
DAC-MACS: Effective Data Access Control for
Multi-Authority Cloud Storage Systems

Kan Yang∗, Xiaohua Jia†, Kui Ren‡

∗Department of Computer Science, City University of Hong Kong, Email: kanyang3@student.cityu.edu.hk
†Department of Computer Science, City University of Hong Kong, Email: jia@cs.cityu.edu.hk

‡Department of Electrical and Computer Engineering, Illinois Institute of Technology, Email: kren@ece.iit.edu

Abstract—Data access control is an effective way to ensure
the data security in the cloud. However, due to data outsourcing
and untrusted cloud servers, the data access control becomes
a challenging issue in cloud storage systems. Existing access
control schemes are no longer applicable to cloud storage systems,
because they either produce multiple encrypted copies of the same
data or require a fully trusted cloud server. Ciphertext-Policy
Attribute-based Encryption (CP-ABE) is a promising technique
for access control of encrypted data. It requires a trusted
authority manages all the attributes and distributes keys in the
system. In cloud storage systems, there are multiple authorities
co-exist and each authority is able to issue attributes indepen-
dently. However, existing CP-ABE schemes cannot be directly
applied to the access control for multi-authority cloud storage
systems, due to the inefficiency of decryption and revocation.
In this paper, we propose DAC-MACS (Data Access Control for
Multi-Authority Cloud Storage), an effective and secure data
access control scheme with efficient decryption and revocation.
Specifically, we construct a new multi-authority CP-ABE scheme
with efficient decryption and also design an efficient attribute
revocation method that can achieve both forward security and
backward security. The analysis and the simulation results show
that our DAC-MACS is highly efficient and provably secure under
the security model.

Index Terms—Access Control, CP-ABE, Decryption Outsourc-
ing, Attribute Revocation, Multi-authority Cloud.

I. INTRODUCTION

Cloud storage is an important service of cloud computing
[1]. It allows data owners to host their data in the cloud that
provides “24/7/365” data access to the users (data consumers).
Data access control is an effective way to ensure the data
security in the cloud. However, cloud storage service separates
the roles of the data owner from the data service provider, and
the data owner does not interact with the user directly for pro-
viding data access service, which makes the data access control
a challenging issue in cloud storage systems. Because the
cloud server cannot be fully trusted by data owners, traditional
server-based access control methods are no longer applicable
to cloud storage systems. To prevent the untrusted servers from
accessing sensitive data, traditional methods usually encrypt
the data and only users holding valid keys can access the data.
These methods require complicated key management schemes
and the data owners have to stay online all the time to deliver
the keys to new user in the system. Moreover, these methods
incur high storage overhead on the server, because the server
should store multiple encrypted copies of the same data for
users with different keys.

Ciphertext-Policy Attribute-based Encryption (CP-ABE)
[2], [3] is regarded as one of the most suitable technologies
for data access control in cloud storage systems, because it
gives the data owner more direct control on access policies
and does not require the data owner to distribute keys. In
CP-ABE scheme, there is an authority that is responsible for
attribute management and key distribution. The authority can
be the registration office in a university, the human resource
department in a company, etc. The data owner defines the
access policies and encrypts data under the policies. Each user
will be issued a secret key according to its attributes. A user
can decrypt the ciphertext only when its attributes satisfy the
access policies.

Extensive research has been done for single authority
systems [2]–[6]. However, in cloud storage systems, a user
may hold attributes issued by multiple authorities and the
owner may share data to the users administrated to different
authorities. For instance, a data owner may want to share
medical data only with a user who has the attribute of “Doctor”
issued by a hospital and the attribute “Medical Researcher”
issued by a medical research center. Although some multi-
authority CP-ABE schemes [7]–[10] have been proposed for
data encryption, they cannot be directly applied to do data
access control for multi-authority cloud storage systems, be-
cause they either require a global central attribute authority to
manage all the attributes across different organizations or lack
of efficiency. The aim of this paper is to study the data access
control issue in multi-authority cloud storage systems.

One critical requirement in the design of access control
schemes is the efficiency in computation. There are two
operations in access control that require efficient computation,
namely decryption and revocation. The users may use their
smart phones to access the data in nowadays cloud storage
systems, but the computation ability of smart phones is not as
strong as the PCs. Thus, the decryption on each user should
be as efficient as possible in the design of data access control
schemes. When a user is degraded or leaving the system,
some attributes should be revoked from this user. There are
two requirements of the efficient attribute revocation: 1) The
revoked user (whose attribute is revoked) cannot decrypt the
new ciphertext that is encrypted with new public key (Forward
Security); 2) The newly joined user can also decrypt the
previous published ciphertexts that are encrypted with previous
public key if it has sufficient attributes (Backward Security).

2

In this paper, we first construct a new multi-authority CP-
ABE scheme with efficient decryption and design an efficient
attribute revocation method for it. Then, we apply them to
design an effective access control scheme for multi-authority
systems. The main contributions of this work can be summa-
rized as follows.

1) We propose DAC-MACS (Data Access Control for
Multi-Authority Cloud Storage), an effective and secure
data access control scheme for multi-authority cloud
storage systems, which is provably secure in the random
oracle model and has better performance than existing
schemes.

2) We construct a new multi-authority CP-ABE scheme
with efficient decryption. Specifically, we outsource the
main computation of the decryption by using a token-
based decryption method.

3) We also design an efficient immediate attribute revo-
cation method for multi-authority CP-ABE scheme that
achieves both forward security and backward security. It
is efficient in the sense that it incurs less communication
cost and computation cost of the revocation.

The remaining of this paper is organized as follows. We first
give the definition of the system model and security model in
Section II. Then, we propose a new multi-authority CP-ABE
scheme with efficient decryption and revocation and apply it to
design DAC-MACS in Section III. In Section IV, we analyze
DAC-MACS in terms of both the security and the performance.
Section V gives the related work on data access control and the
attribute revocation in ABE systems. Finally, the conclusion is
given in Section VI and the detailed security proof is described
in the Appendix.

II. SYSTEM MODEL AND SECURITY MODEL

A. Definition of System Model and Framework

We consider a cloud storage system with multiple authori-
ties, as shown in Fig.1. The system model consists of five types
of entities: a global certificate authority (CA), the attribute
authorities (AAs), the cloud server (server), the data owners
(owners) and the data consumers (users).

The CA is a global trusted certificate authority in the system.
It sets up the system and accepts the registration of all the
users and AAs in the system. The CA is responsible for the
distribution of global secret key and global public key for each
legal user in the system. However, the CA is not involved in
any attribute management and the creation of secret keys that
are associated with attributes. For example, the CA can be the
Social Security Administration, an independent agency of the
United States government. Each user will be issued a Social
Security Number (SSN) as its global identity.

Every AA is an independent attribute authority that is
responsible for issuing, revoking and updating user’s attributes
according to their role or identity in its domain. In DAC-
MACS, every attribute is associated with a single AA, but each
AA can manage an arbitrary number of attributes. Every AA has
full control over the structure and semantics of its attributes.

Ciphertext

User Register

AA1

Owners

Users

Cloud

Server

AAi

AAk

CA

uid

AA Register

aid1

aidi

aidk

PK1

PKi

PKk

Tok
en

SKuid, 1

SKuid, i

SKuid, k

{S
K ui

d,
 i
}

{PKi}

Fig. 1. System Model of Multi-authority Access Control in Cloud Storage

Each AA is responsible for generating a public attribute key
for each attribute it manages and a secret key for each user
associates with their attributes.

The cloud server stores the owners’ data and provides data
access service to users. It generates the decryption token of
a ciphertext for the user by using the secret keys of the user
issued by the AAs. The server also does the ciphertext update
when an attribute revocation happens.

The data owners define the access policies and encrypt
the data under the policies before hosting them in the cloud.
They do not rely on the server to do the data access control.
Instead, the ciphertext can be accessed by all the legal users
in the system. But, the access control happens inside the
cryptography. That is only when the user’s attributes satisfy
the access policy defined in the ciphertext, the user can decrypt
the ciphertext.

Each user is assigned with a global user identity from the
CA. Each user can freely get the ciphertexts from the server.
To decrypt a ciphertext, each user may submit their secret
keys issued by some AAs together with its global public key
to the server and ask it to generate an decryption token for
some ciphertext. Upon receiving the decryption token, the user
can decrypt the ciphertext by using its global secret key. Only
when the user’s attributes satisfy the access policy defined in
the ciphertext, the server can generate the correct decryption
token. The secret keys and the global user’s public key can be
stored on the server; subsequently, the user does not need to
submit any secret keys if no secret keys are updated for the
further decryption token generation.

Then, we give the definition of the framework of our data
access control in multi-authority cloud storage systems as
follows.

Definition 1 (DAC-MACS). DAC-MACS is a collection
of algorithms that combines a set of CP-ABE algorithms:
CASetup, AASetup,UserRegister, KeyGen, Encrypt, TKGen,
Decrypt and a set of attribute revocation algorithms:

3

UKeyGen, KeyUpdate and CiphertextUpdate.
CASetup(λ) → (MSK,SP,skCA, pkCA). The CA setup
algorithm takes no input other than the implicit security
parameter λ . It outputs the master key MSK, the system
parameter SP and the pair of CA’s secret key and public key
(skCA, pkCA).
AASetup(aid) → (SKaid ,{VKxaid ,PKxaid}). The authority
generation algorithm takes the authority id aid as input. It
outputs the authority secret key SKaid , the set of version keys
and public attribute keys {VKxaid ,PKxaid} for all attributes x
issued by the AAaid .
UserRegister(skCA) → (uid,GPKuid ,GSKuid ,SigskCA(uid)).
The user registration algorithm takes the input as the CA’s
secret key skCA. For each legal user in the system, it outputs
a global user id uid, the pair of global public key and secret
key (GPKuid ,GSKuid) and a user certification SigskCA(uid).
KeyGen(Suid,aid ,SKaid ,{PKxaid},SP,SigskCA(uid)) →
(PKaid ,SKuid,aid). The key generation algorithm takes
as inputs a set of attributes Suid,aid that describes the secret
key, the authority secret key SKaid , the set of public attribute
keys {PKxaid}, the system parameter and the certification of
the user with uid. It outputs the public key PKaid and a secret
key SKuid,aid for the user with uid.
Encrypt({PKk}k∈IA ,{PKxk}k∈IA ,m,A)→CT . The encryption
algorithm takes as inputs a set of public keys {PKk}k∈IA from
the involved authority set IA, a set of public attribute keys
{PKxk}k∈IA , a message m and an access structure A over all
the selected attributes from the involved AAs. The algorithm
encrypts m according to the access structure and outputs a
ciphertext CT. We will assume that the ciphertext implicitly
contains the access structure A.
TKGen(CT,GPKuid ,{SKuid,k}k∈IA) → TK. The decryption
token generation algorithm takes as input the ciphertext CT
which contains an access structure A, user’s global public
key GPKuid and a set of user’s secret keys {SKuid,k}k∈IA . If
the set of attributes S satisfies the access structure A, the
algorithm can successfully compute the decryption token TK
of the ciphertext.
Decrypt(CT,TK,GSKuid) → m. The decryption algorithm
takes as inputs the ciphertext CT, the decryption token
TK and the user’s global secret key GSKuid . It outputs the
message m.
UKeyGen(SKaid ,{u j} j∈SU ,VKx̃aid) → (UUK j,x̃aid ,CUKx̃aid).
The update key generation algorithm takes as inputs the
authority secret key SKaid , a set of user’s secret {u j} and the
previous version key of the revoked attribute VKx̃aid . It outputs
both the User Update Key UUK j,x̃aid (j ∈ SU , j 6= µ, x̃k ∈ S j,aid)
and the Ciphertext Update Key CUKx̃k .
KeyUpdate(SK j,aid ,UUK j,x̃aid)→ SK′. The user’s secret key
update algorithm takes as inputs the non-revoked user’s
current secret key SK j,aid and the user update key UUK j,x̃aid .
It outputs a new secret key SK′ to this non-revoked user.
CiphertextUpdate(CT,CUKx̃aid) → CT′. The ciphertext
update algorithm takes as inputs the current ciphertext CT
and the ciphertext update key CUKx̃aid . It outputs a new
ciphertext CT′.

B. Definition of Security Model

In cloud storage systems, we consider the case that the
server may send the owners’ data to the users who do not have
access permission. The server is also curious about the content
of the encrypted data. But we assume that the server will
execute correctly the task assigned by the attribute authority.
The users, however, are dishonest and may collude to obtain
unauthorized access to data. The AA can be corrupted or
compromised by the attackers.

We now describe the security model for multi-authority CP-
ABE systems by the following game between a challenger
and an adversary. Similar to the identity-based encryption
schemes [11]–[13], the security model allows the adversary
to query for any secret keys that cannot be used to decrypt
the challenge ciphertext. We assume that the adversaries can
corrupt authorities only statically similar to [10], but key
queries are made adaptively. Let SA denote the set of all the
authorities. The security game is defined as follows.

Setup. The CA runs the CASetup and each AA runs the
AASetup. The adversary specifies a set S′A ⊂ SA of corrupted
authorities. The challenger generates the pairs of public key
and the secret key by running the key generation algorithm.
For uncorrupted authorities in SA− S′A, the challenger sends
only the public keys to the adversary. For corrupted authorities
in S′A, the challenger sends both the public keys and secret keys
to the adversary.

Secret Key Query Phase 1. The adversary makes secret
key queries by submitting pairs (SigskCA(uid),Said,1), · · · ,
(SigskCA(uid),Said,q1) to the challenger, where Said,i is a set of
attributes belonging to an uncorrupted AAaid , and SigskCA(uid)
is a user certificate. The challenger gives the corresponding
secret keys {SKuid,aid,i}i∈[1,q1] to the adversary.

Challenge. The adversary submits two equal length mes-
sages m0 and m1. In addition, the adversary gives a challenge
access structure (M∗,ρ∗) which must satisfy the following
constraints. We let V denote the subset of rows of M∗ labeled
by attributes controlled by corrupted AAs. For each uid, we let
Vuid denote the subset of rows of M∗ labeled by attributes that
the adversary has queried. For each uid, we require that the
subspace spanned by V ∪Vuid must not include (1,0, . . . ,0).
In other words, the adversary cannot ask for a set of keys
that allow decryption, in combination with any keys that can
obtained from corrupted AAs. The challenger then flips a
random coin b, and encrypts mb under the access structure
(M∗,ρ∗). Then, the ciphertext CT ∗ is given to the adversary.

Secret Key Query Phase 2. The adversary may query more
secret keys, as long as they do not violate the constraints on
the challenge access structure (M∗,ρ∗).

Guess. The adversary outputs a guess b′ of b.
The advantage of an adversary A in this game is defined as

Pr[b′ = b]− 1
2 .

Definition 2. A multi-authority CP-ABE scheme is secure
against static corruption of authorities if all polynomial time
adversaries have at most a negligible advantage in the above
security game.

4

III. DAC-MACS: DATA ACCESS CONTROL FOR
MULTI-AUTHORITY CLOUD STORAGE

In this section, we first give an overview of the challenges
and techniques of designing access control schemes for multi-
authority cloud storage systems. Then, we propose the detailed
construction of our access control scheme DAC-MACS.

A. Overview of Our Solutions

Although the existing multi-authority CP-ABE scheme [10]
proposed by Lewko and Waters has high policy expressiveness
and has been extended to support attribute revocation in [14],
it still cannot be applied to access control for multi-authority
cloud storage systems due to the inefficiency of decryption
and revocation. In order to design an efficient access control
scheme for multi-authority systems, we first construct a new
multi-authority CP-ABE scheme with efficient decryption and
then propose an efficient attribute revocation for it.

One challenging issue in the design of a multi-authority CP-
ABE scheme is how to tie the secret keys together and prevent
the collusion attack. Without a central authority, it is hard to tie
together different components of a user’s secret key and use the
key randomization method to prevent the collusion attack. In
our method, we separate the authority into a global certificate
authority (CA) and multiple attribute authorities (AAs). The
CA sets up the system and accepts the registration of all the
users and AAs in the system. However, the CA is not involved
in any attribute management and the creation of secret keys
that are associated with attributes. The CA assigns a global
user identity uid to each user and a global authority identity
aid to each attribute authority in the system. Since the uid
is global unique in the system, secret keys issued by different
AAs for the same uid can be tied together for decryption. Also,
since each AA is associated with an aid, every attribute is
distinguishable even though some AAs may issue the same
attribute. Thus, the collusion attack can be resisted by using
the aid and uid.

To achieve efficient decryption on the user, we propose
a token-based decryption outsourcing method. We apply the
decryption outsourcing idea from [14] and extend it to multiple
authority systems by letting the CA generate a pair of global
secret key and global public key for each legal user in the
system. During the decryption, the user submits its secret keys
issued by AAs to the server and asks the server to compute a
decryption token for the ciphertext. The user can then decrypt
the ciphertext by using the decryption token together with its
global secret key.

To solve the attribute revocation problem, we assign a
version number for each attribute, such that when an attribute
revocation happens, only those components associated with
the revoked attribute in secret keys and ciphertexts need to be
updated. When an attribute of a user is revoked from any AA,
the AA generates a new version number and generate several
user update keys and a ciphertext update key. With the user
update key, each non-revoked user who holds the revoked
attributes can update their secret key. Because the update
keys are distinguishable for different users, the revoked user

cannot update its secret key by using other users’ update keys
(Forward Security). By using the ciphertext update key, the
component associated with the revoked in the ciphertext can
be updated to the current version. To improve the efficiency,
we delegate the ciphertext update workload to the server by
using the proxy re-encryption method, such that the new joined
user is also able to decrypt the previous published data which
are published before it joins the system (Backward Security).
Moreover, all the users need to hold the latest secret key, rather
than to keep records on all the previous secret keys.

To realize the fine-grained access control, the owner first
divides the data into several components according to the
logic granularities and encrypts each data component with
different content keys by using symmetric encryption methods.
Then, the owner applies our proposed multi-authority CP-ABE
scheme to encrypt each content key, such that only the user
whose attributes satisfy the access structure in the ciphertext
can decrypt the content keys. Users with different attributes
can decrypt different number of content keys and thus obtain
different granularities of information from the same data.

B. Construction of Access Control with Efficient Decryption

Let SA and SU denote the set of attribute authorities and
the set of users in the system respectively. Let G and GT be
the multiplicative groups with the same prime order p and
e : G×G→ GT be the bilinear map. Let g be the generator
of G. Let H : {0,1}∗ → G be a hash function such that the
security is in the random oracle.

Our access control scheme consists of four phases: System
Initialization, Key Generation, Encryption and Decryption.
Phase 1: System Initialization

There are two steps during the system initialization phase:
the CA Setup and the AA Setup.
1) CA Setup

The CA runs the CA setup algorithm CASetup. It takes a
security parameter as input. The CA first chooses a random
number a ∈ Zp as the master key MSK of the system and
compute the system parameter SP= ga. Then, the CA gener-
ates a pair of secret key and public key (skCA, pkCA). The CA
accepts both User Registration and AA Registration.

a) User Registration
When a user joins the system, the CA first authenticates this

user. If the user is legal in the system, the CA then assigns a
global unique user id uid to this user. After that, it generates
the global public key GPKuid = guuid and the global secret key
GSKuid = zuid by randomly choosing two numbers uuid ,zuid ∈
Zp. The CA also generates a certificate by using its secret key

skCA as SigskCA(uid,uuid ,g
1

zuid). Then, the CA gives the global
public key GPKuid , the global secret key GSKuid and the user’s
certificate SigskCA(uid,uuid ,g1/zuid) to the user with uid.

b) AA Registration
Each AA should also register itself to the CA during the

system initialization. If the AA is a legal authority in the
system, the CA first assigns a global authority id aid to this
AA. Then, the CA sends its public key pkCA to this authority,
together with the system parameter SP.

5

2) AA Setup
Each AAk(k ∈ SA) runs the authority setup algorithm

AASetup. Let SAk denote the set of all attributes managed
by this authority AAk. It chooses three random numbers
αk,βk,γk ∈ Zp as the authority secret key SKk = (αk,βk,γk).
For each attribute xk ∈ SAk , the authority generates a public
attribute key as PKxk = (gvxk H(xk))

γk by implicitly choosing
an attribute version number vxk . All the public attribute keys
are published on the board of AAk.
Phase 2: Key Generation

Each AA runs the key generation algorithm KeyGen to
generate the owner’s public key (for encryption) and the user’s
secret key (for decryption).

a) Public Key Generation
The AAk computes the authority public key as

PKk =

(
e(g,g)αk ,g

1
βk ,g

γk
βk

)
.

Each owner can construct the full public key as

PK=
(

g,ga,{PKk}k∈SA ,{PKxk}
k∈SA
xk∈SAk

)
.

b) User’s Secret Key Generation
For each user U j(j ∈ SU), each AAk(k ∈ SA) first authen-

ticates whether this user is a legal user by verifying the
certificate of the user. It decrypts the SigskCA(uid j,u j,g1/z j)
and authenticates the user. If the user is a legal user, the AAk
assigns a set of attributes S j,k to this user according to its
role or identity in its administration domain. Then, the AAk
generates the user’s secret key SK j,k as

SK j,k = (K j,k = g
αk
z j ·gau j ,L j,k = g

βk
z j ,

∀xk ∈ S j,k : K j,xk = g
βkγk

z j · (gvxk ·H(xk))
γkβku j).

where j ∈ SU and k ∈ SA.
Phase 3: Encryption

The owner first encrypts the data component with a content
key by using symmetric encryption methods. It then runs the
encryption algorithm Encrypt to encrypt the content key. It
takes as inputs the public key PK and the content keys k and
an access structure (M,ρ) over all the selected attributes from
the involved set of authorities IA. Let M be a `× n matrix,
where ` denotes the total number of all the attributes. The
function ρ associates rows of M to attributes.

The encryption algorithm first chooses a random encryp-
tion exponent s ∈ Zp and chooses a random vector ~v =
(s,y2, · · · ,yn) ∈ Zn

p, where y2, · · · ,yn are used to share the
encryption exponent s. For i = 1 to `, it computes λi =~v ·Mi,
where Mi is the vector corresponding to the i-th row of M.
Then, it randomly chooses r1,r2, · · · ,r` ∈ Zp and computes
the ciphertext as

CT= (C = k · (∏
k∈IA

e(g,g)αk)s, C′ = gs,

∀i = 1 to l : Ci = gaλi · ((gvρ(i)H(ρ(i)))γk)−ri ,

D1,i = g
ri
βk , D2,i = g

− γk
βk

ri , ρ(i) ∈ SAk).

Phase 4: Decryption
The decryption phase consists of two steps: Server Token

Generation and User Data Decryption.
a) Server Token Generation
The user U j(j ∈ SU) sends its secret keys {SK j,k}k∈SA to the

server and asks the server to compute a decryption token for
the ciphertext CT by running the token generation algorithm
TKGen. Only when the attributes the user U j possesses satisfy
the access structure defined in the ciphertext CT, the server
can successfully compute the decryption token TK.

Let I be {IAk}k∈IA , where IAk ⊂{1, · · · , l} is defined as IAk =
{i : ρ(i) ∈ SAk}. Let NA = |IA| be the number of AAs involved
in the ciphertext. It chooses a set of constants {wi ∈ Zp}i∈I
and reconstructs the encryption exponent as s = ∑i∈I wiλi if
{λi} are valid shares of the secret s according to M.

The token generation algorithm algorithm computes the
decryption token TK as

TK= ∏
k∈IA

e(C′,K j,k)

∏
i∈IAk

(
e(Ci,GPKU j) · e(D1,i,K j,ρ(i)) · e(D2,i,L j,k)

)wiNA

=

e(g,g)au jsNA · ∏
k∈IA

e(g,g)
αk
z j

s

e(g,g)u jaNA ∑
i∈I

λiwi

= ∏
k∈IA

e(g,g)
αk
z j

s
.

(1)

It outputs the decryption token TK for the ciphertext CT and
sends it to the user U j.

b) User Data Decryption
Upon receiving this decryption token TK, the user U j can

decrypt the ciphertext by using its global secret key GSKU j =
z j as

k =
C

TKz j
.

Then, the user can use the content key k to further decrypt the
encrypted data component.

C. Efficient Attribute Revocation

Suppose an attribute x̃k of the user Uµ is revoked from the
AAk. The attribute revocation includes three phases: Update
Key Generation, Key Update and Ciphertext Update. The
key update can prevent the revoked user from decrypting
the new data which is encrypted by the new public keys
(Forward Security). The ciphertext update can make sure that
the newly joined user can still access the previous data which is
published before it joins the system, when its attributes satisfy
the access policy associated with the ciphertext (Backward
Security).
Phase 1. Update Key Generation

The authority AAk runs the update key generation algorithm
UKeyGen to compute the update keys. The algorithm takes
as inputs the authority secret key SKk, the current attribute
version key vx̃k and the user’s global public keys GPKU j . It

6

TABLE I
COMPREHENSIVE COMPARISON OF CP-ABE WITH ATTRIBUTE REVOCATION SCHEMES

Scheme Authority Computation Revocation
Message (|p|)

Revocation Security Revocation
Enforcer

Ciphertext
UpdaterEncrypt Decrypt∗ Forward Backward

Hur’s [15] Single O(tc + lognu) O(tu) O(nnon,x log nu
nnon,x

) Yes Yes Server† Server†

DACC [16] Multiple O(tc) O(tu) O(nc,x ·nnon,x) Yes No Owner Owner
DAC-MACS Multiple O(tc) O(1) O(nnon,x) Yes Yes AA Server‡

∗: The decryption computation on the user; †: The server is fully trusted; ‡: The server is semi-trusted.

generates a new attribute version key v′x̃k
. It first calculates

the Attribute Update Key as AUKx̃k = γk(v′x̃k
− vx̃k), then it

applies this AUKx̃k to compute the User Update Key UUK j,x̃k =

gu jβk·AUKx̃k and the Ciphertext Update Key as CUKx̃k =
βk
γk
·

AUKx̃k). Then, the AAk updates the public attribute key of the
revoked attribute x̃k as PK′ x̃k = PKx̃k · g

AUKx̃k and broadcasts
a message for all the owners that the public attribute key of
the revoked attribute x̃k is updated. Then, all the owners can
update their public key by getting the new public attribute key.
It outputs both the user update key UUK j,x̃k(j ∈ SU , j 6= µ, x̃k ∈
S j,k) and the ciphertext update key CUKx̃k .
Phase 2. Key Update

For each non-revoked user U j(j ∈ SU) who has the attribute
x̃k, the AAk sends the corresponding user update key UUK j,x̃k
to it. Upon receiving the user update key UUK j,x̃k , the user
U j(j ∈ SU) runs the key update algorithm KeyUpdate to
update its secret key as

SK′ j,k = (K′j,k = K j,k,L′j,k = L j,k,

K′j,x̃k
= K j,x̃k ·UUK j,x̃k ,

∀x ∈ Su,x 6= x̃ : K′j,k = K j,k).

Note: Because the UUK j,x̃k are distinguishable for different
non-revoked users, the revoked user Uµ cannot use any other
user’s update keys to update its secret key.
Phase 3. Ciphertext Update

The AAk sends a ciphertext update key CUKx̃k to the server.
Upon receiving the CUKx̃k , the server runs the ciphertext up-
date algorithm CiphertextUpdate to update all the ciphertexts
which are associated with the revoked attribute x̃k. It takes
inputs as the current ciphertext CT and the CUKx̃k . It only
needs to update those components of the ciphertext, which are
associated with the revoked attribute x̃k. The new ciphertext
CT′ is published as

CT′ = (C = k · (∏
k∈IA

e(g,g)αk)s, C′ = gs,

∀i = 1 to l : Ci = gaλi · ((gvxk H(xk))
γk)−ri , D1,i = g

ri
βk ,

D2,i = g
− γk

βk
ri , i f ρ(i) 6= x̃k,

C′i =Ci ·D
CUKx̃k
2,i , D1,i = g

ri
βk ,

D2,i = g
− γk

βk
ri , i f ρ(i) = x̃k).

(2)

DAC-MACS only requires to update the revoked attribute
associated component of the ciphertext, while the other com-

ponents which are not related to the revoked attributes are
not changed. Thus, this can greatly improve the efficiency of
attribute revocation.

IV. ANALYSIS OF OUR DAC-MACS

In this section, we first provide a comprehensive analysis
of our DAC-MACS. Then, we give the security analysis and
performance analysis.

A. Comprehensive Analysis

Let |p| be the size of element in the groups with the prime
order p. Let tc be the total number of attributes in a ciphertext
and tu be the total number of attributes of a user. Let nu denote
the number of users in the system. For the revoked attribute
x, let nnon,x be the number of non-revoked users who hold
the revoked attribute and let nc,x be the number of ciphertexts
which contain the revoked attribute.

Table I shows the comparison among our DAC-MACS and
two existing schemes, which are all based on the ciphertext re-
encryption to achieve the attribute revocation. We conduct the
comparison in terms of the support of multi-authority, the com-
putation efficiency (encryption on the owner and decryption on
the user), the revocation communication cost, the revocation
security, the revocation enforcer and the ciphertext updater/re-
encryptor. From the table, we can see that DAC-MACS incurs
less computation cost for the decryption on the user and less
communication cost for the revocation. In DAC-MACS, the
attribute revocation is controlled and enforced by each AA
independently, but the ciphertexts are updated by the semi-
trusted server, which can greatly reduce the workload on the
owner. For the security of attribute revocation, DAC-MACS
can achieve both forward security and backward security.

B. Security Analysis

Under the security model we defined in Section II-B, we
conclude the security analysis into the following theorems:

Theorem 1. When the decisional q-parallel BDHE assump-
tion holds, no polynomial time adversary can selectively break
our system with a challenge matrix of size l∗ × n∗, where
n∗ ≤ q.

Proof: Suppose we have an adversary A with non-
negligible advantage ε = AdvA in the selective security game
against our construction and suppose it chooses a challenge
matrix M∗ with the dimension at most q−1 columns. In the

7

security game, the adversary can query any secret keys that
cannot be used for decryption in combination with any keys
it can obtain from the corrupted AAs. With these constraints,
the security game in multi-authority systems can be treated
equally to the one in single authority systems. Similarly, we
can build a simulator B that plays the decisional q-parallel
BDHE problem with non-negligible advantage. The detailed
proof will be described in the Appendix.

Theorem 2. DAC-MACS is secure against the collusion at-
tack.

Proof: In DAC-MACS, each user in the system is as-
signed with a global unique identity uid, and all the secret
keys issued to the same user from different AAs are associated
to the uid of this user. Thus, it is impossible for two or more
users to collude and decrypt the ciphertext. Moreover, due to
the unique aid of each AA, all the attributes are distinguishable,
even though some AAs may issue the same attribute. This can
prevent the user from replacing the components of a secret
key issued by an AA with those components from other secret
keys issued by another AA.

Privacy-Preserving Guarantee Due to the decryption out-
sourcing, the server can get the users’ secret keys. However,
the server still cannot decrypt the ciphertext without the
knowledge of the users’ global secret keys. Moreover, the
ciphertext update is done by using the proxy re-encryption
method, thus the server does not need to decrypt the ciphertext.

C. Performance Analysis

We conduct the performance analysis between our DAC-
MACS and the Ruj’s DACC scheme under the metrics of
Storage Overhead, Communication Cost and Computation
Cost.
1) Storage Overhead

The storage overhead is one of the most significant issues of
the access control scheme in cloud storage systems. Suppose
there are NA AAs in the system. Let |p| be the element size
in the G,GT ,Zp. Let na,k and na,k,uid denote the total number
of attributes managed by AAk and the number of attributes
assigned to the user with uid from AAk respectively. We
compare the storage overhead on each entity in the system,
as shown in Table II.

In DAC-MACS, the storage overhead on each AAk consists
of the version number of each attribute and the authority
secret key. From Table II, we can see that DAC-MACS incurs
less storage overhead on each AAk than Ruj’s DACC scheme,
which consists of the secret keys for all the attributes. The
public parameters contribute the main storage overhead on
the owner. Besides the public parameters, Ruj’s DACC scheme
requires the owner to re-encrypt the ciphertexts, thus the owner
should also hold the encryption secret for every ciphertext in
the system. This incurs a heavy storage overhead on the owner,
especially when the number of ciphertext is large in cloud
storage systems. The storage overhead on each user in DAC-
MACS comes from the global secret key issued by the CA
and the secret keys issued by all the AAs. However, in Ruj’s

TABLE II
COMPARISON OF STORAGE OVERHEAD

Entity Ruj’s DACC [16] Our DAC-MACS
AAk 2na,k|p| (na,k +3)|p|

Owner (nc +2
NA
∑

k=1
na,k)|p| (3NA +1+

NA
∑

k=1
na,k)|p|

User (nc,x +
NA
∑

k=1
na,k,uid)|p| (2NA +1+

NA
∑

k=1
na,k,uid)|p|

Server (3l +1)|p| (3l +2)|p|

nc: total number of ciphertexts stored on the cloud server;
nc,x:number of ciphertexts contain the revoked attribute x;
l: total number of attributes that appeared in the ciphertext.

DACC scheme, the storage overhead on each user consists of
both the security keys issued by all the AAs and the ciphertext
components that associated with the revoked attribute. That
is because when the ciphertext is re-encrypted, some of its
components related to the revoked attributes should be send
to each non-revoked user who holds the revoked attributes.
The ciphertexts contribute the main storage overhead on the
server (here we do not consider the encrypted data which are
encrypted by the symmetric content keys).
2) Communication Cost

The communication cost of the normal access control is
almost the same between our DAC-MACS and Ruj’s DACC
scheme. Here, we only compare the communication cost of
attribute revocation, as shown in Table III. It is easily to
find that the communication cost of attribute revocation in
Ruj’s scheme is linear to the number of ciphertexts which
contain the revoked attributes. Due to the large number of
ciphertext in cloud storage system, Ruj’s scheme incurs a
heavy communication cost for attribute revocation.

TABLE III
COMPARISON OF COMMUNICATION COST FOR ATTRIBUTE REVOCATION

Operation Ruj’s DACC [16] Our DAC-MACS
Key Update N/A nnon,x|p|

Ciphertext Update (nc,x ·nnon,x +1)|p| |p|

nnon,x is the number of non-revoked users who hold the
revoked attribute x; nc,x is the number of ciphertexts which
contain the revoked attribute x.

3) Computation Cost
We simulate the computation time of encryption, decryption

and ciphertext re-encryption/update in both our DAC-MACS
and Ruj’s DACC scheme. We do the simulation on a Linux
system with an Intel Core 2 Duo CPU at 3.16GHz and 4.00GB
RAM. The code uses the Pairing-Based Cryptography (PBC)
library version 0.5.12 to simulate the access control schemes.
We use a symmetric elliptic curve α-curve, where the base
field size is 512-bit and the embedding degree is 2. The α-
curve has a 160-bit group order, which means p is a 160-bit
length prime. All the simulation results are the mean of 20
trials.

8

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

4 . 0

4 . 5

En

cry
pti

on
 Ti

me
 on

 O
wn

ers
 (s

)

N u m b e r o f A A s

 O u r D A C - M A C S
 R u j ’ s D A C C

(a) Encryption

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5
5 . 0

En
cry

pti
on

 Ti
me

 on
 O

wn
ers

 (s
)

N u m e r o f A t t r i b u t e s f r o m E a c h A A

 O u r D A C - M A C S
 R u j ’ s D A C C

(b) Encryption

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

1 . 6

De
cry

pti
on

 Ti
me

 on
 Us

ers
 (s

) (s
)

N u m b e r o f A A s

 O u r D A C - M A C S
 R u j ’ s D A C C

(c) Decryption

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

1 . 6

De
cry

pti
on

 Ti
me

 on
 Us

ers
 (s

) (s
)

N u m b e r o f A t t r i b u t e s f r o m E a c h A A

 O u r D A C - M A C S
 R u j ’ s D A C C

(d) Decryption

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Cip
he

rte
xt

Re
-en

cry
pti

on
/Up

da
te

Tim
e (

s)

N u m b e r o f R e v o k e d A t t r i b u t e s

 O u r D A C - M A C S
 R u j ’ s D A C C

(e) Re-encryption/Update

Fig. 2. Comparison of Encryption, Decryption and Ciphertext Re-encryption/Update Time

We compare the computation efficiency of both encryption
and decryption in two criteria: the number of authorities and
the number of attributes per authority, as shown in Fig. 2.
Fig.2(a) describes the comparison of encryption time versus
the number of AAs, where the involved number of attributes
from each AA is set to be 10. Fig.2(b) gives the encryption
time comparison versus the number of attributes from each AA,
where the involved number of AAs is set to be 10. Suppose the
user has the same number of attributes from each AA. Fig.2(c)
shows the comparison of decryption time versus the number
of AAs, where the number of attributes the user holds from
each AA is set to be 10. Fig.2(d) describes the decryption time
comparison versus the number of attributes the user holds from
each AA. In Fig.2(d), the number of authority for the user is
fixed to be 10. Fig.2(e) gives the comparison of ciphertext
re-encryption/update versus the number of revoked attributes
appeared in the ciphertext.

The simulation results show that our DAC-MACS incurs
less computation cost on the encryption of owners, the de-
cryption of users and the re-encryption of ciphertexts.

V. RELATED WORK

Cryptographic techniques are well applied to access control
for remote storage systems [17]–[19]. Traditional public key
encryption (PKE) based schemes [20], [21] either incurs
complicated key management or produces multiples copies
of encrypted data with different user’s keys. Some methods
[22], [23] deliver the key management and distribution from
the data owners to the remote server under the assumption that
the server is trusted or semi-trusted. However, the server is not
fully trusted in cloud storage systems and thus these methods
cannot be applied to access control for cloud storage systems.

Attribute-based Encryption (ABE) is a promising technique
that is designed for access control of encrypted data. After
Sahai and Waters introduced the first ABE scheme [24], Goyal
et al. [25] formulated the ABE into two complimentary forms:
Key-Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-
ABE). There are a number of works used ABE to realize fine-
grained access control for outsourced data [15], [26], [27]. In
these schemes, a trusted single authority is used to manage the
attributes and issue keys. However, in real storage systems,
the authority can fail or be corrupted, which may leak out
the data since the authority can decrypt all the encrypted
data. Moreover, the authority may become the performance
bottleneck in the large scale cloud storage systems.

Some new cryptographic methods are proposed to the
multi-authority ABE problem [7]–[10], [28], [29]. Chase [7]
proposed a solution that introduced a global identifier to tie
users’ keys together. The proposed scheme also relies on a
central authority to provide a final secret key to integrate
the secret keys from different attribute authorities. However,
since the central authority would be able to decrypt all the
ciphertext in the Chase’s scheme, the central authority would
be a vulnerable point for security attacks and a performance
bottleneck for large scale systems. Another limitation of
Chase’s scheme is that it can only express a strict “AND”
policy over a pre-determined set of authorities. To improve the
Chase’s scheme, Muller et al. [8] proposed a multi-authority
ABE scheme that can handle any expressions in LSSS access
policy, but it also requires a centralized authority. Chase et al.
[9] also proposed a method to remove the central authority by
using a distributed PRF (pseudo-random function). But it has
the same limitation to strict “AND” policy of pre-determined
authorities. Lin et al. [28] proposed a decentralized scheme
based on threshold mechanism. In this scheme, the set of
authorities is pre-determined and it requires the interaction
among the authorities during the system setup. This scheme
can tolerate collusion attacks for up to m colluding users,
where m is a system parameter chosen at setup time. In [10],
Lewko et al. proposed a new comprehensive scheme, which
does not require any central authority. It is secure against any
collusion attacks and it can process the access policy expressed
in any Boolean formula over attributes. However, their method
is constructed in composite order bilinear groups that incurs
heavy computation cost. They also proposed a multi-authority
CP-ABE scheme constructed in prime order group, but they
did not consider attribute revocation.

There are a number of works about the revocation in ABE
systems in the cryptography literature [2]–[6]. However, these
methods either only support the user level revocation or rely
on the server to conduct the attribute revocation. Moreover,
these attribute revocation methods are designed only for ABE
systems with single authority. Ruj et al. [16] designed a DACC
scheme and proposed an attribute revocation method for the
Lewko and Waters’ decentralized ABE scheme. However, their
attribute revocation method incurs a heavy communication
cost since it requires the data owner to transmit a new
ciphertext component to every non-revoked user. Li et al. [30]
proposed an attribute revocation method for multi-authority
ABE systems, but their methods is only for KP-ABE systems.

9

Green et al. [14] proposed two ABE schemes that outsource
the decryption to the server. In their schemes, the authority
separate the traditional secret key into a user secret key and
a transformation key. However, their schemes are designed
only for the single authority systems and do not support for
the multi-authority systems. That is because each authority
may generate different user’s secret key, such that the trans-
formation keys cannot be combined together to transform the
ciphertext into a correct intermediate value.

VI. CONCLUSION

In this paper, we proposed an effective data access con-
trol scheme for multi-authority cloud storage systems, DAC-
MACS. We also construct a new multi-authority CP-ABE
scheme, in which the main computation of decryption is out-
sourced to the server. We further designed an efficient attribute
revocation method that can achieve both forward security and
backward security. Our attribute revocation methods incurs
less communication cost and less computation cost of the
revocation, where only those components associated with the
revoked attribute in the secret keys and the ciphertext need
to be updated. Through the analysis and the simulation, we
showed that our DAC-MACS is provably secure in the random
oracle model and incurs less storage overhead, communication
cost and computation cost, compared to existing schemes.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology, Tech. Rep., 2009.

[2] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proceedings of the 2007 IEEE Symposium on
Security and Privacy (S&P’07). IEEE Computer Society, 2007, pp.
321–334.

[3] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in Proceedings of the 4th
International Conference on Practice and Theory in Public Key Cryp-
tography (PKC’11). Springer, 2011, pp. 53–70.

[4] V. Goyal, A. Jain, O. Pandey, and A. Sahai, “Bounded ciphertext policy
attribute based encryption,” in Proceedings of the 35th International
Colloquium on Automata, Languages and Programming (ICALP’08).
Springer, 2008, pp. 579–591.

[5] R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based encryption
with non-monotonic access structures,” in Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS’07).
ACM, 2007, pp. 195–203.

[6] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters,
“Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption,” in Proceedings of the 29th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques: Advances in Cryptology - EUROCRYPT’10.
Springer, 2010, pp. 62–91.

[7] M. Chase, “Multi-authority attribute based encryption,” in Proceedings
of the 4th Theory of Cryptography Conference on Theory of Cryptog-
raphy (TCC’07). Springer, 2007, pp. 515–534.

[8] S. Müller, S. Katzenbeisser, and C. Eckert, “Distributed attribute-based
encryption,” in Proceedings of the 11th International Conference on
Information Security and Cryptology (ICISC’08). Springer, 2008, pp.
20–36.

[9] M. Chase and S. S. M. Chow, “Improving privacy and security in
multi-authority attribute-based encryption,” in Proceedings of the 16th
ACM Conference on Computer and Communications Security (CCS’09).
ACM, 2009, pp. 121–130.

[10] A. B. Lewko and B. Waters, “Decentralizing attribute-based encryption,”
in Proceedings of the 30th Annual International Conference on the
Theory and Applications of Cryptographic Techniques: Advances in
Cryptology - EUROCRYPT’11. Springer, 2011, pp. 568–588.

[11] A. Shamir, “Identity-based cryptosystems and signature schemes,” in
Proceedings of the 4st Annual International Cryptology Conference:
Advances in Cryptology - CRYPTO’84. Springer, 1984, pp. 47–53.

[12] D. Boneh and M. K. Franklin, “Identity-based encryption from the weil
pairing,” in Proceedings of the 21st Annual International Cryptology
Conference: Advances in Cryptology - CRYPTO’01. Springer, 2001,
pp. 213–229.

[13] C. Cocks, “An identity based encryption scheme based on quadratic
residues,” in Proceedings of the 8th IMA International Conference on
Cryptography and Coding. Springer, 2001, pp. 360–363.

[14] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the decryption
of abe ciphertexts,” in Proceedings of the 20th USENIX Security
Symposium. USENIX Association, 2011.

[15] J. Hur and D. K. Noh, “Attribute-based access control with efficient
revocation in data outsourcing systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 22, no. 7, pp. 1214–1221, 2011.

[16] S. Ruj, A. Nayak, and I. Stojmenovic, “DACC: Distributed Access Con-
trol in Clouds,” in Proceeding of the 10th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom’11). IEEE, 2011, pp. 91–98.

[17] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus:
Scalable secure file sharing on untrusted storage,” in Proceedings of the
2nd USENIX Conference on File and Storage Technologies (FAST’03).
USENIX, 2003.

[18] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing
remote untrusted storage,” in Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS’03). The Internet Society,
2003.

[19] D. Naor, M. Naor, and J. Lotspiech, “Revocation and tracing schemes
for stateless receivers,” Electronic Colloquium on Computational Com-
plexity (ECCC), no. 043, 2002.

[20] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient controlled
encryption: ensuring privacy of electronic medical records,” in Proceed-
ings of the first ACM Cloud Computing Security Workshop (CCSW’09).
ACM, 2009, pp. 103–114.

[21] C. Dong, G. Russello, and N. Dulay, “Shared and searchable encrypted
data for untrusted servers,” Journal of Computer Security, vol. 19, no. 3,
pp. 367–397, 2011.

[22] E. Damiani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “Key management for multi-user encrypted databases,”
in Proceedings of the 2005 ACM Workshop On Storage Security And
Survivability (StorageSS’05). ACM, 2005, pp. 74–83.

[23] W. Wang, Z. Li, R. Owens, and B. K. Bhargava, “Secure and efficient
access to outsourced data,” in Proceedings of the first ACM Cloud
Computing Security Workshop (CCSW’09). ACM, 2009, pp. 55–66.

[24] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Proceed-
ings of the 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques: Advances in Cryptology -
EUROCRYPT’05. Springer, 2005, pp. 457–473.

[25] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security
(CCS’06). ACM, 2006, pp. 89–98.

[26] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing
with attribute revocation,” in Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security (ASIACCS’10).
ACM, 2010, pp. 261–270.

[27] S. Jahid, P. Mittal, and N. Borisov, “Easier: encryption-based access con-
trol in social networks with efficient revocation,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security (ASIACCS’11). ACM, 2011, pp. 411–415.

[28] H. Lin, Z. Cao, X. Liang, and J. Shao, “Secure threshold multi authority
attribute based encryption without a central authority,” Inf. Sci., vol. 180,
no. 13, pp. 2618–2632, 2010.

[29] J. Li, Q. Huang, X. Chen, S. S. M. Chow, D. S. Wong, and D. Xie,
“Multi-authority ciphertext-policy attribute-based encryption with ac-
countability,” in Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security (ASIACCS’11). ACM, 2011,
pp. 386–390.

[30] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure shar-
ing of personal health records in cloud computing using attribute-based
encryption,” IEEE Transactions on Parallel and Distributed Systems,
2012.

10

APPENDIX A
BACKGROUND

We give some formal definitions for access structures,
Linear Secret Sharing Schemes (LSSS) and the background
information on Bilinear Pairings.

A. Access Structures

Definition 3 (Access Structure). Let {P1,P2, · · · ,Pn} be a set
of parties. A collection A⊆ 2{P1,P2,··· ,Pn} is monotone if ∀B,C if
B∈A and B⊆C then C∈A. An access structure (respectively,
monotone access structure) is a collection (respectively, mono-
tone collection) A of non-empty subsets of {P1,P2, · · · ,Pn}, i.e.,
A⊆ 2{P1,P2,··· ,Pn}\{Ø}. The sets in A are called the authorized
sets, and the sets not in A are called the unauthorized sets.

In our proposed scheme, the role of the parties is taken
by the attributes. Thus, the access structure A will contain
the authorized sets of attributes. We restrict our attention
to monotone access structures. From now on, unless stated
otherwise, by an access structure we mean a monotone access
structure.

B. Linear Secret Sharing Schemes

We give our definitions of Linear Secret Sharing Schemes
(LSSS) as

Definition 4 (Linear Secret-Sharing Schemes (LSSS)). A
secret-sharing scheme Π over a set of parties P is called linear
(over Zp) if

1) The shares for each party form a vector over Zp.
2) There exists a matrix M called the share-generating

matrix for Π. The matrix M has l rows and n columns.
For all i = 1, · · · , l, the i-th row of M is labeled by a
party ρ(i) (ρ is a function from {1, · · · , l} to P). When
we consider the column vector v = (s,r2, · · · ,rn), where
s∈Zp is the secret to be shared and r2, · · · ,rn ∈Zp are
randomly chosen, then Mv is the vector of l shares of
the secret s according to Π. The share (Mv)i belongs to
party ρ(i).

Every linear secret sharing-scheme according to the above
definition also enjoys the linear reconstruction property: Sup-
pose that Π is a LSSS for the access structure A. Let S ∈ A
be any authorized set, and let I ⊂ {1,2, · · · , l} be defined as
I = {i : ρ(i)∈ S}. Then, there exist constants {w∈Zp}i∈I such
that, for any valid shares {λi} of a secret s according to Π, we
have ∑i∈I wiλi = s. These constants {wi} can be found in time
polynomial in the size of the share-generating matrix M. We
note that for unauthorized sets, no such constants {wi} exist.

C. Bilinear Pairing

Let G1, G2 and GT be three multiplicative groups with the
same prime order p. A bilinear map is a map e :G1×G2→GT
with the following properties:

1) Bilinearity: e(ua,vb) = e(u,v)ab for all u ∈ G1, v ∈ G2
and a,b ∈Zp.

2) Non-degeneracy: There exist u ∈ G1, v ∈ G2 such that
e(u,v) 6= I, where I is the identity element of GT .

3) Computability: e can be computed in an efficient way.
Such a bilinear map is called a bilinear pairing.

D. Decisional q-parallel Bilinear Diffie-Hellman Exponent
Assumption

We recall the definition of the decisional q-parallel Bilinear
Diffie-Hellman Exponent (q-parallel BDHE) problem in [3] as
follows. Chooses a group G of prime order p according to the
security parameter. Let a,s ∈ Zp be chosen at random and g
be a generator of G. If an adversary is given

~y = (g,gs,g1/z,ga/z, · · · ,g(aq/z),

ga,g(a
q), ,g(a

q+1), · · · ,g(a2q),

∀1≤ j≤q gs·b j , ga/b j , · · · ,g(aq/b j), ,g(a
2q/b j),

∀1≤ j,k≤q,k 6= j ga·s·bk/b j , · · · ,g(aq·s·bk/b j)),

it must be hard to distinguish a valid tuple e(g,g)aq+1s ∈ GT
from a random element R in GT .

An algorithm B that outputs z ∈ {0,1} has advantage ε in
solving q-parallel BDHE in G if∣∣∣Pr[B(~y,T = e(g,g)aq+1s) = 0]−Pr[B(~y,T = R) = 0]

∣∣∣≥ ε.

Definition 5. The decisional q-parallel BDHE assumption
holds if no polynomial time algorithm has a non-negligible
advantage in solving the q-parallel BDHE problem.

E. Security Proof of Our Proposed Multi-authority CP-ABE

We prove that our multi-authority access control is secure
under security model we defined, which can be summarized
as in the following theorem.

Theorem 3. When the decisional q-parallel BDHE assump-
tion holds, no polynomial time adversary can selectively break
our system with a challenge matrix of size l∗ × n∗, where
n∗ ≤ q.

Proof: Suppose we have an adversary A with non-
negligible advantage ε = AdvA in the selective security game
against our construction and suppose it chooses a challenge
matrix M∗ with the dimension at most q−1 columns. In the
security game, the adversary can query any secret keys that
cannot be used for decryption in combination with any keys
it can obtain from the corrupted AAs. With these constraints,
the security game in multi-authority systems can be treated
equally to the one in single authority systems. Therefore, we
can build a simulator B that plays the decisional q-parallel
BDHE problem with non-negligible advantage as follows.

Init. The simulator takes in the q-parallel BDHE challenge
~y, T . The adversary gives the algorithm the challenge access
structure M∗,ρ∗, where M∗ has n∗ columns.

Setup. The simulator runs the CASetup and AASetup algo-
rithm, and gives g to the adversary. The adversary chooses a set
of S′A ⊂ SA of corrupted authorities, and reveals these to the
simulator. For each uncorrupted authority AAk(k ∈ SA− S′A),

11

the simulator randomly chooses α ′k ∈ Zp(k ∈ SA − S′A) and
implicitly sets αkl = α ′k +aq+1 by letting

e(g,g)αk = e(ga,gaq
)e(g,g)α ′k . (3)

Then, we describe how the simulator programs the random
oracle H by building a table. Consider a call to H(x), if
H(x) was already defined in the table, then the oracle returns
the same answer as before. Otherwise, begin by choosing a
random value dx. Let X denote the set of indices i, such that
ρ∗(i) = x. In other words, all the row indices in the set X
match the same attribute x. The simulator programs the oracle
as

H(x) = gdx ∏
i∈X

gaM∗i,1/bi ·ga2M∗i,2/bi · · ·ganM∗i,n/bi . (4)

Note that if X = /0 then we have H(x) = gdx . Also note that
the response from the oracle are distributed randomly due to
the gdx value.

The simulator also randomly chooses two numbers βk,γk ∈
Zp. Then, it generate the public key of each uncorrupted
authority AAk as

PKk =

(
e(g,g)αk ,g

1
βk ,g

γk
βk

)
.

The public attribute keys PKxk can be simulated by randomly
choosing a version number vxk ∈Zp as

PKxk = (gvxk+dxk ∏
i∈X

gaM∗i,1/bi ·ga2M∗i,2/bi · · ·ganM∗i,n/bi)γk .

Secret Key Query Phase 1. In this phase, the simu-
lator answers secret key queries from the adversary. Sup-
pose the adversary makes secret key queries by submitting
pairs (SigskCA(uid),Sk) to the simulator, where Sk is a set
of attributes belonging to an uncorrupted authority AAk and
SigskCA(uid) is the user certificate issued by the CA. Suppose
Sk does not satisfy M∗ together with any keys that can obtain
from corrupted authorities.

The simulator first authenticate the user’s certificate by
using the public key of the CA, then the simulator chooses
a random number r ∈ Zp. It then finds a vector ~w =
(w1,w2, · · · ,wn∗)∈Zn∗

p , such that w1 =−1 and for all i where
ρ∗(i) ∈ Sk we have that ~w ·M∗i = 0. By the definition of a
LSSS, such a vector must exist, since Sk does not satisfy M∗.

The simulator then implicitly defines u as

u =
1
z
(r+w1aq +w2aq−1 + · · ·+wn∗aq−n∗+1)

by setting

GPKuid = (g
1
z)r

∏
i=1,...,n∗

(g
aq+1−i

z)wi = gu.

The simulator constructs Luid,k as

Luid,k = g
βk
z .

From the definition of gu, we find that gau contains a term of
gaq+1

, which will cancel out with the unknown term in (g
1
z)αk

when creating Kuid,k. The simulator can calculate Kuid,k as

Kuid,k = g
α ′k
z (g

a
z)r

∏
i=2,...,n∗

(
g

aq+2−i
z

)wi

.

For the calculation of Kxk,uid,k(∀xk ∈ Sk), if x is used in the
access structure, we must make sure that there are no terms of
the form gaq+1/bi that we cannot simulate. However, we have
that ~w ·M∗i = 0. Therefore, all of these terms cancel out.

The simulator computes Kxk,uid,Sk as follows.

Kxk,uid,Sk = g
βkγk

z · (GPKuid)
βkγk(vxk+dxk)·

∏
i∈X

∏
j=1,...,n∗

(
(gr)βkγk ∏

k=1,...,n∗,k 6= j

(
gaq+1+ j−k/bi

)βkγkwk

)M∗i, j

If the attribute x ∈ SAID is not used in the access structure.
That is there is no i such that ρ∗(i) = x. For those attributes,
we can let

Kxk,uid,k = g
βkγk

z · (GPKuid)
βkγk(vxk+dxk).

Challenge. In this phase, the simulator programs the chal-
lenge ciphertext. The adversary gives two messages m0,m1 to
the simulator. The simulator flips a coin b. It creates

C = mbT ·∏
k∈IA

e(gs,gα ′AIDk)

and C′ = gs.
The difficult part is to simulate the Ci values since this con-

tains terms that must be canceled out. However, the simulator
can choose the secret splitting, such that these can be canceled
out. Intuitively, the simulator will choose random y′2, · · · ,y′n∗
and share the secret s using the vector

~v = (s,sa+ y′2,sa2 + y′3, · · · ,san∗−1 + y′n∗) ∈Zn∗
p .

It also chooses random values r′1, · · · ,r′`.
For i = 1, . . . ,n∗, let Ri be the set of all k 6= i such that

ρ∗(i) = ρ∗(k). That is the set of all other row indices that
have the same attribute as row i. The challenge ciphertext
components can be generated as

D1,i =
(

gr′i gsbi
) 1

βk

and

D2,i =
(

gr′i gsbi
)−γk

βk .

From the vector ~v, we can construct the share of the secret as

λi = s ·M∗i,1 + ∑
j=2,...,n∗

(sa j−1 + y′j)M
∗
i, j

Then, we can simulate the Ci as

Ci =(gvρ∗(i) ·H(ρ∗(i)))γkr′i ·

(
∏

j=1,...,n∗
gaMi, jy j

)
·

(
gbis
)−γk(vρ∗(i)+dρ∗(i)) ·

(
∏
k∈Ri

∏
j=1,...,n∗

(ga js(bi/bk))γkM∗k, j

)
.

12

Secret Key Query Phase 2. Same as Phase 1.
Guess. The adversary will eventually output a guess b′ of

b. If b′ = b, the simulator then outputs 0 to show that T =
e(g,g)aq+1s; otherwise, it outputs 1 to indicate that it believes
T is a random group element in GT .

When T is a tuple, the simulator B gives a perfect simula-
tion so we have that

Pr[B(~y,T = e(g,g)aq+1s) = 0] =
1
2
+AdvA.

When T is a random group element the message mb is
completely hidden from the adversary and we have at

Pr[B(~y,T = e(g,g)aq+1s) = 0] =
1
2
.

Therefore, B can play the decisional q-parallel BDHE game
with non-negligible advantage.

