
PIRMAP: Efficient Private Information Retrieval
for MapReduce (Short Paper)

Travis Mayberry Erik-Oliver Blass Agnes Hui Chan
College of Computer and Information Science

Northeastern University, Boston MA 02115
{travism|blass|ahchan}@ccs.neu.edu

ABSTRACT
Private Information Retrieval (PIR) allows for retrieval of
bits from a database in a way that hides a user’s access pat-
tern from the server. However, its practicality in a cloud
computing setting has recently been questioned. In such a
setting, PIR’s enormous computation and communication
overhead is expected to outweigh any cost saving advan-
tages of cloud computing. This paper presents PIRMAP, a
practical, highly efficient protocol for PIR in MapReduce,
a widely supported cloud computing API. PIRMAP focuses
especially on the retrieval of large files from the cloud, where
it achieves optimal communication complexity (O(l) for re-
trieval of an l bit file) with query times significantly faster
than previous schemes. To achieve this, PIRMAP arranges
files so parallel evaluation can be done during the “Map”
phase of MapReduce and aggregation can be carried out via
an efficient additively homomorphic encryption scheme in
the “Reduce” phase. PIRMAP has been implemented and
tested in Amazon’s public cloud with total database sizes
of up to 1 TByte. Our performance evaluations show that
PIRMAP is more than one order of magnitude cheaper and
faster than “trivial PIR” on Amazon and adds only 20%
overhead to a theoretical optimal PIR.

1. INTRODUCTION
Cloud computing has recently been identified as an im-

portant strategic technology [6], as it offers the advantage of
greater flexibility and potentially reduced costs to compa-
nies outsourcing their data and computation. The cost ad-
vantage of cloud computing comes from the fact that cloud
users do not need to maintain their own, expensive data
center, but instead can pay a cloud provider for hosting.
However, despite the hype, hesitations remain among major
organizations. Lack of security and privacy guarantees has
been identified as a major adoption obstacle for both large
enterprise [17] and governmental organizations [11].
Privacy problems stem from the fact that, when a cloud

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW 2012 Raleigh, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

user hands over his information to the cloud, he is relin-
quishing control of that data to a third party. Public clouds
are threatened by hackers due to the much larger target
they present. Insiders such as data center administrative
staff can also easily access private data that has been out-
sourced. As multiple cloud users are hosted on the same
data center (“multi tenancy”), even other cloud users might
try to illegally access tenancy”), even other legitimate cloud
users might try to illegally access data. Finally, as cloud
providers place data centers abroad in countries with un-
clear privacy laws, local authorities become an additional
threat to outsourced data. Such attacks are realistic and
have already been reported [7, 18, 21]. This shows that the
user needs to take special precautions to ensure the privacy
and integrity of their cloud data.

In this paper, we envision an application scenario where a
cloud user stores large amounts of data (files) with a cloud
provider and subsequently wishes to retrieve a subset of
those files. Such a scenario is realistic; for example, many
hospitals are currently looking to take advantage of cloud
storage by outsourcing patients’ sensitive health records [19].
One can imagine that doctors upload their patients’ health
records (files) to a public cloud provider and occasionally
retrieve records later on. In the face of an untrusted cloud
provider, the privacy of patients has to be protected.

While encryption of data at rest helps to protect data
confidentiality, this is often not sufficient: the subsequent
data access patterns can leak information about patients.
For example, if the outsourced data in question contains
encrypted patient records, the cloud provider might learn
that a patient has been diagnosed with cancer when it sees
that patient’s records have been retrieved by an oncologist.

It is very hard to assess what information may be leaked
this way and what inferences an adversary may make. Pri-
vate Information Retrieval (PIR) offers a solution to the
problem of hiding access patterns [4, 8], independent of an
encryption mechanism. In PIR, a database stores n strings
each of size l bits, and a user can query for one l bit string
without leaking which string to the database. The challenge
is to perform retrieval of the l bit string in a more efficient
manner than the trivial solution with O(l · n) complexity
that sends the entire database.

Because of the significant overhead, it has recently been
questioned whether PIR will ever become practical in a real-
world cloud computing setting. Cloud providers such as
Amazon charge their customers for both data transfer and
CPU hours [1]. Due to the large constants involved in more
advanced PIR protocols, it has been argued that trivial PIR

(retrieving the whole (l · n) bit database) is not only faster,
but also cheaper for the cloud customer compared to a PIR
query that involves lengthy computation and data trans-
fer [3, 13, 16].
Another open question is how to perform PIR in a real-

world cloud computing environment. One of the biggest
challenges in cloud computing is writing application code so
it can scale easily to the large distributed systems which are
characteristic in such a setting. In order to alleviate this dif-
ficulty, major cloud providers (e.g., Amazon, Google, IBM,
Microsoft) offer an interface to the prominent MapReduce [5]
API for distributed computing to their users. MapReduce
comprises not only parallelization (“Map”) of work, but an
aggregation (“Reduce”) of individual results to keep compu-
tational burden on the user side low. While parallelization
might be possible, it is unclear how related work on PIR can
leverage aggregation.
This paper presents PIRMAP, an efficient PIR protocol

suited for MapReduce clouds. PIRMAP especially targets
retrieval of large files not considered in previous work. In a
scenario with n files each of size l bits and l ≫ n, PIRMAP
achieves optimal communication complexity O(l) with low
constants. PIRMAP is designed for and leverages MapRe-
duce parallelization and aggregation. We have implemented
PIRMAP in Hadoop MapReduce, and its performance will
be presented in Section 5.
Our contributions in this paper are:
1.) PIRMAP, a new, efficient PIR scheme for cloud com-

puting with optimal O(l) communication complexity when
retrieving an l bit file for large l. PIRMAP runs on top of
standard MapReduce, not requiring changes to the underly-
ing cloud infrastructure.
2.) An implementation of PIRMAP that is usable in real-

world MapReduce clouds today, e.g., Amazon. We evaluate
PIRMAP, first, in our own (tiny) local cloud and, second,
with Amazon’s cloud. We verify its practicality with up to
1 TByte of data. Compared to the previously largest single
database PIR experiment with up to 28 GByte of data [13],
this demonstrates the efficiency and practicality of PIRMAP
in the real-world. PIRMAP is more than one order of magni-
tude cheaper and faster than trivial PIR, and – in our partic-
ular scenario – we can significantly outperform related work.
Compared to a theoretical, but unrealistic lower bound PIR,
PIRMAP adds only 20% overhead on Amazon. PIRMAP’s
source code is available for download [15].

2. RELATED WORK
Initial PIR solutions were found with O(l ·

√
n) [8] com-

munication complexity. Since then, much research has been
done to reduce communication overhead down to poly-loga-
rithmic complexity: see Cachin et al. [2], Lipmaa [9], or Os-
trovsky and Skeith [14] for an overview. The lowest commu-
nication complexity reported today is O(l · logn+k · log2 n),
where k is a security parameter [10]. However, this scheme
has very large constants and results in a much larger com-
munication cost for all practical values of n and l.
Despite the large amount of theoretical research, there has

not been much investigation into practical PIR. Recently,
Trostle and Parrish [20] compared the state of the art in
and found that at best it took 8 minutes to retrieve a 3 MB
file out of a dataset of 3 GB. Additionally, existing schemes
have significant communication overhead for files of that size
and larger.

3. PROBLEM STATEMENT

3.1 PIR
A PIR protocol is a series of interactions between the user

and server that results in the user retrieving one file out
of n, of his choice, while the server does not learn which
file this was. More formally, the server cannot guess with
probability greater than 1/n which file was queried. Note
that this probability does not increase over multiple queries.
This effectively hides the user’s access pattern as each query
is computationally indistinguishable from the others. The
only information leaked is the number of records queried. In
this short paper, we refrain from a more formal exposition
of PIR and refer to Ostrovsky and Skeith [14].

3.2 MapReduce
With the trend towards more computers and more cores

rather than faster individual processors, it is important that
any practical PIR implementation be deployable in a way
that can take full advantage of parallel and cluster com-
puting environments. Perhaps the most widely adopted ar-
chitecture for scaling parallel computation in public clouds
today is Google’s MapReduce [5]. Its design allows for a set
of computations, or “job”, to be deployed across many nodes
in a cloud data center. Its biggest advantage is that it scales
transparently to the programmer. That is, once an imple-
mentation is written using MapReduce, it will be able to run
on any number of nodes in the data center, from one up to
hundreds or thousands, without changes in the code. This
is managed by splitting computation into two phases, each
of which can be run in parallel on many computing nodes.

The first phase is called the “Map” phase. MapReduce
will automatically split the input to the computation equally
among available nodes in the cloud data center, and each
node will then run a function called map on their respec-
tive pieces (called InputSplits). It is important to note that
the splitting actually occurs when the data is uploaded into
the cloud (in our case when the patient record/files are up-
loaded) and not when the job is run. This means that each
“mapper”node will have local access to its InputSplit as soon
as computation is started and you avoid a lengthy copying
and distributing period. The map function runs a user de-
fined computation on each InputSplit and outputs (emits) a
number of key-value pairs that go into the next phase.

The second phase, “Reduce”, takes as input all of the key-
value pairs emitted by the mappers and sends them “re-
ducer” nodes in the data center. Specifically, each reducer
node receives a single key, along with the sequence of values
emitted by the mappers which share that key. The reducers
then take each set and combine it in some way, emitting a
single value for each key.

Despite being widely used, MapReduce is a very specific
computational model and not all algorithms can be easily
adapted to it. A practical PIR such as PIRMAP has to take
its specifics into account – as we will see below.

4. PIRMAP
PIRMAP is an extension of the PIR protocol by Kushile-

vitz and Ostrovsky [8], targeting the retrieval of large files in
a parallelization-aggregation computation framework such
as MapReduce. We will start by giving an overview of
PIRMAP which can be used with any additively homomor-

Table 1: Cloud splits files into pieces

1 2 · · · l
k

file1 B1,1 B1,2 · · · B1, l
k

file2 B2,1 B2,2 · · · B2, l
k

· · · · · ·
filen Bn,1 Bn,2 · · · Bn, l

k

phic encryption scheme.
Upload. In the following, we assume that the cloud user

has already uploaded its files into the cloud using the inter-
face provided to them by the cloud provider.
Query. In keeping with standard PIR notation, our data

set holds n files, each of which is l bits in length. There is
also an additional parameter k which is the block size of the
chosen cipher. For ease of presentation, we will consider the
case where all files are the same length, but PIRMAP can
easily be extended to accommodate variable length files by
padding or prepending each file with a few bytes that specify
its length. Our scheme is can be summarized as follows:

1. If the user wishes to retrieve file 1 ≤ x ≤ n out of
the n files, it creates a vector v⃗ = (v1, . . . , vn), where
vx = E(1) and ∀i ̸= x : vi = E(0). Here, E denotes
any probabilistic, additively homomorphic encryption
mechanism. The user sends v⃗ to the cloud.

2. The cloud arranges files into a table T similar to Ta-
ble 1. The cloud divides each file i into l

k
blocks

{Bi,1, . . . , Bi, l
k
} and multiplies each block by vi, i.e.,

B′
i,j = vi ·Bi,j . Here, “·” denotes scalar multiplication.

3. The cloud adds column-wise to create one result vector
r⃗ = (r1, . . . , r l

k
). Each element ri of that vector is of

size k, so the total bit length of r⃗ is l bits. Vector r⃗
is an encryption of file x. Vector r⃗ is returned to the
user who decrypts it.

The cloud effectively performs the matrix-vector multipli-
cation r⃗ = T T · v⃗, where T T is T transposed. In practice
the cloud does not need to create a table, but just needs to
perform the block wise scalar multiplications and additions.
The computational complexity of this scheme is O(n · l),

or the size of the whole data set. This is optimal because the
cloud needs to “touch” every piece of data or else it would
know certain files were not queried by the user. The commu-
nication complexity can be broken down into two parts: user
to cloud and cloud to user. The user sends a vector of size n
containing ciphertexts of size k, so the bandwidth complex-
ity user-cloud is O(n · k). The cloud sends back a vector of
l
k
entries, each of size O(k), so cloud-user bandwidth com-

plexity is O(l). Consequentially, the overall communication
complexity is O(n · k + l).
While PIRMAP appears to be relatively basic compared

to other modern PIR schemes [2, 10], it achieve better over-
head in practice because of the specific values of n and l that
we will be using. Existing work in PIR is mostly concerned
with datasets that have large values for n and compara-
tively small values for l. PIRMAP would do poorly in that
setting, because the complexity would be dominated by n.
However, PIRMAP’s cloud-to-user communication is opti-
mal at O(l) because the cloud must send back a message
at least the size of the file the user queries for. For values
of l larger than n, PIRMAP allows for complexity of O(l)

with small constants. We argue that in practice this is of-
ten true. For example, if a user has a 1 TB dataset of 10
MB files, l

n
≈ 800. In contrast, under the same conditions,

arranging the files in a
√
n ×

√
n matrix would result in a

download cost of 1024 · 10MB ≈ 10GB. Even if n > l, the
actual communication costs are low for practical choices of
the parameters, see Section 5.

Optimization: Although the cloud is doing most of the
computation in this scheme, the user is still required to gen-
erate a vector of ciphertexts of length n and then decrypt
the resulting response. Encryption is relatively expensive
for ciphers that would be usable in this scheme, so it is a
non-trivial amount of computation given that users could be
low-powered devices such as smartphones. A way to allevi-
ate this problem is to have a moderately powerful trusted
server pre-generate vectors of ciphertexts and upload them
to the cloud for the users to use. Optionally, it could instead
be the low-powered device itself during an overnight down-
time. This machine would generate m vectors of size n such
that Vi,j = E(1) where j = HMAC(k, i) and Vi,j = E(0)
otherwise. This allows the user to use one of these “dis-
posable” vectors at query time and permute it so that the
single E(1) is at the index of the file it wishes to retrieve.
If k is a key shared between the user and trusted server,
the user can efficiently locate E(1). The user then generates
a description of a permutation which moves the E(1) value
to the correct position and randomly shuffles all other loca-
tions. A description of this permutation is of size n · log(n),
which is smaller than the size of the vector for k > 30, so
this also effectively front loads the upload cost of the query
and makes response time faster.

Although the encryption scheme we use (see Section 4.2
below) can perform encryptions very quickly and does not
require the use of this optimization, we point it out as a
general improvement that could be used with our scheme if
the homomorphic cipher was changed.

4.1 PIRMAP Specification
In our protocol, the cloud performs two operations: mul-

tiplication of each block by the corresponding value in the
“PIR vector” v⃗, and column-wise addition to construct the
encrypted file chosen by the user. These two stages translate
exactly to map and reduce implementations respectively.
The files will be distributed evenly over all participating
nodes where the map function will split each file into blocks
and multiply the blocks by the correct encrypted value. The
output of these mappers is a set of key-value pairs where the
key is the index of the block and the value is the product
of the block and encrypted PIR value. These values are all
passed on to the reducers, which take a set of values for each
key (block position or column) and add them together to get
the final value for each block.

Being interested in filex, the user executes algorithm Gen-
Query to compute v⃗ that it sends to the MapReduce cloud.
There, each mapper node evaluates Map on its locally stored
file and generates key-values pairs for the reducer. The re-
ducer simply adds all values and sends them back to the
user. The user receives l

k
values of size k from the reducers

that he decrypts to get filex.

User Cloud

function
GenQuery(n, x)

v := {}
for i = 1 to n do

if i = x then
vi := E(1)

else
vi := E(0)

end if
end for

end function

function
Map(file, v)

for i = 1 to n do
c := Bi · vi
Emit(i, c)

end for
end function
function
Reduce(key, v)

total := 0
for i = 1 to n do

total := total+vi
end for
Emit(key, total)

end function

4.2 Encryption Scheme
Since the map phase of our protocol involves multiplying

every piece of the dataset by an encrypted PIR value, it is
important that we choose an efficient cryptosystem. Tradi-
tional additively homormorphic cryptosystems, such as Pail-
lier’s, have a form of multiplication as their homomorphism.
That is, for some a and b, E(a) · E(b) = E(a + b). Since
our map phase consists of multiplying ciphertexts by unen-
crypted scalars, we would actually have to do exponentia-
tion of a ciphertext. Our scheme, and all PIR schemes, must
compute on the whole dataset, so it would be quite compu-
tationally intensive to use a cipher requiring exponentiation.
Our solution to this problem is to use the somewhat ho-

momorphic encryption scheme introduced by Trostle and
Parrish [20] which relies on the hardness of the trapdoor
group assumption. True homomorphic encryption schemes
support an unlimited number of computations without in-
creasing the size of the ciphertexts. In contrast, this scheme
results in ciphertexts which grow in size by O(log2 n) bits
for n additions. In return for this size increase, we can have
an encryption scheme where the additive homomorphism is
actually addition itself. This scheme to encrypt n bits with
some security parameter k > n is as follows:

KeyGen(1k): Generate a prime m of k bits and a random
b < m.
Encrypt E(x) = b · (r · 2n + x) mod m, for a random r
Decrypt D(c) = b−1 · c mod m mod 2n

This encryption has the desired homomorphic property
E(a) + E(b) = E(a + b). This scheme is somewhat homo-
morphic, because it cannot support an unlimited number of
additions. When two ciphertexts c1 and c2 are added, you
can express the sum as

b · (r1 ·2n+x1)+b · (r2 ·2n+x2) = b · ([r1+r2] ·2n+x1+x2).

If the inside term (r1 + r2) · 2n + x1 + x2 exceeds m and
“wraps around”, then it will not be decrypted correctly be-
cause application of the modulus will cause a loss of in-
formation. The modulus m must be chosen large enough
to support the number of additions expected to occur. To
support t additions, m should be increased by log2 t bits.
Additionally, each scalar multiplication can be thought of
as up to 2n additions, meaning that the size of m must be
doubled for each supported scalar product. For our PIR
scheme, m must be chosen to be O(2k+log2(n)) to support
the required homomorphic operations.
In return for the reasonable increase in ciphertext size

caused by the larger modulus (about 300% in our evalua-

tions in Section 5), we are able to do very efficient compu-
tations over the encrypted data. Additionally, encryption
is equivalent to only two multiplications, an addition and
a modular reduction, while decryption is one multiplication
and a reduction. This compares very favorably with other
homomorphic encryption schemes, such as Paillier, requiring
a modular exponentiation.

4.3 Privacy Analysis
PIRMAP inherits privacy properties of the work it is based

on, i.e., traditional cPIR by Kushilevitz and Ostrovsky [8]
and the PIR variant by Trostle and Parrish [20]. In the
following, we sketch our privacy rationale.

PIRMAP is privacy-preserving, iff an adversary (the cloud)
cannot guess, after each query, with probability greater than
1/n, which file was retrieved by the user after an invocation
of the protocol. There are two pieces of information that
the adversary has access to: the set of uploaded files and the
vector v⃗ of PIR values. If the files are each individually en-
crypted with an IND-CPA cipher, e.g., AES-CBC, they are
computationally indistinguishable from random to the ad-
versary. That means any attack that could break PIRMAP
using the information in the database could also break it
when run with a simulator that generates a set of random
files. Therefore, privacy is dependent only on v⃗.

Vector v⃗ contains many encryptions of “0” and one en-
cryption of “1”. The problem of determining which file was
selected is then equivalent to distinguishing between encryp-
tions of “0” and encryptions of “1” in the underlying encryp-
tion. However, the scheme we use is provably secure against
distinguishing under the Trapdoor Group Assumption [20].
Consequently, PIRMAP preserves user privacy.

5. EVALUATION
We have evaluated our scheme in two contexts: on a local

“cloud” (a single server with multiple CPUs) and on Ama-
zon’s EC2 cloud using Elastic MapReduce [1]. PIRMAP has
been implemented in Java for standard Hadoop MapReduce
version 1.0.3 and is available for download [15].

5.1 Setup
Local: First, we have used a local server to prototype and

debug our application and to do detailed timing analysis
requiring many runs of MapReduce. This server, running
Arch Linux 2011.08.19, has dual 2.4 GHz quad-core Xeon
E-5620 processor and 48 GB of memory. Based on specs
and benchmark results, our local server is closest to an“EC2
Quadruple Extra Large” instance, which has dual 2.9 GHz
quad-core Xeon X-5570 processors and 24 GB of memory.

We have measured the time for PIR queries, i.e., the time
to upload PIR vector v⃗ plus the time to process the query
and download the result. Using Amazon’s standard cost
model, we have calculated the price of each PIR query as
the amount of money required to run the query on one of
the above EC2 instances [1] (for the same amount of time it
took to run locally) plus the bandwidth cost of downloading
the results [1]. Uploading data is free. To put our mea-
surements into perspective, we have also included the time
and cost of two other, hypothetical, PIR protocols. We have
implemented a Baseline, which does not perform any cryp-
tographic operations and merely“touches”each piece of data
through the MapReduce API. This measure shows the the-
oretical lower bound of computation and time required for

 100

 200

 500

 1000

 2000

 5000

 10000

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s
)

Total amount of data (GByte)

Trivial PIR
PIRMAP 1MB
PIRMAP 3MB
Baseline 1MB
Baseline 3MB

Figure 1: Time per query, local server

 0.01

 0.02

 0.05

 0.1

 0.2

 0.5

 1

 2

 5

 10

 10 20 30 40 50 60 70 80 90 100

C
o
s
t
($

)

Total amount of data (GByte)

Trivial PIR
PIRMAP 1MB
PIRMAP 3MB
Baseline 1MB
Baseline 3MB

Figure 2: Cost per query, local server

 100

 200

 500

 1000

 2000

 5000

 10000

 20000

 50000

 100000

 50 100 150 200 1000

T
im

e
 (

s
)

Total amount of data (GByte)

Trivial PIR
PIRMAP 1MB
Baseline 1MB

Figure 3: Time per query, Amazon Elastic MapReduce

 2

 5

 10

 15

 20

 50

 100

 50 100 150 200 1000

C
o
s
t
($

)

Total amount of data (GByte)

Trivial PIR
PIRMAP 1MB
Baseline 1MB

Figure 4: Cost per query, Amazon Elastic MapReduce

any PIR scheme that uses MapReduce, independent of the
encryption and exact PIR method used.
To highlight the advantage of computational PIR, we have

also included the time and cost required for the“trivial”PIR
scheme. The trivial scheme is one where the user downloads
the entire data set and simply discards the files he is not in-
terested in. This is very bandwidth intensive, but computa-
tionally lightweight. Sion and Carbunar [16] conjecture this
trivial PIR to be the most cost effective in the real-world.
We have calculated the cost based on the amount that Ama-
zon charges to download the corresponding amount of data
and the time based on a 11.28 Mbps connection, an aver-
age as reported by Nasuni [12]. Note that we generally do
not count the cost for long-term storage of data at Amazon.
Although potentially significant for large amounts of data,
the user has to pay for this regardless of whether he wants
queries to be privacy-preserving or not. PIRMAP does not
increase the amount of storage in Amazon.
Amazon: Besides the local experiments, to demonstrate

the scalability of our scheme, we have also evaluated it on
Amazon’s Elastic MapReduce cloud. Amazon imposes a
maximum limit of 20 instances per MapReduce job by de-
fault. In keeping with this restriction, we used 20 “Cluster
Compute Eight Extra Large” instances which each having
dual eight-core Xeon E5-2670 processors and 64 GB of RAM.

5.2 Results
Time and total cost: Figures 1 to 4 show our evalu-

ation results. Figures 1 and 2 show the local evaluation,

while figures 3 and 4 show evaluation with Amazon. In each
figure, the x-axis shows the total amount of data stored at
the cloud, i.e., number of files n times file size l. The y-axis
shows either the time elapsed (for the whole query from the
time the user submits the query until MapReduce returns
the result back) or the cost implied with the query. In all
four graphs, we scale the y-axis logarithmically, and in fig-
ures 3 and 4 we also scale the x-axis logarithmically. Each
data point represents the average of at least 3 runs. Relative
standard deviation was low at ≈ 5%.

To verify the impact of varying file sizes l, for our local
evaluation, we show results with file sizes of 1 MB and 3 MB,
attaining approximately equal runtime in both cases. This is
to be expected because, in each data point, we have fixed the
size of the database so varying retrieval sizes merely reshapes
the matrix without changing the number of elements in it.
The execution is dominated by the scalar multiplications
that occur during the map phase, and the same number of
those is required no matter the dimension of the matrix.

Our evaluation shows that PIRMAP outperforms trivial
PIR in both time and cost by one order of magnitude. Com-
pared to the theoretical, yet unrealistic optimum Baseline,
PIRMAP introduces only 20% of overhead in the case of
Amazon. We experience slightly larger overhead of 100%.
This is because executing on Amazon has a much higher
”administrative” cost due to the higher number of nodes
and more distributed setting. These results indicate not
only PIRMAP’s efficiency over Trivial PIR and Baseline,
but also its real-world practicality: in a small database com-

prising 10,000 patient record of size 1 MB each (10 GByte),
a doctor can retrieve a patient record in ≈ 3 min for only
≈ $0.03. In a huge data set with 1, 000, 000 files, a single file
can be retrieved in ≈ 13 min for ≈ $14. In the case where
it is necessary to retrieve data in a fully privacy-preserving
manner, we conjecture this to be acceptable.
Although a comparison with related research is not straight-

forward (as PIRMAP targets a very special scenario), we
put our results into perspective with those of Olumofin and
Goldberg [13]. They use similar hardware (eight 2.50 GHz
Intel Xeon E5420 CPUs), and can query a 30 GB dataset
in ≈ 1000 sec. This about twice as slow as PIRMAP. It
is also worth noting that their method takes advantage of
GPU resources, whereas ours currently does not (we plan to
address this in future research).
Query Generation and Decryption: Due to the effi-

ciency of the encryption in PIRMAP, PIR query generation
is very fast. One ciphertext (element of v⃗) is generated for
each file in the cloud, so the generation time is directly pro-
portional to the number of files. We omit in-depth analysis,
but in our trials on a commodity Macbook running on a sin-
gle roce it takes about 2.5 seconds per 100,000 files in the
cloud. Decryption is slightly more expensive than encryp-
tion, but we still managed, on the same machine, to decrypt
approximately 3 MB per second. We conclude this overhead
to be feasible for the real-world.
Bandwith: PIRMAP introduces bandwith overhead, 1.)

to upload v⃗, and 2.) to download the encrypted version
of the file. For security, we set k = 2048 bit, so each of
the n elements of vector v⃗ has size 2048 bit. For a data set
with 10,000 files (10 GByte), this requires the user to upload
≈ 2.5 MByte. As this can become significant with larger
number of files, we suggest to then use the optimization
in Section 4, especially for constrained devices. With our
choice of k, download of a 1 MB file increases to downloading
a total of 3 MByte.

6. CONCLUSION
Retrieval of previously outsourced data in a privacy-pre-

serving manner is an important requirement in the face of
an untrusted cloud provider. PIRMAP is the first practi-
cal PIR mechanism suited to real-world cloud computing.
In the case, where a cloud user wishes to privately retrieve
large files from the untrusted cloud, PIRMAP is communica-
tion efficient. Designed for prominent MapReduce clouds, it
leverages their parallelism and aggregation phases for max-
imum performance. Our analysis shows that PIRMAP is
an order of magnitude more efficient than trivial PIR and
introduces acceptable overhead over non-privacy-preserving
data retrieval. Additionally, we have shown that our scheme
can scale to cloud stores of up to 1 TB on Amazon’s Elastic
MapReduce service.

References
[1] Amazon. Elastic MapReduce, 2010. http://aws.

amazon.com/elasticmapreduce/.

[2] C. Cachin, S. Micali, and M. Stadler. Computationally
private information retrieval with polylogarithmic com-
munication. In Advances in Cryptology, EUROCRYPT,
pages 402–414, Prague, Czech Republic, 1999.

[3] Y. Chen and R. Sion. On securing untrusted clouds with
cryptography. InWorkshop on Privacy in the Electronic
Society, pages 109–114, Chicago, USA, 2010.

[4] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private Information Retrieval. In Proceedings of Sym-
posium on Foundations of Computer Science, pages 41–
51, Milwaukee, USA, 1995.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In Proceedings
of Symposium on Operating System Design and Imple-
mentation, pages 137–150, San Francisco, USA, 2004.

[6] Gartner. Gartner Identifies the Top 10 Strategic Tech-
nologies for 2011, 2010. http://www.gartner.com/it/
page.jsp?id=1454221.

[7] Google. A new approach to China, 2010.
http://googleblog.blogspot.com/2010/01/
new-approach-to-china.html.

[8] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: single database, computationally-private in-
formation retrieval. In Proceedings of Symposium on
Foundations of Computer Science, pages 364–373, Mi-
ami Beach, USA, 1997. ISBN 0-8186-8197-7.

[9] H. Lipmaa. An Oblivious Transfer Protocol with Log-
Squared Communication. In Conference on Informa-
tion Security, pages 314–328, Taipei, Taiwan, 2005.

[10] H. Lipmaa. First CPIR Protocol with Data-Dependent
Computation. In Conference on Information Security
and Cryptology, pages 193–210, Seoul, Korea, 2009.

[11] D. McClure. GSA’s role in supporting development
and deployment of cloud computing technology, 2010.
http://www.gsa.gov/portal/content/159101.

[12] Nasuni. State of Cloud Storage Providers
Industry Benchmark Report, 2011. http:
//cache.nasuni.com/Resources/Nasuni_Cloud_
Storage_Benchmark_Report.pdf.

[13] F.G. Olumofin and I. Goldberg. Revisiting the Compu-
tational Practicality of Private Information Retrieval.
In Proceedings of Financial Cryptography, pages 158–
172, Gros Islet, St. Lucia, 2011.

[14] R. Ostrovsky and W.E. Skeith. A survey of single-
database private information retrieval: techniques and
applications. In Proceedings of international confer-
ence on Practice and theory in public-key cryptography,
pages 393–411, Beijing, China, 2007.

[15] PIRMAP. Source Code, 2012. http://www.ccs.neu.
edu/home/travism/PIRMAP.zip.

[16] R. Sion and B. Carbunar. On the Computational Prac-
ticality of Private Information Retrieval. In Proceedings
of Network and Distributed Systems Security Sympo-
sium, pages 1–10, San Diego, USA, 2007.

[17] Symantec. State of Cloud Survey, 2011. http://www.
symantec.com.

[18] Techcrunch. Google Confirms That It Fired
Engineer For Breaking Internal Privacy Poli-
cies, 2010. http://techcrunch.com/2010/09/14/
google-engineer-spying-fired/.

[19] The Telegraph. Patient records go online in data cloud,
2011. http://www.telegraph.co.uk/.

[20] J. Trostle and A. Parrish. Efficient computationally pri-
vate information retrieval from anonymity or trapdoor
groups. In Proceedings of Conference on Information
Security, pages 114–128, Boca Raton, USA, 2010.

[21] Z. Whittaker. Microsoft admits Patriot Act can access
EU-based cloud data, 2011. http://www.zdnet.com/.

