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Abstract

We revisit the problem of cross-domain secure communication between two users belong-
ing to different security domains within an open and distributed environment. Existing ap-
proaches presuppose that either the users are in possession of public key certificates issued
by a trusted certificate authority (CA), or the associated domain authentication servers share
a long-term secret key. In this paper, we propose a variety of four-party password-based
authenticated key exchange (4PAKE) protocols that take a different approach from previ-
ous work. The users are not required to have public key certificates, but they simply reuse
their login passwords they share with their respective domain authentication servers. On
the other hand, the authentication servers, assumed to be part of a standard PKI, act as
ephemeral CAs that “certify” some key materials that the users can subsequently use to ex-
change and agree on a session key. Moreover, we adopt a compositional approach. That
is, by treating any secure two-party password-based key exchange (2PAKE) protocol and
two-party asymmetric-key/symmetric-key based key exchange (2AAKE/2SAKE) protocol as
black boxes, we combine them to obtain generic and provably secure 4PAKE protocols. We
also show that one can derive a 4PAKE protocol from just a 2PAKE protocol.

Keywords: Password-based protocol, key exchange, cross-domain, client-to-client.

1 Introduction

There are many cross-domain communication scenarios, such as email communication, mobile
phone communication, and instant messaging, where the information being communicated may
need to be protected against both passive and active attackers. In this paper, we consider the
use of an authenticated key exchange protocol to establish a session key such that two users can
securely transmit information from one domain to another.

In the above scenarios (we further discuss these example applications in Section 8), a user is
typically registered to some kind of domain server, such as email exchange server or home location
register (in the cases of email and mobile phone communications, respectively). Moreover, two
communicating parties from different domains very often neither share a password nor possess
a public key certificate. Hence, although two-party and three-party authenticated key exchange
protocols have been extensively studied and widely deployed in the real world, see for example [34,

∗An extended abstract of this paper has appeared in the Proceedings of the 32nd IEEE International Conference
on Computer Communications (INFOCOM), 2013.
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29, 8, 13, 3], it is not clear how they can be directly applied to establish a secure cross-domain
communication channel.

In our work, we assume that each security or administrative domain (or identity federation [12])
has (at least) a trusted domain server acting as an authentication server governing a group of users.
Each user within the domain shares only a password with the server and she does not necessarily
own a public key certificate. Further, we assume that a domain server makes available its public
key to other domain servers in the form of a public key certificate, i.e., the server is connected to
a public key infrastructure (PKI). In such a setting, we focus on enabling a user from one domain
to establish a secure communication channel with another user from a different domain through
their respective domain servers. Our approach makes use of both password-based and public-
key cryptographic techniques for authentication and key exchange. We call this work four-party
password-based authenticated key exchange (4PAKE) instead of client-to-client password-based
authenticated key exchange (C2C-PAKE), as suggested in the literature [15, 46], because we
thought that the latter may be confused with 3-party C2C-PAKE (in which both communicating
parties are registered to the same domain server).

We believe that our aforementioned communication model is more realistic, user-friendly and
scalable than that of related previous work, for example, public key Kerberos [28, 47] and C2C-
PAKE [46, 16]. The later protocols either require a user to obtain a public key certificate, or
assume that the domain servers corresponding to the communicating users share a long-term
secret key. We elaborate more on previous work in Section 2.

The primary contribution of this paper is a proposal of a variety of generic 4PAKE protocols that
meet the requirements discussed above. Our constructions are based on a compositional approach
and can be regarded as a form of compiler combining and transforming two building blocks —
(i) a secure two-party password-based authenticated key exchange (2PAKE) protocol, and (ii) a
secure two-party asymmetric-key or symmetric-key authenticated key exchange (2AAKE/2SAKE)
protocol — into a secure four-party password-based authenticated key exchange protocol. The
detail of our constructions are presented in Section 4.

Moreover, we define a security model for our generic 4PAKE protocols based on the Real-Or-
Random (ROR) security model [3] and show that our protocols are secure in the model. Our
security definitions and analyses are shown in Sections 5 and 6, respectively. Our security proofs
rely solely on the security properties of the cryptographic primitives on which our protocols are
based, and do not make use of the Random Oracle model [9]. We also provide some performance
analysis of our protocols in Section 7.

In an extended abstract of this work [21], we presented a 4PAKE protocol that uses 2PAKE
and 2AAKE as building blocks and showed that it is provably secure in our security model. This
paper presents the full version of our results where we further propose four new variants of 4PAKE
protocols including:

– two 4PAKE variants that optimise our earlier protocol shown in [21];

– a 4PAKE protocol that builds on 2PAKE and 2SAKE (instead of 2PAKE and 2AAKE); and

– a 4PAKE protocol that relies solely on 2PAKE.

Our protocols demonstrate some trade-offs between efficiency, usability (from the users’ perspec-
tive), and flexibility (in terms of reuse of existing two-party key exchange protocols).

2 Previous Work

2.1 Kerberos

Initially developed by an MIT research team led by Miller and Neuman, Kerberos [33, 34, 35]
is now a widely deployed network authentication protocol. The most current version, Kerberos
5, is supported by all major operating systems, including Solaris, Linux, MacOS, and Microsoft
Windows.
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In Kerberos, each domain (also known as realm) is governed by a Key Distribution Center
(KDC), which in turn, provides user authentication and ticket-granting services. Each user shares
a password with its KDC, while local application servers that are accessible to the user share
(long-term) symmetric keys with the KDC. Kerberos then allows single sign-on that authenticates
clients to multiple networked services, such as remote hosts, file servers and print spoolers. This
can be summarised in three rounds of communication between the client (typically acting on behalf
of a user) and different principals as follows:

1. the client first performs a password-based login to its local KDC, i.e., authentication server,
and obtains a ticket-granting ticket (TGT);

2. the TGT is then forwarded to a ticket-granting server in order to obtain a service ticket;

3. the client finally presents the service ticket to the application servers to get access to net-
worked services.

The above standard Kerberos protocol makes use of highly efficient symmetric key techniques.
However, one security weakness is that a password-derived symmetric key is used in the first
round of the protocol between the client and the KDC. This opens up the possibility of allowing a
passive attacker to eavesdrop the protocol messages (transmitted in the first round) and perform
an off-line password guessing attack. In other words, the strength of the user authentication may
be only as strong as the user’s ability to choose and remember a strong password.

Public key cryptography for initial authentication in Kerberos (PKINIT) has thus been pro-
posed by Zhu and Tung [47] to add flexibility, security and administrative convenience by replacing
the password-based authentication with signature-based authentication between the client and the
KDC. (The symmetric key operations in the second and third rounds of the protocol are retained.)
The client and the KDC do not share a secret now. Each of them is assigned a public-private key
pair instead, and they must now generate their respective signatures over the messages communi-
cated in the first round. While the PKINIT extension offers stronger user authentication, it adds
complexity to the protocol since we now require a public key infrastructure (PKI) and each user
needs to manage her public-private key pair.

Moreover, Kerberos can be used to achieve cross-realm authentication (PKCROSS) by using
public key techniques. This is useful when a client from a domain wishes to access networked ser-
vices offered by another domain (that is governed by a remote KDC). Here, the two corresponding
KDCs exchange messages following closely the PKINIT specification [47]. This avoids unnecessary
administrative burden of maintaining cross-realm, shared symmetric keys. The (simplified) basic
PKCROSS protocol is as follows [28]:

1. The client submits a request to its local KDC for credentials associated with the remote
realm.1

2. The local KDC submits a request (using the standard PKINIT) to the remote KDC to obtain
a cross-realm TGT.

3. The remote KDC responds as with PKINIT, and the local KDC passes the cross-realm TGT
to the client.

4. The client then submits a request directly to the remote KDC and proceeds with the second
and third rounds of the standard Kerberos protocol using symmetric key techniques.

Our work is closely related to PKCROSS, in the sense that we also deal with cross-domain
authentication and secure communication. However, our proposal of 4PAKE is based on rather
different design principles. We will elaborate on this in Section 3.

1Note that the local KDC can authenticate the client using a password-based approach or PKINIT. However,
as explained, the latter is usually a preferred choice since it is more secure than the former.
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2.2 Client-to-Client Key Exchange

The idea of extending password-based key exchange between two users from the same domain to
the cross-domain setting was also studied by Byun et al. [15], and Yin and Bao [46]. It was often
known as client-to-client password-based authenticated key exchange (or key agreement) and thus
the acronym C2C-PAKE (or C2C-PAKA). The key concept of C2C-PAKE is based on the cross-
realm Kerberos protocol [34], in which each realm (or domain) has a KDC and that two users from
two distinct realms establish a common secret key through their respective KDCs. We note that,
however, existing proposals for C2C-PAKE make use of a symmetric key approach. Both KDCs
that are involved in a C2C-PAKE protocol run are assumed to be sharing a long-term symmetric
key. This leads to a similar limitation in symmetric key management that PKCROSS aims to
address. More recent work on C2C-PAKE with improved efficiency and/or security can be found
in [16, 25, 44].

2.3 Others

Our work shares similar spirit with proposals on inter-domain password-based key exchange in
the public key setting by Yeh and Sun [45], and Wong and Lim [43]. Briefly, these proposals make
use of the domain servers’ public keys to protect protocol messages between clients. However, no
rigorous and formal security analyses of the proposed protocols have been provided.

3 Our Motivations and Approach

Our concern here is on secure communication between two users from different administrative
or security domains. While this is not a new security problem per se, we observe that current
approaches fall short of being able to offer a satisfactory solution.

A main design goal of Kerberos was to allow single sign-on such that a user is able to access
multiple networked services without the need to repeatedly enter her login password. Hence, the
emphasis is on authenticating a user once and allowing secure access to multiple services within a
time period. On the other hand, our work focuses on authenticated key agreement between two
users of separate domains. This fundamental difference leads to other differences in terms of the
protocol message flows and the security architecture. For example, in Kerberos, we assume that a
user shares a password, while each application server shares a long-term symmetric key with their
KDC; while in our case, we have a more “symmetric” situation where both users each shares a
password with her respective domain authentication server.

Furthermore, Kerberos seems to be more suited to a rather “closed” distributed environment,
where it is feasible to establish, distribute and maintain long-term secret keys between a KDC and
a group of application servers, and between the KDC and other remote KDCs. Although this is
compensated with the PKINIT and PKCROSS extensions, PKIs are known to be difficult to deploy
for various practical reasons related to, such as cost, registration process, trust establishment, key
revocation, and management of user private keys [24, 39]. We believe that what is needed here
is a PKI that is more “user-friendly”, i.e., which hides the complexity of public key management
from a user’s view point.

Existing work on C2C-PAKE does provide some useful insights on how to construct an effi-
cient authenticated key agreement protocol between a local and a remote users. Unfortunately,
however, these protocols rely on long-term symmetric keys shared between KDCs. This may not
be a practical and scalable approach, particularly in an open distributed environment, because
establishment and management of shared keys between KDCs can be a complicated and costly
process.

From a security perspective, the complexity of a cross-domain authenticated key exchange
often complicates its security analysis. As shown in [14, 4], the security analysis of Kerberos, with
or without PKINIT, is rather complex and involved. This sometimes may hinder a security flaw
in the protocol from being detected early. For example, the IETF Internet Draft for PKINIT was
first circulated in 1996, but it was only after almost a decade later when Cervesato et al. reported
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a man-in-the-middle attack in PKINIT [19]. Similarly, designing a secure C2C-PAKE protocol
seems to be a non-trivial task at all. Most of the C2C-PAKE protocols found in the literature
have security flaws. These include off-line password guessing attacks [37, 42], undetectable on-line
password guessing and unknown key-share attacks [38], insider attacks (by malicious clients and
servers) [20, 37, 38], and password-compromise impersonation attacks [18]. Recent proposals [44,
25] attempt to address these security problems.

Taking all the above observation into consideration, we propose a set of 4PAKE protocols that
we believe are suitable for secure cross-domain communication between two users. In our first
4PAKE protocol, intuitively, each domain server possesses a public key certificate that is publicly
available to other domain servers (as with the case of web servers used for many e-commerce or
online applications). In a protocol run, the servers corresponding to two communicating users
“certify” some key materials that are associated with the users so that the latter can subsequently
exchange the key materials and agree on a session key. Clearly, we assume that the user trusts
the remote server to only certify key materials submitted by an authenticated user. We achieve
this through a 2PAKE protocol between the user and her domain server. Hence, the user needs
to remember only a password and does not require to deal with public key management. Once
both the users have received the certified key materials (in the form of a signature) from their
respective servers, they exchange the key materials following a 2AAKE protocol.

Inspired by the work of Abdalla et al. on a compositional approach to three-party password-
based authenticated key exchange [3], we adopt a similar approach to our 4PAKE protocol, which
comprises 2PAKE and 2AAKE as the building blocks. This is to simplify the security analysis of
our protocol. By making use of secure 2PAKE and 2AAKE, we treat them as “black-boxes” and
our analysis then focuses only on the input and output parameters of these two-party protocols.
Moreover, using a compositional approach, we have the flexibility to choose any secure 2PAKE
and 2AAKE protocols, implying that one can simply build a 4PAKE protocol based on existing
deployed 2PAKE and 2AAKE protocols. In fact, each domain may deploy a different 2PAKE or
2AAKE protocol, but yet a user from one domain can securely establish a secret key with another
user of a different domain. Further, if a serious security flaw is found on one of the building blocks,
we simply replace it with another secure two-party protocol without changing the entire four-party
protocol.

In addition to considering the combination of 2PAKE and 2AAKE, we investigate the symmetric
key version by replacing 2AAKE with 2SAKE. We also consider how to construct 4PAKE using
only 2PAKE as the building block. We describe the design rationales of our protocols and the
details of our constructions in the following section.

4 Generic Four-Party Key Exchange Protocols

In this section, we present five generic constructions of 4PAKE, denoted by 4PAKEvi for i ∈ [1, 5].
Succinctly, 4PAKEv1 is a generic protocol constructed from 2PAKE and 2AAKE; while 4PAKEv2
and 4PAKEv3 are variants of 4PAKEv1 that aim to optimise the efficiency of the first protocol.
Subsequently in 4PAKEv4, we consider the case where 2SAKE (instead of 2AAKE) is used in order
to derive an even more efficient 4PAKE protocol. Lastly, 4PAKEv5 is designed solely based on
2PAKE without relying on neither 2AAKE nor 2SAKE.

4.1 Cryptographic Primitives

We first describe some cryptographic primitives required for our protocol constructions. In our
description, we let κ be a security parameter,

Message Authentication Codes A message authentication code (MAC) scheme is then a
tuple of probabilistic polynomial-time algorithms (Gen, Mac, Ver) such that:

– Gen(1κ), the key generation algorithm, takes as input the security parameter 1κ and outputs
a key K with |K| ≥ κ;
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– Mac(K;m), the MAC tag generation algorithm, takes as input a key K and a message
m ∈ {0, 1}∗, and outputs a tag µ;

– Ver(K;m;µ), the verification algorithm, takes as input a key K, a message m and a tag µ;
it outputs 1 if µ is a valid tag for message m under key K, or 0 otherwise.

Signatures A signature scheme is a tuple of probabilistic polynomial-time algorithms (Gen,
Sig, Ver) satisfying the following:

– Gen(1κ), the key generation algorithm, takes as input the security parameter 1κ and outputs
a pair of public/private keys (pk, sk) with |pk| and |sk| each have length at least κ;

– Sig(sk;m), the signing algorithm, takes as input a private key sk and a message m ∈ {0, 1}∗,
and outputs a signature σ;

– Ver(pk;m;σ), the verification algorithm, takes as input a public key pk, a message m and a
signature σ; it outputs 1 if σ is a valid signature for message m under key sk, or 0 otherwise.

Authenticated Encryption An authenticated encryption (AE) scheme (a symmetric-key en-
cryption scheme that provides both privacy and authenticity/integrity) is a tuple of probabilistic
polynomial-time algorithms (Gen, Enc, Dec) satisfying the following:

– Gen(1κ), the key generation algorithm, takes as input the security parameter 1κ and outputs
a symmetric key sk with |sk| ≥ κ;

– Enc(sk;m), the encryption algorithm, takes as input a secret key sk and a message m ∈
{0, 1}∗, and outputs a ciphertext c;

– Dec(sk; c), the decryption algorithm, takes as input a secret key sk and a ciphertext c; it
outputs m if c is authenticated, or 0 otherwise indicating an invalid ciphertext.

4.2 Protocol Notation

Table 1: Notation.

X ∈ {A,B, SA, SB} Entities involved in our 4PAKE protocol
idX Unique identifier of X
tsX Timestamp created by X
pkX Public key of X
skX Secret key of X
epkX Ephemeral public key of X
eskX Ephemeral secret key of X

pwdX1,X2 Password shared between X1 and X2

sskX1,X2 Session key shared between X1 and X2

The notation used in our 4PAKE protocols is described in Table 1. We assume that (pkX ,
skX) and (epkX , eskX) are both asymmetric key pairs. We write sskX1,X2 ← 2PAKE(pwdX1,X2)
to denote the execution of a 2PAKE protocol, where the protocol is run between X1 and
X2, and which takes pwdX1,X2 as input and establishes sskX1,X2 . We then use sskX1,X2 ←
2AAKE((skX1 , pkX1 , σX1), (skX2 , pkX2 , σX2)) to denote the execution of a signature-based 2AAKE
protocol, where the protocol is run between X1 and X2. It takes as input an asymmetric key pairs
(skX , pkX) and a signature σX (verifying the authenticity of the public key pkX) of each entity,
and establishes sskX1,X2 . Moreover, we use sskX1,X2 ← 2SAKE(skX1,X2) to denote the execution
of a MAC-based 2SAKE protocol between X1 and X2. It takes as input a shared symmetric key
skX1,X2 and outputs a session key sskX1,X2 .
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We label a protocol message flow by Mx, where x indicates the x-th message flow. We use
subscripts to differentiate protocol messages that are created and transmitted in parallel, for
example MxA and MxB . We assume that the execution of any of our 4PAKE protocols involve a
pair of clients, denoted by A,B ∈ C, and their respective servers, denoted by SA, SB ∈ S. Here
C and S are sets of possible clients and servers, respectively. Finally, we use KD to denote a key
derivation function.

4.3 4PAKEv1

Our first 4PAKE protocol, denoted by 4PAKEv1, is constructed in a compositional way, in the
sense that it entails “piggybacking” 2PAKE (password-based) and 2AAKE (asymmetric-key based)
protocols. Intuitively, a client makes use of a 2PAKE protocol to mutually authenticate and
establish a shared key with its domain server. In addition, the client obtains a signature over
some ephemeral key materials from its server. The signature, in turn, will be exchanged with the
intended communication partner, which also performs similar steps with its domain server. These
two clients then agree on a session key through a 2AAKE using their respective signed ephemeral
key materials.

A SA SB B

M1
idA, idB , epkA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

M2
idB , idA, epkB←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

M3A
sskA,SA ← 2PAKE(pwdA,SA)⇐======================⇒ M3B

sskB,SB ← 2PAKE(pwdB,SB )⇐=====================⇒

M4A
idA, idB , epkA, epkB , µA−−−−−−−−−−−−−−−−−−−−−−−→ M4B

idB , idA, epkB , epkA, µB←−−−−−−−−−−−−−−−−−−−−−−−

M5A
pkSB

, σSA←−−−−−−−−−−−−−−−−−−−−−−− M5B
pkSA

, σSB−−−−−−−−−−−−−−−−−−−−−−−→

M6
sskA,B ← 2AAKE((eskA, epkA, σSA

), (eskB , epkB , σSB
))

⇐===========================================================⇒

where
µA = Mac(sskA,SA

; idA, idB , epkA, epkB)
µB = Mac(sskB,SB ; idB , idA, epkB , epkA)
σSA

= Sig(skSA
; idA, idB , epkA, epkB , pkSB

)
σSB = Sig(skSB ; idB , idA, epkB , epkA, pkSA)

Figure 1: The 4PAKEv1 protocol

Figure 1 shows the message flows of our protocol. Firstly in M1 & M2, clients A and B
exchange information about their identities (idA, idB),

2 and ephemeral public keys (epkA, epkB),
such as Diffie-Hellman components. Clients A and B then, using their passwords, perform au-
thenticated key agreement with their domain servers SA and SB in M3A and M3B , respectively.
At the end of 2PAKE, each client establishes a shared key with its server. In M4, clients A and B
forward their identities and ephemeral public keys to their servers. The information is protected
using MAC tags generated using the shared keys from M3. In M5, servers SA and SB then each
responds with a signature generated over the information received from the client. Each server
also provides its client the public key of the server corresponding to the intended remote client.
Finally, A and B perform asymmetric-key based authenticated key exchange in M6 in order to
agree on a session key.

Remarks. Each domain server has access to the authentic public keys of other domain servers.
Moreover, each client possesses a copy of its server’s authentic public key in order to verify the

2We can assume, in practice, that the identity information contains information about its associated domain.
For example, if idA is an IP address, then it also tells information about the domain to which idA belongs.
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signature the server generates in M5. This is not necessarily required to be done in advance. In
practice, the servers can distribute their public keys to their clients during the execution of 2PAKE
in M3, or alternatively in M5 by using a MAC algorithm in the same way as M4. However, note
that in order to prevent password-compromise impersonation attacks, the clients must obtain
the server public keys through other out-of-band mechanisms. This is because once a client’s
password is known to an adversary, it is trivial for the adversary to impersonate the relevant
server by distributing a fake public key for which the adversary knows the corresponding private
key.

Furthermore, we stress that there is no interaction between servers SA and SB during a pro-
tocol run. This seems to be a very attractive property since we can avoid overloading the servers
with high communication cost in an open, distributed environment should they need to exchange
messages in the protocol. The savings in terms of communication bandwidth is significant com-
pared to PKCROSS, for example. (We present the detail of our performance analysis in Section 7.)
If interaction between servers is tolerable, one alternative construction is to replace M4 & M5 in
Figure 1 with some kind of key distribution protocol involving the servers and the clients, i.e., the
servers generating and distributing a pre-session key to the clients. In this case, the servers must
establish an authenticated channel between them to agree on a pre-session key. This can also be
done using either asymmetric or symmetric techniques. The pre-session key is then distributed to
the clients (through their respective secure channels established via the 2PAKE protocol in M3)
and is used by the clients to generate a session key.

It is worth noting that one simplest instantiation of 2AAKE in M6 is the typical two-pass
Diffie-Hellman key exchange protocol, involving exchanges of σSA

and σSB
between clients A and

B. The output session key is then sskA,B = KD(geskAeskB , . . . ), for example. Indeed, we can use
any signature-based message transmission (MT) authenticator proposed by Bellare et al. [5] and
Canetti and Krawczyk [17] in M6. See [40, 31] for other concrete examples of signature-based
Diffie-Hellman key exchange. As explained before, signature-based 2AAKE is adopted in M6 so
that the servers can avoid sharing a long-term symmetric key that may lead to a key distribution
problem. Otherwise, for scenarios where sharing of symmetric keys between all servers does not
pose any serious concern, one can replace 2AAKE with MAC-based key exchange, for example the
MAC-based MT authenticator in [17], to reduce computational overhead. (We give a protocol
that makes use of MAC-based key exchange in Section 4.6.)

4.4 4PAKEv2

We now give a variant of 4PAKEv1 which requires a smaller number of message flows. We achieve
this by removing the first two message flows of 4PAKEv1. The resulting protocol, denoted by
4PAKEv2, is is illustrated in Figure 2.

Prior to the start of the protocol, we assume that clients A and B already have knowledge of
each other’s identity information, i.e., idA and idB , respectively. This can be obtained through the
application layer, that is, the system in which the protocol runs. The difference between 4PAKEv1
and 4PAKEv2 is that in the latter, A and B do not exchange their respective ephemeral public
keys, i.e., epkA and epkB , until during 2AAKE. Hence, the signature σ created by each domain
server does not include the remote domain client’s ephemeral public key (but its local domain
client’s).

We note that the ephemeral public key epk chosen by a client can be seen as a challenge to
the other communicating client. Hence, the removal of M1 & M2 from 4PAKEv1 opens up the
possibility of a replay attack. For example, an adversary who somehow managed to learn A’s
ephemeral secret key eskA can reuse σSA

to establish a session key with B; or even if A has been
revoked by SA after obtaining σSA

, A can still reuse the signature to continue to establish secure
channels with B without B knowing it. We therefore include a timestamp ts in the signature. We
now have σSA

being tied to a specific time, allowing B to check the freshness of the signature.
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A SA SB B

M1A
sskA,SA

← 2PAKE(pwdA,SA
)

⇐======================⇒ M1B
sskB,SB

← 2PAKE(pwdB,SB )⇐=====================⇒

M2A
idA, idB , epkA, µA−−−−−−−−−−−−−−−−−−−−−−−→ M2B

idB , idA, epkB , µB←−−−−−−−−−−−−−−−−−−−−−−−

M3A
pkSB

, σSA←−−−−−−−−−−−−−−−−−−−−−−− M3B
pkSA

, σSB−−−−−−−−−−−−−−−−−−−−−−−→

M4
sskA,B ← 2AAKE((eskA, epkA, σSA), (eskB , epkB , σSB ))⇐===========================================================⇒

where
µA = Mac(sskA,SA

; idA, idB , epkA)
µB = Mac(sskB,SB

; idB , idA, epkB)
σSA

= Sig(skSA
; idA, idB , epkA, pkSB

, tsSA
)

σSB
= Sig(skSB

; idB , idA, epkB , pkSA
, tsSB

)

Figure 2: The 4PAKEv2 protocol

4.5 4PAKEv3

The possibility of a replay attack described in the previous section leads us to the idea of key reuse
that we adopt for our third 4PAKE protocol, denoted by 4PAKEv3. Our goal is to achieve a more
optimal efficiency compared to our earlier protocols. We now require the client to generate two
ephemeral key pairs: one can be reused over multiple sessions, while the other can be used just
for a session and regenerated for each new session.

Let (epk0, esk0) and (epk1, esk1) be the two ephemeral key pairs generated by the client, and
let skCA be the secret key of a CA. We also let [sk � pk] denote a certificate signed using secret
key sk over public key pk; and [sk � pk] → [sk′ � pk′] denote a certificate chain rooted at sk.
Our protocol is then illustrated in Figure 3.

A SA SB B

M1A
sskA,SA

← 2PAKE(pwdA,SA
)

⇐======================⇒ M1B
sskB,SB

← 2PAKE(pwdB,SB
)

⇐=====================⇒

M2A
idA, idB , epk

0
A, µA−−−−−−−−−−−−−−−−−−−−−−−→ M2B

idB , idA, epk
0
B , µB←−−−−−−−−−−−−−−−−−−−−−−−

M3A
pkSB

, σSA←−−−−−−−−−−−−−−−−−−−−−−− M3B
pkSA

, σSB−−−−−−−−−−−−−−−−−−−−−−−→
M4 sskA,B ← 2AAKE(((esk0A, esk

1
A), (epk

0
A, epk

1
A), σSA),

((esk0B , esk
1
B), (epk

0
B , epk

1
B), σSB

)))
⇐===========================================================⇒

where
µA = Mac(sskA,SA

; idA, idB , epk
0
A)

µB = Mac(sskB,SB ; idB , idA, epk
0
B)

σSA
= Sig(skSA

; idA, idB , epk
0
A, pkSB

, tsSA
)

σSB = Sig(skSB ; idB , idA, epk
0
B , pkSA , tsSB )

Figure 3: The 4PAKEv3 protocol

Here, we treat σSA
as a public key certificate with respect to epk0A that is issued by the domain

server SA and has a validity period of more than just a session, for example, a day, week, or month.
The client then creates another new pair of ephemeral keys (esk1A, epk

1
A) that are taken as input

for the signature-based 2AAKE protocol. Particularly, A “certifies” (by signing) the ephemeral
public key epk1A using the secret key esk0A, and thus creating a certificate-chain of the form:

[skCA � pkSA ]→ [skSA � epk0A]→ [esk0A � epk1A].
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This way, the authenticity of ephemeral public key epk1A is assured and can be verified by B during
the execution of 2AAKE.

Should A want to establish a session key with B again within the validity period of epk0A,
A simply generates a new (epk1A, esk

1
A) key pair and runs the 2AAKE protocol with B directly

without going through M1 to M3 of 4PAKEv3.
Notice that in fact, more generally, we can use the domain information of B instead of idB

in µA and σSA , such that A can reuse the (epk0A, esk
0
A) key pair and σSA to establish a secure

communicate session with any client from the same domain as B.

4.6 4PAKEv4

We further improve the efficiency of our earlier protocols by replacing the 2AAKE protocol run
between A and B in 4PAKEv2 by the symmetric-key analogue, i.e., 2SAKE. Our protocol, denoted
by 4PAKEv4, is almost entirely based on symmetric key operations (except verification of server’s
public key certificate).

Intuitively, we assume that each local domain server is able to derive a shared symmetric key
with a remote server non-interactively. This can be achieved if, for example, the server’s long-term
public key is of the form of a Diffie-Hellman component gsk, where sk is the corresponding secret
key. This is so since we can simply compute a common secret key, which is a Diffie-Hellman key,
based on the local server’s secret key and the remote server’s public key. In the case of SA and
SB , the Diffie-Hellman key will be of the form gskSA

skSB . The secret key shared between the two
servers will then be used to derive a pre-session key for the clients, such that the latter can use
the pre-session key to further exchange and establish a session key using a MAC algorithm.

Before we proceed, we require some new notation. Let Enc(K;m) denote the encryption
algorithm of an authenticated symmetric key encryption scheme that takes as input a key K and
a message m, and outputs a ciphertext c. Let NKD(sk, pk) denote a non-interactive key derivation
function that takes as input a public key pkX of X and a secret key skY of Y , and outputs a key
shared between X and Y . Let also sid denote a unique session identifier. Our protocol is then
illustrated in Figure 4.

In Figure 4, ssk0A,SA
and ssk1A,SA

are both derived from a session key sskA,SA
and set as MAC

and encryption keys, respectively. Also, sskSA,SB is a pre-session key shared between the servers
and used by clients A and B to agree on a session key sskA,B . A good example of a MAC-based
2SAKE is the REKEY protocol of [17].

4.7 4PAKEv5

Here we describe another alternative that aims to optimise the implementation cost of the 4PAKE
protocol. Our idea is that the 4PAKE protocol now builds on only 2PAKE. That is, 2PAKE is
used not only between the client and the domain server, but also between the two clients. The
motivation for doing this is that implementing a single protocol and running it twice is much
cheaper than implementing two separate protocols (2PAKE and 2SAKE/2AAKE) and running each
of them once, particularly if the protocol runs within a hardware device, for example, smart card
or mobile phone.

Our protocol is illustrated in Figure 5. In comparison with 4PAKEv4, we simply replace M4 in
Figure 4 with sskA,B ← 2PAKE(sskSA,SB ), where sskSA,SB is regarded as the “password” shared
between clients A and B.

5 Security Models

Let us first recall two existing security models related to password-based authenticated key ex-
change protocols: the Find-Then-Guess (FTG) and the Real-Or-Random (ROR) models.

The FTG model (sometimes also known as the BPR2000 model) was proposed by Bellare et
al. to measure the indistinguishability of a session key from a random key [8]. In the FTG model,
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A SA SB B

M1A
sskA,SA

← 2PAKE(pwdA,SA
)

⇐======================⇒ M1B
sskB,SB

← 2PAKE(pwdB,SB )⇐=====================⇒

M2A
idA, idB , sid, µA−−−−−−−−−−−−−−−−−−−−−−−→ M2B

idB , idA, sid, µB←−−−−−−−−−−−−−−−−−−−−−−−
M3A

cSA←−−−−−−−−−−−−−−−−−−−−−−− M3B
cSB−−−−−−−−−−−−−−−−−−−−−−−→

M4
sskA,B ← 2SAKE((eskA, epkA, µ

′
A), (eskB , epkB , µ

′
B))⇐===========================================================⇒

where
ssk0A,SA

= KD(sskA,SA
; 0)

ssk1A,SA
= KD(sskA,SA

; 1)

ssk0B,SB
= KD(sskB,SB

; 0)

ssk1B,SB
= KD(sskB,SB ; 1)

sskSA,SB = KD(NKD(skSA , pkSB ); idA, idB , sid)
sskSB ,SA

= KD(NKD(skSB
, pkSA

); idA, idB , sid)
µA = Mac(ssk0A,SA

; idA, idB , sid)

µB = Mac(ssk0B,SB
; idB , idA, sid)

cSA
= Enc(ssk1A,SA

; sskSA,SB
)

cSB
= Enc(ssk1B,SB

; sskSB ,SA
)

µ′
A = Mac(sskSA,SB

; idA, idB , epkA, tsSA
)

µ′
B = Mac(sskSB ,SA ; idB , idA, epkB , tsSB )

Figure 4: The 4PAKEv4 protocol

an adversary is allowed to pose multiple queries to a reveal oracle (in addition to other oracles,
for example execute and send oracles). The reveal oracle is used to model the misuse of session
keys by a user. However, the adversary is restricted to ask only a single query to the test oracle.

Abdalla et al. [3] then proposed the ROR model that is very similar to the FTG model, except
that the former does not make use of a reveal oracle. This means that the adversary no longer
has access to the reveal oracle to learn session keys of user instances. However, the adversary is
allowed to pose as many test queries as it wishes to different instances. Note that in the ROR
model, the test oracle (instead of the reveal oracle) is used to model the misuse of keys by a user.

We remark that the recently proposed ROR model is strictly stronger than the FTG model
in the password-based setting.3 Hence, we adopt the ROR model for the security analysis of our
4PAKE protocol.

5.1 Two-Party Authenticated Key Exchange

We now present the security models for two different types of two-party authenticated key ex-
change protocols. We first give an overview of the ROR model for the two-party password-based
authenticated key exchange (2PAKE) [3]. We then define a security model in the ROR sense for
two-party authenticated key exchange in the asymmetric-key setting (2AAKE) and the symmetric-
key setting (2SAKE).

5.1.1 Password-based setting

A two-party password-based authenticated key exchange (2PAKE) protocol allows two communi-
cating parties, who make use of their respective passwords, to derive a common session key. The
session key, in turn, is used to establish secure channels between the two parties.

3A protocol proved secure in the ROR model is also secure in the FTG model. The reverse, however, is not
necessarily true. See [3] for further details about the relation between the ROR and FTG models.
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A SA SB B

M1A
sskA,SA

← 2PAKE(pwdA,SA
)

⇐======================⇒ M1B
sskB,SB

← 2PAKE(pwdB,SB )⇐=====================⇒

M2A
idA, idB , sid, µA−−−−−−−−−−−−−−−−−−−−−−−→ M2B

idB , idA, sid, µB←−−−−−−−−−−−−−−−−−−−−−−−
M3A

cSA←−−−−−−−−−−−−−−−−−−−−−−− M3B
cSB−−−−−−−−−−−−−−−−−−−−−−−→

M4
sskA,B ← 2PAKE(sskSA,SB )⇐===========================================================⇒

where
ssk0A,SA

= KD(sskA,SA ; 0)

ssk1A,SA
= KD(sskA,SA

; 1)

ssk0B,SB
= KD(sskB,SB

; 0)

ssk1B,SB
= KD(sskB,SB

; 1)

sskSA,SB
= KD(NKD(skSA

, pkSB
); idA, idB , sid)

sskSB ,SA
= KD(NKD(skSB

, pkSA
); idA, idB , sid)

µA = Mac(ssk0A,SA
; idA, idB , sid)

µB = Mac(ssk0B,SB
; idB , idA, sid)

cSA = Enc(ssk1A,SA
; sskSA,SB )

cSB = Enc(ssk1B,SB
; sskSB ,SA)

Figure 5: The 4PAKEv5 protocol

In the 2PAKE setting, we assume that each protocol participant is either a client C ∈ C or a
server S ∈ S. The set of all users or participants U is the union C ∪ S. We also assume that each
client C ∈ C holds a password pwdC , while each server S ∈ S holds a vector pwdS = 〈pwdC〉C∈C
with an entry for each client [8]. Here, pwdC and pwdS are regarded as the long-lived keys of
client C and server S.

As with a typical security model, an adversary A interacts with protocol participants only
via oracle queries. Such queries model the adversary’s capabilities in a real attack. During a
protocol execution, there may be many concurrent running instances of a participant. We denote
an instance i of a protocol participant U ∈ U by U i. Two instances U i

1 and U i
2 are said to be

partners if the following conditions are met [8]:

(i) Both U i
1 and U i

2 accept;4

(ii) Both U i
1 and U i

2 share the same session identifiers;5

(iii) The partner identifier for U i
1 is U i

2, and vice versa;

(iv) No instance other than U i
1 and U i

2 accepts with a partner identifier equal to U i
1 or U i

2.

The oracle queries in the ROR security model for 2PAKE are then classified as follows [3]:

– Execute(Ci, Sj): This query models a passive attack in which the adversary eavesdrops
on an honest execution of the protocol between a client instance Ci and a server instance
Sj . The output of the query comprises messages that were exchanged during the honest
execution of the protocol.

– Send(U i,m): This query models an active attack in which the adversary may intercept a
message and then either modify it, create a new one, or simply forward it to the intended
participant. The output of the query is the message that the participant instance U i would
generate upon receipt of message m.

4An instance U i goes into an accept mode after it has received the last expected protocol message.
5Typically, a session identifier in 2PAKE can be constructed based on the partial protocol messages exchanged

between the client and the server instances before the acceptance.
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– Test(U i): This query models the misuse of a session key by a user. Let b be a bit chosen
uniformly at random at the beginning of an experiment defining indistinguishability in the
ROR model. The output of the query is then the session key for participant instance U i if
b = 1 or a random key from the same domain if b = 0. However, if no session key is defined
for instance U i, then return the undefined symbol ⊥.

We note that the adversary is allowed to ask multiple queries to the Test oracle in the ROR model
(this is in contrast with the FTG model which allows only a single query to the Test oracle). All
Test queries must be made on fresh instances (which have not revealed their session keys) and
they should be answered using the same value for the hidden bit b (chosen at the beginning of
the experiment). This implies that the keys returned by the Test oracle are either all real or all
random. Moreover, in the case where the returned key is random, the same random value should
be returned for Test queries that are asked to two instances which are partnered [3]. The goal of
the adversary is to guess the value of the hidden bit b used to answer Test queries. The adversary
is considered successful if it guesses b correctly. Let Succ denote the event in which an adversary
is successful. The advantage of an adversary A in violating the indistinguishability of the 2PAKE
protocol in the ROR sense is

Advror
2PAKE,D(A) = 2 · Pr[Succ]− 1

when passwords are drawn from a dictionary D. The associated advantage function is then

Advror
2PAKE,D(t, R) = max

A
{Advror

2PAKE,D(A)}

where the maximum is over all A with time-complexity at most t and using resources at most
R, for example the number of queries to its oracles. Clearly, the advantage of an adversary that
simply guesses the bit b, from the above definition, is 0 due to the rescaling of the probabilities.

We say that a 2PAKE protocol is secure in the ROR model if the advantage Advror
2PAKE,D(A) is

only negligibly larger than cn/|D|, where c is a constant, n is the number of active sessions6 and
|D| is the size of the dictionary D.

5.1.2 Asymmetric-key setting

A two-party asymmetric-key based authenticated key exchange (2AAKE) protocol has a similar
objective as with a 2PAKE protocol, i.e., to agree on a session key between a pair of communication
parties. The long-lived keys of each protocol participant U ∈ U is now, however, a public key pkU
and the corresponding private key skU , instead of a password.

Provably secure 2AAKE protocols have been extensively studied in the past not only in the
FTG sense, initiated by Bellare and Rogaway [10, 11], but also in other security models, such as
those by Canetti and Krawczyk [17], and Shoup [40]. However, in this paper, we only consider
2AAKE protocols in the FTG model due to its close associations with the ROR model.

Generally speaking, an adversary in the FTG model is allowed to submit Execute, Send,
Reveal, Corrupt and Test queries. The first two types of queries (Execute and Send) are
similar to those for 2PAKE in the ROR model. The others are defined as follows [11]:

– Reveal(U i): This query models leakage of information on specific session keys. If a session
key is not defined for instance U i or if a Test query was asked to either U i or its partner,
then return ⊥. Otherwise, return the session key held by the instance a passive attack in
which the adversary eavesdrops on an honest execution of the protocol between a client
instance U i.

– Corrupt(U i): This query models the capability of an adversary being able to learn the
long-term secrets of clients. The output of the query is the long-lived private key skU of the
instance U i.

6A session is said to be active if it involves Send queries by the adversary.
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– Test(U i): Let b be a bit chosen uniformly at random at the beginning of an experiment
defining indistinguishability in the FTG model. If no session key for instance U i is defined,
or if either a Reveal or a Corrupt query was asked to either U i or its partner, then return
⊥. Otherwise, the output of the query is the session key for instance U i if b = 1 or a random
key from the same domain if b = 0.

As explained before, the adversary can query only once to the Test oracle. However, the goal
of the adversary is till the same, i.e., to guess the value of the hidden bit b used to answer Test
queries. Let Succ denote the event in which an adversary guesses b correctly. The advantage
of an adversary A in violating the indistinguishability of the 2AAKE protocol in the FTG sense,
Advftg

2AAKE(A), and the associated advantage function Advftg
2AAKE(t, R) are then defined as in the

password-based setting.
We say that a 2AAKE protocol is secure in the ROR model if the advantage Advftg

2AAKE(A) is
negligible (in the associated security parameter).

5.1.3 Symmetric-key setting

The security definition of two-party symmetric-key based authenticated key exchange (2SAKE)
is almost identical to that of 2AAKE. The only difference is that in a 2SAKE protocol, each
protocol participant A ∈ U shares with another participant B ∈ U a symmetric long-lived secret
key {KAB}B∈U,B 6=A, where KAB = KBA.

5.2 Four-Party Authenticated Key Exchange

We now define an ROR security model for 4PAKE by extending the work of Abdalla et al. for the
three-party case [3].

In the 4PAKE setting, we assume that each protocol participant is a client U ∈ U or a trusted
server S ∈ S.7 A protocol execution involves two client-server pairs from two distinct security
domains. Each client shares a password with its domain server. (As with the two-party case, each
client U ∈ U holds a password pwdU , while each server S ∈ S holds a vector pwdS = 〈pwdU 〉U∈U
with an entry for each client.) We also assume that a server has access to public information about
other servers, such as their identities, public keys and so forth.

5.2.1 Indistinguishability of session keys

In order to model insider attacks, the set of clients U comprises two disjoint sets: C, the set of
honest clients, and E , the set of malicious clients. We assume that all passwords of clients from
the set E are known by the adversary [3].

The notion of partnering (between two clients) in the four-party setting is similar to that for
the two-party setting (between client and server), and thus will not be further discussed here.

The oracle queries in the ROR security model for 4PAKE are defined as follows:

– Execute(U i1
1 , Sj1

1 , U i2
2 , Sj2

2 ): This query models a passive attack in which the adversary
eavesdrops on an honest execution of the protocol between client instances, U i

1 and U i
2, and

trusted server instances, Sj
1 and Sj

2. The output of the query comprises messages that were
exchanged during the honest execution of the protocol.

– SendClient(U i,m): This query models an active attack in which the adversary may in-
tercept a message and then either modify it, create a new one, or simply forward it to the
intended participant. The output of the query is the message that the client instance U i

would generate upon receipt of message m.

7Note that in Section 5.1, the set U includes both clients and servers. In the four-party case, however, the set U
is restricted to only clients, since the goal of a 4PAKE protocol is to establish secure channels between two clients
(rather than between a client and a server).
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– SendServer(Sj ,m): This query models an active attack against a server. The output of
the query is the message that the server instance Sj would generate upon receipt of message
m.

– Corrupt(U i): As defined in the FTG model in Section 5.1, except that the output of the
query is the password pwdU of the instance U i. (Here, as with [8], we assume the weak
corruption model in which the internal states of all instances of that client are not returned
to the adversary.)8

– Test(U i): This query models the misuse of a session key by a user. Let b be a bit chosen
uniformly at random at the beginning of an experiment defining indistinguishability in the
ROR model. The output of the query is then the session key for participant instance U i if
b = 1 or a random key from the same domain if b = 0. However, if no session key is defined
for the client instance U i, or if a Corrupt query was asked to either U i or its partner, then
return the undefined symbol ⊥.

The advantage of an adversary A in violating the indistinguishability of the 4PAKE protocol
in the ROR sense, Advror

4PAKE,D(A), and the associated advantage function Advror
4PAKE,D(t, R) are

then defined as in the two-party setting. The 4PAKE protocol is said to be secure if the advantage
Advror

4PAKE,D(A) is negligible.

5.2.2 Key privacy with respect to servers

We stress that the servers involved in a 4PAKE protocol run in our ROR security model are trusted
and assumed to be honest-but-curious. Since the servers have access to all the passwords within
their respective security domains, it seems impossible to prevent any of them from impersonating
a client from the same domain to another client of a different domain. However, in the security
model, we allow the servers to launch passive attacks against any clients by intercepting their
protocol messages.

We adopt the definition of key privacy from [3] which says that the session key shared between
two instances should be known to only these two instance and no one else (including the trusted
servers). Moreover, the adversary is allowed access to all passwords of the clients in the set U ,
and the Execute and SendClient oracles, but not the SendServer oracle (which can be easily
simulated by the adversary using the passwords). In order to capture the adversary’s ability to
tell apart a real session key from a random key, the adversary is allowed access to a TestPair
oracle defined as follows [3]:

– TestPair(U i
1, U

j
2 ): Let b be a bit chosen uniformly at random at the beginning of the

experiment defining the notion of key privacy. If b = 1, the output of the query is the actual
key shared between client instances U i

1 and U j
2 for a session in which the adversary performed

only passive attacks. Else if b = 0, a random key from the same domain is output. However,
if client instances U i

1 and U j
2 do not share the same key, then return the undefined symbol

⊥.

Let A be an adversary which is given the passwords of all users and is allowed to ask multiple
queries to the Execute, SendClient and TestPair oracles in an experiment defining the key
privacy of the 4PAKE protocol. The advantage of the adversary A in violating the key privacy of
the protocol, Advkp

4PAKE(A), and the associated advantage function Advkp
4PAKE(t, R) are defined as

before.
Note that for simplicity of presentation, we will not consider the notion of perfect forward

secrecy [8] in this paper. Defining such a notion is a straightforward exercise, see for example [2].

8We included Corrupt queries in our ROR model so that it is consistent with the FTG model for 2AAKE
protocols.
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5.3 Security of Cryptographic Primitives

MAC. We consider security against strong existential unforgeability under a chosen-message
attack (SUF-CMA). The adversary attacking a MAC scheme should not be able to create a new
valid message-tag pair with non-negligible probability, even after seeing many such valid pairs [6].
Let SuccMAC denote the event in which the adversary A is able to output a message m along
with a tag µ such that: (i) Ver(K;m;µ) = 1, and (ii) A had not previously requested a tag µ
on the message m. The advantage of A in violating the strong existential unforgeability of the
MAC scheme under chosen-message attacks [6] is defined as Advsuf-cma

MAC (A) = Pr[SuccMAC]. The
associated advantage function, Advsuf-cma

MAC (t, qmac, qver), is then defined as the maximum value of
Advsuf-cma

MAC (A) over all A with time-complexity at most t, and asking at most qmac and qver queries
to the tag generation and verification oracles, respectively.

Signatures. Similarly, a signature scheme is considered secure against existential unforgeability
under an adaptive chosen-message attack (EUF-CMA), if the adversary attacking the scheme
could not create a new valid message-signature pair with non-negligible probability. This is so
even if the adversary is allowed to ask for signing of multiple messages chosen adaptively [26].
Let SuccSig denote the event in which the adversary A is able to output a forged signature
σ for a message m such that: (i) Ver(pk;m;σ) = 1, and (ii) A had not previously requested a
signature on the messagem from the signing oracle. The advantage of A in violating the existential
unforgeability of the signature scheme under adaptive chosen-message attacks [26] is defined as
Adveuf-cma

Sig (A) = Pr[SuccSig]. The associated advantage function, Adveuf-cma
Sig (t, qsig, qver), is then

defined as the maximum value of Adveuf-cma
Sig (A) over all A with time-complexity at most t, and

asking at most qsig queries to the signing oracle and at most qver queries to the verification oracle.

Authenticated Encryption. For an authenticated encryption (AE) scheme, we consider both
privacy and authenticity/integrity [7]. In terms of privacy, we consider the conventional notion of
indistinguishability under a chosen-plaintext attack (IND-CPA). Let b← {0, 1} denote a random
bit. An adversary is allowed access to a left-or-right (LR) oracle, which returns Enc(K;Mb) upon
receiving a pair of messages (M0,M1) from the adversary. The goal of the adversary is then to

guess the value of b. The advantage function, Advind-cpa
AE (t, qlr), is defined as the maximum value

of Advind-cpa
AE (A) over all A with time-complexity at most t, and asking at most qlr queries to the

LR oracle.
To define authenticity, we consider an adversary who has access to an encryption oracle Enc,

which returns the encryption of any message m chosen by the adversary; and a decryption oracle
Dec, which tells if the decryption of a ciphertext c is successful or not. The goal of the adversary
is to forge a ciphertext c∗ such that: (i) c∗ can be successfully decrypted; and (ii) c∗ is not the
output of the encryption oracle. The associated advantage function, Adveuf-cma

AE (t, qenc, qdec), is
defined as the maximum value of Adveuf-cma

AE (A) over all A with time-complexity at most t, and
asking at most qenc and qdec queries to the encryption and verification oracles, respectively.

Key Derivation Function. We consider a key derivation function KD is secure if it satisfies
the security requirement of a pseudo-random function. Namely, for any randomly selected key
K, KD(K; ·) should behave like a truly random function RF(·). We define the advantage of an
adversary D against a key derivation function as

AdvKD(D) = |Pr[DKD(K,·)(t, qkd)) = 1]− Pr[DRF(·)(t, qkd) = 1)]|

where t denotes the maximum running time of D and qkd is the maximum number of oracle queries
D is allowed to make.

Non-interactive Key Derivation Function. A non-interactive key derivation NKD func-
tion outputs a shared symmetric key between two parties who hold asymmetric key pairs (pkA, skA)
and (pkB , skB), respectively. There are two security requirements involved for an NKD function:
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• completeness: NKD(skA, pkB) = NKD(skB , pkA);

• key Privacy: given pkA and pkB , NKD(skA, pkB) is computationally indistinguishable from
a random element in the range of NKD.

6 Security Analysis

6.1 4PAKEv1, 4PAKEv2, and 4PAKEv3

The first three variants of our 4PAKE protocols are closely related to each other and they are all
based on 2PAKE and 2AAKE. In this subsection, we focus on the security proof for 4PAKEv1 from
which we can straightforwardly derive the security proofs for 4PAKEv2 and 4PAKEv3.

Intuitively, the security of our 4PAKEv1 protocol relies on the security of the employed 2PAKE
and 2AAKE protocols, as well as the MAC and signature schemes. The security of the 2PAKE
protocol and the unforgeability property of the MAC scheme ensure that both the servers receives
the identity information and ephemeral public keys (in M4A and M4B) in an authenticated and
integrity protected manner. Furthermore, a secure signature scheme ensures that the signatures
generated by the servers and forwarded to the clients (in M5A and M5B) are genuine. Lastly, a
secure 2AAKE (in M6) ensures that the final session key can only be established between the two
authenticated clients, but no one else. In what follows, we show that even an adversary with attack
capabilities defined in the ROR security model will not be able to learn any information about a
session key established through our 4PAKEv1 protocol. We also show that an honest-but-curious
server will not gain any knowledge about any accepted (or valid) session key.

6.1.1 Indistinguishability of Session Keys

As the following theorem states, our 4PAKEv1 protocol shown in Figure 1 is secure in the ROR
model (as defined in Section 5.2), provided that the underlying primitives it uses are secure.

Theorem 1. Let 4PAKEv1 be the four-party password-based authenticated key exchange protocol.
Let qexe be the number of queries to the Execute oracle of the 4PAKEv1 protocol and qtest be
the number of Test queries. Let also qMx

send denote the number of SendClient or SendServer
queries related to message Mx of the 4PAKEv1 protocol for x ∈ {1, 2, 3A, 3B, 4, 5, 6}. Then

Advror
4PAKEv1(t, qexe, q

Mx
send, qtest) ≤

2 ·Advror
2PAKE,D(t, qexe, q

M3A
send , qexe + qM3A

send )

+ 2 ·Advror
2PAKE,D(t, qexe, q

M3B
send , qexe + qM3B

send )

+ 2 · qM4
send ·Advsuf-cma

MAC (t, 2, 0)

+ 4 ·Adveuf-cma
Sig (t, qM5

send, 0)

+ 2 · qtest ·Advftg
2AAKE(t, qexe, q

M1,M2,M6
send , qtest, 1)

assuming the 2PAKE and 2AAKE protocols, and the MAC and signature schemes used in the
protocol are secure.

Proof Theorem 1. Let A be an adversary against the indistinguishability of 4PAKEv1 in the ROR
sense. Our security proof is a sequence of security games simulated using techniques from Abdalla
et al. [3]. For simplicity, we assume the set of honest users contains only users A and B. This can
be easily extended to the more general case with essentially the same bounds.

We start with the real attack against the 4PAKEv1 protocol, and end with a game with the
adversary’s advantage is negligible, and for which we can bound the difference in the adversary’s
advantage between any two consecutive games. For each game Gn, we define Succn to be the
event in which the adversary correctly guesses the hidden bit b used in the Test queries (as
defined in Section 5.2). We remark that our proof relies solely on the security properties of the
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underlying primitives our protocol uses, and thus does not assume the Random Oracle model.

Game G0: This is the original attack game with respect to a given efficient adversary A. By
definition, we have

Advror
4PAKEv1(A) = 2 · Pr[Succ0]− 1

Game G1: In this game, we model the adversary almost exactly the same as in game G0. The
only difference between these two games is that here, we replace the session key sskA,SA

output
by 2PAKE by a random key ssk′A,SA

in all of the sessions involving honest users. We show that
the difference in success probability of the adversary A between games G0 and G1 is at most the
probability of breaking the security of the underlying 2PAKE protocol between A and SA.

Lemma 2. |Pr[Succ1]− Pr[Succ0]| ≤ Advror
2PAKE,D(t, qexe, q

M3A
send , qexe + qM3A

send ).

Proof of Lemma 2. In order to prove this lemma, we simulate an adversary A2PAKE against the
indistinguishability of the 2PAKE protocol using a distinguisher, A1, between games G0 and G1.
Adversary A2PAKE first selects a bit b uniformly at random. It also chooses a password for each
client in the system except A (according to the distribution D) and generates an asymmetric-key
pair for each server participating in the protocol. It then gives the chosen passwords to A1 and
starts answering oracles queries from A1 as follows:

– SendClient queries: If A1 makes a query on an instance of the 2PAKE protocol run between
A and SA, then A2PAKE responds by sending the corresponding query to its Send oracle (as
defined in the 2PAKE security model). If the query forces the given instance A or SA to
accept, then we also ask a Test query to that instance, unless such a query had already
been made to its partner. The output of the Test query is subsequently used as the session
key shared between A and SA.

On the other hand, if A1 issues a SendClient query targeting an instance of the 2PAKE
protocol run between B and SB , A2PAKE responds using the password of client B that it has
chosen at the beginning of the simulation.

All remaining SendClient queries by A1 can be answered either using the session key
shared between A and SA or the session keys generated during the execution of the 2PAKE
protocol between B and SB .

– SendServer queries: A2PAKE can respond to these queries using the generated asymmetric-
key pairs for servers by acting as the required signing oracles.

– Execute queries: A2PAKE can easily answer these queries using its own Execute oracle
and the output of the relevant Test queries, just as how SendClient and SendServer
queries are responded.

– Test queries: A2PAKE uses the bit b it has previously selected and the session keys that it
has computed to answer these queries.

Let b′ be the output of A1. If b
′ = b, then A2PAKE outputs 1. Otherwise, it outputs 0.

Note that we omit Corrupt queries from the game since we do not consider forward secrecy
in this proof. Moreover, we assume that A1 has access to the passwords of all clients but A.

It is obvious that the probability of A2PAKE outputting 1 when its Test oracle returns real
keys is exactly the probability of A1 correctly guessing the hidden bit b in game G0. Similarly,
the probability of A2PAKE outputting 1 when its Test oracle returns random keys is exactly the
probability of A1 correctly guessing the hidden bit b in game G1. The lemma follows by noticing
that A2PAKE has at most time-complexity t and makes at most qexe queries to its Execute oracle,
at most qM3A

send queries to its Send oracle, and at most qexe + qM3A
send queries to its Test oracle.

Game G2: We modify the previous game by replacing the session key sskB,SB output by 2PAKE
by a random key ssk′B,SB

in all of the sessions involving honest users. Using similar arguments
for proving the lemma in the previous game, we can prove the following lemma.
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Lemma 3. |Pr[Succ2]− Pr[Succ1]| ≤ Advror
2PAKE,D(t, qexe, q

M3B
send , qexe + qM3B

send ).

Game G3: We now further modify the previous game as follows. Game G3 is exactly the same
as game G2, except that in G3, we modify the way the oracle instances respond to SendClient
queries on M4 of our 4PAKEv1 protocol. If the adversary makes a SendClient query containing
a new MAC message-tag pair (forgery) not previously generated by an oracle, then we consider
the MAC tag invalid and force the instance in question to terminate without accepting. As the
following lemma shows, the difference between the current and previous games should be negligible
if we use a secure MAC scheme.

Lemma 4. |Pr[Succ3]− Pr[Succ2]| ≤ qM4
send ·Advsuf-cma

MAC (t, 2, 0).

Proof of Lemma 4. We use a hybrid argument to proof this lemma. We define a sequence of hybrid
experiments Vi, where 0 ≤ i ≤ qM4

send. (Note that we do not need to take into account Execute
queries here, because they are used to simulate only passive attacks.) In experiment Vi, queries
(to the SendClient oracle) in the first i sessions involving honest clients A and B are answered
as in game G3, and all other queries in the remaining sessions are answered as in game G2. We
remark that the hybrid experiments at the extremes (when i = 0 and i = Vqs) are equivalent to
games G2 and G3, respectively. Let Pi be the probability of the event Succ in experiment Vi.
Since P0 = Pr[Succ2] and Pqs = Pr[Succ3], it follows that

|Pr[Succ3]− Pr[Succ2]| =
qs∑
i=1

|Pi − Pi−1|.

Hence, it suffices to show that |Pi−Pi−1| is at mostAdvsuf-cma
MAC (t, 2, 0), in order to prove the lemma.

This can be achieved by assuming the existence of a distinguisher Ai
3 for experiments Vi−1 and

Vi, and using it to build an adversary Ai
mac for breaking the security of the MAC scheme.

The description of the adversary Ai
mac is as follows. For the first i− 1 sessions, the adversary

Ai
mac chooses random values for the MAC key and is therefore can perfectly simulate the oracles

given to Ai
3, while imposing the restriction as defined for game G3. In the i-th session, Ai

mac

makes use of its MAC tag generation and verification oracles to answer queries from Ai
3. In this

session, if adversary Ai
3 asks a SendClient query containing a message-tag pair not previously

generated by adversary Ai
mac, then Ai

mac halts and outputs the pair as its forgery. However, if
no such pair is generated by Ai

3, we output a failure indication. For all remaining sessions, Ai
mac

simulates all oracles exactly as in game G2, using actual MAC keys, to answer queries from Ai
3.

Let F1 be the event in which a message-tag pair is considered valid in experiment Vi−1 but
invalid in experiment Vi. It is then not difficult to see that Pr[F1] is at most the probability that
adversary Ai

mac can forge a new message-tag pair under a chosen-message attack. Since Ai
mac has

time-complexity t and makes at most two queries to its MAC tag generation oracle (to answer
the SendClient queries from Ai

1 in one session) and no queries to its verification oracle, we have
Pr[F1] ≤ Advsuf-cma

MAC (t, 2, 0). One also sees that

Pr[SuccVi−1 ∧ ¬F1] = Pr[SuccVi ∧ ¬F1]

since experiments Vi−1 and Vi proceed identically until F1 occurs. Therefore, by Lemma 1 of [41]
(also known as the Difference Lemma), we have

|Pr[SuccVi−1 ]− Pr[SuccVi ]| ≤ Pr[F1].

Our lemma then follows by noticing that there are at most qM4
send experiments, where M4 =

M4A +M4B .

Game G4: In this game, we modify the way the oracle instances respond to SendClient queries
on M5 of our 4PAKEv1 protocol. This implies that if the adversary makes a SendClient query
containing a new signature not previously generated by an oracle, then we consider the signature
invalid and force the instance in question to terminate without accepting. The following Lemma
shows the difference between G3 and G4 is negligible.
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Lemma 5. |Pr[Succ4]− Pr[Succ3]| ≤ Adveuf-cma
Sig (t, qM5

send, 0).

Proof of Lemma 5. Let Asig denote an adversary against the digital signature scheme. Asig re-
ceives a public key pk of the digital signature scheme and simulates the game as follows.
Asig chooses a random client C ∈ {A,B} and guesses that a forge event would happen on C.

Asig assigns pk as the public key of the server SC , and generates the public/private key pairs for
all the other servers and the passwords for all the clients honestly. Asig then simulates the game
G3 for the adversary A2PAKE. When a signature of SC is required to respond a SendServer
query, Asig makes a query to its signing oracle to obtain a valid signature and uses it to answer
the SendServer query. Let F2 denote the event that the adversary makes a SendClient query
containing a valid signature with respect to SC and which is not previously returned by Asig. We
then have

|Pr[Succ4]− Pr[Succ3]| ≤ Pr[F2] ≤ 2 ·Adveuf-cma
Sig (t, qM5

send, 0).

Game G5: This game is identical to the previous game, except that we replace the session key
sskA,B (output by the 4PAKEv1 protocol) by a random key ssk′A,B in all of the sessions. As
the following lemma shows, the difference in success probability between the current and previous
games is at most the probability of breaking the security of the underlying signature-based 2AAKE
protocol between A and B.

Lemma 6. |Pr[Succ5]− Pr[Succ4]| ≤ qtest ·Advftg
2AAKE(t, qexe, q

M1,M2,M6
send , qtest, 1).

Proof of Lemma 6. Again, we prove the lemma by a hybrid argument. Let Vi (0 ≤ i ≤ qtest)
denote a variant of the game G4 such that for the first i Test queries, the real session keys
sskA,B is returned to the adversary, while for the remaining Test queries, random session keys
are returned. Then we have V0 = G5 and Vqtest = G4. If there exists an adversary A5 that can
distinguish G4 and G5 with advantage ε, then there must exists an index i such that A5 can
distinguish Vi and Vi+1 with advantage at least ε/qtest.

Given such a distinguisher A5, we can construct an adversary A2AAKE against the indistin-
guishability of the signature-based 2AAKE protocol. A2AAKE first selects a password for each client
and uses the public keys pkSA

and pkSB
in the 2AAKE game as the public keys for SA and SB in

the simulated game for A5. A2AAKE then generates asymmetric-key pairs for the other servers in
the system. Next, A2AAKE responds to queries from A5 as follows:

– SendClient and SendServer queries: A2AAKE answers the SendClient and SendServer
queries from A5 by using pwdA and pwdB , together with queries to its own Send oracle.
Note that since no forgery event with respect to µA, µB , σSA

, σSB
would occur in game G4,

A2AAKE can successfully embed the answers from its own Send oracle into the simulated
game for A5.

– Execute queries: A2AAKE can easily answer these queries by using its own Execute oracle
and pwdA, pwdB .

– Test queries: For the first i Test queries made by A5, A2AAKE uses its Reveal oracle to
obtain the real session keys and use them to answer the Test queries. For the i+1-th Test
query made by A5, A2AAKE uses the key obtained from its own Test oracle to answer the
query. For the rest of the Test queries made by A5, A2AAKE responds with random keys.

It is obvious that if A5 can distinguish Vi from Vi+1, then A2PAKE can successfully guess the
value of b in the 2AAKE game.

The lemma follows by noticing that A2AAKE has at most time-complexity t and asks at most
qexe queries to its Execute oracle, at most qM5,M6

send queries to its Send oracle, at most qtest queries
to its Reveal oracle, and at most 1 query to its Test oracle.

Clearly, Pr[Succ5] =
1
2 . All the above lemmas yield the result in Theorem 1.
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We remark that our security analysis is a “generic” one for the 4PAKEv1 protocol, in the
sense that we do not make use of any mathematical hard problems. The latter typically depends
on the type of key materials that are used to compute session keys, for example Diffie-Hellman
key components can be associated with the Decisional Diffie-Hellman problem. Our analysis
assumes that the 2PAKE and 2AAKE protocols on which the 4PAKEv1 protocol is based are secure.
This implies that the 4PAKEv1 protocol inherit security properties from the 2PAKE and 2AAKE
protocols. For example, if an instantiation of the underlying 2AAKE protocol provides properties
such as forward secrecy and key confirmation, then the associated 4PAKEv1 protocol can also be
proved secure using an extended ROR model (from the model we defined in Section 5.2) that
considers these properties.

6.1.2 Key Privacy against Servers

As explained in Section 5.2, we assume that the servers are honest-but-curious. Hence, we should
also show that if the 4PAKEv1 protocol is executed as expected and does not abort, the servers
should not gain any knowledge about the resulting session key.

Theorem 7. Let 4PAKEv1 be the four-party password-based authenticated key exchange protocol.
Then

Advkp
4PAKEv1(t, qexe, q

Mx
send, qtest) ≤

2 · qtest ·Advftg
2AAKE(t, qexe, q

M1,M2,M6
send , qtest, 1)

where parameters are defined as in Theorem 1, and assuming the 2PAKE and 2AAKE protocols,
and the MAC and signature schemes are secure.

Proof of Theorem 7. We can use arguments similar to those in game G5 in the proof of Theorem 1.
Thus, we do not repeat the details here.

Succinctly, assuming that the 2AAKE protocol used between the clients is secure, i.e., inherits
the indistinguishability property, the servers should not be able to distinguish an accepted session
key between users A and B from a random key. This holds if users A and B were honest users
and the servers performed only passive attacks.

6.2 4PAKEv4 and 4PAKEv5

We now provide a sketch of the security proof for the 4PAKEv4 protocol, which is based on 2PAKE
and 2SAKE, by using the same techniques (particularly, game-playing proofs and hybrid argument)
we have used in proving the security for 4PAKEv1.

Theorem 8. Let 4PAKEv4 be the four-party password-based authenticated key exchange protocol
based on 2SAKE. Let qexe be the number of queries to the Execute oracle of the 4PAKEv4 protocol
and qtest be the number of Test queries. Let also qMx

send denote the number of SendClient or
SendServer queries related to message Mx of the 4PAKEv4 protocol for x ∈ {1A, 1B , 2, 3, 4}.
Then

Advror
4PAKEv4(t, qexe, q

Mx
send, qtest) ≤

2 ·Advror
2PAKE,D(t, qexe, q

M1A
send , qexe + qM1A

send )

+ 2 ·Advror
2PAKE,D(t, qexe, q

M1B
send , qexe + qM1B

send )

+ 2 · (qM1
send ·AdvKD(t, 2) + qM2

send ·AdvKD(t, 1))

+ 2 ·Advkp
NKD(t)

+ 2 · qM3
send · (Advsuf-cma

AE (t, 1, 0) +Advind-cpa
AE (t, 1))

+ 2 · qtest ·Advftg
2SAKE(t, qexe, q

M4
send, qtest, 1)

assuming the 2PAKE and 2SAKE protocols, and the KD and NKD functions, and the authenticated
encryption scheme used in the protocol are secure.

21



Proof of Theorem 8. The adversarial games G0,G1,G2 are the same as in the proof of Theorem 1.
However, we define two additional games G2.1 and G2.2 between G2 and G3.
Game G2.1: In this game, we replace the keys ssk0A,SA

and ssk1A,SA
with two independent and

random keys. From the assumption that the key derivation function KD is secure and by a hybrid
argument, we obtain

|Pr[Succ2.1]− Pr[Succ2]| ≤ qM1A
send ·AdvKD(t, 2).

Game G2.2: Similarly, in this game, we replace ssk0B,SB
and ssk1B,SB

with two independent and
random keys and we have

|Pr[Succ2.2]− Pr[Succ2.1]| ≤ qM1B
send ·AdvKD(t, 2).

Game G3 is the same as in the proof of Theorem 1. We then define two additional games G3.1

and G3.2 between Game G3 and G4.
Game G3.1: In this game, we replace the values of NKD(skSA

, pkSB
) and NKD(skSB

, pkSA
) with

a random key. Then from the key privacy of the non-interactive key derivation function, we have

|Pr[Succ3.1]− Pr[Succ3]| ≤ Advkp
NKD(t).

Game G3.2: Here, we further replace the values of sskSA,SB
and sskSB ,SA

in each session with
a random key. Once again, since KD is a secure key derivation function, the difference between
game G3.1 and game G3.2 can be bounded by

|Pr[Succ3.2]− Pr[Succ3.1]| ≤ qM2
send ·AdvKD(t, 1).

In game G4, we modify the way the oracle instances respond to SendClient queries on M3:
if the adversary makes a SendClient query containing a new ciphertext not previously generated
by an oracle, then we consider the ciphertext invalid and force the instance in question to terminate
without accepting. By following a proof similar to that of Lemma 5, we have

|Pr[Succ4]− Pr[Succ3]| ≤ qM3
send ·Adveuf-cma

AE (t, 1, 0).

We then define an additional game G4.1 between game G4 and game G5.
Game G4.1: In this game, we replace the key sskSA,SB

(= sskSB ,SA
) used in the 2SAKE protocol

with a random key rk that is independent of cSA
and cSB

for all the sessions. Since AE is IND-CPA
secure, by a hybrid argument, we have

|Pr[Succ4.1]− Pr[Succ4]| ≤ qM3
send ·Advind-cpa

AE (t, 1).

Finally, in game G5, we replace the session keys sskA,B in all the sessions with random keys.
By following a proof similar to that of Lemma 6, we have

|Pr[Succ5]− Pr[Succ4.1]| ≤ qtest ·Advftg
2SAKE(t, qexe, q

M4
send, qtest, 1).

It is obvious that Pr[Succ5] =
1
2 . Combining all together yields the result in Theorem 8.

We can also prove the security of our 4PAKEv5 protocol using almost an identical approach as
above except with the following differences:

• in game G4.1, we replace key sskSA,SB used in the 2PAKE protocol (in M4) with a random
key rk that is independent of cSA

and cSB
for all the sessions; and

• in game G5, we replace the session key sskA,B output by 2PAKE by a random key ssk′A,B

in all of the sessions involving honest users and adopt a similar proof technique as with that
of Lemma 2 for Theorem 1.
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7 Efficiency Analysis

In this section, we examine and show that the communication and computational costs of our
4PAKE protocols are comparable to existing protocols. For this purpose, we instantiate concrete
2PAKE, 2AAKE, and 2SAKE based on SPEKE [29],9 the signature-based authenticator of [17], and
the MAC-based authenticator of [3], respectively.

7.1 Communication Overhead

Let C ↔ C denote the interaction between two clients (in 4PAKE), or a client and an application
server (in PKCROSS). Let S ↔ S denote the interaction between two servers (in 4PAKE), or
two KDCs (in PKCROSS). We let also C ↔ S represent the interaction between a client and
a server (or KDC). Table 2 shows the number of message flows for each type of the mentioned
interactions. It is not suprising that our protocols have smaller number of message flows than
that of PKCROSS. This is because our protocols do not require interaction between the local and
the remote servers. Further, Kerberos is designed such that a client must obtain a ticket-granting
ticket and a service ticket before it can access a target application server. We can also see from
Table 2 that the communication overhead for KDCs in PKCROSS is higher than that of our
protocols, that is 8 incoming/outgoing messages compared to 4, respectively. This implies that
our protocol is likely to be more scalable in the sense that the server can afford to serve more
clients given a fix communication bandwidth.

Table 2: Numbers of message flows in PKCROSS and our protocols.

Protocol C ↔ S C ↔ C S ↔ S Total

PKCROSS [28] 6 2 2 10
4PAKEv1 4 4 0 8
4PAKEv2, 4PAKEv3 4 2 0 6
4PAKEv4, 4PAKEv5 4 2 0 6

Our generic protocols may understandably be less efficient than one that is based on a standard,
non-compositional approach; although in return, we achieve protocol inter-operability by reusing
existing two-party protocols and our protocol is easier to analyse. However, Table 3 shows that
our approach is still comparable to most existing C2C-PAKE protocols (in which two servers share
a long-term symmetric key) in terms of the number of message flows exchanged.

Table 3: Numbers of message flows in C2C-PAKE.

Protocol C ↔ S C ↔ C S ↔ S Total

Byun-Lee-Lim [16] 6 2 0 8
Yin-Bao [46] 4 0 2 6
Feng-Xu [25] 5 3 0 8

7.2 Computational Overhead

We next turn to computational cost. Table 4 gives a summary of the cryptographic operations
involved in PKCROSS and our 4PAKE protocols. Here, we use 2C to denote both the clients and
2S to denote both the servers that participate in a protocol run.

9We assume that in real world implementation, the last message of the SPEKE protocol (between a client and
a server) can be combined with M4.
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Table 4: Cryptographic operations in PKCROSS and our protocols.

Protocol 2C 2S Total

PKCROSS [28]
– Public key decryption / signing 0 3 3
– Public key encryption / verification 0 7 7
– Symmetric key encryption / decryption 10 9 19

4PAKEv1, 4PAKEv2
– Public key decryption / signing 0 2 2
– Public key encryption / verification 2 0 2
– Diffie-Hellman exponentiation 8 4 12
– MAC generation / verification 2 2 4
– Hash evaluation 8 8 16

4PAKEv3
– Public key decryption / signing 2 2 2
– Public key encryption / verification 4 0 2
– Diffie-Hellman exponentiation 8 4 12
– MAC generation / verification 2 2 4
– Hash evaluation 8 8 16

4PAKEv4
– Diffie-Hellman exponentiation 8 6 14
– Symmetric key encryption / decryption 2 2 4
– MAC generation / verification 6 2 8
– Hash evaluation 12 14 26

4PAKEv5
– Diffie-Hellman exponentiation 8 10 18
– Symmetric key encryption / decryption 2 2 4
– MAC generation / verification 2 2 4
– Hash evaluation 20 22 42

Depending on the choices and the parameters of the cryptographic schemes, the overall com-
putational overhead of most of our protocols seem to be comparable to or slightly more than that
of PKCROSS. Plugging in some concrete figures, Table 5 provides some estimation of the total
computation times in milliseconds (ms) for each protocol run by using the Crypto++ benchmarks
obtained on an Intel Core 2 1.83 GHz processor under Windows Vista in 32-bit mode [22]. We
choose 1024-bit RSA for public key encryption, 1024-bit DH key pair generation for Diffie-Hellman
exponentiation, AES/CBC (128-bit key) for symmetric encryption, HMAC(SHA-1) for MAC gen-
eration, and SHA-1 for hash evaluation. Our estimation is based on a fixed message size of 1024
bytes for all cryptographic operations.

From Table 5, we can see that the overhead at the servers in our protocols is slightly less than
that of PKCROSS. However, the clients in our protocols have to perform signature verification
and/or Diffie-Hellman exponentiation (during key agreement), and hence higher overhead is in-
curred compared to that of PKCROSS, in which the clients perform only symmetric key operations.
This is a trade-off between performance and usability (since the clients in our protocol avoid public
key management and depend on only passwords). We also stress that our protocols, when relying
on the Diffie-Hellman key exchange technique, additionally provide forward secrecy—a property
not achievable by PKCROSS. In fact, if we do not make use of Diffie-Hellman key exchange, some
of our protocols are roughly as efficient as PKCROSS from the client’s perspective. For example,
in 4PAKEv4, if we use the REKEY protocol of [17] as the 2SAKE protocol, then the client has
computational overhead comparable to that of PKCROSS since only the servers are required to
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Table 5: Comparison between PKCROSS and our protocols in terms of computational overhead
in ms using the Crypto++ benchmarks.

Protocol 2C 2S Total

PKCROSS [28] 0.09 5.02 5.11
4PAKEv1, 4PAKEv2 3.82 4.78 8.60
4PAKEv3 6.90 4.75 11.65
4PAKEv4 3.73 2.82 6.55
4PAKEv5 3.75 4.66 8.41

perform (two) Diffie-Hellman exponentiations.

8 Applications

Our approach of 4PAKE seems to be applicable to many cross-domain authenticated key exchange
scenarios.

8.1 Client-to-Client TLS

One of the most common password-based user authentication mechanisms is the use of user-
name/passwords through the TLS (or known as SSL) protocol [23]. This method has been widely
used in applications, such as web-based emails, online booking and Internet banking, for mutual
authentication and key establishment between a user and a server. Typically, a user first estab-
lishes a secure TLS channel with a server by performing the server-authenticated TLS handshake
(using the server’s public key certificate). Note that at this point, the user is still not authenticated
by the server. The user then transmits her authentication information, such as a username and a
password, to the server (in plaintext) through the TLS channel, so that the server can verify the
authenticity of the user. However, this approach is restricted to only the two-party client-server
setting.

Using our compositional approach, we envisage that a client-to-client TLS protocol can be
constructed in a natural way by using the following building blocks:

• certTLS, the hybrid server-authenticated TLS handshake and username/password approach
(between a client and a server, as described above);

• dhTLS, the classic Diffie-Hellman authenticated key exchange TLS handshake protocol (be-
tween two clients) [23];

In the client-to-client TLS protocol, a client first authenticates to its domain server using the
certTLS protocol and obtains its credential (or authenticated data) in the form of a signature.
Using the credential, the client then performs the dhTLS protocol with the intended remote client.

To instantiate the client-to-client TLS protocol from our generic 4PAKE protocol from Figure 1,
we simply replace the 2PAKE protocol by the certTLS protocol; the 2PAKE protocol by the dhTLS
protocol; (epkA, eskA) and (epkB , eskB) by (ga, a) and (gb, b), respectively. Here, g is a generator
of a group G in which the Decisional Diffie-Hellman problem is hard, and a, b are chosen at random
from {1, . . . , |G|} by users A and B, respectively.

We note that protocol (i) can be replaced by a password-based TLS protocol for better usability
and stronger security [2]. Instead of sending a username/password in clear through a TLS channel,
a password-based TLS protocol binds a password directly into a protocol run (which will not expose
any useful information about the password).10

10This prevents a user from unintentionally revealing her password to a bogus server, in the event of the server
being able to be authenticated to the user through a fake certificate, for example.
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8.2 Email Communication

Typically, sensitive information, such as financial data, medical records, proprietary corporate
information and so on, is exchanged between business partners and customers through emails,
and thus such information must be delivered to its destination in a secure manner. One natural
solution is by encrypting email communication. Very often, however, it is not clear how this is
achieved in real world when a sender and her targeted recipient do not share the same domain
name in their email addresses.

Google provides a paid service called Google Message Encryption [27] that allows their users
to send encrypted emails. The Google Message Encryption service secures outgoing email to a
data center using a secure SSL/TLS connection. At the data center, messages are encrypted for
each intended recipient and are delivered to the recipients’ inbox. Recipients can then view the
messages by providing their respective passwords associated with their gmail accounts. However,
this works only when both the sender and the recipient of an encrypted message have a gmail
account.

Alternatively, one can also use Pretty Good Privacy (PGP) [36], a well-known program for
encrypting emails using public key encryption. However, we must assume that the sender has a
copy of the recipient’s public key and there exists a means to verify the authenticity of the public
key.

A simple twist of our approach allows the sender to encrypt a message for a recipient belonging
to a different domain name. Moreover, the sender does not require the recipient’s public key but
simply relying on her existing email account password. We envisage that an email that is sent
across a domain can be encrypted using a session key generated from executing our 4PAKE protocol.

We discussed in Section 5.2 that a domain server typically has knowledge of all passwords
associated to users within its domain. Hence, we exploit the fact that a server can impersonate
its user to another user of a different domain. We require that the recipient’s email server acts
on his behalf (or “impersonates” the recipient) to establish a secret key with the sender. When
executing the 4PAKE protocol, the sender creates a secure channel with her email server by using
her email password; while the recipient’s server plays a double role (email server and recipient) in
the protocol while performing key exchange with the sender. The established session key is then
used to encrypt the message that needs to be protected. The recipient can subsequently retrieve
the encrypted message and the encryption key from his email server.

8.3 Mobile Phone Communication

4PAKE can also be used to secure communications between mobile clients that subscribe to dif-
ferent mobile service providers. In mobile networks, such as the 2G and 3G telecommunication
networks [1], each mobile client subscribes to a Home Location Register (HLR). The mobile client
also shares a secret key (stored in the SIM card) with the HLR, and uses this key to authenticate
itself to the HLR when the mobile device is turned on. Meanwhile, different HLRs are connected
via wired networks.

Our 4PAKE protocol fits nicely into the mobile network structure. That is, two mobile clients
that subscribe to different HLRs can establish a secure communication channel by executing the
protocol. Further, the protocol provides key privacy with respect to servers, i.e., HLRs. The latter
is a desirable feature that is not supported by current mobile communication systems.

8.4 Instant Messaging

Yet another example application of 4PAKE is to secure instant messaging (IM) between two users.
Exchanging messages and monitoring availability of a list of users in real-time through IM services
have been very popular for a relatively long time. There are many free public domain IM services,
such as AOL Instant Messenger (AIM), ICQ, MSN Messenger (Windows Messenger in XP), and
Yahoo! Instant Messenger (YIM). In [32], Mannan and van Oorschot proposed the use of a
three-party password-based authenticated key exchange for securing public IM, assuming that
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two communication parties are using the same IM service. However, it is not uncommon that two
users, wishing to communicate with each other, subscribe to two different IM services. Our four-
party key exchange approach is just what is needed to secure communication in such a scenario.

9 Conclusions

The example applications that we have given show that there is a growing need and importance
to the use of a four-party password-based authenticated key exchange protocol for cross-domain
communications. In this paper, we proposed a compositional approach to constructing such a
protocol, which allows two users, who do not share a common password and from different security
domains, to establish a secret key in an authenticated and secure manner. We presented five
variants of provably secure four-party password-based authenticated key exchange protocols by
using two-party key exchange protocols as building blocks. Our protocols are reasonably efficient
and we believe that our approach is useful for extending a legacy system with two-party protocols
to the four-party setting.
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