
Strongly Secure Authenticated Key Exchange Protocol from

Bilinear Groups without Random Oracles

Zheng Yang

Horst Görtz Institute for IT Security
Chair for Network- and Data Security
Ruhr-University Bochum, Germany

zheng.yang@rub.de

May 9, 2013

Abstract

Since the introducing of extended Canetti-Krawczyk (eCK) security model for two party
key exchange, many protocols have been proposed to provide eCK security. However, most of
those protocols are provably secure in the random oracle model or rely on special design tech-
nique well-known as the NAXOS trick. In contrast to previous schemes, we present an eCK
secure protocol in the standard model, without NAXOS trick and without assuming imprac-
tical, strong, concurrent zero-knowledge proofs of knowledge of secret keys done to the CA at
key registration. The security proof of our scheme is based on standard pairing assumption,
collision resistant hash functions, bilinear decision Diffie-Hellman (BDDH) and decision linear
Diffie-Hellman (DLIN) assumptions, and pseudo-random functions with pairwise independent
random source πPRF [23]. Although our proposed protocol is based on bilinear groups, it doesn’t
need any pairing operations during protocol execution.

Keywords: one-round authenticated key exchange, pairing, insider security

1 Introduction

One-round authenticated key exchange protocols allow for low-latency key exchange that is executed
to enable both parties to end up sharing a session key with assurance that the key is only known to
them. These protocols typically combine the long-term and ephemeral Diffie-Hellman keys of the
participants to compute the session key. Their security is usually proven in recent models like the
Canetti-Krawczyk (CK) model [8] and the extended Canetti-Krawczyk (eCK) model [18], where
the adversary is given partial access to session keys, ephemeral values, and intermediate states.
Recently there are quite a few variants of (e)CK model used in literatures (e.g., [16, 12, 25, 13]).
The CK+ model is recently used by Fujioka et al. [13], and the authors adopt StateReveal query in
place of EphemeralKeyReveal query of eCK model to capture maximum exposure of states. Similar
model has also been introduced before by Cremers [12] which was called eCK’ model, where the
StateReveal is used either. In this paper, we would like to call both CK+ and eCK’ models as eCK
model to avoid ambiguity since these models are based on the similar freshness restriction as the
original eCK model that is distinct to the first CK model. The eCK model is known to be one
of the strongest AKE models that covers the most desirable security attributes for AKE including
resistance to key compromise impersonation (KCI) attacks, weak perfect forward secrecy (wPFS),

1

leakage of secret states and chosen identity and public key (CIDPK) attacks. Please note that both
CK and eCK models leave out the definition of session state or ephemeral key to specific protocols.
Because the wide variety of protocols hinders the definition of session state in a general approach.
On the other hand, to our best of knowledge, no AKE protocol is secure in either CK model or
eCK model if ‘all’ session states can be revealed.

Practical Considerations. In order to protect those critical session states of AKE protocols,
utilizing secure (tamper-proof) device might be a natural solution. A secure device (such as smart
card) may usually be used to store long-term cryptographic keys and is able to implement crypto-
graphic operations or primitives. An appropriate implementation approach with secure device for
eCK model was introduced by Sarr et al. [25], that at each party an host machine (e.g. the per-
sonal computer) is used together with a secure device. Similar modeling technique involving secure
hardware was previously used by Bresson et al. [6]. Basing the security models on specific imple-
mentation approach reduces the gap that often exists between formal models and practical security
without loss of generality, and this also enables us to define the detailed content of StateReveal
query. In this way it is possible to adopt a “All-and-Nothing” strategy to define the session states
– namely we can assume that all states stored on untrusted host machine can be revealed via
StateReveal query and no state would be exposed at secure device. As those secure devices might
be short in both storage capacity and computational resource, the algorithm on secure device is
often causing performance bottleneck of systems. This makes it necessary for us to optimize AKE
protocols when they are realized involving secure device.

Motivating Problems. So far most of CK and eCK protocols are only provably secure in the
random oracle model [3] which assumes the existence of publicly available functions with truly
random outputs. However, this model represents a very strong idealization of the real world.
Canetti et al. [8] showed that there exist schemes which have a security proof in the random oracle
model but are insecure when instantiated with any hash function. While investigating the AKE
protocols without random oracles in either CK model or eCK model, there exist only few protocols.
Jeong et al. [14, 15], proposed efficient one-round protocols, which are proven in the standard CK
model. However their proposals do not provide resilience of key compromise impersonation (KCI)
attacks. Boyd et al. [5], presented generic approaches (BCNP) exploiting KEMs to build one-
round key exchange protocols that are secure in the standard model. However, neither of the
above schemes [14, 15, 5] can resist with the leakage of ephemeral private keys from target session,
which is modelled by eCK model. Most recently, Fujioka et al. [13] introduced a variant (FSXY)
of BCNP construction which is proved secure without random oracles in the CK+ model. In
FSXY construction, the twisted-PRF trick is overused to generate the de-facto ephemeral secret
key, which is just a variant of NAXOS trick [18].1 We note that only a small part of session states
in FSXY scheme (i.e. the input randomness of twisted-PRF trick and the ephemeral key of IND-
CPA KEM) can be revealed via StateReveal. It is not hard to see if either the ephemeral keys
generated by twisted-PRF trick or the encapsulation keys of IND-CCA secure KEM are defined
as session states then the FSXY protocol is no longer secure in the eCK model. The problem of

1The twisted-PRF (NAXOS) trick is first used by Okamoto [24] which is an implementation technique that hides
the exponent of an ephemeral public key from an adversary using long-term key even if the adversary obtains the
ephemeral secret keys. For instance, the exponent of public key is computed as x = PRF(x̃1, a) ⊕ PRF(a, x̃2) where
x̃1, x̃2 are ephemeral keys that can be revealed via StateReveal query, the value a is the long-term private key and
PRF is a secure pseudo-random function.

2

FSXY scheme is that to secure implement it with secure device one has to put all computations
related to twisted-PRF trick (e.g. encapsulation and decapsulation algorithms of IND-CCA secure
KEM) on secure device to avoid state leakage. This would lead to serious efficiency problem of
the system. Another drawback of the BCNP-like protocols is that they require prior knowledge
of the peer’s public key to run the KEM, namely those protocols can only run in pre-specified
peer model [10]. This fact might result in those BCNP-like protocols being unable to execute
efficiently in the post-specified peer model without additional message flows to exchange identifiers
and static public keys. We stress that the specified peer model would dramatically affect the design
of secure one-round AKE protocols in the standard model. Although the eCK secure protocol [22]
is constructed without NAXOS trick which is proved in the standard model and are able to run
under post-specified peer setting, it requires a rather strong assumption on public key registration,
i.e. the knowledge of secret key assumption [20].2 The protocol by Yang et al. [27] is proposed
without KOSK assumption, but it needs one expensive pairing operation on secure device. In a
nutshell, our major motivation of this paper is to seek efficient eCK secure construction without
random oracles and KOSK assumption that can be efficiently implemented with secure device and
under post-specified peer setting.

Contributions. We present an eCK secure AKE protocol in the standard model, that is able
to resist with chosen identity and public key attacks without KOSK assumption. Instead an
alternative proof of public key and corresponding check procedure is given for key registration.
The security of proposed protocol is based on standard pairing assumption, collision resistant
hash function family, bilinear decision Diffie-Hellman (BDDH) and decision linear Diffie-Hellman
(DLIN) assumptions, and pseudo-random function family with pairwise independent random source
πPRF [23]. Moreover, our construction doesn’t rely on NAXOS like trick. Surprisingly, although our
protocol is constructed based on bilinear groups, we avoid any pairing operations during protocol
execution via pre-computation strategy. To implement the session key generation algorithm on
secure device, only one exponentiation is required.

2 Preliminaries

Notations. We let κ denote the security parameter and 1κ the string that consists of κ ones. Each
party has a long-term authentication key which is used to prove the identity of the party in an
AKE protocol. We let a ‘hat’ on top of a capital letter denotes an identifier of a participant,
without the hat the letter denotes the public key of that party, and the same letter in lower case
denotes a private key. For example, a party Â is supposed to register its public key A = ga at
certificate authority (CA) and keeps corresponding long-term secret key skA = a privately. Let
[n] = {1, . . . , n} ⊂ N be the set of integers between 1 and n. If S is a set, then a ∈R S denotes the
action of sampling a uniformly random element from S.

2Basically the KOSK assumption assumes that there exists either efficient knowledge extractor (satisfying require-
ment in [1]) to be able to obtain the secret key from knowledge proof, or the adversary simply hands the challenger
corresponding secret keys.

3

3 Collision-Resistant Hash Functions

Let CRHF : KCRHF ×MCRHF → YCRHF be a family of keyed-hash functions where KCRHF is the key
space, MCRHF is the message space and YCRHF is the hash value space. The public key hkCRHF ∈
KCRHF defines a hash function, denoted by CRHF(hkCRHF, ·), which is generated by a PPT algorithm
CRHF.KG(1κ) on input security parameter κ. On input a message m ∈ MTCRHF, this function
CRHF(hkCRHF,m) generates a hash value y ∈ YCRHF.

Definition 1. CRHF is called (tCRHF, εCRHF)-secure if all tCRHF = tCRHF|(κ)-time adversaries A
have negligible advantage εCRHF = εCRHF(κ) with

Pr

[
hkCRHF ← CRHF.KG(1κ), (m,m′)← A(1κ, hkCRHF);

m 6= m′, (m,m′) ∈MCRHF,CRHF(hkCRHF,m) = CRHF(hkCRHF,m
′)

]
≤ εCRHF

where the probability is over the random coins of the adversary and CRHF.KG.

If the hash key hkCRHF is obvious from the context, we write CRHF(m) for CRHF(hkCRHF,m).

3.1 Pseudo-Random Functions

A pseudo-random function is an algorithm PRF that implements a deterministic function z =
PRF(k, x), taking as input a key (seed) k ∈ K and some bit string x ∈ D, and returning a string
z ∈ R, where K is the key space, D is the domain and R is the range of PRF for security parameter
κ. Let A be an adversary that is given oracle access to either PRF(k, ·) for k ∈R K or a truly
random function RF(·) with the same domain and range as the pseudo-random function PRF.

Definition 2. We say that PRF is a (t, εPRF)-secure pseudo-random function, if any adversary A
running in probabilistic polynomial time t has at most an advantage of εPRF to distinguish the
pseudo-random function PRF from a truly random function RF, i.e.∣∣∣Pr[APRF(k,·)(1κ) = 1]− Pr[ARF(·)(1κ) = 1]

∣∣∣ ≤ εPRF,
where εPRF is a negligible function in κ.

3.2 Pseudo-Random Functions with Pairwise Independent Random Sources
(πPRF)

This is a specific class of PRF introduced by Okamoto [23]. The πPRF family associated with key
(seed) space K, domain D and range R in the security parameter κ, states that if a specific variable
ki0 ∈R K is pairwise independent from other variable, then on input value m ∈ D the output h ∈ R
of this function indexed by ki0 is indistinguishable from random.

Suppose that function fΣ : IΣ → XΣ is a deterministic polynomial-time algorithm, where
XΣ is a set of random variables over Σ ∈R K and IΣ is a set of indices regarding Σ, then this
algorithm outputs ki ∈ XΣ from i ∈ IΣ. Let (ki0 , ki1 , . . . , kit(κ)

) (ij ∈ IΣ) be pairwise independent
random variables indexed by (IΣ, fΣ), and each variable be uniformly distributed over Σ. That
is, for any pair of (ki0 , kij) (j = 1, . . . , tκ), for any (x, y) ∈ Σ2, we have Pr[ki0 → x ∧ kij → y] =
1/|Σ|2. Consider a PPT algorithm AF,IΣ that can issue oracle queries. When A sends qj ∈ D

and ij ∈ IΣ to the query, the oracle replies with F κ,Σ,D,R
k̄j

(qj) for each j = 0, 1, . . . , t(κ), where

(k̄i0 , k̄i1 , , . . . ,
¯kit(κ)

) ∈R (ki0 , ki1 , . . . , kit(κ)
). ARF,IΣ is the same as AF,IΣ except for F κ,Σ,D,R

k̄0
(q0) is

replaced by a truly random function RF(q0).

4

Definition 3. We say that F is secure πPRF family if for any PPT adversary A running in time
t has at most an advantage of επPRF to distinguish the πPRF from a truly random function, i.e.

|Pr[AF,IΣ(1κ,D,R) = 1]− Pr[ARF,IΣ(1κ,D,R) = 1]| ≤ επPRF,

where F is a πPRF family with index (IΣ, fΣ) ∈ K.

3.3 Bilinear Groups

In the following, we briefly recall some of the basic properties of bilinear groups. Our AKE solution
mainly consist of elements from a single group G. We therefore concentrate on symmetric bilinear
map (pairing).

Definition 4 (Symmetric Bilinear groups). Let two cyclic groups G and GT of prime order p. Let
g be a generator of G. The function

e : G×G→ GT

is an (admissible) bilinear map if it holds that:

1. Bilinear: for all a, b ∈ G and x, y ∈ Z, we have e(ax, by) = e(a, b)xy.

2. Non-degenerate: e(g, g) 6= 1GT , is a generator of group GT .

3. Efficiency: e is efficiently computable for all a, b ∈ G.

We call (G, g,GT , p, e) a symmetric bilinear groups.

3.4 The Decision Linear Diffie-Hellman Assumption

Let G be a group of prime order p. Let g be a generator of G, and along with arbitrary generators g1

and g2 of G. Given tuple (g, g1, g2, g
a
1 , g

b
2, g

c) for (a, b, c) ∈R Z3
p the decisional linear Diffie-Hellman

assumption says that it is hard to decide whether c = a+ b mod p.

Definition 5. We say that the DLIN assumption holds if∣∣∣Pr
[
A(g, g1, g2, g

a
1 , g

b
2, g

a+b) = 1
]
− Pr

[
A(g, g1, g2, g

a
1 , g

b
2, g

c) = 1
]∣∣∣ ≤ ε,

where (a, b, c) ∈R Z3
p , for all probabilistic polynomial-time adversaries A, where ε = ε(κ) is some

negligible function in the security parameter.

3.5 The Bilinear Decisional Diffie-Hellman Assumption

Let G and GT be groups of prime order p. Let e : G×G→ GT be a bilinear map as definition 4. The
Bilinear Decisional DH problem is stated as follows: given the tuple (g, ga, gb, gc) for (a, b, c) ∈ Z3

p

as input to distinguish the e(g, g)abc from a random value.

Definition 6. We say that the (t, ε)-BDDH assumption holds if∣∣∣Pr
[
A(g, ga, gb, gc, e(g, g)abc) = 1

]
− Pr

[
A(g, ga, gb, gc, e(g, g)γ) = 1

]∣∣∣ ≤ ε,
where (a, b, c, γ) ∈R Z4

p, for all probabilistic t-time adversaries A, where ε = ε(κ) is some negligible
function in the security parameter.

5

4 Security Model

In this section we present the formal security model for two party PKI-based authenticated key-
exchange (AKE) protocol. In this model, while emulating the real-world capabilities of an active
adversary, we provide an ’execution environment’ for adversaries following an important line of
research [4, 9, 19] which is initiated by Bellare and Rogaway [2]. In the sequel, we will use the
similar framework as [26]. Let KKE be the key space of session key, and {PK,SK} be key spaces
for long-term public/private key respectively. Let IDSKE be an identity space. Those spaces are
associated with security parameter κ of considered protocol.

Execution Environment. In the execution environment, we fix a set of honest parties
{ID1, . . . , ID`} for ` ∈ N, where ID is identity of a party which is chosen uniquely from space
IDSKE. Each identity is associated with a long-term key pair (ski, pki) ∈ (SK,PK) for entity
authentication. Note that those identities are also lexicographically indexed via variable i ∈ [`] .
For public key registration, each party IDi might be required to provide extra information (denoted
by pf) to prove either the knowledge of the secret key or correctness of registered public key (via
e.g. non-interactive proof of knowledge schemes). In practice, the concrete implementation of pf
is up to the CA [7] and may be either interactive or non-interactive. Examples can be found in
RFC 4210 [7] and PKCS#10. In this model we foucuse on non-interactive proof. Each honest party
IDi can sequentially and concurrently execute the protocol multiple times with different indented
partners, this is characterized by a collection of oracles {πsi : i ∈ [`], s ∈ [d]} for d ∈ N. Oracle πsi
behaves as party IDi carrying out a process to execute the s-th protocol instance, which has access
to the long-term key pair (ski, pki) and to all other public keys. Moreover, we assume each oracle
πsi maintains a list of independent internal state variables with semantics listed in Table 1.

Variable Decryption

Ψs
i recording the identity IDj of intended communication partner

Φs
i denoting the decision Φs

i ∈ {accept, reject}
Ks
i recording the session key Ks

i ∈ KKE used for symmetric encryption
stsi storing the maximum secret states that allows to be revealed by adversary
sT si recording the transcript of messages sent by oracle πsi
rT tj recording the transcript of messages sent by oracle πsi

Table 1: Internal States of Oracles

All those variables of each oracle are initialized with empty string which is denoted by the
symbol ∅ in the following. At some point, each oracle πsi may complete the execution always with
a decision state Φs

i ∈ {accept, reject}. Furthermore, we assume that the session key is assigned
to the variable Ks

i (such that Ks
i 6= ∅) iff oracle πsi has reached an internal state Φs

i = accept.

Adversarial Model. An adversary A in our model is a PPT Turing Machine taking as input the
security parameter 1κ and the public information (e.g. generic description of above environment),
which may interact with these oracles by issuing the following queries.

• Send(πsi ,m): The adversary can use this query to send any message m of his own choice to
oracle πsi . The oracle will respond the next message m∗ (if any) to be sent according to the

6

protocol specification and its internal states. Oracle πsi would be initiated as initiator via

sending the oracle the first message m = (>, ĨDj) consisting of a special initialization symbol

> and a value ĨDj . The ĨDj is either the identity IDj of intended partner or empty string ∅.
After answering a Send query, the variables (Ψs

i ,Φ
s
i ,K

s
i , st

s
i , T

s
i) will be updated depending

on the specific protocol.3

• RevealKey(πsi): Oracle πsi responds with the contents of variable Ks
i .

• StateReveal(πsi): Oracle πsi responds with the secret state stored in variable stsi .

• Corrupt(IDi): Oracle π1
i responds with the long-term secret key ski of party IDi. After this

query, oracles πsi (s > 1) can still answer other queries.

• EstablishParty(IDm, pkm, pfm): This query allows the adversary to register an identity IDm(` <
m < N) and a static public key pkm on behalf of a party Pm, if either the adversary is ensured
to knows the secret key skm or the pkm is ensured to be correctly formed corresponding to
the public key pkm by evaluating pfm based on pkm. Parties established by this query are
called corrupted or dishonest.4

• Test(πsi): This query may only be asked once throughout the experiment. Oracle πsi handles
this query as follows: If the oracle has state Ω = reject or Ks

i = ∅, then it returns some
failure symbol ⊥. Otherwise it flips a fair coin b, samples a random element K0 from key
space KKE, sets K1 = Ks

i to the real session key, and returns Kb.

We stress that the exact meaning of the StateReveal must be defined by each protocol separately,
and each protocol should be proven secure to resist with such kind of state leakage as its claimed.
Namely a protocol should specify the content stored in the variable st during protocol execution.5

The EstablishParty query is used to model the chosen public key attacks. In this query, the detail
form of pf should be specified by each protocol.Please note that one could specify pf = ∅ to model
arbitrary public key registration without checking anything.

Secure AKE Protocols. To formalize the notion that two oracles are engaged in an on-line
communication, we define the partnership via matching sessions which was first formulated by
Krawczyk [17].

Definition 7. We say that an oracle πsi has a matching session to oracle πtj , if both oracles accept
and

• Ψs
i = IDj and Ψt

j = IDi and

3For example, the variable Ψs
i will be set as identity j at some point when the oracle receives a message containing

the identity of its partner; the messages (m,m∗) will be orderly appended to transcript T si . A protocol here might
be either run in pre- or post-specified peer setting [11].

4We only require that the proof is non-interactive to simplify the model (if a common reference string is required
we may assume that it is held by the execution environment and made publicly available). In practice, the concrete
implementation of these proofs of possession is up to the CA and may also be interactive. We only require that it is
secure under concurrent executions.

5To make our model simple, we only use a unified StateReveal query other than using different kinds of such
queries with various ‘aliases’. Since no matter how many different kinds of ‘StateReveal’ are modelled, each protocol
should specify which ’StateReveal’ query it can resist with. We here just assume all states stored on untrusted host
machine (e.g. the personal computer) are susceptible to StateReveal query.

7

• sT si = rT tj and rT si = rT sj

Security Game. This game is played between a challenger C and an adversary A, where the
following steps are performed:

1. At the beginning of the game, the challenger C implements the collection of oracles {πsi :
i ∈ [`], s ∈ [d]}, and generates ` long-term key pairs (pki, ski) and corresponding proof pfi
(if any) for all honest parties IDi for i ∈ [`] where the identity IDi ∈ IDSKE of each party
is chosen uniquely. C gives adversary A all identities, public keys and corresponding proofs
{(ID1, pk1, pf1), . . . , (ID`, pk`, pf`)} as input.

2. A may issue polynomial number of queries as aforementioned, namely A makes queries: Send,
StateReveal, Corrupt, EstablishParty and RevealKey.

3. At some point, A may issue a Test(πsi) query on an oracle πsi during the game with only once.

4. At the end of the game, the A terminates with outputting a bit b′ as its guess for b of Test
query.

For the security definition, we need the notion of freshness of oracle.

Definition 8 (Freshness). Let πsi be an accepted oracle held by an party IDi with intended partner
IDj . Meanwhile, let πtj be an oracle (if it exists) held by a party IDj with intended partner IDi,
such that πsi has a matching conversation to πtj . Then the oracle πsi is said to be fresh if none of
the following conditions holds:

1. The party IDj is established by adversary A via EstablishParty query.

2. A either makes query RevealKey(πsi), or RevealKey(πtj) (if such πtj exists).

3. If πtj exists, A either makes queries:

(a) Both Corrupt(IDi) and StateReveal(πsi), or

(b) Both Corrupt(IDj) and StateReveal(πtj).

4. If πtj does not exist, A either makes queries:

(a) Both Corrupt(IDi) and StateReveal(πsi), or

(b) Corrupt(IDj).

Definition 9 (Session Key Security). A key exchange protocol Σ is called (t, ε)-session-key-secure
if for all adversaries A running within time t in the above security game and for some negligible
probability ε = ε(κ) in the security parameter κ, it holds that:

• If two oracles πsi and πtj accept with matching conversations, then both oracles hold the same
session key.

• When A returns b′ such that

– A has issued a Test query on an oracle πsi without failure,

– πsi is fresh throughout the security experiment,

then the probability that b′ equals the bit b sampled by the Test-query is bounded by

|Pr[b = b′]− 1/2| ≤ ε.

8

5 A One-round Two Party AKE Protocol from πPRF

In this section we present a pairing-based strong AKE protocol without random oracles and NAXOS
trick based on pseudo-Random function family with pairwise independent random sources (πPRF)
as key derivation function.

5.1 Protocol Description

The AKE protocol takes as input the following building blocks:

• Symmetric bilinear groups (G, g,GT , p, e), where the generator of group GT is e(g, g) and
along with another random generators g1, g2 and h of G.

• A collision resistant hash function CRHF(hk, ·) : KCRHF × {0, 1}∗ → Zp where hk is chosen
uniformly at random from space KCRHF.

• A pairwise independent pseudo-random function family (πPRF) F (·, ·) : GT ×{0, 1}∗ → KKE,
with index {IGT , fGT } where IGT := {(U, V, α)|(U, V, α) ∈ G2

T × Zp} and fGT : (U, V, α) →
U r1+αr2V with (r1, r2)

$← Z2
p.

The variable pms stores the public system parameters
pms := (PG, e(g, h), e(g1, h), e(g2, h), hk) where each element is initialized by corresponding build-
ing block as above.

Â
skA = (a1, a2, a3, a4, a5, a6, a7, a8)
pkA = (A1, A2, A3, A4, A5, A6, A7)

:= (e(ga11 ga3 , h), e(ga22 ga3 , h),
e(ga41 ga6 , h), e(ga52 ga6 , h), e(ga71 , h),

e(ga82 , h), e(ga7+a8 , h))

B̂
skB = (b1, b2, b3, b4, b5, b6, b7, b8)
pkB = (B1, B2, B3, B4, B5, B6, B7)

:= (e(gb11 g
b3 , h), e(gb22 g

b3 , h),
e(gb41 g

b6 , h), e(gb52 g
b6 , h), e(gb71 , h),

e(gb82 , h), e(gb7+b8 , h))

x1, x2, x,
$← Z∗

p

X1 := e(g1, h)x1 , X2 := e(g2, h)x2 ,
X3 := e(g, h)x1+x2 , X := (g, h)x

y1, y2, y
$← Z∗

p

Y1 := e(g1, h)y1 , Y2 := e(g2, h)y2 ,
Y3 := e(g, h)y1+y2 , Y := e(g, h)y

−
X1, X2, X3, X, Â
−−−−−−−−−−−−−−−−→

←−
Y1, Y2, Y3, Y, B̂

−−−−−−−−−−−−−−−−
(Y1, Y2, Y3, Y)? ∈ G4

T (X1, X2, X3, X)? ∈ G4
T

sid := Â||B̂||X1||X2||X3||X||Y1||Y2||Y3||Y sid := Â||B̂||X1||X2||X3||X||Y1||Y2||Y3||Y
β := CRHF(sid) β := CRHF(sid)

σÂ := (B1B
β
3)x1+a7 ·(B2B

β
4)x2+a8

·(Y1B5)a1+a4β ·(Y2B6)a2+a5β

·(Y3B7)a3+a6β ·Y x

σB̂ := (A1A
β
3)y1+b7 ·(A2A

β
4)y2+b8

·(X1A5)b1+b4β ·(X2A6)b2+b5β

·(X3A7)b3+b6β ·Xy

k := F (σÂ, β) k := F (σB̂ , β)

Figure 1: AKE Protocol from πPRF

9

Long-term key generation and Registration: On input the system parameter pms, the long-
term keys of each party Â is generated as following:

• Â selects long-term private keys :

skA = (a1, a2, a3, a4, a5, a6, a7, a8)
$← Z8

p, and compute the long-term public keys:
pkA = (A1, A2, A3, A4, A5, A6, A7) := (e(ga1

1 ga3 , h), e(ga2
2 ga3 , h), e(ga4

1 ga6 , h),
e(ga5

2 ga6 , h), e(ga7
1 , h), e(ga8

2 , h), e(ga7+a8 , h)).

In order to register the public key pkA, we require each party Â to provide the pfÂ :=
(ga1

1 , ga2
2 , ga4

1 , ga5
2 , ga1 , ga2 , ga3 , ga4 , ga5 , ga6). Upon receiving a request on registering public key pkÂ

with pfÂ, the CA does the following steps:

1. choose random values θ1, θ2, θ3, θ4
$← Zp.

2. reject the registration if

e((ga1
1)θ1(ga2

2)θ2(ga4
1)θ3(ga5

2)θ4 , g) 6= (e(ga1 , g1)θ1(e(ga2 , g2))θ2

(e(ga4 , g1))θ3(e(ga5 , g2))θ4 .

3. reject the registration if

Aθ11 A
θ2
2 A

θ3
3 A

θ4
4 6= e((ga1

1 ga3)θ1(ga2
2 ga3)θ2(ga4

1 ga6)θ3(ga5
2 ga6)θ4 , h).

4. accept the registration.

Those checks ensure that the public key pkÂ is consistent with the protocol specification (i.e. it is

correctly formed). In particular the pfÂ is required while A queries the EstablishParty(Â, pkÂ, pfÂ)
in which the above checks are performed. We will show in the proof that the pfÂ corresponding to
registered public key pkÂ would make security proof go through.

Protocol Execution : On input pms, the protocol between two parties Â and B̂ is proceed as
follows, which is also briefly illustrated in the Figure 1.

1. Upon activation a session at a party Â, it performs the steps: (a) choose three ephemeral

private keys x1, x2, x,
$← Z3

p;

(b) compute X1 := e(g1, h)x1 , X2 := e(g2, h)x2 , X3 := e(g, h)x1+x2 and X := (g, h)x; (c) send
(X1, X2, X3, X, Â) to B̂.

2. Upon activation a session at a party B̂, it performs the steps: (a) choose three ephemeral

private keys y1, y2, y,
$← Z3

p;

(b) compute Y1 := e(g1, h)y1 , Y2 := e(g2, h)y2 , Y3 := e(g, h)y1+y2 and Y := e(g, h)y; (c) send
(Y1, Y2, Y3, Y, B̂) to Â.

3. Upon receiving (Y1, Y2, Y3, Y, B̂) from B̂, Â does the following: (a) verify that (Y1, Y2, Y3, Y) ∈
G4
T ; (b) set session identifier

sid := Â||B̂||X1||X2||X3||X||Y1||Y2||Y3||Y , and compute β := CRHF(sid); (c) compute σÂ :=

(B1B
β
3)x1+a7 ·(B2B

β
4)x2+a8 ·(Y1B5)a1+a4β·(Y2B6)a2+a5β·(Y3B7)a3+a6β·Y x; (d) compute session

key as k := F (σÂ, β) and erase all intermediate values and y1, y2, y.

10

4. Upon receiving (X1, X2, X3, X, Â) from Â, B̂ does the following: (a) verify that (X1, X2, X3, X) ∈
G4
T ; (b) set session identifier

sid := Â||B̂||X1||X2||X3||X||Y1||Y2||Y3||Y , and compute β := CRHF(sid); (c) compute σB̂ :=

(A1A
β
3)y1+b7 ·(A2A

β
4)y2+b8 ·(X1A5)b1+b4β·(X2A6)b2+b5β·(X3A7)b3+b6β·Xy; (d) compute session

key k := F (σB̂, β) and erase all intermediate values and y1, y2, y.

Session States: We thus assume, only the ephemeral private keys, i.e. (x1, x2, x) would be
stored as secret in the state variable st. This can be achieved by performing the computation
in steps 2.(c) and 2.(d) on a smart card, where the long-term keys are stored. In this case,
the intermediate values would not be exposed due to e.g. malware attacks on the PC, which
we model with StateReveal query.

5.2 Security Analysis

We show the security of proposed protocol in our strong security model. Assume each ephemeral
key chosen during key exchange has bit-size λ ∈ N.

Theorem 1. Suppose that the (t, q, εBDDH)-Bilinear DDH assumption and (t, q, εDLIN)-Decision
linear assumption hold in bilinear groups (G, g,GT , p, e), the hash function H is (t, εCRHF)-secure,
and a (t, επPRF)-secure πPRF family with index {IGT , fGT } where IGT := {(U, V, α)|(U, V, α) ∈
G2 × Zp} and fGT := (U, V, α) → U r1+αr2V with (r1, r2)

$← Z2
p. Then the proposed protocol is a

(t′, ε)-eCK secure AKE in the sense of Definition 9 with t′ ≈ t and ε ≤ d2`2

2λ
+ εCRHF + 3 · (d2`2 ·

εBDDH + d` · (εDLIN + 6/2λ)) + επPRF.

We now verify that no polynomially bounded adversary can distinguish the real session key of a
fresh oracle from a random key. We fist introduce the notations might be used in the proof. When
describing the communication between oracle πs

Â
and party Ĉ(s)(s ∈ [`− 1]), we use the following

notations:

• (x
(s)
1 , x

(s)
2 , x(s)): the ephemeral private keys of oracle πs

Â
.

• (X
(s)
1 , X

(s)
2 , X

(s)
3 , X(s)) = (e(g1, h)x

(s)
1 , e(g2, h)x

(s)
2 , e(g, h)x

(s)
1 +x

(s)
2 , e(g, h)x

(s)
): the ephemeral

public keys of oracle πs
Â

.

• (C
(s)
1 , C

(s)
2 , C

(s)
3 , C

(s)
4 , C

(s)
5 , C

(s)
6 , C

(s)
7) = (e(g

c
(s)
1

1 gc
(s)
3 , h), e(g

c
(s)
2

2 gc
(s)
3 , h),

e(g
c
(s)
4

1 gc
(s)
6 , h), e(g

c
(s)
5

2 gc
(s)
6 , h), e(g1, h)c

(s)
7 , e(g2, h)c

(s)
8 , e(g, h)c

(s)
7 +c

(s)
8): the public keys of party

Ĉ(s).

• pfĈ(s) := (g
c
(s)
1

1 , g
c
(s)
2

2 , g
c
(s)
4

1 , g
c
(s)
5

2 , gc
(s)
1 , gc

(s)
2 , gc

(s)
3 , gc

(s)
4 , gc

(s)
5 , gc

(s)
6): the valid consistent proof of

pkĈ(s) .

• (W
(s)
1 ,W

(s)
2 ,W

(s)
3 ,W (s)) = (e(g1, h)w

(s)
1 , e(g2, h)w

(s)
2 , e(g, h)w

(s)
1 +w

(s)
2 , e(g, h)w

(s)
): the ephemeral

public keys received by oracle πs
Â

.

• sid
(s)

Â
= (Â, Ĉ(s), X

(s)
1 , X

(s)
2 , X

(s)
3 , X(s),W

(s)
1 ,W

(s)
2 ,W

(s)
3 ,W (s)).

• β(s)

Â
= CRHF(sid

(s)

Â
).

11

•
σ

(s)

Â
= (C

(s)
1 C

(s)
3

β
(s)

Â)x
(s)
1 +a7 ·(C(s)

2 C
(s)
4

β
(s)

Â)x
(s)
2 +a8 ·(W (s)

1 C
(s)
5)

a1+a4β
(s)

Â

·(W (s)
2 C

(s)
6)

a2+a5β
(s)

Â ·(W (s)
3 C

(s)
7)

a3+a6β
(s)

Â ·W (s)x
(s)

.

• k(s)

Â
= F (σ

(s)

Â
, β

(s)

Â
).

We describe the communication between oracle πt
B̂

and party D̂(t)(t ∈ [`−1]), using the following
notations:

• (y
(t)
1 , y

(t)
2 , y(t)): the ephemeral private keys of oracle πt

B̂
.

• (Y
(t)

1 , Y
(t)

2 , Y
(t)

3 , Y (t)) = (e(g1, h)y
(t)
1 , e(g2, h)y

(t)
2 , e(g, h)y

(t)
1 +y

(t)
2 , e(g, h)y

(t)
): the ephemeral pub-

lic keys of oracle πt
B̂

.

• (D
(t)
1 , D

(t)
2 , D

(t)
3 , D

(t)
4 , D

(t)
5 , D

(t)
6 , D

(t)
7) = (e(g

d
(t)
1

1 gd
(t)
3 , h),

e(g
d

(t)
2

2 gd
(t)
3 , h), e(g

d
(t)
4

1 gd
(t)
6 , h), e(g

d
(t)
5

2 gd
(t)
6 , h), e(g1, h)d

(t)
7 , e(g2, h)d

(t)
8 , e(g, h)b7+b8): the public keys

of party D̂(t).

• pfD̂(t) := (g
d

(t)
1

1 , g
d

(t)
2

2 , g
d

(t)
4

1 , g
d

(t)
5

2 , gd
(t)
1 , gd

(t)
2 , gd

(t)
3 , gd

(t)
4 , gd

(t)
5 , gd

(t)
6): the valid consistent proof of

public key pkD̂(t) .

• (N
(t)
1 , N

(t)
2 , N

(t)
3 , N (t)) = (e(g1, h)n

(t)
1 , e(g2, h)n

(t)
2 , e(g, h)n

(t)
1 +n

(t)
2 , e(g, h)n

(t)
): the ephemeral pub-

lic keys received by oracle πt
B̂

.

• sid
(s)

Â
= (Â, Ĉ(s), Y

(t)
1 , Y

(t)
2 , Y

(t)
3 , Y (t), N

(t)
1 , N

(t)
2 , N

(t)
3 , N (t)).

• β(s)

Â
= CRHF(sid

(s)

Â
).

•
σ

(s)

Â
= (D

(t)
1 D

(t)
3

β
(s)

Â)y
(t)
1 +a7 ·(D(t)

2 D
(t)
4

β
(s)

Â)y
(t)
2 +a8 ·(N (t)

1 D
(t)
5)

a1+a4β
(s)

Â

·(N (t)
2 D

(t)
6)

a2+a5β
(s)

Â ·(N (t)
3 D

(t)
7)

a3+a6β
(s)

Â ·N (t)y
(t)

.

• k(t)

B̂
= F (σ

(t)

B̂
, β

(t)

B̂
).

We examine the probability of adversary in breaking the indistinguishability of session key of
the test oracle, according to the following complementary events and all freshness related cases as
Definition 8:

• Event 1: There is a oracle πt
∗

B̂
held by B̂, such that πs

∗

Â
and πt

∗

B̂
have matching conversations,

and we have the following disjoint cases:

– Case 1 (C1): The adversary doesn’t issue Corrupt(Â) and Corrupt(B̂).

– Case 2 (C2): The adversary doesn’t issue StateReveal(πs
∗

Â
) and StateReveal(πt

∗

B̂
).

– Case 3 (C3): The adversary doesn’t issue StateReveal(πs
∗

Â
) and Corrupt(B̂).

– Case 4 (C4): The adversary doesn’t issue Corrupt(Â) and StateReveal(πt
∗

B̂
).

12

• Event 2: There is no oracle πt
∗

B̂
held by B̂, such that πs

∗

Â
and πt

∗

B̂
have matching conversations,

and we have the following disjoint events:

– Case 5 (C5): The adversary doesn’t issue Corrupt(Â) and Corrupt(B̂).

– Case 6 (C6): The adversary doesn’t issue StateReveal(πs
∗

Â
) and Corrupt(B̂).

In order to complete the proof of Theorem 1, we must provide the security proofs for above six
cases. However, due to the Propositions 1 and 2 from [21], the security proofs for Cases C1, C3, C4
can be reduced to the security proof for Case C5. Therefore, we prove the advantage of the adver-
sary is negligible in security parameter κ, for cases C2, C5 and C6 respectively.

Let Sδ be the event that the adversary wins the security experiment under the Game δ and
freshness cases in the set {C2, C5, C6}. Let Advδ := Pr[Sδ] − 1/2 denote the advantage of A in
Game δ.

Game 0. This is the original eCK game with adversary A under freshness cases C2, C5 and C6.

Meanwhile, the challenger chooses an uniform random value r
$← Zp, and sets h := gr as public

parameter. Thus we have that

Pr[S0] = 1/2 + ε = Adv0 + 1/2.

Game 1. In this game, the challenger proceeds exactly like previous game, except that we add an
abort rule. The challenger raises event aborteph and aborts, if during the simulation an ephemeral
key X or Y replied by an oracle πsi but it has been sample by another oracle πtj or sent by adversary
before. Since there are d` such ephemeral keys would be sampled uniform randomly from Zp. Thus,

the event aborteph occurs with probability Pr[aborteph] ≤ d2`2

2λ
. We therefore have that

|Adv0 − Adv1| ≤
d2`2

2λ
.

Note that the ephemeral key chosen by each oracle is unique in this game, so that the adversary
can’t replay any ephemeral key to result in two oracles generating the same session key but without
matching sessions.

Game 2. This game proceeds as the previous game, except that the simulator aborts if the

adversary completes two oracles πs
Â

and πt
B̂

such that CRHF(sid
(s)

Â
) = CRHF(sid

(t)

B̂
) but those two

oracles have no matching sessions. Hence we have for any sid
(s)

Â
6= sid

(t)

B̂
(s, t ∈ [d]2). Then, if

the collision event does not occur, the simulation is equivalent to Game 1. When the event does
occur, we can easily construct algorithm that breaks the collision-resistant hash function CRHF by

outputting (sid
(s)

Â
, sid

(t)

B̂
). Hence we have that

|Adv1 − Adv2| ≤ εCRHF.

13

Game 3. In this game proceeds as the previous one, but we modify the game according to guessed

freshness cases as: (i) case C2: replace the key k
(s∗)

Â
of test oracle πs

∗

Â
and its partner oracle πt

∗

B̂

with random value k̃
(s∗)

Â
; (ii) case C5: replace the DH tuple (g, g1, g2, A5, A6, A7) with a random

tuple; and (iii) case C6: replace the DH tuple (g, g1, g2, X
(s)
1 , X

(s)
2 , X

(s)
3) with a random tuple.

First note that the probability that the chosen tuple for instance (g, g1, g2, A5, A6, A7), such that
g1 6= g2 6= g 6= 1G and logg1

A5 + logg2
A6 6= logg A7, is at least 1− 6/2λ. Since the elements in DH

tuple (g, g1, g2, A5, A6, A7) are uniformly selected at random. If there exists an adversary A can
distinguish between the Game 3 from Game 2 then we can use it to construct a distinguisher D
to solve either the BDDH problem in case C2 or DLIN in cases C5, C6. Basically, D first guesses:
(i) the fresh cases in set {C2, C5, C6} with probability at least 1/3. (ii) the test oracle and its
partner oracle for the case C2 with probability at least1/(d2`2); (iii) the test oracle for the cases C5
and C6 with probability at least 1/(d`). Since the challenger activates d oracles for each ` parties.
Meanwhile, if D guesses incorrectly in either case, then it aborts the game. Next D simulates game
for A as the simulator in Game 2 except for the following modifications:

1. Case C2. Given a BDDH challenge instance (ḡ, u, v, w,Γ), B does modifications:

• set g = ḡ, h = w and X(s∗) = e(u, h) and Y (s∗) = e(v, h);

• set g1 = gµ1 and g2 = gµ2 , where µ1, µ2
$← Z2

p ;

• compute the session key of test oracle as:

– generate secret exponent γ = µ1(x
(s∗)
1 +a7)(b1+b4β

(s∗)

Â
)+µ2(x

(s∗)
2 +a8)(b2+b5β

(s∗)

Â
)+

(x
(s∗)
1 + x

(s∗)
2 + a7 + a8)(b3 + b6β

(s∗)

Â
) + µ1(y

(s∗)
1 + b7)(a1 + a4β

(s∗)

Â
) + µ2(y

(s∗)
2 +

b8)(a2 + b5β
(s∗)

Â
) + ((y

(s∗)
1 + y

(s∗)
2)β

(s∗)

Â
+ b7 + b8)(a3 + a6β

(s∗)

Â
), such that e(g, h)γ =

(B1B
β

(s∗)

Â
3)x

(s∗)
1 +a7 ·(B2B

β
(s∗)

Â
4)x

(s∗)
2 +a8

·(Y (s∗)
1 B5)

a1+a4β
(s∗)

Â ·(Y (s∗)
2 B6)

a2+a5β
(s∗)

Â ·(Y (s∗)
3 B7)

a3+a6β
(s∗)

Â .

– compute secret key material σ
(s∗)

Â
= e(g, h)γ ·Γ.

– compute k(s∗) = F (σ(s∗), β
(s∗)

Â
).

2. Case C5. Given a DLIN challenge instance (u, u1, u2, v, w,Γ), B does modifications:

• set g = u, g1 = u1 and g2 = u2, and simulates all public/private keys as previous game
except for the long-term public keys of Â: A5, A6 and A7;

• set A5 = e(v, h), A6 = e(w, h) and A7 = e(Γ, h), and the values (v, w,Γ) would be
included in the proof pfÂ of Â′s public key.

• change the computation of σ
(s)

Â
for any oracle πs

Â
(including the test oracle) to

(e(gx
(s)
1 v, gc

(s)
1 g

c
(s)
4 β

(s)

Â · e(gx
(s)
2 w, gc

(s)
3 g

c
(s)
5 β

(s)

Â) · e(gx
(s)
1 +x

(s)
2 Γ, gc

(s)
3 g

c
(s)
6 β

(s)

Â))r

·(W (s)
1 C

(s)
5)

a1+a4β
(s)

Â · (W (s)
2 C

(s)
6)

a2+a5β
(s)

Â

·(W (s)
3 C

(s)
7)

a3+a6β
(s)

Â · (W (s))x
(s)
,

where the values (gc
(s)
1 , gc

(s)
2 , gc

(s)
3 , gc

(s)
4 , gc

(s)
5 , gc

(s)
6) are included in pfĈ(s) .

14

3. Case C6. Given a DLIN challenge instance (u, u1, u2, v, w, c), B does modifications:

• set g = u, g1 = u1 and g2 = u2, and simulates all public/private keys as previous game
except for the long-term public keys of Â: A5, A6 and A7;

• set X
(s∗)
1 = e(v, h), X

(s∗)
2 = e(w, h) and X

(s∗)
3 = e(c, h).

• change the computation of σ
(s∗)

Â
for test oracle π

(s∗)

Â
to

(e(vA5, g
c
(s∗)
1 g

c
(s∗)
4 β

(s∗)

Â · e(wA6, g
c
(s∗)
3 g

c
(s∗)
5 β

(s∗)

Â) · e(ΓA7, g
c
(s∗)
3 g

c
(s∗)
6 β

(s∗)

Â))r

·(C(s∗)
1 C

(s∗)
3

β
(s∗)

Â)a7 · (C(s∗)
2 C

(s∗)
4

β
(s∗)

Â)a8 · (W (s)
1 C

(s∗)
5)

a1+a4β
(s∗)

Â

·(W (s∗)
2 C

(s∗)
6)

a2+a5β
(s∗)

Â · (W (s∗)
3 C

(s∗)
7)

a3+a6β
(s∗)

Â · (W (s∗))x
(s∗)

.

Note that those change are purely conceptual. If Γ is true value in each case, then the simulation is
equivalent to Game 2, otherwise the simulation is equivalent to Game 3. Now when the algorithm
A which is able to distinguish Game 3 from Game 2 outputs 1 (meaning this game proceeds as this
game), B outputs 1 as answer to either the DLIN challenge instance or BDDH challenge instance
(meaning Γ is chosen at random), otherwise B outputs 0. Therefore, we obtain that

|Adv2 − Adv3| ≤ 3 · (d2`2 · εBDDH + d` · (εDLIN + 6/2λ)).

Game 4. We modify Game 3 to Game 4 by changing πPRF F to a truly random function RF(·) for
test oracle. If the guessed case is C2 then we make use of the fact that the seed σ(s∗) of F is chosen
uniformly at random. If the adversary A distinguishes Game 4 from Game 3 with non-negligible
probability, we can use it to construct algorithm B that breaks the security of πPRF F , since such
seed is chosen to be independent to other seeds.

As for case C5 and C6, we first show that key secret σ
(s∗)

Â
and each the key secret σ

(t)

B̂
of

oracle πt
B̂

are pairwise independent in this game. We take the simulation for case C5 as example

(the simulation for case C6 is quite similar), the tuple (B1, B2, B3, B4, σ
(s∗)

Â
, σ

(t)

B̂
) is denoted by the

following equations:
loge(g,h)B1 ≡ µ1b1 + b3

loge(g,h)B2 ≡ µ2b2 + b3

loge(g,h)B3 ≡ µ1b4 + b6

loge(g,h)B4 ≡ µ2b5 + b6

loge(g,h) σ
(s∗)

Â
= µ1(x

(s∗)
1 + a7)(b1 + b4β

(s∗)

Â
) + µ2(x

(s∗)
2 + a8)(b2 + b5β

(s∗)

Â
)+

(x
(s∗)
1 + x

(s∗)
2 + a0)(b3 + b6β

(s∗)

Â
) + δ(s∗)

loge(g,h) σ
(t)

B̂
= µ1(n

(t)
1 + d

(t)
7)(b1 + b4β

(t)

B̂
) + µ2(n

(t)
2 + d

(t)
8)(b2 + b5β

(t)

B̂
)+

(n
(t)
1 + n

(t)
2 + d

(t)
0)(b3 + b6β

(t)

B̂
) + δ

(t)

B̂

15

where g1 = gµ1 , g2 = gµ2 , a0 = a7 + a8 + ∆a (for ∆a 6= 0), d
(t)
0 = d

(t)
7 + d

(t)
8 + ∆

(t)
d ,

gδ
(s∗)

= (X
(s∗)
1 A5)

b1+b4β
(s∗)

Â ·(X(s∗)
2 A6)

b2+b5β
(s∗)

Â ·(X(s∗)
3 A7)

b3+b6β
(s∗)

Â ·Y (s∗)x
(s∗)

, and

g
δ
(t)

B̂ = (N
(t)
1 D

(t)
5)

b1+b4β
(t)

B̂ ·(N (t)
2 D

(t)
6)

b2+b5β
(t)

B̂ ·(N (t)
3 D

(t)
7)

b3+b6β
(t)

B̂ ·N (t)y
(t)

.

Let z
(s∗)
1 = x

(s∗)
1 +a7, z

(s∗)
2 = x

(s∗)
2 +a8, z

(s∗)
3 = x

(s∗)
1 +x

(s∗)
2 +a0, z

(t)
1 = n

(t)
1 +d

(t)
7 , z

(t)
2 = n

(t)
2 +d

(t)
8 ,

and z
(t)
3 = n

(t)
1 + n

(t)
2 + d

(t)
0 . We now can obtain a 6 × 6 matrix denoted by M from the above

equations as following:
loge(g,h) B1

loge(g,h) B2

loge(g,h) B3

loge(g,h) B4

loge(g,h) σ
(s∗)

Â
− δ(s∗)

loge(g,h) σ
(t)

B̂
− δ(t)

B̂

 =


µ1 0 1 0 0 0
0 µ2 1 0 0 0
0 0 0 µ1 0 1
0 0 0 0 µ2 1

µ1z
(s∗)
1 µ2z

(s∗)
2 z

(s∗)
3 µ1β

(s∗)

Â
z

(s∗)
1 µ2β

(s∗)

Â
z

(s∗)
2 β

(s∗)

Â
z

(s∗)
3

µ1z
(t)
1 µ2z

(t)
2 z

(t)
3 µ1β

(t)

B̂
z

(t)
1 µ2β

(t)

B̂
z

(t)
2 β

(t)

B̂
z

(t)
3




b1
b2
b3
b4
b5
b6


One the one hand, if (g, g1, g2, g3, g

z
(t)
1 , gz

(t)
2 , gz

(t)
3) is a linear tuple, then corresponding σ

(t)

B̂
is inde-

pendent to σ
(s∗)

Â
, since

loge(g,h) σ
(t)

B̂
− δ(t)

B̂
= µ1z

(t)
1 (b1 + b4β

(t)

B̂
) + µ2z

(t)
2 (b2 + b5β

(t)

B̂
) + z

(t)
3 (b3 + b6β

(t)

B̂
)

is linearly dependent on loge(g,h)B1, loge(g,h)B2, loge(g,h)B3 and loge(g,h)B4, while σ
(s∗)

Â
is linearly

independent to loge(g,h)B1, loge(g,h)B2, loge(g,h)B3 and loge(g,h)B4 with overwhelming probability

(at least 1− 6/2λ). On the other hand, consider that

(g, g1, g2, g3, g
z

(t)
1 , gz

(t)
2 , gz

(t)
3) is not a linear tuple. We observe that

DetM := µ2
1µ

2
2(β

(s∗)

Â
− β(t)

B̂
)(z

(s∗)
3 − z(s∗)

1 − z(s∗)
2)(z

(t)
3 − z

(t)
1 − z

(t)
2) 6= 0,

since β
(s∗)

Â
− β(t) 6= 0 (by the rejection rule in Game 2), (z

(s∗)
3 − z

(s∗)
1 − z

(s∗)
2) = ∆a 6= 0 and

z
(t)
3 − z

(t)
1 − z

(t)
2 = ∆

(t)
z = ∆

(t)
n β

(t)

B̂
+ ∆

(t)
d 6= 0. Hence, the σ

(s∗)

Â
is independent to σ

(t)

B̂
. Now if there

exist adversary A that is able to distinguish this game from previous game with non-negligible
probability (i.e. b = b′). Then we can use it to construct an efficient algorithm B to break the
security of πPRF F with index {IGT , fGT } where IGT := {(U, V, α)|(U, V, α) ∈ G2

T × Zp} and

fGT := (U, V, α) → U r1+αr2V with (r1, r2)
$← Z2

p. Algorithm B simulates the game for A as the

challenger in previous game. In particularly, B uniformly chooses (µ1, µ2)
$← Z2

p at random, and
sets

η1 := µ1b1 + b3, η2 := µ2b2 + b3,

η3 := µ1b4 + b6, η4 := µ2b5 + b6,

U
(s∗)

Â
:= A7/(A

µ−1
1

5 A
µ−1

2
6), U

(t)

B̂
:= N

(t)
3 D

(t)
7 /((N

(t)
1 A5)µ

−1
1 (N

(t)
2 A6)µ

−1
2),

V
(s∗)

Â
= (B1B

β
(s∗)

Â
3)x

(s∗)
1 +a7 ·(B2B

β
(s∗)

Â
4)x

(s∗)
2 +a8 ·(W (s∗)

1

β
(s∗)

Â B5)
a1+a4β

(s∗)

Â

·(W (s∗)
2 B6)

a2+a5β
(s∗)

Â ·(W (s∗)
3 B7)

a3+a6β
(s∗)

Â ·e(gx
(s∗)
1 ga7 , h)

η1+β
(s∗)

Â
η3

·e(gx
(s∗)
2 ga8 , h)

η2+β
(s∗)

Â
η4 ·W (s∗)x

(s∗)

,

16

V (t) := (D
(t)
1 D

(t)
3

β
(t)

B̂)y1+b7 ·(D(t)
2 D

(t)
4

β
(t)

B̂)y2+b8 ·(N (t)
1 e(ga7 , h))

η1+β
(t)

B̂
η3 ·

(N
(t)
2 e(ga7 , h))

η2+β
(t)

B̂
η4 ·N (t)y

(t)

,

and (r1, r2) := (b3, b6). Thereafter, B simulates this game for adversary A as previous game

except for the computations of k(s∗) and k(t)(t ∈ [d]), where B gives indices (U (s∗), V (s∗), β
(s∗)

Â
) and

(U (t), V (t), β
(t)

B̂
)(t ∈ [d]) to the oracle (F, IGT) in the experiment of the πPRF as Definition 3 and

sets the values returned from the oracle as session keys k(s∗) and k(t)(t ∈ [d]) respectively. When
A output 1 (meaning the simulation is as the same as the Game 2), then B outputs 1 (meaning
the oracle is (F, IGT)); otherwise B outputs 0. Since if the oracle is (F, IGT), the simulated game is
equivalent to Game 3, otherwise the simulated game is equivalent to Game 4. We therefore obtain
that

|Adv3 − Adv4| ≤ επPRF.

Note that, in this game the bit b is never used in test query, so that we have that Adv4 = 0. Collect
the advantages from Game 0 to Game 4, we have that

ε ≤ d2`2

2λ
+ εCRHF + 3 · (d2`2 · εBDDH + d` · (εDLIN + 6/2λ)) + επPRF.

6 Conclusions

We have presented an efficient eCK-secure key exchange protocols without random oracles (and
without NAXOS trick), that the security against chosen public key attacks without KOSK assump-
tion). An open question here is how to construct an eCK secure protocol without πPRF, we leave
out this for future work.

References

[1] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell,
editor, CRYPTO, volume 740 of Lecture Notes in Computer Science, pages 390–420. Springer,
1992.

[2] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, CRYPTO, volume 773 of Lecture Notes in Computer Science, pages 232–249.
Springer, 1993.

[3] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on Computer and
Communications Security, pages 62–73. ACM Press, November 1993.

[4] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols and their
security analysis. In IMA Int. Conf., pages 30–45, 1997.

[5] Colin Boyd, Yvonne Cliff, Juan Gonzalez Nieto, and Kenneth G. Paterson. Efficient one-round
key exchange in the standard model. In Yi Mu, Willy Susilo, and Jennifer Seberry, editors,
ACISP 08: 13th Australasian Conference on Information Security and Privacy, volume 5107
of Lecture Notes in Computer Science, pages 69–83. Springer, July 2008.

17

[6] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic group Diffie-Hellman
key exchange under standard assumptions. In Lars R. Knudsen, editor, Advances in Cryptology
– EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 321–336.
Springer, April / May 2002.

[7] T. Kause C. Adams, S. Farrell and T. Monen. Internet X.509 Public Key Infrastructure
Certificate Management Protocol (CMP). Internet Engineering Task Force RFC 4210,, 2005.

[8] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited
(preliminary version). In 30th Annual ACM Symposium on Theory of Computing, pages 209–
218. ACM Press, May 1998.

[9] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of Lecture Notes in
Computer Science, pages 453–474. Springer, 2001.

[10] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based key-exchange
protocol. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of
Lecture Notes in Computer Science, pages 143–161. Springer, August 2002. http://eprint.

iacr.org/2002/120/.

[11] Ran Canetti and Hugo Krawczyk. Security analysis of ike’s signature-based key-exchange
protocol. In Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science,
pages 143–161. Springer, 2002.

[12] Cas J. F. Cremers. Session-state reveal is stronger than ephemeral key reveal: Attacking
the NAXOS authenticated key exchange protocol. In Michel Abdalla, David Pointcheval,
Pierre-Alain Fouque, and Damien Vergnaud, editors, ACNS 09: 7th International Conference
on Applied Cryptography and Network Security, volume 5536 of Lecture Notes in Computer
Science, pages 20–33. Springer, June 2009.

[13] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Strongly secure
authenticated key exchange from factoring, codes, and lattices. In Marc Fischlin, Johannes
Buchmann, and Mark Manulis, editors, PKC 2012: 15th International Workshop on Theory
and Practice in Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science,
pages 467–484. Springer, May 2012.

[14] Ik Rae Jeong, Jonathan Katz, and Dong Hoon Lee. One-round protocols for two-party authen-
ticated key exchange. In Markus Jakobsson, Moti Yung, and Jianying Zhou, editors, ACNS 04:
2nd International Conference on Applied Cryptography and Network Security, volume 3089 of
Lecture Notes in Computer Science, pages 220–232. Springer, June 2004.

[15] Ik Rae Jeong, Jeong Ok Kwon, and Dong Hoon Lee. A Diffie-Hellman key exchange protocol
without random oracles. In David Pointcheval, Yi Mu, and Kefei Chen, editors, CANS 06: 5th
International Conference on Cryptology and Network Security, volume 4301 of Lecture Notes
in Computer Science, pages 37–54. Springer, December 2006.

[16] Hugo Krawczyk. HMQV: A high-performance secure diffie-hellman protocol. In Victor Shoup,
editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer
Science, pages 546–566. Springer, August 2005.

18

http://eprint.iacr.org/2002/120/
http://eprint.iacr.org/2002/120/

[17] Hugo Krawczyk. Hmqv: A high-performance secure diffie-hellman protocol. In Victor Shoup,
editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 546–566. Springer,
2005.

[18] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated
key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec 2007: 1st Interna-
tional Conference on Provable Security, volume 4784 of Lecture Notes in Computer Science,
pages 1–16. Springer, November 2007.

[19] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated
key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec, volume 4784 of
Lecture Notes in Computer Science, pages 1–16. Springer, 2007.

[20] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential ag-
gregate signatures and multisignatures without random oracles. In Serge Vaudenay, editor,
Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, pages 465–485. Springer, May / June 2006.

[21] Daisuke Moriyama and Tatsuaki Okamoto. An eck-secure authenticated key exchange protocol
without random oracles. TIIS, 5(3):607–625, 2011.

[22] Daisuke Moriyama and Tatsuaki Okamoto. Leakage resilient eCK-secure key exchange pro-
tocol without random oracles (short paper). In Bruce S. N. Cheung, Lucas Chi Kwong Hui,
Ravi S. Sandhu, and Duncan S. Wong, editors, ASIACCS 11: 6th Conference on Computer
and Communications Security, pages 441–447. ACM Press, October 2011.

[23] Tatsuaki Okamoto. Authenticated key exchange and key encapsulation in the standard model.
In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of Lecture Notes in Computer Science,
pages 474–484. Springer, 2007.

[24] Tatsuaki Okamoto. Authenticated key exchange and key encapsulation in the standard model
(invited talk). In Kaoru Kurosawa, editor, Advances in Cryptology – ASIACRYPT 2007,
volume 4833 of Lecture Notes in Computer Science, pages 474–484. Springer, December 2007.

[25] Augustin P. Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard. A new security model
for authenticated key agreement. In Juan A. Garay and Roberto De Prisco, editors, SCN 10:
7th International Conference on Security in Communication Networks, volume 6280 of Lecture
Notes in Computer Science, pages 219–234. Springer, September 2010.

[26] Sven Schaege Tibor Jager, Florian Kohlar and Joerg Schwenk. A standard-model security
analysis of tls-dhe. Cryptology ePrint Archive, Report 2011/219, 2011. http://eprint.

iacr.org/.

[27] Zheng Yang and Jörg Schwenk. Strongly authenticated key exchange protocol from bilinear
groups without random oracles (short paper). In Tsuyoshi Takagi, Guilin Wang, Zhiguang
Qin, Shaoquan Jiang, and Yong Yu, editors, ProvSec 2012: 6th International Conference on
Provable Security, volume 7496 of Lecture Notes in Computer Science, pages 264–275. Springer,
September 2012.

19

http://eprint.iacr.org/
http://eprint.iacr.org/

	Introduction
	Preliminaries
	Collision-Resistant Hash Functions
	Pseudo-Random Functions
	Pseudo-Random Functions with Pairwise Independent Random Sources (PRF)
	Bilinear Groups
	The Decision Linear Diffie-Hellman Assumption
	The Bilinear Decisional Diffie-Hellman Assumption

	Security Model
	A One-round Two Party AKE Protocol from PRF
	Protocol Description
	Security Analysis

	Conclusions

