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Abstract

Malicious insider security of authenticated key exchange (AKE) protocol addresses the sit-
uation that an AKE protocol is secure even with existing dishonest parties established by ad-
versary in corresponding security experiment. In the eCK model, the EstablishParty query is
used to model the malicious insider setting. However such strong query is not clearly formalized
so far. We show that the proof of possession assumptions for registering public keys are of
prime importance to malicious insider security. In contrast to previous schemes, we present an
eCK secure protocol in the standard model, without assuming impractical, strong, concurrent
zero-knowledge proofs of knowledge of secret keys done to the CA at key registration. The
security proof of our scheme is based on standard pairing assumption, collision resistant hash
functions, bilinear decision Diffie-Hellman (BDDH) and decision linear Diffie-Hellman (DLIN)
assumptions, and pseudo-random functions with pairwise independent random source πPRF [15].

Keywords: one-round authenticated key exchange, pairing, insider security

1 Introduction

Many critical applications rely on the existence of a confidential channel established by authen-
ticated Key Exchange (AKE) protocols over open networks. In contrast to the most prominent
key exchange protocol is the Diffie-Hellman protocol [9] which is vulnerable to the existence of an
active adversary (i.e. man-in-the-middle attacks), a secure AKE should be secure against an active
adversaries. Over the last decade, the security of AKE against active attacks has been developed
increasingly in stronger models. In this paper, we consider PKI-based two party AKE protocol
in presence of adversary with strong capabilities. LaMacchia, Lauter and Mityagin [11] recently
presented strong security definitions for two-pass key exchange protocol, which is referred as eCK
security model. Since the introducing of eCK model, many protocols (e.g. [15, 21, 13, 14]) have
been proposed to provide eCK security. But most of those protocols are proven under random
oracle model.

Public Key Registration and EstablishParty Query. In the original eCK model [11], the
public key registration was considered from three situations: (i) honest key registration, (ii) proof of
knowledge (POK) key registration, and (iii) arbitrary key registration. In the security experiment,
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the above cases are simulated differently by the challenger. As for the honest key registration,
all public keys are generated honestly by challenger, and for the other two cases the public keys
might be chosen by adversary. In the latter literatures, the EstablishParty query was introduced to
model such chosen public key attacks, that might relate to attacks like unknown key share (UKS)
attacks [6], etc. In the security experiment, each registered corrupted party by EstablishParty query
is controlled by the adversary, which can be used to interact with honest parties in sessions.

We notice that the EstablishParty query has not been clearly formalized so far, where no POK
assumption for key registration is addressed by this query. In particular, different POK assumptions
would result in different type of adversaries in the security experiment, that would impact the
proof simulation, in particular for the proof without random oracles. General speaking, there are
two major POK assumptions: knowledge of secret key (KOSK) assumption and plain public key
(PPK) assumption. The KOSK assumption (e.g. used in [12]), that requires each party provides
the certification authority (CA) with a proof of knowledge of its secret key before the CA certifies
the corresponding public key. While implementing the (KOSK) assumption, it is assumed that
there exists either efficient knowledge extractor (satisfying requirement in [1]), or the adversary
simply hands the challenger corresponding secret keys. The another assumption is the plain public
key (PPK) assumption (following the real-world standards PKCS#10 [16]) that nothing more is
required than in any usage of public-key cryptography, where the proof of possession might be
implemented by having the user send the CA a signature (under the public key it is attempting to
get certified) of some message that includes the public key and the user identity. On the contrary,
the private keys, of dishonest parties registered under PPK assumption, might be only known by
adversary, nor by the challenger. As pointed out by Mihir Bellare and Gregory Neven in [2], the
KOSK assumption can’t be implemented by the proof based on plain public key (PPK) assumption,
and the PPK assumption is much cheaper and more realistic than KOSK assumption.

While designing and analysing eCK protocol against chosen public key attacks, corresponding
POK assumption should be explicitly modeled by EstablishParty query. Recently Moriyama and
Okamoto (MO) presented an eCK-secure key exchange protocol [14] in the standard model. How-
ever, as a negative example, an appropriate POK assumption is never clearly made in the proof of
MO protocol. In particular, the MO protocol can’t be proven secure without KOSK assumption.
Since under PPK assumption, if the long-term keys of test oracle (e.g. owned by party Â) are not
corrupted and set in terms of a DDH challenge instance, then the challenger is unable to simulate
the session key of other oracles of Â which have dishonest peer (e.g. party Ĉ) established by ad-
versary. Because computing the long-term shared key involving parties Â and Ĉ is a CDH hard
problem for the challenger. Also, it still left out the task of formally justifying a claim on how to
implement the abstract KOSK assumption for MO protocol. Therefore we are motivated to clearly
formalize the EstablishParty query and strive to seek eCK secure protocol against chosen public key
attacks without KOSK assumption and NAXOS tricks in the standard model.

Potential Threat on leakage of Secret Exponent. Besides the leakage of long-term and
ephemeral private keys modeled by eCK model, a ‘well’ designed protocol should resist with the
compromise of other session key related secret information, even though such compromise is not
normally expected. A noteworthy instance is the leakage of ephemeral intermediate exponent (e.g.,
the a1 +a3α in MO protocol), due to the up-to-date side-channel attacks. Such kind of leakage has
been studied by Sarr et al. [18, 17] based on HMQV protocol. In particular, as pointed by Yoneyama
et al. [23], the leakage of intermediate exponent of Okamoto protocol [15] and MO protocol (in two
different sessions) would result in exposure of long-term keys. Therefore one should take care
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of those intermediate exponents while designing protocols, even though it is hard to prove the
security on resilience of such leakage (as claimed in [23]). Moreover, the ephemeral secrets that can
be revealed in the eCK model, should be clearly specified by each protocol based on appropriate
implementation scenario. Note that if the protocol is executed in a computer infected with malware,
then all secret session states (including those intermediate exponents mentioned above) might be
exposed.

1.1 Contribution

In this paper, we clarify the EstablishParty query in terms of different type of POK assumptions.
We present an eCK secure AKE protocol in the standard model, that is able to resist with chosen
public key attacks based on only plain public key registration assumption and without NAXOS
trick. The security of proposed protocol is based on standard pairing assumption, collision resistant
hash functions, bilinear decision Diffie-Hellman (BDDH) and decision linear Diffie-Hellman (DLIN)
assumptions, and pseudo-random functions with pairwise independent random source πPRF [15].
Not surprisingly, one must pay a small price for added security with one paring operation. However
our protocol can be implemented in a group where DDH problem is easy.

We show that the internal computation algorithm really matters for the security of a protocol.
From our construction approach, we illustrate an example on how to mitigate the threat due to
leakage of intermediate exponents, for which exponents involve only long-term secrets. In order to
relieve the consequences of such leakage, we adapt a generic strategy: first blind those intermediate
exponents using uniform random value (e.g. the ephemeral private keys) and next remove the
random value after completing corresponding exponential operation.1 Our approach can also be
applied to improve the MO protocol [14] or Okamoto protocol [15] in a similar way.

1.2 Related Work

In the first eCK security model introduced by LaMacchia, Lauter and Mityagin [11], they model the
insider security by allowing adversary to register arbitrary public keys without proving knowledge
of the corresponding secret key, which was formalized by EstablishParty query in later literatures.

Since then many eCK secure protocols, e.g. [11, 15, 13, 18, 17], have been correctly proven under
the malicious insider setting. But most of them are only provable secure with the help of random
oracles. Although the protocol [15] by Okamoto is eCK secure in the standard model without
KOSK assumption, this protocol heavily relies on the NAXOS trick. Even though the NAXOS
trick hides the exponent of the ephemeral public key, it might be leaked because of the up-to-date
side-channel attacks. Therefore, a lot of works [14, 21] are motivated to propose eCK-secure key
exchange protocols without the NAXOS tricks.

Sarr et al. [18], recently described some potential threats on HMQV due to the leakage of secret
intermediate exponent (i.e. the x + aD, where D = H(Â, B̂,X)). Namely, if such intermediate
exponents in different sessions are identical, the adversary can obtain the secret signature in the
target session. In the later, Sarr et al. [17] strengthened the eCK model by allowing the adversary
to learn certain intermediate results while computing the session key, under specific implementation
environment wherein a tamper-proof device is involved to store long-term keys while session keys
are used on an untrusted host machine. The seCK model was further studied by Yoneyama et al.,
in recent work [23]. They pointed out errors in the security proofs of SMQV and FHMQV [17]

1This would mitigate the attacks described in [17, 23], when the secret intermediate exponent is exposed somehow.
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on leakage of intermediate computations. Unfortunately, their results also showed that there is no
scheme has been provably secure in the seCK model.

2 Preliminaries

Notations. We let κ denote the security parameter and 1κ the string that consists of κ ones. Each
party has a long-term authentication key which is used to prove the identity of the party in an
AKE protocol. We let a ‘hat’ on top of a capital letter denotes an identifier of a participant,
without the hat the letter denotes the public key of that party, and the same letter in lower case
denotes a private key. For example, a party Â is supposed to register its public key A = ga at
certificate authority (CA) and keeps corresponding long-term secret key skA = a privately. Let
[n] = {1, . . . , n} ⊂ N be the set of integers between 1 and n. If S is a set, then a ∈R S denotes the
action of sampling a uniformly random element from S.

2.1 Collision-Resistant Hashing

Definition 1 (Collision-resistant Hash Function). Let Hk for k ∈ N be a collection of functions of
the form h : {0, 1}∗ → {0, 1}k. Let H = {Hk}k∈N. H is called (th, εh)-collision resistant if for all
th-time adversaries A it holds that

Pr
[
h ∈R Hk, (m,m′)← A(h), m 6= m′, m,m′ ∈ {0, 1}∗, h(m) = h(m′)

]
≤ εh = εh(κ),

where the probability is over the random bits of A.

2.2 Pseudo-Random Functions

A pseudo-random function is an algorithm PRF. This algorithm implements a deterministic function
z = PRF(k, x), taking as input a key k ∈ KPRF and some bit string x, and returning a string
z ∈ {0, 1}κ. Consider the following security experiment played between a challenger C and an
adversary A.

1. The challenger samples k
$← KPRF uniformly random.

2. The adversary may query arbitrary values xi to the challenger. The challenger replies to each
query with zi = PRF(k, xi). Here i is an index, ranging between 1 ≤ i ≤ q for some q ∈ N.
Queries can be made adaptively.

3. Eventually, the adversary outputs value x and a special symbol >. The challenger sets

z0 = PRF(k, x) and samples z1
$← {0, 1}κ uniformly random. Then it tosses a coin b

$← {0, 1},
and returns zb to the adversary.

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}.

Definition 2. We say that PRF is a (t, εPRF)-secure pseudo-random function, if an adversary
running in time t has at most an advantage of εPRF to distinguish the PRF from a truly random
function, i.e. ∣∣Pr

[
b = b′

]
− 1/2

∣∣ ≤ εPRF.
Again the number of allowed queries q is upper bounded by t.
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2.3 Pseudo-Random Functions with Pairwise Independent Random Sources
(πPRF)

This is a specific class of PRF introduced by Okamoto [15]. The πPRF states that if a specific
variable σi0 (associated with ‘seed’) is pairwise independent from other variable, then the output
of the function with σi0 is indistinguishable from random.

Suppose that fΣ : IΣ → XΣ is a deterministic polynomial-time algorithm, where XΣ is a set of
random variables and IΣ is a set of indices regarding Σ, then this algorithm outputs σi ∈ XΣ from i ∈
IΣ. Let (σi0 , σi1 , . . . , σit(κ)

) (ij ∈ IΣ) be pairwise independent random variables indexed by (IΣ, fΣ),
and each variable be uniformly distributed over Σ. That is, for any pair of (σi0 , σij ) (j = 1, . . . , tκ),
for any (x, y) ∈ Σ2, we have Pr[σi0 → x∧σij → y] = 1/|Σ|2. Consider a PPT algorithm AF,IΣ that
can issue oracle queries. When A sends qj ∈ D and ij ∈ IΣ to the query, the oracle replies with

F κ,Σ,D,Rσ̄j (qj) for each j = 0, 1, . . . , t(κ), where (σ̄i0 , σ̄i1 , , . . . , ¯σit(κ)
) ∈R (σi0 , σi1 , . . . , σit(κ)

). ARF,IΣ

is the same as AF,IΣ except for F κ,Σ,D,Rσ̄0
(q0) is replaced by a truly random function RF (q0).

Definition 3. We say that F is secure πPRF family if for any PPT adversary A running in time
t has at most an advantage of επPRF to distinguish the πPRF from a truly random function, i.e.

|Pr[AF,IΣ(1κ, D,R) = 1]− Pr[ARF,IΣ(1κ, D,R) = 1]| ≤ επPRF.

2.4 Bilinear Groups

In the following, we briefly recall some of the basic properties of bilinear groups. Our AKE solution
mainly consist of elements from a single group G. We therefore concentrate on symmetric bilinear
map (pairing).

Definition 4 ( Symmetric Bilinear groups). Let two cyclic groups G and GT of prime order p. Let
g be a generator of G. The function

e : G×G→ GT

is an (admissible) bilinear map if it holds that:

1. Bilinear: for all a, b ∈ G and x, y ∈ Z, we have e(ax, by) = e(a, b)xy.

2. Non-degenerate: e(g, g) 6= 1GT , is a generator of group GT .

3. Efficiency: e is efficiently computable for all a, b ∈ G.

We call (G, g,GT , p, e) a symmetric bilinear groups.

2.5 The Decision Linear Diffie-Hellman Assumption

Let G be a group of prime order p. Let g be a generator of G, and along with arbitrary generators
g1 and g2 of G. Given, (g, g1, g2, g

a
1 , g

b
2, g

c) for (a, b, c) ∈R Z∗p the Decision linear Diffie-Hellman
assumption says that it is hard to decide whether c = a+ b mod p.

Definition 5. We say that the DLIN assumption holds if∣∣∣Pr
[
A(g, g1, g2, g

a
1 , g

b
2, g

a+b) = 1
]
− Pr

[
A(g, g1, g2, g

a
1 , g

b
2, g

c) = 1
]∣∣∣ ≤ ε,

where (a, b, c) ∈R Z∗p , for all probabilistic polynomial-time adversaries A, where ε = ε(κ) is some
negligible function in the security parameter.
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2.6 The Bilinear Decisional Diffie-Hellman Assumption

Let G and GT be groups of prime order p. Let e : G × G → GT be a bilinear map as definition
4. The Bilinear Decisional DH problem is stated as follows: given the tuple (g, ga, gb, gc) ∈ G∗4 as
input to distinguish the e(g, g)abc from a random value.

Definition 6. We say that the (t, ε)-BDDH assumption holds if∣∣∣Pr
[
A(g, ga, gb, gc, e(g, g)abc) = 1

]
− Pr

[
A(g, ga, gb, gc, γ) = 1

]∣∣∣ ≤ ε,
where (a, b, c, γ) ∈R Z4

p, for all probabilistic t-time adversaries A, where ε = ε(κ) is some negligible
function in the security parameter.

3 AKE Security

In this section we present the formal security model for two party PKI-based authenticated key-
exchange (AKE) protocol. While modeling the active adversaries, we provide with an ’execution
environment’ following an important line of research [5, 7, 11, 20] dates back to Bellare and Rog-
away [3]. We will use the framework as in [20] with slight modification.

Execution Environment. Assume there exist a fixed number of parties {P1, . . . , P`} for ` ∈ N,
where each party Pi ∈ {P1, . . . , P`} is a potential protocol participant and each party has a long-
term key pair (pki, ski) ∈ (PK,SK) corresponds to its identity i, where {PK,SK} are keyspaces
of long-term keys. To model several sequential and parallel executions of the protocol, each party
Pi is modeled by a collection of oracles π1

i , . . . , π
d
i for d ∈ N. Each oracle πsi represents one single

process that executes an instance of the protocol. All oracles π1
i , . . . , π

d
i representing party Pi have

access to the same long-term key pair (pki, ski) of Pi and to all public keys pk1, . . . , pk`. Moreover,
each oracle πsi maintains a separate internal state

• a variable Φ storing the identity j of an intended communication partner Pj ,

• a variable Ψ ∈ {accept, reject},

• a variable K ∈ K storing the session key used for symmetric encryption between πsi and party
PΦ, where K is the keyspace of the protocol.

• and some additional temporary state variable st (which may, for instance, be used to store
ephemeral Diffie-Hellman exponents or other intermediate values).

The internal state of each oracle is initialized to (Φ,Ψ,K, st) = (∅, ∅, ∅, ∅). At some point during
the protocol execution each party would generate the session key according to the key exchange
protocol specification when turning to state (Ψ,K) = (accept,K) for some K, and at some point
with internal state (Ψ,K) = (reject, ∅) where ∅ denotes the empty string. We will always assume
(for simplicity) that K 6= ∅ if an oracle has reached accept state.

An adversary may interact with these oracles by issuing the following queries.

• Send(πsi ,m): The adversary can use this query to send any message m of his own choice to
oracle πsi . The oracle will respond according to the protocol specification, depending on its
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internal state. If the first message m = (>, j̃) consists of a special symbol > and a value j̃
which is either ∅ or identity j, then πsi will set Φ = j̃ and respond with the first protocol
message. If j̃ = ∅ then Φ will be set as identity j at some point according to protocol
specification. 2

• RevealKey(πsi ): Oracle πsi responds to a RevealKey-query with the contents of variable K.

• StateReveal(πsi ): Oracle πsi responds the contents secret state stored in variable st.

• EstablishParty(pkm, skm, Pm) This query registers an identity m(` < m < N) and a static
public/private key pair (pkm, skm) on behalf of a party Pm, if one of the following conditions
is held: (i) skm = ∅ and pkm ∈ PK, (ii) skm ∈ SK and skm is the correct private key for
public key pkm; otherwise a failure symbol ⊥ is returned. Parties established by this query
are called corrupted or adversary controlled.

• Corrupt(Pi): Oracle π1
i responds with the long-term secret key ski of party Pi. After this

query, oracles πsi can still be asked queries using the compromised key ski.

• Test(πsi ): This query may only be asked once throughout the game. Oracle πsi handles this
query as follows: If the oracle has state Ψ = reject or K = ∅, then it returns some failure

symbol ⊥. Otherwise it flips a fair coin b, samples a random element K0
$← K, sets K1 = K

to the ’real’ session key, and returns Kb.

We note that the exact meaning of the StateReveal must be defined for each protocol separately,
namely the content stored in the variable st during protocol execution. In EstablishParty query,
the private key skm corresponds to the proof of knowledge assumptions for public key registration,
which should be specified in the security proof of each protocol. If skm = ∅ then the plain public
key or arbitrary key registration assumption is modeled, otherwise the knowledge of secret key
assumption is modeled.

Secure AKE Protocols. We first define the partnering of two oracles via matching conversations
that was first introduced by Bellare and Rogaway [3] in order to define correctness and security of
an AKE protocol precisely, and refined latter in [20]. In the following let T si denote the transcript
of messages sent and received by oracle πsi . We assume that messages in a transcript T si are
represented as binary strings. Let |T si | denote the number of its messages. Assume there are two

transcripts T si and T jt , where m := |T si | and n := |T tj |. We say that T si is a prefix of T tj if 0 < m ≤ n
and the first m messages in transcripts T si and T tj are pairwise equivalent as binary strings.

Definition 7. We say that a processes πsi has a matching conversation to oracle πtj , if

• πsi has sent the last message(s) and T tj is a prefix of T si , or

• πtj has sent the last message(s) and T si is a prefix of T tj .

We say that two oracles πsi and πtj have matching conversations if πsi has a matching conversation
to process πtj , and vice versa.

2A protocol might be run in either pre- or post-specified peer model here [8].
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Definition 8 (Freshness). Let πsi be a completed oracle held by an honest party Pi with honest peer
Pj , and both parties Pi and Pj are not registered by EstablishParty query. Let πtj be a completed
oracle, if it exists, such that πsi and πtj have matching conversations. Then the oracle πsi is said to
be fresh (unexposed) if none of the following conditions holds:

1. The adversary A either issued RevealKey(πsi ), or RevealKey(πtj) (if such πtj exists).

2. If πtj exists, A either issued:

(a) Both Corrupt(Pi) and StateReveal(πsi ), or.

(b) Both Corrupt(Pj) and StateReveal(πtj).

3. If πtj does not exist, A either issued:

(a) Both Corrupt(Pi) and StateReveal(πsi ), or

(b) Corrupt(Pj).

Definition 9 (Security Experiment). In the experiment, the following steps are performed:

1. The challenger implements the collection of oracles {πsi : i ∈ [`], s ∈ [d]}. At the beginning
of the experiment, the challenger generates ` long-term key pairs (pki, ski) for all i ∈ [`], and
gives the adversary A all public keys pk1, . . . , pk` as input.

2. A may issue polynomial number (in the security parameter κ) of queries as described above
in the execution environment, namely A makes queries: Send, StateReveal, EstablishParty,
Corrupt and RevealKey.

3. At some point, A issues a Test(πsi ) query on a fresh oracle πsi during the experiment with
only once.

4. At the end of the experiment, the A terminates with outputting a bit b′ as its guess for bit b
of Test query.

Security of AKE protocols is now defined by requiring that the protocol is a secure AKE
protocol, thus an adversary cannot distinguish the session key K of a fresh oracle from a random
key.

Definition 10 (Secure Authenticated Key Exchange Protocol). We say an AKE protocol is secure
in the security experiment as Definition 9, if for all probabilistic polynomial-time (PPT) adversaries
A and for some negligible probability ε = ε(κ) in the security parameter hold that:

• If two fresh oracles πsi and πtj accept with matching conversations, then both oracles hold the
same session key K.

• When A returns b′ such that

– A has issued a Test query on an oracle πsi without failure, and

– πsi has internal state Φ = j, and

– πsi is fresh throughout the security experiment.

Then the probability that b′ equals the bit b sampled by the Test-query is bounded by∣∣Pr[b = b′]–1/2
∣∣ ≤ ε.
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4 A Strong AKE Protocol Without Random Oracles

In this section we present a pairing-based strong AKE protocol without random oracles and under
malicious insider setting, which is informally depicted in Figure 1.

4.1 Protocol Description

The AKE protocol takes as input the following building blocks:

• Symmetric bilinear groups (G, g,GT , p, e), where the generator of group GT is e(g, g) and
along with another random generators g1, g2 and h of G.

• A collision resistant hash function H : {0, 1}∗ → Z∗p,

• A pairwise independent pseudo-random function (πPRF) F , with index {IGT , fGT } where
IGT := {(U, V, α)|(U, V, α) ∈ G2

T × Zp} and fGT := (U, V, α)→ U r1+αr2V with (r1, r2) ∈R Z2
p.

Â
(skA =< a1, a2, a3, a4, a5, a6, a7, a8 >)

A1 = ga11 ga3 , A2 = ga22 ga3

A3 = ga41 ga6 , A4 = ga52 ga6

A5 = ga71 , A6 = ga82 , A7 = ga7+a8

B̂
(skB =< b1, b2, b3, b4, b5, b6, b7, b8 >)

B1 = gb11 g
b3 , B2 = gb22 g

b3

B3 = gb41 g
b6 , B4 = gb52 g

b6

B5 = gb71 , B6 = gb82 , B7 = gb7+b8

x1, x2, x,∈R Z∗
p

X1 := gx11 , X2 := gx22 ,
X3 := gx1+x2 , X := gx

y1, y2, y ∈R Z∗
p

Y1 := gy11 , Y2 := gy22 ,
Y3 := gy1+y2 , Y := gy

−
X1, X2, X3, X, Â, B̂
−−−−−−−−−−−−−−−−→

←−
Y1, Y2, Y3, Y, Â,

−−−−−−−−−−−−−−−−
B̂,X1, X2, X3, X

(Y1, Y2, Y3, Y )? ∈ G4 (X1, X2, X3, X)? ∈ G4

sidÂ := (Â, B̂,X1, X2, X3, X, Y1, Y2, Y3, Y ) sidB̂ := (Â, B̂,X1, X2, X3, X, Y1, Y2, Y3, Y )
β := H(sidÂ) β := H(sidB̂)

σÂ := (B1B
β
3 )

x1+a7
x ·(B2B

β
4 )

x2+a8
x

·(Y1B5)
a1+a4β

x ·(Y2B6)
a2+a5β

x ·(Y3B7)
a3+a6β

x ·Y

σB̂ := (A1A
β
3 )

y1+b7
y ·(A2A

β
4 )

y2+b8
y

·(X1A5)
b1+b4β

y ·(X2A6)
b2+b5β

y ·(X3A7)
b3+b6β

y ·X
σÂ := e(σÂ, h

x) σB̂ := e(σB̂ , h
y)

k := F (σÂ, sidÂ) k := F (σB̂ , sidB̂)

Figure 1: The AKE Protocol without Random Oracles.

Long-term Key Generation: on input the security parameter κ, the long-term keys of each
party Â is generated as following:

• Â selects long-term private keys : (a1, a2, a3, a4, a5, a6, a7, a8) ∈R Z8
p, and compute the long-

term public keys: (A1, A2, A3, A4, A5, A6, A7) := (ga1
1 ga3 , ga2

2 ga3 , ga4
1 ga6 , ga5

2 ga6 , ga7
1 , ga8

2 , ga7+a8).

Protocol Execution :
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1. Upon activation a session (Â, B̂)3, the initiator party Â performs the steps:

(a) Choose three ephemeral private keys x1, x2, x,∈R Z3
p.

(b) Compute X1 := gx1 , X2 := gx2 , X3 := gx1+x2 and X := gx.

(c) Create an active session with identifier sidÂ := (Â, B̂,X1, X2, X3, X).

(d) Send (X1, X2, X3, X, Â, B̂) to B̂.

2. Upon receiving (X1, X2, X3, X, Â, B̂), the responder party B̂ does the following:

(a) Verify that (X1, X2, X3, X) ∈ G4.

(b) Choose three ephemeral private keys y1, y2, y ∈R Z3
p .

(c) Compute Y1 := gy1 , Y2 := gy2 , Y3 := gy1+y2 and Y := gy.

(d) Create an active session with identifier sidB̂ := (Â, B̂,X1, X2, X3, X, Y1, Y2, Y3, Y ) and
compute β := H(sidB̂).

(e) Compute σB̂ := (A1A
β
3 )

y1+b7
y ·(A2A

β
4 )

y2+b8
y ·(X1A5)

b1+b4β
y ·(X2A6)

b2+b5β
y ·(X3A7)

b3+b6β
y ·X

and σB̂ := e(σB̂, h
y)

(f) Compute session key k := F (σB̂, sidB̂) and erase all intermediate values and y1, y2, y.

(g) Send (Y1, Y2, Y3, Y, Â, B̂,X1, X2, X3, X) to Â.

3. Upon receiving (Y1, Y2, Y3, Y, Â, B̂,X1, X2, X3, X) does the following:

(a) Verify that exist a session identified by (Â, B̂,X1, X2, X3, X) and (Y1, Y2, Y3, Y ) ∈ G4.

(b) Update session identifier sidÂ := (Â, B̂,X1, X2, X3, X, Y1, Y2, Y3, Y ), and compute β :=
H(sidÂ).

(c) Compute σÂ := (B1B
β
3 )

x1+a7
x ·(B2B

β
4 )

x2+a8
x ·(Y1B5)

a1+a4β
x ·(Y2B6)

a2+a5β
x ·(Y3B7)

a3+a6β
x ·Y

and σÂ := e(σÂ, h
x).

(d) Compute session key as k := F (σÂ, sidÂ) and erase all intermediate values and y1, y2, y.

We assume, only the ephemeral private keys, i.e. (x1, x2, x) and (y1, y2, y) would be stored as
secret in the state variable st.4

4.2 Security Analysis

Theorem 1. Suppose that the (t, q, εBDDH)-Bilinear DDH assumption and (t, q, εDLIN)-Decision
linear assumption hold in bilinear groups (G, g,GT , p, e), the hash function H is (t, εCR)-secure, and
a (t, επPRF)-secure πPRF family with index {IGT , fGT } where IGT := {(U, V, α)|(U, V, α) ∈ G2×Zp}
and fGT := (U, V, α) → U r1+αr2V with (r1, r2) ∈R Z2

p, with respect to the definitions in Section 2.
Then the proposed protocol is a (t′, ε′)-eCK secure AKE in the sense of Definition 10.

3We stress that the identifier Â and B̂ are required to be distinct
4This can be achieved by performing the computation in steps 2e and 2f (resp. steps 3c and 2f) on a smart card,

where the long-term keys are stored. In this case, the intermediate values would not be exposed due to e.g. malware
attacks on the PC, which we model with StateReveal query.
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Proof of Theorem 1. We now verify that no polynomially bounded adversary can distinguish
the real session key of a fresh oracle from a random key. In the security experiment, the adversary
is allowed to query EstablishParty(pkm, skm, Pm) with skm = ∅ while registering a public key pkm
for dishonest party Pm. Namely, we allow arbitrary public key registration.

We fist introduce the notations might be used in the proof. When describing the communication
between oracle πs

Â
and party Ĉ(s)(s ∈ [`− 1]), we use the following notations:

• (x
(s)
1 , x

(s)
2 , x(s)): the ephemeral private keys of oracle πs

Â
.

• (X
(s)
1 , X

(s)
2 , X

(s)
3 , X(s)) = (g

x
(s)
1

1 , g
x

(s)
2

2 , gx
(s)
1 +x

(s)
2 , gx

(s)
): the ephemeral public keys of oracle πs

Â
.

• (C
(s)
1 , C

(s)
2 , C

(s)
3 , C

(s)
4 , C

(s)
5 , C

(s)
6 , C

(s)
7 ) = (g

c
(s)
1

1 gC
(s)
3 , g

c
(s)
2

2 gC
(s)
3 , g

C
(s)
4

1 gc
(s)
6 , g

c
(s)
5

2 gc
(s)
6 , g

c
(s)
7

1 , g
c
(s)
8

2 , gb7+b8):
the public keys of party Ĉ(s).

• (W
(s)
1 ,W

(s)
2 ,W

(s)
3 ,W (s)) = (g

w
(s)
1

1 , g
w

(s)
2

2 , gw
(s)
1 +w

(s)
2 , gw

(s)
): the ephemeral public keys received

by oracle πs
Â

.

• sid(s)

Â
= (Â, Ĉ(s), X

(s)
1 , X

(s)
2 , X

(s)
3 , X(s),W

(s)
1 ,W

(s)
2 ,W

(s)
3 ,W (s)).

• β(s)

Â
= H(sid

(s)

Â
).

•
σ

(s)

Â
= (C

(s)
1 C

(s)
3

β
(s)

Â )x
(s)
1 +a7 ·(C(s)

2 C
(s)
4

β
(s)

Â )x
(s)
2 +a8 ·(W (s)

1 C
(s)
5 )

a1+a4β
(s)

Â

·(W (s)
2 C

(s)
6 )

a2+a5β
(s)

Â ·(W (s)
3 C

(s)
7 )

a3+a6β
(s)

Â ·W (s)x
(s)

.

• σ(s)

Â
= e((σ

(s)

Â
), h).

• k(s)

Â
= F (σ

(s)

Â
, sid

(s)

Â
).

We describe the communication between oracle πt
B̂

and party D̂(t)(t ∈ [`−1]), using the following
notations:

• (y
(t)
1 , y

(t)
2 , y(t)): the ephemeral private keys of oracle πt

B̂
.

• (Y
(t)

1 , Y
(t)

2 , Y
(t)

3 , Y (t)) = (g
y

(t)
1

1 , g
y

(t)
2

2 , gy
(t)
1 +y

(t)
2 , gy

(t)
): the ephemeral public keys of oracle πt

B̂
.

• (D
(t)
1 , D

(t)
2 , D

(t)
3 , D

(t)
4 , D

(t)
5 , D

(t)
6 , D

(t)
7 ) = (g

d
(t)
1

1 gD
(t)
3 , g

d
(t)
2

2 gD
(t)
3 , g

D
(t)
4

1 gd
(t)
6 , g

d
(t)
5

2 gd
(t)
6 , g

d
(t)
7

1 , g
d

(t)
8

2 , gb7+b8):
the public keys of party Ĉ(s).

• (N
(t)
1 , N

(t)
2 , N

(t)
3 , N (t)) = (g

n
(t)
1

1 , g
n

(t)
2

2 , gn
(t)
1 +n

(t)
2 , gn

(t)
): the ephemeral public keys received by

oracle πt
B̂

.

• sid(s)

Â
= (Â, Ĉ(s), Y

(t)
1 , Y

(t)
2 , Y

(t)
3 , Y (t), N

(t)
1 , N

(t)
2 , N

(t)
3 , N (t)).

• β(s)

Â
= H(sid

(s)

Â
).
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•
σ

(s)

Â
= (D

(t)
1 D

(t)
3

β
(s)

Â )y
(t)
1 +a7 ·(D(t)

2 D
(t)
4

β
(s)

Â )y
(t)
2 +a8 ·(N (t)

1 D
(t)
5 )

a1+a4β
(s)

Â

·(N (t)
2 D

(t)
6 )

a2+a5β
(s)

Â ·(N (t)
3 D

(t)
7 )

a3+a6β
(s)

Â ·N (t)y
(t)

.

• σ(t)

B̂
= e((σ

(t)

B̂
), h).

• k(t)

B̂
= F (σ

(t)

B̂
, sid

(t)

B̂
).

We examine the probability of adversary in breaking the indistinguishability of session key of
the test oracle, according to the following complementary events and all freshness related cases as
Definition 8:

• Event 1: There is a oracle πt
∗

B̂
held by B̂, such that πs

∗

Â
and πt

∗

B̂
have matching conversations,

and we have the following disjoint cases:

– Case 1 (C1): The adversary doesn’t issue Corrupt(Â) and Corrupt(B̂).

– Case 2 (C2): The adversary doesn’t issue StateReveal(πs
∗

Â
) and StateReveal(πt

∗

B̂
).

– Case 3 (C3): The adversary doesn’t issue StateReveal(πs
∗

Â
) and Corrupt(B̂).

– Case 4 (C4): The adversary doesn’t issue Corrupt(Â) and StateReveal(πt
∗

B̂
).

• Event 2: There is no oracle πt
∗

B̂
held by B̂, such that πs

∗

Â
and πt

∗

B̂
have matching conversations,

and we have the following disjoint events:

– Case 5 (C5): The adversary doesn’t issue Corrupt(Â) and Corrupt(B̂).

– Case 6 (C6): The adversary doesn’t issue StateReveal(πs
∗

Â
) and Corrupt(B̂).

In order to complete the proof of Theorem 1, we must provide the security proofs for above six
cases. However, due to the Propositions 1 and 2 from [14], the security proofs for Cases C1, C2, C3
and C6 can be reduced to the security proof for Case C5. Therefore, we prove the advantage of
the adversary is negligible in security parameter κ, for cases C4 and C5 respectively .

Proof of Case C4:
The proof proceeds in a sequence of games, following [4, 19]. The first game is the real security

experiment, as assumed that there exists an AKE-adversary A1 that breaks the security of the pro-
posed protocol. We then describe several intermediate games that step-wisely modify the original
game. Finally we prove that (under the stated security assumptions) no adversary can distin-
guish any of these games (G1

i+1 from its predecessor G1
i ), namely the adversary has only negligible

advantage in breaking the indistinguishability security property of the protocol in the security pa-
rameter κ. Let S1

i be the event that the adversary wins the security experiment under the Game G1
i .

Game G1
0. This is the original eCK game with adversary in Case C4.

Game G1
1. This game proceeds exactly as Game G1

0, but the simulator aborts the game if it does
not correctly guess the test oracle and its partner. Since the challenger activates d oracles for each

12



` parties. Then the probability that the challenger guesses correctly the test oracle and its partner
is at least 1/(`2d2). Thus we have that

Pr[S1
0 ] ≤ `2d2 · Pr[S1

1 ]. (1)

Game G1
2. This game proceeds exactly like the previous game, except that we replace the value

e(Y (s∗)x
(s∗)

, h) of test oracle with a random one.
If there exists adversary A1 can distinguish Game G1

2 from Game G1
1, then we can use it to

construct an efficient algorithm B to solve the BDDH problem. Give a BDDH instance (ḡ, u, v, w, c),
B sets g = ḡ, and h = w, and simulates the execution environment as Game G1

1 except for the
ephemeral keys X(s∗) and Y (s∗). B sets X(s∗) = u and Y (s∗) = v as the ephemeral public key
for the test oracle and its partner respectively. Moreover, B sets g1 = gµ1 and g2 = gµ2 , where
µ1, µ2 ∈R Z2

p . To compute the session key of test oracle, B does following

1. Compute secret exponent γ = µ1(x
(s∗)
1 +a7)(b1+b4β

(s∗)

Â
)+µ2(x

(s∗)
2 +a8)(b2+b5β

(s∗)

Â
)+(x

(s∗)
1 +

x
(s∗)
2 +a7 +a8)(b3 +b6β

(s∗)

Â
)+µ1(y

(s∗)
1 +b7)(a1 +a4β

(s∗)

Â
)+µ2(y

(s∗)
2 +b8)(a2 +b5β

(s∗)

Â
)+((y

(s∗)
1 +

y
(s∗)
2 )β

(s∗)

Â
+b7+b8)(a3+a6β

(s∗)

Â
), such that gγ = (B1B

β
(s∗)

Â
3 )x

(s∗)
1 +a7 ·(B2B

β
(s∗)

Â
4 )x

(s∗)
2 +a8 ·(Y (s∗)

1 B5)
a1+a4β

(s∗)

Â

·(Y (s∗)
2 B6)

a2+a5β
(s∗)

Â ·(Y (s∗)
3 B7)

a3+a6β
(s∗)

Â .

2. Compute secret key material as σ(s∗) = e(h, g)γ ·c = e(σ
(s∗)

Â
, h).5

3. Compute k(s∗) = F (σ(s∗), sid
(s∗)

Â
).

Note that if c = e(h,X(s∗))y
(s∗)

, then the simulation is equivalent to Game G1
1. Otherwise the

simulation is equivalent to Game G1
2. Now when the algorithm A1 which is able to distinguish

game G1
2 from G1

2 outputs 1 (meaning this game proceeds like Game G1
2), B outputs 1 as answer

to the BDDH challenge (meaning c is chosen at random), otherwise B outputs 0. Therefore, we
obtain that

|Pr[S1
1 ]− Pr[S1

2 ]| ≤ εBDDH. (2)

Game G1
3. We modify Game G1

2 to G1
3 by changing pseudo-random function F to a truly random

function RF for test oracle.
In Game G1

3 we make use of the fact that the seed σ(s∗) = e((σ
(s∗)

Â
)x

(s∗)
, h) of F is chosen

uniformly random, and independent of any message sent. If the adversary A1 distinguishes Game
G1

3 from Game G1
2 with non-negligible probability, we can use it to construct algorithm B that

breaks the security of PRF function F . Specifically, the B is given access to an PRF oracle, which
access either F or a truly random function RF . B simulates the execution environment for A1 as

Game G1
2 except for the test oracle. When A1 issue test query, B send (σ(s∗), sid

(s∗)

Â
) to the PRF

oracle. If the oracle is F , the simulation is equivalent to that in Game G1
2, otherwise the simulation

is equivalent to Game G1
3. Then the algorithm B outputs 1when A1 outputs 1 meaning this game

proceeds like Game G1
3. Thus, we have that

|Pr[S1
2 ]− Pr[S1

3 ]| ≤ εPRF. (3)

5Please note that we omit the value U (e.g., set U = 1) when generating the seed of πPRF, since plain PRF is
enough here.
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Collect the advantages from Game G1
0 to Game G1

3, we have that

ε′ ≤ `2d2 · (εBDDH + εPRF). (4)

Proof of Case C5:
Similarly, we proceed in Games G2

i with adversary A2 for Case C5 as follows. Let S2
i be the

event that the adversary wins the security experiment in Game G2
i respectively.

Game G2
0. This is the original eCK game with adversary in Case C5.

Game G2
1. This game proceeds as the previous game, except that the simulator aborts if the adver-

sary completes an oracle πt
B̂

such that H(sid
(s∗)

Â
) = H(s

(t)

B̂
) and πt

B̂
has no matching conversation

to test oracle. Hence we have for any sid
(s∗)

Â
6= sid

(t)

B̂
(t ∈ [d]). Then, if the collision event does not

occur, the simulation is equivalent to Game G2
0. When the event does occur, we can easily construct

algorithm that breaks the collision-resistant hash function H by outputting (sid
(s∗)

Â
, sid

(t)

B̂
). Hence

we have that
|Pr[S2

0 ]− Pr[S2
1 ]| ≤ εCR. (5)

Please note that, the rejection rule is possible, since we assume that the simulator would catches
all session id s for each oracle. Such rejection event introduced by this game would happen at any
point after issuing the test query.

Game G2
2. The challenger proceeds as Game G2

1 but aborts the game if it does not correctly guess
the test oracle and its peer . Then the probability that the challenger guesses correctly is at least
1/d`2.
Game G2

3. We modify game G2
2 to game G2

3 by changing the value of

e((C
(s)
1 C

(s)
3

β(s)Â
)x

(s)
1 +a7 ·(C(s)

2 C
(s)
4

β
(s)

Â )x
(s)
2 +a8 , h)

in computation of secret material σ
(s)

Â
for oracles πs

Â
to

(e(X
(s)
1 A5, C

(s)
1 C

(s)
4

β
(s)

Â )·e(X(s)
2 A6, C

(s)
2 C

(s)
5

β
(s)

Â )·e(X(s)
3 A7, C

(s)
3 C

(s)
6

β
(s)

Â ))r,

where r is uniform random exponent of h = gr which is chosen by simulator.
This change is purely conceptual, since our long-term private/public keys are all determined

when simulator initiates the execution environment of this game. Therefore, we have that

Pr[S2
2 ] = Pr[S2

3 ]. (6)

Game G2
4. This game proceeds as the previous game, except that we change the DH tuple

(g, g1, g2, A5, A6, A7) to a random tuple. First note that the probability that the chosen tuple
(g, g1, g2, A5, A6, A7), such that g 6= 1G , g1 6= 1G , g2 6= 1G , g1 6= g2 6= g and logg1

A5 + logg2
A6 6=

logg A7, is at least 1 − 6/p. Since the elements in DH tuple (g, g1, g2, A5, A6, A7) are uniformly
selected at random. If there exists adversary A2 can distinguish game G2

4 from game G2
3, then we

can use it to construct an efficient algorithm B to solve the DLIN problem. Give a DLIN instance
(u, u1, u2, v, w, c), B sets g = u, g1 = u1 and g2 = u2, and simulates the execution environment as
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Game G2
3 except for the long-term public keys of Â: A5, A6 and A7. B sets A5 = v, A6 = w and

A7 = c. Note that if c = ga7+a8 , then the simulation is equivalent to Game G2
3. Otherwise the

simulation is equivalent to game G2
4. Now when the algorithm A2 which is able to distinguish game

G2
4 from G2

3 outputs 1 (meaning this game proceeds like game G2
4), B outputs 1 as answer to the

DLIN challenge (meaning c is chosen at random), otherwise B outputs 0. Therefore, we obtain that

|Pr[S2
3 ]− Pr[S2

4 ]| ≤ εDLIN + 6/p. (7)

Game G2
5. We modify Game G2

5 to G2
6 by changing πPRF function F to a truly random function RF

for test oracle. Due to the modifications of Game G2
3 and G2

4, we first show that key secret σ
(s∗)

Â
and

each the key secret σ
(t)

B̂
of oracle πt

B̂
are pairwise independent. The tuple (B1, B2, B3, B4, σ

(s∗)

Â
, σ

(t)

B̂
)

(before evaluating pairing) is denoted by the following equations:

logg B1 ≡ µ1b1 + b3 (8)

logg B2 ≡ µ2b2 + b3 (9)

logg B3 ≡ µ1b4 + b6 (10)

logg B4 ≡ µ2b5 + b6 (11)

logg σ
(s∗)

Â
= mu1(x

(s∗)
1 + a7)(b1 + b4β

(s∗)

Â
) + µ2(x

(s∗)
2 + a8)(b2 + b5β

(s∗)

Â
)+

(x
(s∗)
1 + x

(s∗)
2 + a0)(b3 + b6β

(s∗)

Â
) + δ(s∗)

(12)

logg σ
(t)

B̂
= mu1(n

(t)
1 + d

(t)
7 )(b1 + b4β

(t)

B̂
) + µ2(n

(t)
2 + d

(t)
8 )(b2 + b5β

(t)

B̂
)+

(n
(t)
1 + n

(t)
2 + d

(t)
0 )(b3 + b6β

(t)

B̂
) + δ

(t)

B̂

(13)

Where g1 = gµ1 , g2 = gµ2 , a0 = a7 + a8 + ∆a ( where ∆a 6= 0), d
(t)
0 = d

(t)
7 + d

(t)
8 + ∆

(t)
d ,

gδ
(s∗)

= (X
(s∗)
1 A5)

b1+b4β
(s∗)

Â ·(X(s∗)
2 A6)

b2+b5β
(s∗)

Â ·(X(s∗)
3 A7)

b3+b6β
(s∗)

Â ·Y (s∗)x
(s∗)

, and

g
δ
(t)

B̂ = (N
(t)
1 D

(t)
5 )

b1+b4β
(t)

B̂ ·(N (t)
2 D

(t)
6 )

b2+b5β
(t)

B̂ ·(N (t)
3 D

(t)
7 )

b3+b6β
(t)

B̂ ·N (t)y
(t)

.

Let z
(s∗)
1 = x

(s∗)
1 +a7, z

(s∗)
2 = x

(s∗)
2 +a8, z

(s∗)
3 = x

(s∗)
1 +x

(s∗)
2 +a0, z

(t)
1 = n

(t)
1 +d

(t)
7 , z

(t)
2 = n

(t)
2 +d

(t)
8 ,

and z
(t)
3 = n

(t)
1 + n

(t)
2 + d

(t)
0 . We now can obtain a 6 × 6 matrix denoted by M from the above

equations as following:

logg B1

logg B2

logg B3

logg B4

logg σ
(s∗)

Â
− δ(s∗)

logg σ
(t)

B̂
− δ(t)

B̂


=



µ1 0 1 0 0 0
0 µ2 1 0 0 0
0 0 0 µ1 0 1
0 0 0 0 µ2 1

µ1z
(s∗)
1 µ2z

(s∗)
2 z

(s∗)
3 mu1β

(s∗)

Â
z

(s∗)
1 µ2β

(s∗)

Â
z

(s∗)
2 β

(s∗)

Â
z

(s∗)
3

µ1z
(t)
1 µ2z

(t)
2 z

(t)
3 µ1β

(t)

B̂
z

(t)
1 µ2β

(t)

B̂
z

(t)
2 β

(t)

B̂
z

(t)
3





b1
b2
b3
b4
b5
b6

 (mod p)
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One the one hand, If (g, g1g2, g3, g
z

(t)
1 , gz

(t)
2 , gz

(t)
3 ) is a Linear tuple, then corresponding σ

(t)

B̂
is inde-

pendent from σ
(s∗)

Â
, since

logg σ
(t)

B̂
− δ(t)

B̂
= µ1z

(t)
1 (b1 + b4β

(t)

B̂
) + µ2z

(t)
2 (b2 + b5β

(t)

B̂
) + z

(t)
3 (b3 + b6β

(t)

B̂
)

is linearly dependent on logg B1, logg B2, logg B3 and logg B4, while σ
(s∗)

Â
is linearly independent

from logg B1, logg B2, logg B3 and logg B4 with overwhelming probability (at least 1− 6/p). On the

other hand, consider that (g, g1g2, g3, g
z

(t)
1 , gz

(t)
2 , gz

(t)
3 ) is not a linear tuple. We observe that

DetM := µ2
1µ

2
2(β

(s∗)

Â
− β(t)

B̂
)(z

(s∗)
3 − z(s∗)

1 − z(s∗)
2 )(z

(t)
3 − z

(t)
1 − z

(t)
2 ) 6= 0,

since β
(s∗)

Â
−β(t) 6= 0 (by the rejection rule in game G2

1), (z
(s∗)
3 −z(s∗)

1 −z(s∗)
2 ) = ∆a 6= 0 and z

(t)
3 −z

(t)
1 −

z
(t)
2 = ∆

(t)
z = ∆

(t)
n β

(t)

B̂
+ ∆

(t)
d 6= 0. Hence, the σ

(s∗)

Â
is independent to σ

(t)

B̂
, as well as e(σ

(s∗)

Â
, σ

(s∗)

Â
)

and e(σ
(t)

B̂
, σ

(t)

B̂
). Now if there exist adversary A2 that is able to distinguish game G2

5 from game G2
5

with non-negligible probability (i.e. b = b′). Then we can use it to construct an efficient algorithm
B to break the πPRF function with index {IGT , fGT } where IGT := {(U, V, α)|(U, V, α) ∈ G2

T × Zp}
and fGT := (U, V, α) → U r1+αr2V with (r1, r2) ∈R Z2

p. Algorithm B simulates the execution
environment for A2 as the challenger in Game G2

4. In particularly, B uniformly chooses (µ1, µ2) ∈R
Z2
p , and sets

η1 := µ1b1 + b3, η2 := µ2b2 + b3,

η3 := µ1b4 + b6, η4 := µ2b5 + b6,

U
(s∗)

Â
:= e(A7/(A

µ−1
1

5 A
µ−1

2
6 ), h), U

(t)

B̂
:= e(N

(t)
3 D

(t)
7 /((N

(t)
1 A5)µ

−1
1 (N

(t)
2 A6)µ

−1
2 ), h),

V
(s∗)

Â
= e((B1B

β
(s∗)

Â
3 )x

(s∗)
1 +a7 ·(B2B

β
(s∗)

Â
4 )x

(s∗)
2 +a8 ·(W (s∗)

1

β
(s∗)

Â B5)
a1+a4β

(s∗)

Â ·(W (s∗)
2 B6)

a2+a5β
(s∗)

Â ·

(W
(s∗)
3 B7)

a3+a6β
(s∗)

Â ·(gx1ga7)
η1+β

(s∗)

Â
η3 ·(gx2ga8)

η2+β
(s∗)

Â
η4 ·W (s∗)x

(s∗)

, h),

V (t) := e((D
(t)
1 D

(t)
3

β
(t)

B̂ )y1+b7 ·(D(t)
2 D

(t)
4

β
(t)

B̂ )y2+b8 ·(N (t)
1 ga7)

η1+β
(t)

B̂
η3 ·

(N
(t)
2 ga7)

η2+β
(t)

B̂
η4 ·N (t)y

(t)

, h),

and (r1, r2) := (b3, b6). Then the indexes σ
(s∗)

(U(s∗),V (s∗),β
(s∗)

Â
)

= e(σ
(s∗)

Â
, h), and σ

(t)

(U(t),V (t),β
(t)

B̂
)

=

e(σ
(t)

B̂
, h) for t ∈ [d], where the σ

(s∗)

Â
and σ

(t)

B̂
(t ∈ [d]) are the secret key materials of corresponding

oracles as in game G2
5. Thereafter, B simulates game G2

5 with adversary A2 except the computation

of k(s∗) and k(t)(t ∈ [d]), where B gives index (U (s∗), V (s∗), β
(s∗)

Â
) and (U (t), V (t), β

(t)

B̂
)(t ∈ [d]) to the

oracle (F, IGT ) in the experiment of the πPRF security Definition 3 and sets the values returned

from the oracle as session keys k
(s∗)
e and k

(t)
e (t ∈ [d]) respectively. When A2 output 1 (meaning the

simulated game is G2
5), then B outputs 1 (meaning the oracle is (F, IGT )). Otherwise B outputs 0.

Since if the oracle is (F, IGT ), the simulated game is equivalent to Game G2
4, otherwise the simulated

game is equivalent to Game G2
5. Therefore, we obtain that

|Pr[S2
4 ]− Pr[S2

5 ]| ≤ επPRF. (14)
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Note that, in game G2
5 the bit b is never use in test query, so that the Pr[S2

5 ] = 1/2. Collect the
advantages from Game G2

0 to Game G2
5, we have that

ε′ ≤ εCR + `2d · (εDLIN + επPRF + 6/p) (15)

5 Conclusions

We have presented an efficient eCK-secure key exchange protocols without random oracles (and
without NAXOS trick), that the security against chosen public key attacks based on the plain public
key assumption (i.e. without KOSK assumption). An open question here is how to construct an
eCK secure protocol without πPRF, we leave out this for future work.

Acknowledgements. We would like to thank the anonymous reviewers for their helpful com-
ments.
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