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Abstract

We introduce the notion of arithmetic codex, or codex for short. It encompasses
several well-established notions from cryptography (arithmetic secret sharing schemes,
which enjoy additive as well as multiplicative properties) and algebraic complexity theory
(bilinear complexity of multiplication) in a natural mathematical framework.

Arithmetic secret sharing schemes have important applications to secure multiparty
computation and even to two-party cryptography. Interestingly, several recent applica-
tions to two-party cryptography rely crucially on the existing results on “asymptotically
good families” of suitable such schemes. Moreover, the construction of these schemes
requires asymptotically good towers of function fields over finite fields: no elementary
(probabilistic) constructions are known in these cases. Besides introducing the notion,
we discuss some of the constructions, as well as some limitations.

1 Definitions

LetK be a field. For our purposes, aK-algebra R is a commutative ring R with multiplicative
unity 1R such that K ⊂ R is a subring.1 Note that R is in particular a K-vector space. A
product of K-algebras (such as the n-fold product Kn) will be viewed as a K-algebra with
component-wise multiplication as ring-multiplication and with K thought of as “diagonally
embedded”, i.e., x ∈ K is given by (x, . . . , x) in the product.

Let S be a K-algebra and let R = Kn for some positive integer n. Suppose C ⊂ R is a
K-linear subspace and suppose that ψ : C −→ S is a surjective K-vector space morphism
(so, in particular, dimK(S) ≤ n).

Definition 1 If s ∈ S and x ∈ C are such that ψ(x) = s, then x is said to present s.

Definition 2 The multiplication map md is defined by

md : Cd −→ R , (x1, . . . , xd) 7→ x1 · · ·xd.

The multiplication map Md is defined by

Md : Sd −→ S , (s1, . . . , sd) 7→ s1 · · · sd.
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Definition 3 The map ψ(d) is defined as

ψ(d) : Cd −→ Sd , (x1, . . . , xd) 7→ (ψ(x1), . . . , ψ(xd)).

Definition 4 Let x, x′ ∈ R. Then x = (xi)
n
i=1 is the standard coordinate-vector of x. Let

A ⊂ {1, . . . , n} be a non-empty set. The projection πA : Kn −→ K |A|, x 7→ (xi)i∈A selects
the A-indexed coordinates. Sometimes xA is used as a shorthand for πA(x).

Let t, r be integers with 0 ≤ t < r ≤ n. The two crucial features of codices are as follows,
informally speaking. First, the product of any d C-elements uniquely determines the product
of the S-elements presented by them. In fact, any r coordinates already determine this
uniquely. And second, any t coordinates of a C-element are jointly independent of the
S-element presented by this C-element.

Definition 5 (Codex) The pair (C,ψ) is an (n, t, d, r)-codex for S over K if the following
holds.

1. ((d, r)-product reconstruction) For each B ⊂ {1, . . . , n} with |B| = r, there is a func-
tion g : md(C

d) −→ S (depending on B), where md(C
d) is the set of d-products over

C, such that the following holds:

(a) g(x) = g(y) for all x, y ∈ md(C
d) with πB(x) = πB(y), i.e., g only depends on the

B-indexed coordinates.

(b) Md ◦ ψ(d) = g ◦md, i.e., multiplying the S-elements represented by a d-vector of
C-elements is the same as first multiplying the C-elements and then applying g.

2. (t-disconnection) By definition, any pair (C,ψ) is 0-disconnected. If t > 0, then (C,ψ)
is t-disconnected if for each A ⊂ {1, . . . , n} with |A| = t, the map

φA : C −→ S × πA(C) , x 7→ (ψ(x), πA(x))

is surjective. If, additionally, πA(C) = Ftq for all sets A ⊂ {1, . . . , n} with |A| = t,
there is uniformity.

Definition 6 Suppose (C,ψ) is an (n, t, d, r)-codex for S over K. If dimK S = dimK C (as
vector spaces) and if d ≥ 2 then it is an (n, d)-arithmetic embedding (of S over K). If K is
a finite field, d ≥ 2 and t ≥ 1, then it is an (n, t, d, r)-arithmetic secret sharing scheme (with
secret-space S and share-space K).

Remark 1 If K is a finite field, then C is finite and φA is a regular map. Therefore, if
x ∈ C is chosen uniformly at random, then φA(x) has the uniform distribution on S×πA(C).
It follows at once that ψ(x) and πA(x) are independently distributed.

Remark 2 The case d = 1 is degenerate in some sense, as it is oblivious of the multiplicative
structure of S. If, in addition, K is a finite field, it’s just a linear secret sharing scheme.

Remark 3 If C∗d ⊂ R is the K-linear subspace of R generated by the set md(C
d), then, by

multi-linear algebra, each of the reconstruction maps g extends uniquely to a K-linear map
from C∗d to S.
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If d = 2, then the smallest n for which there is an (n, 2)-arithmetic embedding of S over
K is actually the bilinear multiplication complexity of S over K. This is a classical notion
from algebraic complexity theory. See [3] for history and references. Especially the case
where K is a finite field Fq and S is an extension field Fqk (for some integer k > 1) has been
extensively studied.

Our notion distinguishes itself in several ways. These include the following. First, through
t-disconnection and uniformity (as well as (d, r)-product reconstruction as opposed to the
more common (2, n)-product reconstruction). Second, arithmetic secret sharing schemes with
secret-space Fkq and share-space Fq have particularly important cryptographic applications,
whereas bilinear complexity is trivial here. From a cryptographic point of view, our notion
encompasses all known variations on arithmetic secret sharing.

2 Some Examples

We give some first examples of codices. These are all based on (a generalization of) Lagrange’s
Interpolation Theorem, as given below.

Theorem 1 Let K denote an algebraic closure of K. Suppose x1, . . . , xm ∈ K satisfy the
property that their respective minimal polynomials hi(X) ∈ K[X] are pair-wise distinct, i.e.,
xi, xj are not Galois-conjugate over K if i 6= j. For i = 1, . . . ,m, write δi = deg hi (=
dimK [K(xi) : K]). Then the evaluation map

E : K[X]≤M−1 −→
m⊕
i=1

K(xi) , f 7→ (f(xi))
m
i=1

is an isomorphism of K-vector spaces, where M =
∑m

i=1 δi and where K[X]≤M−1 denotes
the K-vector space of polynomials f(X) ∈ K[X] such that deg f ≤M − 1.

This is easy to verify, as follows. Since the K-dimensions on both sides are identical, it
is sufficient to argue injectivity. Suppose f ∈ K[X]≤M−1, f 6= 0, has each of the xi’s as a
root. Since the hi’s are pairwise co-prime, their product divides f . But then deg f ≥ M , a
contradiction.

We now show constructions of codices for the algebras S = Fkq and S = Fqk , respectively.

Theorem 2 Let Fq be a finite field. Suppose n, d, k are positive integers and t is a non-
negative integer such that d(t+ k − 1) < n. Then:

• There is an (n, t, d, d(t+ k − 1) + 1)-codex for Fkq over Fq if n+ k ≤ q.

• There is an (n, t, d, d(t+ k − 1) + 1)-codex for Fqk over Fq if n ≤ q and k ≥ 2.

In both cases, it holds that there is uniformity if t ≥ 1.

Proof. Let p1, . . . , pn ∈ Fq be pair-wise distinct. This is possible since n ≤ q. Define C
as the Fq-linear subspace {(f(p1), . . . , f(pn)) | f(X) ∈ Fq[X]≤t+k−1} ⊂ Fnq . Since t+k−1 < n,
this gives a one-to-one identification between Fq[X]≤t+k−1 and C.

In the first case, select pairwise distinct q1, . . . , qk ∈ Fq \ {p1, . . . , pn}. This is possible
since k ≤ q−n. Define the map ψ : C → Fkq by first identifying c ∈ C with its corresponding
f ∈ Fq[X]≤t+k−1, followed by the evaluations (f(q1), . . . , f(qk)). In the second case, select
p0 ∈ Fq \ Fq such that Fqk = Fq(p0). The map ψ′ : C → Fqk is defined similarly to ψ, except
that evaluation is at p0 instead of q1, . . . , qk. The proofs for both cases are similar. We only
argue the second.
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First, the map ψ′ is surjective, as follows. The space Fq[X]≤k−1 can be identified one-to-
one with Fqk (as vector space), via evaluation at p0. So the extension of this evaluation to
the large space Fq[X]≤t+k−1 is surjective. Since C is identified with Fq[X]≤t+k−1, the claim
holds.

Next, suppose t ≥ 1 and let A ⊂ {1, . . . , n} with |A| = t. The map φA : C −→ Fqk × Ftq
is surjective, as follows. For each (u, v) ∈ Fqk × Ftq, there is a (unique) f ∈ Fq[X]≤t+k−1
such that f(p0) = u and (f(pi))i∈A = v. Since C is identified with Fq[X]≤t+k−1, there is a
(unique) c ∈ C such that ψ′(c) = u and πA(c) = v.

Finally, there is (d, d(t+k−1)+1)-product reconstruction, as follows. Let B ⊂ {1, . . . , n}
with |B| = d(t + k − 1) + 1 := r. This makes sense, since d(t + k − 1) + 1 ≤ n. Define C
as the Fq-linear subspace {(f(pi))i∈B | f(X) ∈ Fq[X]≤r−1} ⊂ Frq. This gives a one-to-

one identification of C with Fq[X]≤r−1. For any f1, . . . , fd ∈ Fq[X]≤k+t−1, it holds that∏d
i=1 fi ∈ Fq[X]≤r−1. Therefore, C∗d ⊂ C. Define ψ

′
: C → Fqk similarly to ψ′, i.e., identify

c ∈ C with its corresponding f ∈ Fq[X]≤r−1, followed by evaluation at p0. It follows that,

for all c1, . . . , cd ∈ C, ψ
′ ◦ πB(c1 · · · cd) = ψ′(c1) · · ·ψ′(cd). 4

• The first construction with k = 1, d = 1 and t ≥ 1 is Shamir’s threshold secret sharing
scheme [28]. If t < n

2 , it has multiplication and if t < n
3 it has strong multiplication

(see [14]). These properties were first used in [2, 9] in the context of secure multi-party
computation.

• The second construction with t = 0, k > 1, d = 2, 2k−1 = n is a “bilinear multiplication
algorithm” for Fqk over Fq. See [3].

• The first construction with k > 1, d = 2, t ≥ 1 is the Franklin-Yung “packed secret
sharing scheme” [17]. If 2t+ 2k − 2 < n, it has multiplication and if 3t+ 2k − 2 < n,
it has strong multiplication.

• The second construction with t ≥ 1 and d = 2 is the scheme from [11].

By using “the point at infinity” there is an extra evaluation point (whose value corre-
sponds to the coefficient of degree t + k − 1 of the polynomials). Thus, the condition from
the first construction becomes n+ k ≤ q + 1 instead and similarly for the second.

3 Asympotics

Asymptotic study of bilinear complexity of multiplication in finite extensions of a finite field
was initiated by Chudnovsky/Chudnovsky [13] in 1986. Here, Fq is fixed and an unbounded
number of finite extensions of Fq considered. The purpose is to derive upper bounds on
the asymptotic ratio between bilinear complexity of multiplication in an extension and its
degree. Using a variation on the techniques of Tsfasman/Vladuts/Zink [31] from their 1982
breakthrough improvement of the Gilbert-Vashamov error correcting bound (which relies on
deep results from algebraic geometry [22] in combination with Goppa’s idea [20] of algebraic
geometry codes), they showed that, surprisingly, this ratio is bounded from above by a
constant (depending on q). Subsequent work gives better estimates for these constants. This
work was continued by Shparlinski/Tsfasman/Vladuts [29]. See [3] for an overview, as well
as for generalizations. Some more recent papers on the topic include [1, 8, 27].

Motivated by showing a suitable asymptotic version of the “Fundamental Theorem on
Information-Theoretically Secure Multi-Party Computation” [2, 9] by Ben-Or/Goldwasser/
Wigderson and Chaum/Crépeau from 1988, Chen/Cramer [10] initiated in 2006 the study of
“asymptotically good arithmetic secret sharing schemes” and showed the first positive results
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for the strongest notions, using yet another variation on the algebraic geometric techniques
of Tsfasman-Vladuts-Zink.

In 2007, the results of [10] played a central role in the surprising work of Ishai/Kushilevitz/
Ostrovsky/Sahai [25] on the “secure multi-party computation in the head” paradigm and its
application to communication-efficient zero-knowledge for circuit satisfiability. This caused
nothing less than a paradigm shift that perhaps appears even as counter-intuitive: secure
multi-party computation (an in particular, asymptotically good arithmetic secret sharing)
is a very powerful abstract primitive for communication-efficient two-party cryptography.
Subsequent fundamental results that also rely on the asymptotics from [10] concern two-
party secure computation [26, 16], OT-combiners [21], correlation extractors [24], and OT
from noisy channels [23]. For a full discussion, see [5]. More recently, it was shown in [15]
how a combination of the schemes from [10] with ideas from [14] (inspired by [2, 9]) leads to a
method for “zero-knowledge verification of secret multiplications” with rather low amortized
complexity.

The results of [10] were strengthened in [4]. In [5] the authors presented a more powerful
paradigm for the construction of arithmetic secret sharing schemes that is based on novel
algebraic geometric ideas.

We first review the results from [10]. For terminology and theory on algebraic function
fields, we refer to Stichtenoth [30] and for more details on the constructions, we refer to [10],
[5].

Let F be an algebraic function field with full field of constants Fq. Its genus is g(F ). The
set of places of F is P(F ) and the set of places of degree k is P(k)(F ). The group of divisors
on F is denoted by Div(F ). Given D ∈ Div(F ), its Riemann-Roch space is L(D) and the
dimension of L(D) as an Fq-vector space is `(D). Note that `(D) = 0 if degD < 0.

Theorem 3 (Riemann-Roch) Let K ∈ Div(F ) be a canonical divisor. Then, for each
D ∈ Div(F ), it holds that `(D) = degD − g(F ) + 1 + `(K −D).

This theorem implies the following generalization of Lagrange’s interpolation theorem.

Theorem 4 Let P1, . . . , Pm ∈ P(F ) be pairwise distinct. Write P =
∑m

i=1 Pi ∈ Div(F ) and
write degPi = di for i = 1, . . . ,m. Let D ∈ Div(F ) be such that its support does not include
any of the Pi’s and such that `(D) > 0. Let K ∈ Div(F ) be a canonical divisor of F . The
evaluation map

E : L(D)→
m⊕
i=1

Fqdi , f 7→ (f(Pi))
m
i=1

has the following properties.

• It is injective if `(D − P ) = 0

• It is surjective if `(K −D + P ) = 0

Theorem 5 ([10, 5]) Suppose n, d, t, r, k are positive integers such that |P(1)(F )| ≥ n + k
and such that 1 ≤ t < r ≤ n. Let P1, . . . , Pn, Q1, . . . , Qk ∈ P(1)(F ) be pairwise distinct.
Define Q =

∑k
i=1Qi ∈ Div(F ) and, for each non-empty set A ⊆ {1, . . . , n}, define PA :=∑

i∈A Pi ∈ Div(F ). Let K ∈ Div(F ) be a canonical divisor.
If the system of “Riemann-Roch equations”{

`(K −X +Q+ PA) = 0 for all A ⊂ {1, . . . , n}, |A| = t
`(dX − PB) = 0 for all B ⊂ {1, . . . , n}, |B| = r

has a solution X := G, where G ∈ Div(F ), then there exists an (n, t, d, r)-codex for Fkq over
Fq with uniformity.
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Proof. We give a sketch as follows. Note that if there is a solution, we may without
loss of generality assume its support is disjoint from P1, . . . , Pn, Q1, . . . , Qk. Let G be such
a solution. Let C := {(f(P1), . . . , f(Pn)) : f ∈ L(G)} ⊆ Fnq .

Define the evaluation map E : L(G)→ Fnq by f 7→ (f(P1), . . . , f(Pn)). From the assump-
tions and Theorem 4 it is not difficult to see this is injective and that, therefore, there is an
inverse E−1 : C → L(G). Define the map E0 : L(G) → Fkq by f 7→ (f(Q1), . . . , f(Qk)) and
define ψ = E0 ◦ E−1.

The theorem now follows from Theorem 4, together with the fact that for any f1, . . . , fd ∈
L(G), it holds that

∏d
i=1 fi ∈ L(dG). For a more detailed proof, see [10] and [5] (or [6]) 4

A sufficient condition for solvability is the existence of a (positive) integer m such that
if G ∈ Div(F ) and degG = m then deg(K − G + Q + PA) < 0 for all sets A of size t and
deg(dG−PB) < 0 for all B of size r. Indeed, if such an m exists, then any divisor of degree
m is a solution. Note that the degree of K − G + Q + PA (resp. dG − PB) is the same for
all A (resp. B) of size t (resp. r). If degD > 2g(F ) − 2, then `(D) = degD − g(F ) + 1.
This is a corollary to the Riemann-Roch Theorem. Using this fact, it follows that setting
m = 2g−1+k+t and r = dm+1 suffices, under the assumption that d(2g(F )+k+t−1)+1 ≤ n.
This leads to the following theorem.

Theorem 6 (“Existence from solving by degree”) [10] Let F be an algebraic function field
with Fq as its full field of constants. Suppose n, d, t, k are positive integers such that d(2g(F )+
k+ t−1)+1 ≤ n ≤ |P(1)(F )|−k. Then there exists an (n, t, d, d(2g(F )+k+ t−1)+1)-codex
for Fkq over Fq with uniformity.

In comparison to Theorem 2, the condition q + 1 ≥ n+ k has become |P(1)(F )| ≥ n+ k,
which is weaker. However, this does not come entirely for free, as the second condition
d(2g(F ) + k + t− 1) + 1 ≤ n involves the genus of F . Before we study these results asymp-
totically, let us point out that a similar result holds for codices for Fqk over Fq.

Theorem 7 Let F be an algebraic function field with Fq as its full field of constants. Suppose
n, d, t, k are positive integers such that k ≥ 2, |P(k)(F )| ≥ 1 and d(2g(F ) + k + t− 1) + 1 ≤
n ≤ |P(1)(F )|. Then there exists an (n, t, d, d(2g(F ) + k + t − 1) + 1)-codex for Fqk over Fq
with uniformity.

As we can see, the constructions depend on |P(1)(F )| and g(F ): we would like |P(1)(F )| to
be as large as possible compared to g(F ). The classical Hasse-Weil bound upper bounds the
number of places of degree 1 as a function of the genus g and q. It states that |P(1)(F )| ≤ q+
1 + 2qg(F ). Asymptotically, a better upper bound is known. Write Nq(g) = maxF |P(1)(F )|,
where F ranges over all function fields with Fq as its full field of constants and having genus

g. The quantity A(q) := lim supg→∞
Nq(g)
g is Ihara’s constant. The Drinfeld-Vlǎduţ upper

bound states that A(q) ≤ √q − 1. On the positive side, Ihara [22] first showed by using
modular curves that A(q) ≥ √q − 1 for any square q, i.e., q = pm where p is a prime integer
and m is a positive, even integer. Therefore, the Drinfeld-Vlǎduţ upper bound is sharp for
all square q. Explicit families of function fields over Fq for q square attaining this value were
constructed by Garcia and Stichtenoth [18].

On the other hand, no single exact value of A(q) is known if q is a non-square. However,
some lower bounds have been obtained so far. We mention here two known results. One is
the recent result by Garcia/Stichtenoth/Bassa/Beelen [19] who showed an explicit tower of
function fields over finite fields Fp2m+1 for any integer prime p and any integer m ≥ 1. Their

result gives A(p2m+1) ≥ 2(pm+1−1)
p+1+ε with ε = p−1

pm−1 .
On the other hand, Serre made use of class field theory to show that there is an absolute

positive real constant c such that A(q) ≥ c · log(q) for all finite fields Fq.
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We obtain the following asymptotical result, which appeared, for the case d = 2, in [10].

Theorem 8 [10] Let d ≥ 2 and Fq be a finite field such that A(q) > 2d. Then for an
infinite number of n, there exist (n, tn, d, rn) codices for Fknq over Fq with uniformity where
tn = Ω(n), kn = Ω(n) and n − rn = Ω(n). In particular, this holds for any field Fq with q
square, q > (2d+ 1)2 and also for any sufficiently large q.

We note that these schemes can be efficiently constructed and operated. The condition
A(q) > 2d can be relaxed. First, in [4], the authors proved a version of Theorem 8 for
the case d = 2 which is valid for any finite field Fq; however in this version, uniformity is
not satisfied (which, however, is important in some applications). The idea is to combine
Theorem 8 over an extension field Fkq for which A(qk) > 4 with a dedicated field descent based

on a (m, 0, 2,m)−codex for Fkq over Fq. It is the descent step that destroys the uniformity
property. Besides, it is not generalizable to every Fq for d > 2 either.

In [5], [6], a quite different approach was used. In Theorem 6 we have insisted in solving
all equations `(Di) = 0 of Theorem 5 by setting the parameters in such a way that degDi < 0.
However this does not necessarily lead to the best results. Instead, in [5], [6] a much more
sophisticated and novel algebraic geometric approach for solving the Riemann-Roch systems
is introduced. It not only uses information about the number of rational points and the genus
of function fields, but also information on the order of the d-torsion subgroup of the (degree-0
divisor) class group. This leads to a significant weakening of the condition A(q) > 2d while
maintaining uniformity. Some of the best results are attained after establishing particularly
favorable upper bounds for the p-rank of the function fields in a well-chosen optimal tower
using the Deuring-Shafarevich Theorem. From a computational perspective, this approach
is (at present) not efficient in general. It is an open problem to improve this situation.

Finally, it is interesting to point out that there are no elementary (probabilistic) con-
structions known for the asymptotically good arithmetic secret sharing schemes used in the
recent applications in two-party cryptography (starting with [25]) and used in an asymp-
totic version [10] of the fundamental results of [2, 9] on secure multi-party computation: all
known relevant constructions, starting with the schemes from [10], are algebraic geometric
and require asymptotically good towers of functions fields. Note that this is, so far at least,
in contrast with the theory of error correcting codes, where asymptotically good families can
be obtained by elementary (probabilistic) methods.2

4 Limitations

We now state some limitations on codices. We shall be primarily concerned with arithmetic
secret sharing schemes.

The main strategy for proving bounds on arithmetic secret sharing schemes is via the
lemma below.

Lemma 1 [7] An (n, t, d, r)-codex for S over Fq is in particular an (n, t, 1, r− (d−1)t)-codex
for S over Fq.

Therefore, bounds on linear secret sharing schemes imply bounds on arithmetic secret
sharing schemes.

2Note that (n, t, 2, n)-codices for Fq over Fq with large t are implied by self-dual (n + 1, d) Fq-linear codes
with large minimum distance d [12], while the latter are known to admit elementary asymptotically good
constructions. However, these codices are not useful in any of the recent results we have mentioned, starting
with [25]. They do have some relevant applications, for instance to passive-case i. t. secure MPC with single
field elements as secrets.
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As we have seen, the algebraic geometric approach gives asymptotically good results.
However, compared to the elementary non-asymptotic case, the product-reconstruction pa-
rameter is increased by a factor that depends on the ratio between the genus and the number
of rational points. A loss is unavoidable, as we now show. First, consider the case d = 1.

Theorem 9 [7] For any (n, t, 1, r)-codex for S over Fq with t ≥ 1 it holds that r−t ≥ n−t+1
q .

As an application, consider (n, t, 2, n−t)-codices for Fq over Fq. These play a distinguished
role in secure multi-party computation, see [14]. From Lemma 1, 3t

n−1 ≤ 1. Note that equality
can be achieved in the non-asymptotic case. Asymptotically, however, we have the following.
Let Fq be a finite field. For each n ≥ 1, let T (n, q) denote the largest integer t such that

there exists a (n, t, 2, n− t)-codex for Fq over Fq. Now define τ̂(q) = lim supn→∞
3·T (n,q)
n−1 .

Theorem 10 [7] For each finite field Fq, τ̂(q) < 1.

Note, however, that τ̂(q) > 0 for each finite field Fq, on account of [10, 4].
If the dimension of S is large, there is the following connection with the theory of error

correcting codes.

Theorem 11 [7] If there exists an (n, t, 1, r)-codex for S over Fq, then there exists a Fq-
linear error-correcting code of length n− t, dimension k (where k is the dimension of S) and
minimum distance at least n− r + 1.

By applying the Singleton bound, it follows right away that r ≥ k+ t for an (n, t, 1, r)-codex
for S over Fq, where k is the dimension of S.

A more interesting result is obtained by applying other bounds, for example the Griesmer
bound. In [7] these observations, together with a dualization technique enabling stronger
bounds for large t, imply several limitations on (n, t, 1, r)-codices. In combination with
Lemma 1, this implies the following for the case d ≥ 1.

Theorem 12 [7] For any (n, t, d, r)-codex for S over Fq, where t ≥ 1 and k denotes the
dimension of S, it holds that r ≥ dt+ n−t+1

q +f+(q, k, n, t), where f+(q, k, n, t) = max{0, k−
1 − n−t+1

q(q+1)}. If in addition r ≤ n − 1, then r ≥ dt + n+2
2q−1 + h+(q, k, n) where h+(q, k, n) :=

max
{

0, 2q
2q+1

(
k − 1− 1

q ·
n+2
2q−1

)}
.

The bounds above are independent of the algebra S, except that some involve the di-
mension k of S as an Fq-vector space. Lower bounds on the bilinear complexity of algebras
S have been studied extensively in the literature. We do not address this topic here but we
refer the reader to [3]. We show a different type of limitation for the case S = Fqk .

Theorem 13 For any (n, t, d, r)-codex for Fqk over Fq such that the integer k satisfies k ≥ 2,
it holds that d ≤ q.

Proof. Suppose there is an (n, t, d, r)-codex (C,ψ) for Fqk over Fq and d ≥ q + 1 holds.

Since k ≥ 2, there are elements x, y ∈ Fkq \ {0} with xq−1 6= yq−1. Let c,w ∈ C be such

that ψ(c) = x and ψ(w) = y. Since xq = x for all x ∈ Fnq , we have cqwd−q = cwd−1. Let

a ∈ Cd be such that its first q coordinates equal c and the remaining d− q equal w and let
b ∈ Cd be such that its first coordinate is c and the rest equal w. By the observation above,
md(a) = md(b). Therefore, for any function g : md(C

d)→ Fqk , we have g◦md(a) = g◦md(b).
On the other hand

Md ◦ ψ(d)(a) = xqyd−q 6= xyd−1 = Md ◦ ψ(d)(b).

Therefore (d, r)-reconstruction of (C,ψ) cannot hold, which is a contradiction. 4
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