1,i := dwi , b2,i := (Xτ X̂)wi , and b3,i := (Y τ Ŷ)wi , where τ = H(t, u, e). It finally outputs
c = (A,B) and ξ = (v0, v, w̃,w), where w̃ = (w̃1, . . . , w̃l) and w = (w1, . . . , wl).

• ABM.col
(t,u)
2 (ξ,m): To open c = (A,B) to m, it parses m as (m1, . . . ,m`) and computes, for all i ∈ [`],

z̃i := w̃i−mi · ṽ mod q and zi := wi−mi ·v mod q, where ṽ = v0 +v. It finally outputs (z̃, z), consistent
with m in Equation (3).

Suppose that (t, (d, e, πx, πy)) ∈ Ltd
pk. Each column vector ai = (a1,i, a2,i)

T in A from ABM.col1
can be seen as the first message in a canonical sigma protocol on common input (d0d, e0e) to prove
that logg (d0d) = logX(e0e), and z̃i from ABM.col2 corresponds to the response on challenge mi. Hence,
(A,m, z̃) is the accepting conversation of the parallel execution of the sigma protocol with parallel chal-
lenge m = (m1, . . . ,m`), where mi ∈ {0, 1}λ. Similarly, (B,m, z) is the accepting conversation of the
parallel execution of a sigma protocol on common input (d, πx, πy) with parallel challenges m to prove that
logg (d) = logXτ X̂ (πx) = logY τ Ŷ (πy). By construction, the trapdoor mode works correctly.

The decryption mode works as follows: We note that (t, (d, e, πx, πy)) ∈ Ltd
pk iff rank(A(t, u)) = 1 and

rank(B(t, u)) = 1, where A(t, u) :=

(
g d0d
X e0e

)
and B(t, u) :=

 g d

Xτ X̂ πx
Y τ Ŷ πy

 . So, when (t, (d, e, πx, πy)) ∈

Lext
pk (= Upk\Ltd

pk), rank(A(t, u)) = 2 or rank(B(t, u)) = 2. Hence, each mi can be retrieved by checking
either of equations in (4). We note that if rank(A(t, u)) = rank(B(t, u)) = 2, the linear system (3) is
overdetermined. Then, one should check if m is inconsistent to the system (that is, there is no solution in
the system), using the other equations. If so, the decryption is rejected.

We note, however, that the “consistency check” is unnecessary for our motivating application (fully-
equipped UC commitments), because it suffices that a simulator can decrypt valid ciphertexts correctly,
because an adversary cannot correctly open an invalid ciphertext on (t, u) ∈ Lext

pk .

Theorem D.2 The scheme constructed as above is an ABME scheme if the DDH assumption holds true
and H is a collision-resistant hash family ensemble.

This scheme has a ciphertext consisting of 5` + 4 group elements (including u = (d, e, πx, πy)), for
encrypting message m ∈ {0, 1}`λ, with a public-key consisting of 7 group elements along with structure
parameters. Therefore, the expansion factor of this scheme is 5κλ . = Ω(κ

log κ). Since the UC commitment
from [CF01] consists of two Cramer-Shoup encryptions plus the output of a claw-free permutation per one-
bit message, its expansion factor is 8κ plus the length of the trap door commitment (which seems much
bigger than the underlying group element). This expansion factor in [CF01] is strict, by construction, which
cannot be improved.

30

E Fully-Equipped UC Commitment from Trapdoor Permutations

If we can construct an ABME from trapdoor permutation (family), it is done, but we have no idea how
to construct it. We instead construct a weak ABME from the same starting point. The only difference of
weak ABME from standard ABME is that in the trapdoor mode, distenc(t, pk, sk, w, x) is not statistically
but computationally indistinguishable from distcol(t, pk, sk, w, x). Namely,{(

ABM.spl(pk,w, t), ABM.col
(t,u)
1 (pk,w, v)[1], ABM.col

(t,u)
2

(
ABM.col

(t,u)
1 (pk,w, v)[2], x

))}
c
≈
{(

ABM.spl(pk, w, t), ABM.enc(t,u)(pk, x; r), r
)}

for every (pk, (sk, w)) ∈ ABM.gen(1κ), every x ∈ MSP, every t ∈ {0, 1}κ. Here ABM.col
(t,u)
1 (pk, w, v)[i]

denotes i-th output of ABM.col
(t,u)
1 (pk,w, v). We construct a weak ABM encryption scheme from trapdoor

permutations as follows.
Let F = {(f, f−1) | f : {0, 1}κ → {0, 1}κ}κ∈N be a trapdoor permutation family and let b: {0, 1}κ →

{0, 1} be a hard-core predicate for a trapdoor permutation f . Let Π = (K,E,D) be the Blum-Goldwasser
cryptosystem [BG85] that is a semantic secure public key encryption scheme, derived from the following
encryption algorithm Ef (x; r) = f (k+1)(r) || (x1 ⊕ b(r)) || . . . || (xk ⊕ b(f (k)(r))), where (x1, . . . , xκ), xi ∈
{0, 1}, denotes the bit representation of x. r ∈ {0, 1}κ denotes inner randomness of this encryption and f (k)

denotes k times iteration of f . We note that this public key encryption scheme has efficiently samplable

and explainable presumable ciphertext space {0, 1}κ+k [CF01, FHKW10], namely, {Ef (x)}
c
≈ {Uκ+k} for

every message x ∈ {0, 1}κ, where Uκ+k denotes a uniform distribution over {0, 1}κ+k. Let us denote by
F : {0, 1}κ × {0, 1}κ → {0, 1}κ a pseudo-random function (constructed from f in a standard way).

• ABM.gen(1κ): It draws two trapdoor permutations, (f, f−1) and (f ′, f ′−1), over {0, 1}κ uniformly and
independently from F . It then construct the BG encryption scheme Π = (K,E,D) with public key
f and secret key f−1. It also construct the BG encryption scheme Π′ = (K′,E′,D′) with (f ′, f ′−1)
and pseudo random function F from f ′. It then picks up random s ← {0, 1}κ and encrypt it to
e′ = E′(s; r). It outputs (pk, sk, w), where pk = (F,Π,Π′, e′) and sk = f−1,w = (s, r). We define
U ′pk = {0, 1}κ × {0, 1}κ.

• ABM.spl(pk, w, t): It takes tag t ∈ {0, 1}κ and outputs u = Fs(t) where w = (s, r). We define

Ltd
pk = L̂td

pk = {(t, u) | ∃(s, r) such that e′ = E′(s; r) and u = Fs(t)}.

• ABM.enc(t,u)(pk, x): It takes (t, u) and one bit message x ∈ {0, 1} along with pk, and first obtains
a graph G (of q nodes) so that finding a Hamiltonian cycle in G is equivalent to finding (s, r) such
that u = Fs(t) and e′ = E′(s; r), by using the NP-reduction. (If such (s, r) does not exist for given
(t, u), G so obtained does not have a Hamiltonian cycle.) This encryption procedure is the same as the
commitment described in [CLOS02], called the adaptive Hamiltonian commitment, except that in our
scheme a commitment is encrypted under a public key f independent of F and Π′, and an encrypted
permutation or a pseudo ciphertext is also sent to the verifier.

– To encrypt 0, it picks a random permutation π = (π1, . . . , πq) of q nodes, where πi ∈ {0, 1}log q,
and encrypts every πi and all the entries of the adjacency matrix of the permuted graph H = π(G).
It outputs {Ai}i∈[q] and {Bi,j}i,j∈[q], such that Ai = Ef (πi) (∈ {0, 1}κ+log q) and Bi,j = Ef (ai,j)
(∈ {0, 1}κ+1) where ai,j ∈ {0, 1} denotes the (i, j)-entry of the adjacency matrix of H.

– To encrypt 1, it picks q random (κ + log q)-bit string Ai (i ∈ [q]) (corresponding to a pseudo
ciphertext of πi). It then chooses a randomly labeled Hamiltonian cycle, and for all the entries
in the adjacency matrix corresponding to edges on the Hamiltonian cycle, it encrypts 1’s. For
all the other entries, it picks up random κ + 1-bit strings (corresponding to pseudo ciphertexts

31

of the entries). It outputs {Ai}i∈[q] and {Bi,j}i,j∈[q], where a Hamiltonian cycle is embedded in
{Bi,j}i,j∈[q], but the other strings are merely random strings.

• ABM.dec(t,u)(sk, c): To decrypt c = ({Ai}i∈[q], {Bi,j}i,j∈[q]), it firstly decrypt all elements to retrieve π
and matrix H, using sk = f−1. Then it checks that H = π(G). If it holds, it outputs 0; otherwise, 1.

• ABM.col
(t,u)
1 (pk,w, v): It first obtains a graph G (of q nodes) so that finding a Hamiltonian cycle in G

is equivalent to finding w = (s, r) such that u = Fs(t) and e′ = E′(s; r), by using the NP-reduction. It
picks a random permutation π = (π1, . . . , πq) of q nodes and computes H = π(G). It encrypts under
f all πi’s and all the entries of the adjacency matrix of the permutated graph H = π(G). It outputs
c = ({Ai}i∈[q], {Bi,j}i,j∈[q]) and the Hamiltonian cycle of G, denoted ζ, where ξ = ((s, r), t, u, ζ, π).

• ABM.col2(ξ, x): If x = 0, it open π and every entry of the adjacency matrix, otherwise if x = 1, it
opens only the entries corresponding to the Hamiltonian cycle in the adjacency matrix.

Then, we apply this weak ABME to our framework (Fig. 4).

Theorem E.1 The scheme in Fig.4 obtained by applying the above weak ABME UC-securely realizes the
FMCOM functionality in the FCRS-hybrid model in the presence of adaptive adversaries in the non-erasure
setting.

Proof. The only difference from the proof of Theorem 6.1 is when we compare the ideal world with

Hybrid Game 1. In the proof of Theorem 6.1, the outcome from ABM.col is statistically indistinguishable
from the outcome from ABM.enc in the trapdoor mode when (t, u) ∈ Ltd

pk. However, the difference is com-
putational now. To show that the distributions are computationally indistinguishable, we need to construct
a distinguisher to distinguish the first outcome from the second outcome, while it decrypts commitments
from corrupted Pi at the same time.

Fortunately, in this construction, the decryption key sk = {f−1} is independent of the equivocable key
w = (s, r). It is not the case of the rest of our instantiations, in which one can obtain w if one knows sk.
(Therefore, we require statistical closeness there.)

Hence, we construct a distinguisher that takes sk = {f−1} and starts either the ideal game or Hybrid
Game 1, but when making a commitment on tag t = (sid, ssid, Pi, Pj), it receives (t, u, c) either from
(ABM.spl,ABM.col) or (ABM.spl,ABM.enc) such that (t, u) ∈ Ltd

pk. Hence, the views of the environment
in both games are bounded by the distinguisher’s advantage, which is negligible because of computational
indistinguishability between the two views above.

We note that if the common reference string must strictly come from the uniform distribution, we
require trapdoor permutations with dense public descriptions. We also note that a parallel execution of
arbitrary weak ABMEs on the same tag with independent public-keys (pk1, pk2) yields a fully-equipped UC
commitment scheme, because of the similar reason in the proof mentioned above.

We also note that in a weak ABME, a decryption key can be independent of an equivocable key (or a
sampling key for L), unlike an ABME, because the distribution of ABM.col on (t, u) is only computationally
indistinguishable from that of ABM.enc.

We further note that any weak ABME can be transformed to a fully-equipped UC commitment scheme
by sending parallel ciphertexts of the same message on the same tag under independent public keys. The
proof is substantially equivalent to the proof above.

The above construction does not require non-interactive zero-knowledge proof systems. So, it is far more
efficient than the previous fully-equipped UC commitment scheme from trapdoor permutation [CLOS02]
(See Table 4).

F All-But-Many Lossy Trapdoor Functions

We recall all-but-many lossy trapdoor functions (ABM-LTF) [Hof12], by slightly modifying the notation to
fit our purpose.

32

schemes CRS size communication complexity of each user

CLOS02 [CLOS02] ω(κ3 log(κ)) ω(λ · q2κ3 log κ) λq2TNP + ω(λq2Ttdp(κ3 log κ))

Sec. E O(κ) O(λ · q2κ) TNP + λq2Ttdp(κ)

Table 4: Fully-Equipped UC commitments (to λ bit secret) from general assumptions
(enhanced trapdoor permutations).

TNP denotes the cost of one NP reduction from one-way function to a Hamiltonian graph. Ttdp(k)
denotes the cost of computing one execution of trapdoor permutation over {0, 1}k. q denotes the
number of the vertices of the Hamiltonian graph.

All-but-many lossy trapdoor function ABM.LTF = (ABM.gen,ABM.spl,ABM.eval,ABM.inv) consists of
the following algorithms:

• ABM.gen is a PPT algorithm that takes 1κ and outputs (pk, (sk, w)), where pk defines a set Upk. We

let U ′pk = {0, 1}κ×Upk. pk also determines two disjoint sets, Lloss
pk and Linj

pk, such that Lloss
pk ∪L

inj
pk ⊂ U

′
pk.

• ABM.spl is a PPT algorithm that takes (pk,w, t), where t ∈ {0, 1}κ, picks up inner random coins
v ← COINspl, and computes u ∈ Upk. We write Lloss

pk (t) to denote the image of ABM.spl on t under pk,
i.e.,

Lloss
pk (t) := {u ∈ Upk | ∃w, ∃ v : u = ABM.spl(pk,w, t; v)}.

We require Lloss
pk = {(t, u) | t ∈ {0, 1}κ and u ∈ Lloss

pk (t)}. We set L̂loss
pk := U ′pk\L

inj
pk. Since Lloss

pk ∩L
inj
pk = ∅,

we have Lloss
pk ⊆ L̂loss

pk ⊂ U ′pk.

• ABM.eval is a DPT algorithm that takes pk, (t, u), and message x ∈ MSP and computes c =
ABM.eval(t,u)(pk, x), where MSP denotes the message space uniquely determined by pk.

• ABM.inv is a DPT algorithm that takes sk, (t, u), and c, and computes x = ABM.inv(t,u)(sk, c).

We require that all-but-many encryption schemes satisfy the following properties:

1. Adaptive All-but-many property: (ABM.gen,ABM.spl) is a probabilistic pseudo random function
(PPRF), as defined in Sec. 3.1, with strongly unforgeability on L̂loss

pk = U ′pk\L
inj
pk. Strong unforgeability

in this paper is called evasiveness in [Hof12].

2. Inversion For every κ ∈ N, every (pk, (sk, w)) ∈ ABM.gen(1κ), every (t, u) ∈ Linj
pk, and every x ∈ MSP,

it always holds that
ABM.inv(t,u)(sk,ABM.eval(t,u)(pk, x)) = x.

3. `-Lossyness For every κ ∈ N, every (pk, (sk, w)) ∈ ABM.gen(1κ), and every (t, u) ∈ Lloss
pk , the image

set ABM.eval(t,u)(pk,MSP) is of size at most |MSP| · 2−`.

Here Lloss
pk (resp. Linj

pk) in ABM-LTFs corresponds to Ltd
pk (resp. Lext

pk) in ABMEs. We remark that ABM-
LTFs [Hof12] require that (ABM.gen,ABM.spl) should be strongly unforgeable, whereas ABMEs requires
that (ABM.gen,ABM.spl) be just unforgeable.

33

