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Abstract. We present first a generalized LWE problem, which is essen-
tially to extend the original LWE to the case of matrices. Then we use
this new version of LWE problem, which we call matrix LWE problem to
build new cryptographic schemes, which include a new key distribution
scheme, a new key exchanges scheme and a new simple identity-based
encryption scheme.

1 Introduction

The Learning with Errors (LWE) problem, introduced by Regev in 2005 [4], and
its extension, Ring Learning with Errors (RLWE) problem have attracted a lot of
attentions in theory and applications due to its usage in cryptographic construc-
tions with some good provable secure properties. The main claim is that they
are as hard as certain worst-case lattice problems and hence the related crypto-
graphic constructions. Recently they have been used to construct homomorphic
encryption schemes [9].

LWE problem can be described as follows.
First, we have a parameter n, a prime modulus q , and an ”error” probability

distribution κ on the finite field Fq with q elements.

Definition 1. Let ΠS,κ on Fq be the probability distribution obtained by select-
ing an element A in Fn

q randomly and uniformly, choosing e ∈ Fq according to
κ, and outputting (A,< A, S > +e), where + is the addition that is performed
in Fq.

An algorithm that solves LWE with modulus q and error distribution κ, if,
for any S in Fn

q , with an arbitrary number of independent samples from ΠS,κ,
it outputs S (with high probability).

To achieve the provable security of the related cryptographic applications of
the LWE problem, once choose q to be specific polynomial functions of n, namely
q is replaced by a polynomial functions of n, which we will denote as q(n) and κ
to be certain discrete version of normal distribution with the standard deviation
σ = αq ≥

√
n.

In the original encryption scheme based on the LWE problem, one can only
encrypt one bit a time and therefore the system is rather inefficient and it has a
large key size. To further improve the efficiency of the cryptosystems based on
the LWE problem, a new problem, which is a LWE problem based on a quotient



ring of the polynomial ring Fq[x] [6], was proposed. This is called the ring LWE
(RLWE) problem. The RLWE problem is further used in homomorphic encryp-
tion schemes. In the cryptosystems based the RLWE problem, their security is
reduced to hard problems on a subclass of ideal lattices instead of general lat-
tices. One then may ask, is it possible to reformulate the problem such that the
security is still based on general lattices instead of ideal lattices but with still
good efficiency. This is the original motivation of this work.

1.1 Our contribution

We first reformulate a matrix version of LWE problem and build a similar en-
cryption scheme, which is much more efficient in terms of computation per bit
encrypted.

Then we use this new version of LWE problem, which we call matrix LWE
problem to build new cryptographic schemes, which include a new key distri-
bution scheme, a new key exchanges scheme and a new simple identity-based
encryption scheme.

1.2 Matrix version of LWE and an new encryption scheme

Again, we assume that Fq is represented by integers between −(q − 1)/2 and
(q − 1)/2.

We propose a new matrix version of LWE, which is based on the LWE. We
propose to replace A, a vector in the original LWE problem, with a matrix A of
size m×n, and S also with a matrix of size n× l, such that they are compatible
to do matrix multiplication A×S (or S×A). We also replace e with a compatible
matrix of size m× l. We will work on the same finite field with q elements.

To simplify the exposition, we will in this paper only present in details the
case where A and S are both square matrices of the same size n × n. But they
do not have to be. A and S are randomly chosen to follow uniform distribution.

Definition 2. Let ΠS,κ over Fq be the probability distribution obtained by se-
lecting an n× n matrix A, whose each entry are selected in Fn

q randomly, inde-
pendently, and uniformly, choosing e as a n× n matrix over Fq according to an
error distribution κ, and outputting (A,A×S + e), where + is the addition that
is performed in Fq.

An algorithm that solves matrix LWE with modulus q and error distribution κ,
if, for any S in Fn×n

q , with one (or arbitrary number of) independent sample(s)
from ΠS,κ, it outputs S (with high probability).

Remark 3. RLWE can be viewed as a special case of MLWE, since there is
nutural embedding of the ring Fq[x]/xn + 1 into the ring of n× n matrices.

We also know that if one can solve RLWE with small secret namely the
elements s small, then one can solve it with uniform secret [7]. We will then use
the MLWE with a small secret to build our cryptosystem.



To build an encryption scheme, we choose q ≈ n3, we choose again κ to be
a distribution such that each component are independent, and each component
follow the same discrete distribution as in the case of LWE, namely a discrete
normal distribution over Fq center around 0 with standard deviation approxi-
mately

√
n.

With such a setting, we can build an encryption scheme as in the case of
RLWE.

– We select an n × n matrix S, whose each entry is selected in the elements
of {−t, ..., 0, ..., t} of Fn

q randomly, independently, and uniformly, where t is
small.

– In the setting of MLWE, we will output A and

E = A× S + e,

which are the public key of our encryption scheme.
– A message m in represented as nxn matrix with binary entries of 0, 1.
– a sender chooses a n × n matrix B like S, namely whose each entry is se-

lected in the elements of {−t′, ..., 0, ..., t′} of Fn
q randomly, independently,

and uniformly with t′ small , and the message is encrypted as

(B ×A + e1, B × E + e2 + m(q/2)),

where e1 and e2 are error matrices following the same distribution as e.
– To decrypt, one computes

(BE + e2 + m(q/2)− (BA + e1)S),

here everything is done in Fq. Then we divide them by q/2 performed as a
real number division and round them to 0 or 1, which gives us the plaintext
m.

The reason we could decrypt is that:

BE + e2 + m(q/2)−BAS = B × (A× S + e) + e2 + m(q/2)− (BA + e1)× S

= B × e + e2 +−e1 × S + m(q/2)

B × e + e2 + −e1 × S can be viewed as a error terms, which is determined
by the distribution of the following randomly variable:

n∑
1

a1xi + x +
n∑
1

biyi,

where ai has a uniform distribution from −t′,−t′ +1, ..., 0, 1, ..., t′., bi has a uni-
form distribution from −t,−t+1, ..., 0, 1, ..., t, and xi, x and yi has a distribution
over with standard deviation

√
n. Therefore, this random variable is much more

concentrated around zero that the normal distribution with standard deviation



√
t′2n2 + n + t2n2. If t′, t << n, the decryption process will surely return the

right answer.
On key point of this new method is that on average, we can do the en-

cryption much faster in terms of per bit speed because we can use fast matrix
multiplication to speed up the computation process.

We can also use the same idea in Ring-LWE (RLWE) [6] to do encryption,
where we have

E = A× S + te,

t is small positive integer and the entries of S is also small.
We encrypt a message as

(BA + te1, BE + te2 + m).

Then we decrypt by computing

(BE + te2 + m−B(AS + te1))(mod t).

This works because

BE + te2 + m− (BA + t1e1)S = B × (A× S + te) + te2 + m− (BA + te1)× S

= tB × e + te2 +−te1 × S + m

Remark 4. For the MLWE problem, we surely need to choose the distribution
more carefully when we need to obtain the provable security of the scheme.

1.3 MLWE for scalable key distribution

Over a large network, key distribution among the legitimate users is a critical
problem. Often, in the key distribution protocols, a difficult problem is how to
construct a protocol, which is truly efficient and scalable. For example, in the
case of the constructions of [1], large number of user can collaborate to drive
the master key and break the system. Here we will build a truly scalable key
distribution system with a trusted central server.

We work again over the finite field Fq, whose elements are represented by
−(q − 1)/2, ..., 0, ..., (q − 1)/2. We choose q ≈ n3, we choose again κ to be an
error distribution for a random such that each component are independent, and
each component follow the same discrete distribution as in the case of LWE,
namely a discrete normal distribution over Fq center around 0 with standard
deviation approximately

√
n.

We have a central server, which will select a symmetric randomly chosen
matrix S as a master key, whose entries are in Fq.

For each user, its ID is given as a symmetric matrix Ai and the index i with
small entries, namely entries are chosen from the elements −t′, ..., 0, ..., t′, where
t′ is small.

For each user, the central server distribute securely a secret:

Ei = AiS + tei,



where ei is a matrix (not symmetric) selected following the error distribution.
To obtain the unique key shared between the i − th user and the j-th user,

where we assume that i < j, the j − th user computes

Ei ×Aj = AiSAj + teiAj ,

and the i− th user computes

(Ej ×Ai)t = (AjSAi)t + t(ejAi)6.

Because Ai, Aj and S symmetric, we have that

AiSAj = (AjSAi)t,

the i− th user derives
AiSAj + tet

jAi

But eiAj and ejAi are both small since t, t′ ei, ej , Ai and Aj are all small.
This allows us to get a common key for i and j by certain rounding techniques
and therefore build a key distribution algorithm.

Here, we will propose the following simple rounding method.
Each user will collect all the entries that are in the range of (−(q−1)/4, (q−

1)/4). Each will publish the list of the positions of the entries that are selected.
Then each will choose the intersection of the two sets to be the set selected
and will compute the residue of the nonzero entries modular t. That will be the
shared key between these two users.

Here, we can also choose ei, ej , Ai and Aj be vectors and using transposes.
In this case, we will each time get one common number at most.

Also we can build a version with none symmetric matrices, in this case, the
central serve needs to compute more matrices like AiS + e and At

iS + e. Then it
is possible, we can do the same kind of key distribution.

On the other hand the RLWE problem can be viewed as a specialized com-
mutative version of matrix-based LWE since an element in the ring can be view
as a homomorphism on the ring. We can use RLWE to build a key distribution
in the same way.

why scalable
why secure

1.4 A new key exchange protocol

The idea above can be easily adapted into a key-exchange protocol like the
Diffie-Hellmann key exchange protocol.

Two parties Alice and Bob wants to do a key exchange over an open channel.
Alice and Bob will first select a random and symmetric n× n matrix S over

Fq, where q ≈ n3 and the error distribution κ to be a distribution such that
each component are independent, and each component follow the same discrete
distribution as in the case of LWE, namely a discrete normal distribution over
Fq center around 0 with standard deviation approximately

√
n.



Then each party chooses its own secret Ei a n × n symmetric matrix with
randomly chosen entry of small entries namely entries are chosen from the ele-
ments −t′, ..., 0, ..., t′, where t′ is small, and ei following the error distribution κ,
for i=A,B.

Then each pary computes

Mi = EiS + ei.

Then both parties exchange Mi, but certainly keep Ei and ei secret.
Alice computes:

KA = MBEA = EBSEA + eBEA.

Then Bob computes:

KB = EB ×M t
A = EBSEA + EBe1.

Since ei and Ei are small, KA and KA are close, we can derive from them a
shared secret to be the exchanged key as in the case of above.

Security analysis

1.5 Identity-based encryption

There are several versions of identity-based encryption schemes. But they all
look rather complicated. What we realize is that if we select the matrix to be
commutative, then we can easily build a identity-based encryption scheme. In
this case, we will realize that the structure will be very similar to the case of ideal
lattice. Therefore,in stead, we will use RLWE to build a simple Identity-based
encryption scheme.

We will need first choose parameter properly n, q and κ properly for the
RLWE problem in order to build an simple and efficient identity-based encryp-
tion scheme easily using similar idea as above.

This constructions is also based on the encryption scheme of RLWE [6],
namely, we assume that we have a ring with a porperly defined learning with
error problem, where A and

E = A× S + e,

, e is the error element following the distribution of κ, are given and the problem
is to find the secret S.

We also know that can build a public key encryption systems, where A (small)
and E serve as the public key, and the secret S serves as the private key.

To build a identity-based encryption scheme, the central server will first
select a secret S in R as the master key controlled by a central server, where S
is randomly chosen following uniform distribution.

The central server will also select a random M in R following uniform dis-
tribution and make sure that M has an inverse. if not, we will try again till we
find one. Then the central serve will computer

M1 = MS + e,



where e follows the error distribution κ.
Then the central server will publicize M and M1 as the master public key.
For each user, the central server will assign an ID as Ii, where Ii should be

in the form of a randomly chosen small elements in S.
Each member is given a secret key:

Si = SIi + M−1ei,

where ei follows the error distribution κ.
Anyone can use the ID namely Ii and the master public key to build the

public key
Ai = MIi

and
Bi = IiM1 = IiMS + Iie = MSIi + Iie,

as the public key to encrypt a message.
Since Ii and e is small, we have Iie is small.
Now we have that

SiM −Bi = SiM −Bi = MSIi + MM−1ei −MSIi + Iie = e− Iiei,

which is small.
Therefore Si is a solution to a ring LWE, where Si is a secret key. There it

can be use to decrypt a message.
This therefore gives an identity based encryption scheme.
Here we used very much the fact that in ring-LWE that the multiplication is

commutative.
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