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Abstract. Genus 2 curves with simple but not absolutely simple jacobians can be used to
construct pairing-based cryptosystems more efficient than for a generic genus 2 curve. We
show that there is a full analogy between methods for constructing ordinary pairing-friendly
elliptic curves and simple abelian varieties, which are iogenous over some extension to a prod-
uct of elliptic curves. We extend the notion of complete, complete with variable discriminant,
and sparse families introduced in by Freeman, Scott and Teske [11] for elliptic curves, and
we generalize the Cocks-Pinch method and the Brezing-Weng method to construct families
of each type. To realize abelian surfaces as jacobians we use of genus 2 curves of the form
y2 = x5 + ax3 + bx or y2 = x6 + ax3 + b, and apply the method of Freeman and Satoh [10].
As applications we find some families of abelian surfaces with recorded ρ-value ρ = 2 for em-
bedding degrees k = 3, 4, 6, 12, or ρ = 2.1 for k = 27, 54. We also give variable-discriminant
families with best ρ-values.

Keywords: Pairing-friendly hyperelliptic curves, abelian varieties, Weil numbers, CM
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1 Introduction

Since pairings have been introduced to design cryptographic protocols (see, e.g., [2, 3, 20,
35]), one of the main problems is to construct abelian varieties suitable for these applica-
tions. Let A/Fq be an abelian variety containing an Fq-rational subgroup of prime order
r with the embedding degree k = min{l : r | (ql − 1)}. To implement pairing-based cryp-
tosystems k should be suitably small so that pairings of r-torsion points with values in the
field Fqk could be efficiently computed, but the discrete logarithm problem in Fqk remains
intractable. Furthermore, in order the arithmetic on A to be more efficient, we would like
that the bit size of r to be close to the size of #A(Fq). Since log(#A(Fq)) ≈ dimA log(q),
we would like the parameter ρ = dimA log q/ log r to be close to one. We can achieve ρ ≈ 1
using supersigular abelian varieties, which in each dimension have bounded embedding
degrees (e.g., k ≤ 6 or 12 for supersingular elliptic curves or abelian surfaces (see [14, 29,
31])). For higher security levels we use ordinary varieties, which are unlikely to be found
by a random choice and require specific constructions. In practice, we mainly use elliptic
curves or jacobians of hyperelliptic curves of low genus.

Pairing-friendly elliptic curves. In general, to construct an ordinary elliptic curve E with
an embedding degree k we first find parameters (r, t, q) of E, where t is the trace of E, q
is the size of the field of definition, and r is the order of a subgroup with the embedding
degree k. Then we use the Complex Multiplication (CM) method to find the equation of E,
which requires that the CM discriminant d of E is sufficiently small, where d is the square-
free part the non-negative integer 4q − t2. Parameters (r, t, q) of pairing-friendly elliptic
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curves are generated either directly, like in the Cocks-Pinch method (see [11, Theorem
4.1]), or are obtained as values of suitable polynomials (r(x), t(x), q(x)) called parametric
families. The former method is very flexible and allows one to obtain the subgroup orders
r and discriminants d of almost arbitrary size, however with ρ-value only around 2. Using
parametric families we can considerably improve ρ-values for more restricted subgroup
orders and discriminants.

Miyaji, Nakabayashi and Takano [25] were the first researchers to use parametric fami-
lies to characterize elliptic curves of prime orders with embedding degrees k = 3, 4, 6. Scott
and Barreto [32], and Galbraith et al. [15] generalized their idea to describe elliptic curves
with prescribed cofactors for k = 3, 4, 6. Currently constructions of families with ρ = 1 are
yet known for k = 10 and 12, and were discovered by Freeman [8] and Barreto-Naehrig
[1], respectively. Most families used in practice are so-called complete families, and are
constructed by the Brezing-Weng method [4]. We now recall the general definition and
classification of families introduced by Freeman, Scott and Teske [11].

Definition 1. ([11, Definition 2.7]) Let k and d be positive integers such that d is square-
free. We say that a triple of polynomials (r(x), t(x), q(x)) in Q[x] parametrizes a family of
elliptic curves with embedding degree k and discriminant d if the following conditions are
satisfied:

1. q(x) = p(x)s for some s ≥ 1 and p(x) that represents primes.
2. r(x) is irreducible, non-constant, integer valued, and has positive leading coefficient.
3. r(x) divides q(x) + 1− t(x).
4. r(x) divides Φk(t(x)− 1), where Φk(x) is the kth cyclotomic polynomial.
5. The CM equation 4q(x)− t(x)2 = dy2 has infinitely many integer solutions (x, y).

Properties of the CM equation lead us to the classification of families. It is clear that
we can write 4q(x)− t(x)2 = f(x)g(x)2, where f(x) ∈ Z[x] is square-free and g(x) ∈ Q[x].
Then condition (5) implies by Siegel’s theorem that deg f(x) ≤ 2 (see [8, Proposition 2.10]
or Lemma 16). We say that a family is complete if f = d; then the CM equation is satisfied
for any x ∈ Z. We say that a family is complete with variable discriminant if deg f = 1;
then substituting x ← (dx2 − b)/a, where f(x) = ax + b, yields a complete family with
discriminant d if conditions (1) and (2) of Definition 1 are satisfied. A family is called
sparse if deg f = 2; then the CM equation can be transformed to the generalized Pell
equation, whose solutions grow exponentially. We note that the Brezing-Weng method [4]
can be generalized to construct families of the latter two types (see [7]). These families
can be used to generate elliptic curves with larger discriminant, which may be desired for
larger randomness of cryptosystems.

Pairing-friendly genus 2 curves. There is also a great deal of interest in constructing
pairing-friendly genus 2 curves. Freeman, Stevenhagen and Streng [12] give a general
method to generate pairs (r, π) such that π is a Weil q-number corresponding by the
Honda-Tate theory to a simple ordinary abelian variety with embedding degree k with re-
spect to r. In order to realize these varieties as jacobians, we must chose π from a suitable
CM field K, where Weil numbers in question are characterized by the condition

NK/Q(π − 1) ≡ Φk(ππ̄) ≡ 0 (mod r).

If [K : Q] = 2g, then the corresponding varieties are of dimension g with ρ-value around
2g2. Freeman [9] generalized this method to construct parametric families of abelian vari-
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eties. In order to obtain pairing-friendly ordinary abelian surfaces, which generically have
ρ-value around 4, or less than 4 for parametric families, we use genus 2 curves, whose
jacobian is simple but not absolutely simple. Kawazoe and Takahashi [23] use curves of
the form y2 = x5 + ax and a closed formula for their order [13] (see also Kachisa [21]).
Freeman and Satoh [10] give a general method to construct an elliptic curve, whose Weil
restriction over some extension contains an abelian surface with a given embedding degree.
To realize that surface as a jacobian, they use curves of the form y2 = x5 + ax3 + bx or
y2 = x6 + ax3 + b. Recently Guillevic and Vergnaud [17] extended their method using
closed formulas for the order of these curves.

Contribution. In this paper we show that there is a full analogy between methods for
constructing pairing-friendly elliptic curves and simple abelian varieties which are isoge-
nous over some extension to a product of elliptic curves. Now we outline the main idea
of our method. Let K be a CM field of degree 2g, and suppose that we have a polyno-
mial π(x, y) ∈ K[x, y] such that q(x, y) = π(x, y)π̄(x, y) ∈ Q[x, y] and the image π(Z2)
contains “sufficiently many” Weil numbers in K. Then we can use π(x, y) to generate
pairing-friendly Weil numbers analogously as in the Cooks-Pinch method. If r is a prime
such that the system

NK/Q(π(x, y)− 1) = Φk(q(x, y)) = 0, (1)

has solutions over Fr, then we check whether π(x, y) is a Weil number for lifts x, y ∈ Z
of these solutions. Since generically solutions over Fr are of the similar size as r, the
resulting varieties have ρ-value ρ = g log q(x, y)/ log r ≈ 2g deg π(x, y). Thus to obtain
ρ-value around 2g, we need suitable polynomials π(x, y) of degree one. If K contains an
imaginary quadratic subfield K0 = Q(

√
−d), then for any u ∈ K such that c = uū ∈ Q,

the polynomial π(x, y) = u(x + y
√
−d) satisfies q(x, y) = π(x, y)π̄(x, y) = c(x2 + dy2) ∈

Q[x, y], however, if c 6= 1, then the image π(Z2) does not contain sufficiently many primes.
Therefore we will use π(x, y) = ζs(x + y

√
−d) to generate Weil numbers in the CM field

K = Q(ζs,
√
−d), where ζs is an sth primitive root of unity and d > 0 is a square-free

integer. We note that Weil q-numbers of the form π = ζsπ0 with π0 ∈ Q(
√
−d) correspond

to simple abelian varieties which are isogenous over Fqs to a power of an elliptic curve
E/Fq with the Weil q-number π0 (see Corollary 4).

To generalize the Cocks-Pinch and the Brezing-Weng methods we describe in Section
3 prime finite fields and number fields, where system (1) has solutions for π(x, y) = ζs(x+
y
√
−d), and we give explicit formulas on solutions. In Section 4 we focus on constructing

genus 2 curves, whose jacobian corresponds to Weil numbers π = ζsπ0 in a quartic CM field
K = Q(ζs,

√
−d). We give an algorithm to construct curves of the form y2 = x6+ax3+b and

y2 = x5+ax3+bx, which is based on the method of Freeman and Satoh (see [10, Algorithm
5.11]). In Section 5 we generalize on abelian varieties Definition 1 and classification of
families of elliptic curves. In Sections 6, 7, 8 we generalize the Brezing-Weng method to
construct families of each type.

As applications we give complete families of abelian surfaces (r(x), π(x)) with variable
discriminant and best ρ-values such that deg r(x) < 25. We note that some of these families
for fixed discriminants were found in [10] and [17]. Furthermore, some complete families
with variable discriminant are given in [10, Section 7], where they are obtained from
complete families satisfying certain conditions, but no general method to construct such
families is given. We also find some families with recorded ρ-value ρ = 2 for k = 3, 4, 6, 12,
or ρ ≈ 2.1 for k = 27, 54 (see Examples 19, 24, 27).
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2 Background

In this section we gather basic facts on abelian varieties, which will be needed in the sequel
(for details see [26, 37–40]).

Let A/Fq be a g-dimensional abelian variety with qth Frobenius endomorphism πA,
and its characteristic polynomial fA. Then we have fA(πA) = 0, and #A(Fq) = fA(1).
Furthermore, all roots of fA are Weil q-numbers. Recall that an algebraic integer π is
called a Weil q-number if |α(π)| =

√
q for every embedding α : Q(π) → C). We say

that A is simple if it is not isogenous over Fq to a product of two positive dimensional
abelian varieties. By the Honda-Tate theorem the map which associates the Frobenius
endomorphism πA to a simple abelian variety A/Fq induces a one-to-one correspondence
between isogeny classes of simple abelian varieties over Fq and conjugacy classes of Weil
q-numbers. Recall also that a variety A is called ordinary if it has the maximum number
pg of all p-torsion points over Fq, where p = charFq. We have the following.

Theorem 2. ([40]) Let A/Fq be a simple abelian variety of dimension g with the endo-
morphism algebra K = EndFq(A) ⊗ Q. Then A is ordinary if and only if K = Q(πA)
is a CM field of degree 2g, and πA, πA are relatively prime in OK . Furthermore, if A is
ordinary, then fA is the minimal polynomial of πA, and

#A(Fq) = fA(1) = NK/Q(πA − 1). (2)

Recall that a number field K is called a CM field if it is an imaginary quadratic
extension of a totally real field. Then K has an automorphism, denoted by a bar, which
commutes with every embedding K → C and the complex conjugation in C.

In this paper we are interested in simple abelian varieties, which are not absolutely
simple (i.e., split over some extension of the base field).

Proposition 3. A simple ordinary abelian variety A/Fq with a Weil q-number π splits
over Fqs if and only if Q(πs)  Q(π). Then A is isogenous to Bn over Fqs, where B/Fqs
is a simple abelian variety with the Weil qs-number πs.

Proof. For the sake of completeness we give a proof (see also [18, Lemma 4]). We recall that
if fA,q(x) =

∏2g
i=1(x− πi), then fA,qs(x) =

∏2g
i=1(x− πsi ). Since A is simple and ordinary,

fA,q(x) is irreducible, and hence all πi are conjugated. If Q(πs)  Q(π), then fA,qs is not
the minimal polynomial of πs, so A splits over Fqs . Conversely, if A ∼ B1× · · ·×Bm for
simple abelian varieties Bi/Fqs , then fA,qs = fB1 · · · fBm . Since each Bi is ordinary, fBi
is irreducible. Furthermore, since all the numbers πs1, . . . , π

s
2g are conjugated, it follows

that they are exactly roots of each fBi . Hence all fBi are equal, and from the Honda-Tate
theorem it follows that all Bi are isogenous over Fqs , so A ∼ Bn

1 .

Corollary 4. Let A/Fq be an ordinary simple abelian variety with a Weil q-number π,
and E/Fq be an ordinary elliptic curve with a Weil q-number π0.

(i) Then A is isogenous to Eg over Fqn if and only if π = ζsπ0, where ζs is an sth primitive
root from unity and s | n.

(ii) If s is even and π = ζsπ0, then A is isogenous to E′g over Fqs/2, where E′ is the
quadratic twist of E.
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(iii) If π = ζsπ0, then Q(π) = Q(ζs,
√
−d), where π0 ∈ Q(

√
−d) and d is a positive square-

free integer.

Proof. (i) By Proposition 3 we have A ∼ Eg over Fqn if and only if πn = πn0 . So, if s is
the minimal integer such that πs = πs0, then π = ζsπ0, and obviously s | n.

(ii) Since −π0 is the Weil q-number of the quadratic twists E′ of E, and π = ζs/2(−π0), it
follows from (i) that A ∼ E′g over Fqs/2 .

(iii) Since E is ordinary, πs0 and π̄s0 are relatively prime. Hence πs = πs0 generates Q(
√
−d),

which implies that ζs,
√
−d ∈ Q(π), so Q(π) = Q(ζs,

√
−d).

2.1 Weil numbers of pairing-friendly varieties

Recall that the embedding degree of an abelian variety A/Fq with respect to a prime
r | #A(Fq), r 6= charFq, is the minimal integer k such that r | (qk − 1). In other words,
q (mod r) is a kth primitive root of unity, or equivalently, if r - k, it is a root of the kth
cyclotomic polynomial Φk(x). By Theorem 2 we have the following.

Lemma 5. ([12, Proposition 2.1]) Let K = Q(π) be a CM field of degree 2g, where π is a
Weil q-number corresponding to an ordinary abelian variety A. Let k be a positive integer
and r be a prime such that r - kq. Then A has the embedding degree k with respect to r if
and only if

(1) r | Φk(q),
(2) r | NK/Q(π − 1).

3 The generalized Cocks-Pinch method

Let K = Q(ζs,
√
−d) be a CM field of degree 2g, where ζs is an sth primitive root of unity

and d > 0 is a square-free integer. To generate as in the Cooks-Pinch method pairing-
friendly Weil numbers of the form π = ζsπ0 with π0 ∈ Q(

√
−d), we need to find a prime

finite field Fr where the system

NK(x,y)/Q(x,y)

(
ζs(x+ y

√
−d)− 1

)
= Φk

(
x2 + dy2

)
= 0, (3)

has solutions, and check whether π(x, y) = ζs(x+y
√
−d) is a Weil number for lifts x, y ∈ Z

of these solutions. We describe below such prime fields Fr, and give explicit formulas on
solutions. We also give an analogous result for number fields in order to further generalize
the Brezing-Weng.

Lemma 6. Let R = Z or Q[x], and r ∈ R be a prime such that the residue field R/(r)
contains primitive roots of unity ζk, ζs and

√
−d (if R = Z, we assume that r 6 |2dks). If√

−d 6∈ Q(ζs), then solutions in R/(r) of system (3) are of the form

x =
ζ−1
s + ζkζs

2
, y = ±ζ

−1
s − ζkζs
2
√
−d

. (4)

If
√
−d ∈ Q(ζs), then one of these pairs is a solution of (3).
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Proof. We have

NK(x,y)/Q(x,y)

(
ζs(x+ y

√
−d)− 1

)
=

∏
σ∈Aut(K)

(
σ(ζs)

(
x+ yσ(

√
−d)

)
− 1
)
,

and
x2 + dy2 = σ(ζs)

(
x+ yσ(

√
−d)

)
σ(ζ−1

s )
(
x− yσ(

√
−d)

)
.

Thus (3) has the same solutions over Q(ζk, ζs,
√
−d) as systems

σ(ζs)
(
x+ yσ(

√
−d)

)
= 1,

σ(ζ−1
s )
(
x− yσ(

√
−d)

)
= ζk,

for each ζk and σ ∈ Aut(K). Hence

x =
σ(ζ−1

s ) + ζkσ(ζs)

2
, y =

σ(ζ−1
s )− ζk σ(ζs)

2σ(
√
−d)

. (5)

If
√
−d 6∈ Q(ζs), then the above solutions are of the form (4), since each automorphism of

Q(ζs) has two extensions on K. If
√
−d ∈ Q(ζs), this solution is equal to one of pairs (4).

Now let P be a prime ideal over r in S = R[ζs, ζk,
√
−d], and SP be the localization of S

at P . It follows from the assumption that R/(r) = S/P = SP /PSP . Reducing solutions
(5) mod PSP we get solutions in R/(r) of the desired form, sine reduction mod P induces
an isomorphism between sth and kth roots of unity in S and R/(r) by the following fact.

Lemma 7. Let R = Z or Q[x], and r ∈ R be a prime such that the residue field R/(r)
contains sth primitive roots of unity (if R = Z, we assume that r 6 |s). If P is a prime
ideal in R[ζs] over r, then R/(r) = R[ζs]/P and reduction mod P induces an isomorphism
between sth roots of unity in R[ζs] and R/(r).

Proof. We note that S = R[ζs] is the integral closure of R in the field of fractions of S.
This is well-known for R = Z; if R = Q[x], it follows from the fact that F [x] is integrally
closed in F (x) for any field F ; in particular for F = Q(ζs). We also note that the sth
cyclotomic polynomial Φs(x) is irreducible over Q(x), because it is irreducible over Q and
coefficients of monic factors of polynomials in Q[x] are algebraic over Q. Since R ⊂ S is
an integral extension of Dedekind domains, we have rS =

∏n
i=1 P

e
i , where Pi are prime

ideals in S. Let rimodr for ri ∈ R be different sth primitive roots of unity in R/(r) for
i = 1, . . . , ϕ(s). Since rimodr are roots of Φs(x), after rearranging we have Pi = (r, ζs−ri)
(see [24, Proposition I.8.25]). Thus ζjs ≡ rjimodPi yields an isomorphism between sth roots
of unity.

From Lemma 6 we obtain the following generalization of the Cocks-Pinch algorithm.

Algorithm 8. Input: A CM field K = Q(ζs,
√
−d) of degree 2g, and a positive integer

k. Output: A pair (r, π) such that r is a prime and π = ζsπ0 with π0 ∈ Q(
√
−d) is a

Weil q-number corresponding to a g-dimensional ordinary abelian variety A/Fq with the
embedding degree k with respect to r.

1. Choose a prime r such that lcm(s, k)|(r − 1) and
√
−d ∈ Fr.
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2. Let x = ζ−1
s +ζkζs

2 and y = ζ−1
s −ζk ζs
2
√
−d for all primitive roots of unity ζs, ζk ∈ Fr.

3. If
√
−d ∈ Q(ζs) and x, y in the previous step do not satisfy system (3), put y := −y.

4. Let x1, y1 ∈ [0, r) be lifts of x, y.
5. Let π = ζs

(
x1 + ir + (y1 + jr)

√
−d
)

for i, j ∈ [−m,m], where m is a small integer.
6. Return (r, π) if q = ππ̄ is prime and x1 + ir 6= 0.

We expect that solutions of system (3) behave like random elements in Fr, so we

generically obtain ρ-value ρ = g log((x1+ir)2+d(y1+jr)2)
log r ≈ 2g.

Remark. If d ≡ 3mod4, we obtain Weil numbers π = ζsπ0 such that π0 is in the proper
suborder Z[

√
−d]. If we want to generate Weil numbers without this restriction, we can

modify the above method using π(x, y) = ζs(x+ y(1 +
√
−d)/2).

4 Freeman-Satoh curves

In this section we focus on constructing genus 2 curves, whose jacobian corresponds to
a given Weil number π = ζsπ0 in a quartic CM field K = Q(ζs,

√
−d), where π0 ∈

Q(
√
−d). Since ϕ(s) = 2 or 4, we have s = 3, 4, 6, 8, 12 (the quartic CM field Q(ζ5)

contains no imaginary quadratic subfield). We note that a simple abelian surface which is
not absolutely simple, may be not isogenous to the jacobian of any curve (see [28]). Since
abelian surfaces corresponding to Weil numbers in question have automorphisms of order
s, so of order 3 or 4, first it is natural to consider genus 2 curves which have automorphisms
of order 3 or 4. We will use the following families of curves

y2 = x6 + ax3 + b, (6)

y2 = x5 + ax3 + bx, (7)

which have automorphisms of order 3 and 4 given by (x, y) 7→ (ζ3x, y) and (−x, iy),
respectively (for more details on genus 2 curves with additional automorphisms see [6, 16,
19, 33]). We will need the following result due to Freeman and Satoh [10].

Lemma 9. ([10, Propositions 4.1 and 4.2]) A curve C given by (6) or (7) is isomorphic
to the curve y2 = x6 + cx3 + 1 or y2 = x5 + cx3 + x, respectively, where c = a/

√
b.

Furthermore, Jac(C) is isogenous over some extension to E2, where E is an elliptic curve
with the j-invariant

j(E) = 2833 (2c− 5)3

(c− 2)(c+ 2)3
, (8)

j(E) = 26 (3c− 10)3

(c− 2)(c+ 2)2
, (9)

respectively.

We now describe a method based on [10, Algorithm 5.11]. Suppose that an abelian
surface A/Fq corresponding to a Weil q-number π = ζsπ0 is isogenous to the jacobian
of a genus 2 curve C given by (6) or (7). Then A is isogenous over some extension to
E2, where E is an elliptic curve with the j-invariant given by (8) or (9), respectively. By
Corollary 4, A is also isogenous to E2

0 over Fqs , where E0 is an elliptic curve with the Weil
q-number π0. Hence E and E0 are isogenous, and so End(E) is an order in K0 = Q(

√
−d).
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In particular, if End(E) = OK0 is the maximal order, then j(E) is a root of the Hilbert
class polynomial HK0(x). Conversely, if j ∈ Fq is a root of HK0(x), and there exists c ∈ Fq
satisfying equations (8) or (9) with j(E) = j, then we determine isomorphism classes over
Fq of curves y2 = x6 + ax3 + b or y2 = x5 + ax3 + bx with a, b ∈ Fq satisfying c = a/

√
b,

and verify if jacobians of these curves correspond to π. We recall that to check with high
probability if the jacobian of a curve C corresponds to a Weil number π we pick a random
point P ∈ Jac(C) and check if nP = 0, where n = N(π− 1). The above procedure we give
below as an algorithm. The only improvement is that we admit all twists of the above
curves. The following examples show that this improvement is essential.

Example 10. Let π = ζ3(3 + 2
√
−5) be a Weil q-number with q = ππ̄ = 29 and n =

NK/Q(1−π) = 1029. Using Algorithm 11 below we find that π corresponds to the jacobian
of the curve

y2 = 4x6 + 26x5 + 7x4 + 11x3 + 24x2 + 27x+ 4,

which is a twist of the curve y2 = x6 + 5x3 + 1. However, checking all a, b, c ∈ F29, we find
that there are no curves y2 = ax6 + bx3 + c, whose jacobian corresponds to π.

Algorithm 11. Input: A square-free positive integer d, s = 3, 4, and a Weil q-number
π = ζsπ0 with π0 in K0 = Q(

√
−d). Output: A genus 2 curve over Fq, whose jacobian

corresponds to π, or ∅.

1. Compute the Hilbert class polynomial HK0(x).

2. For each root j ∈ Fq of HK0(x) find solutions c ∈ Fq of equations (8) or (9).

3. For each solution c, let C : y2 = x6 + cx3 + 1 or C : y2 = x5 + cx3 + x. Remove C if it
is not hyperelliptic.

4. If c 6∈ Fq and all absolute invariants of C lie in Fq, determine a model C1/Fq of C and
put C := C1.

5. Determine all twists of C over Fq.
6. For each twist C ′ choose a random point P ∈ Jac(C ′)(Fq) and compute nP , where
n = NK/Q(π − 1).

7. Return C ′ if nP = 0.

In this algorithm we need to compute the Hilbert class polynomial HK0(x), which
requires that the discriminant d is sufficiently small (see [36]). We also note that if a
genus 2 curve C/Fq has a model over Fq, then all its absolute invariants lie in Fq. The
converse property is not always true, but it does hold if C has automorphisms other than
the identity and the hyperelliptic involution. Then a model of C over Fq can be computed
using the generalization of the Mestre algorithm [30] due to Cardona and Quer [5].

Remark 12. (i) In the above algorithm it usually suffices to use curves (6) or (7) if s = 3
or 4, respectively. However, it may happen for the CM field K = Q(ζ12) that we need to
use curves (6) to realize Weil numbers of the form iπ0 with π0 ∈ Q(

√
−3) (see Example

19).
(ii) For Weil numbers in the CM field Q(ζ8) we can usually use curves y2 = x5 + ax,
which have automorphisms of order 8, (x, y) 7→ (ζ2

8x, ζ8y). Originally to construct pairing-
friendly curves of this form Kawazoe and Takahashi [23] used the closed formula on their
order (see [13]).
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Example 13. For K = Q(ζ3,
√
−5) and k = 16, we find the following parameters of an

abelian surface with ρ = 4.011, and the corresponding genus 2 curve:

r = 48(1053 + 2085) + 1 (181-bits prime),

π = ζ3(4305259600539301889028270527319533759867814882609214984 + 571508067895938550354155472517

641790952378241018152093
√
−5),

q = 20168367586386572810015424271002249732267166683454467732594522539415397151727 6154391831469

84296058295131523501,

y2 = x6 + x3 + 981532917271730474264668250744383765757406174971515824402826019633848306457589362

3291386054363203804560511872.

Example 14. For K = Q(i,
√
−7) the following abelian surface has embedding degree

k = 31 and ρ = 4.016:

r = 124(1075 + 3) + 1 (256-bits prime),

π = i(96180181687130548086884708381078859138617038963689573425053970665226825986272 + 91558027

992357779050997348893456461758173362493150155534511656004178345272853
√
−7),

q = 679307347783150369289751666286449471305173871694322420556070302855831823354494207394621275

41092926455433020262880660629280273105153102439936019342663775247,

y2 = 3x6 + a4x
4 + a3x

3 + a2x
2 + a1x + a0,

a4 = 3359883426491903239260687351205333584274415282669584200961705255663807150184061798836909409

29053258439399481704008550987597610050426614764135822532343 4953,

a3 = 5356837517604474470626757071748343842912451475975733986406790006 16119345968513301650887830

8706136631727773724287077349886552467882134987790 1446296718597438,

a2 = 2088382403406845688058036260961195872529316410730848 273633224420465043726698496169163564571

711766354451251470165246763280927392352645917145654085006717818,

a1 = 57720778065183501500394160125969638193912223362157928071963646675538960777428029050063274589

922893324564241505062288 56624240879836588623929749981630415507,

a0 = 40608745286371422614086942885541479059151002533283910337262145107513480124319683073247403806

513031794751009070833255847028807427645244130283094362282003998.

5 Parametric Families

Here we generalize Definition 1 and classification of families of elliptic curves on simple
abelian varieties over Fq, which are isogenous over some extension to a power of an elliptic
curve defined over Fq. Recall that by Corollary 4 Weil q-numbers of such abelian varieties
are of the form π = ζsπ0, where π0 is a Weil q-number of an elliptic curve.

Definition 15. Let K = Q(ζs,
√
−d) be a CM field of degree 2g, where ζs is an sth

primitive root of unity and d > 0 is a square-free integer. Let r(x) ∈ Q[x] and π(x) =
ζs(f1(x)+f2(x)

√
−f(x)), where f1(x), f2(x), f(x) ∈ Q[x]. We say that the pair (r(x), π(x))

parametrizes a family of g-dimensional ordinary abelian varieties with embedding degree k
and discriminant d if the following conditions are satisfied:

1. q(x) = f2
1 (x) + f2

2 (x)f(x) is a power of a polynomial in Q[x] that represents primes,
and gcd(f1(x), q(x)) = 1.
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2. r(x) is irreducible, non-constant, integer valued, and has positive leading coefficient.
3. r(x) divides NK1/Q(x)(π(x)− 1), where K1 = Q(x, ζs,

√
−f).

4. r(x) divides Φk(q(x)).
5. The CM equation f(x) = dy2 has infinitely many integer solutions (x, y).

We note that the ρ-values g log q(x)/ log r(x) of parametrized abelian varieties tend to
the ρ-value of the family

ρ =
g deg q(x)

deg r(x)
.

The assumption gcd(f1(x), q(x)) = 1 is necessary to obtain ordinary varieties. It follows
from the fact that an abelian variety with a Weil q-number π = ζsπ0 is ordinary if and only
if the corresponding elliptic curve with the Weil q-number π0 is ordinary, which means that
its trace π0 + π̄0 is relatively prime to q. In the examples below q(x) will always represent
primes, then it is sufficient that f1 6= 0. As for elliptic curves to obtain parameters of an
abelian variety with the endomorphism algebra K = Q(ζs,

√
−d) we find integer solutions

(x0, y0) to the CM equation f(x) = dy2, and check whether π(x0) is a Weil number, and
r(x0) is prime, or almost prime. If this is the case, then NK1/Q(x)(π(x)−1)(x0) is the order
of an abelian variety corresponding to π(x0), and it is divisible by large prime factors of
r(x0). To generalize classification of families we will need the following fact (see also [8,
Proposition 2.10]).

Lemma 16. In Definition 15 we can assume that f ∈ Z[x] is square-free, deg f ≤ 2, and
the leading coefficient of f is positive.

Proof. Obviously, condition (5) in Definition 15 implies that the leading coefficient of f is
positive. We can write f = g1g

2
2, where g1 ∈ Z[x] is square-free and g2 ∈ Q[x]. By Siegel’s

theorem (see [34, Theorem IX.4.3]) the curve dy2 = f(x) contains finitely many integer
points if f ∈ Q[x] is square-free of degree deg f ≥ 3. Thus replacing f by g1 and f2 by
f2g2 we have deg f ≤ 2.

Definition 17. Let (r(x), π(x)) be a family satisfying Definition 15 with f(x) as in
Lemma 16. We say that the family is

1. complete with discriminant d if f = d,
2. complete with variable discriminant if deg f = 1,
3. sparse if deg f = 2.

The above conditions have the same interpretation as for elliptic curves, and are useful
to obtain algorithms to generate families of each type, which generalize the Brezing-Weng
method [4].

6 Complete Families

First we generalize the Brezing-Weng method [4] to construct complete families of abelian
varieties. Let K = Q(ζs,

√
−d) be a CM field of degree 2g. To construct a complete

family (r(x), π(x)) with π(x) = ζs(f1(x) + f2(x)
√
−d), we need to find a number field

L = Q[x]/(r(x)) where the system

NK(x,y)/Q(x,y)

(
ζs(x+ y

√
−d)− 1

)
= Φk

(
x2 + dy2

)
= 0 (10)
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has solutions, and take f1, f2 ∈ Q[x] to be lifts of these solutions. Such number fields
and formulas on solutions have been described in Lemma 6. Hence we have the following
algorithm.

Algorithm 18. Input: A CM field K = Q(ζs,
√
−d) of degree 2g, a positive integer k,

and a number field L containing ζs, ζk,
√
−d.

Output: A complete family (r(x), π(x)) of g-dimensional ordinary abelian varieties with
embedding degree k, or ∅.

1. Find a polynomial r(x) ∈ Q[x] such that L = Q[x]/(r(x)).

2. Let x1 = ζ−1
s +ζkζs

2 and y1 = ζ−1
s −ζk ζs
2
√
−d for all ζs, ζk ∈ L.

3. If
√
−d ∈ Q(ζs) and x1, y1 do not satisfy system (10), put y1 = −y1.

4. Let f1, f2 ∈ Q[x] be lifts of x1, y1 with deg fi < deg r, i = 1, 2.

5. Let π(x) = ζs(f1(x) + f2(x)
√
−d).

6. Return (r(x), π(x)) if f1 6= 0, 2f1(x) ∈ Z for some x ∈ Z, and q(x) = f1(x)2 + df2
2 (x)

represents primes.

We note that resulting families have ρ-value

ρ =
2gmax{deg f1, deg f2}

deg r
≤ 2g(deg r − 1)

deg r
< 2g.

In the above algorithm we can take as L the cyclotomic field L = Q(ζs, ζm, ζk) = Q(ζl),
where m is the smallest integer such that

√
−d ∈ Q(ζm) and l = lcm(s,m, k). We note

that such m exists, because

√
(−1)

p−1
2 p ∈ Q(ζp) for each prime p > 2 and

√
−2 ∈ Q(ζ8)

(see [27, Lemma 2.2]). Now we give a few examples; more complete families with variable
discriminant will be given in Section 8.

Example 19. Let s = 4, d = 3, and K = Q(ζ12) = Q(i,
√
−3). Let k = 12 and L =

K = Q[x]/(r0(x)), where r0(x) = x4 + 2x3 + 6x2 − 4x + 4 is the minimal polynomial of
ζ12−ζ2

12 +ζ3
12. Using π(x, y) = i(x+y

√
−3) we find the following family of simple ordinary

abelian surfaces with embedding degree k = 12 and ρ = 2:

r(x) = 1
36(x4 + 2x3 + 6x2 − 4x+ 4),

π(x) = i
12

(
x2(−

√
−3 + 1)− 2x(

√
−3 + 1)− 6

√
−3− 2

)
.

We note that this construction is analogous to the Barreto-Naehrig family of elliptic curves
with k = 12 and ρ = 1 (see [1]). For example, we generate the following parameters of
abelian surfaces and the corresponding genus 2 curves using Algorithm 11.
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x = 87960930234340,

r = 1662864086068056644824292237437174114512687909008301229 (180-bits prime),

π = i
2
(1289520874615042134242461153− 1289520874615100774862617381

√
−3),

q = 1662864086068056644824292238726694989127818004180996723,

y2 = 3x6 + 399087380656333594757830137294406797390676321003439214x3

+840318388709976017122087137087102952585808061504841608

x = 46116860184274347310,

r = 125642457939801322085590357749816450418837410380874526029083415447117270861649 (256-bits prime),

π = i
2
(354460798875984764473015759359659256913− 354460798875984764503760332815842155121

√
−3),

q = 125642457939801322085590357749816450419191871179750510793602548066661204465873,

y2 = 10x6 + 100513966351841057668472286199853160335353496943800408634882038453328963572700x3

+ 72932933984895871444243490866613453139332497382421576505470407101735495968350

Example 20. Let s = 8, d = 2, and K = Q(ζ8); we have
√
−2 = ζ3

8 + ζ8. Using
π(x, y) = ζ8(x + y

√
−2) we obtain Kawazoe-Takahashi families [23]. For example, we

have the following family with k = 32 and ρ = 3.25:

r(x) = Φ32(x),

π(x) = ζ8
4

(
− 2x13 + 2x12 −

√
−2(x9 + x8 + x+ 1)

)
.

x = 1011203,

r = r(x)/2 = 597562856403016399371646603488740248049870057817560869833969493678845631715 310283215375141190561

(318-bits prime),

π = −276366617178430969012422455584931203167109241914675362 ζ28 −5779205224565086112079790018495549298014230975

89947855348929618296359476697841 ζ8 +276366617178430969012422455584931203167109241914675362,

q = 333992130276403873982020662734905232543292354958269471165651966320949507419 0747019555462414145087707242326

37828784532408999026408517139467788305673313723369,

y2 = x5 + 21x.

Example 21. We can also give some families of 3-dimensional varieties with ρ < 6.
Constructing the corresponding genus 3 curves we leave as an open problem. The only
sixtic CM fields of the form K = Q(ζs,

√
−d) are the cyclotomic fields Q(ζ7) and Q(ζ9),

which contain
√
−7 and

√
−3, respectively.

(i) Let K = Q(ζ7) and α =
√
−7 = 2 ζ4

7 +2 ζ2
7 +2 ζ7 +1.
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k = 7, ρ = 4,

r(x) = Φ7(x),

π(x) = ζ7
14(−2αx4 + (α+7)x3 + 2αx2 + (α+7)x− 2α),

k = 21, ρ = 4,

r(x) = Φ21(x),

π(x) = ζ21
14 ((−α−7)x8 + (α−7)x7 − 2αx6 + 2αx4 − 2αx2 + (α−7)x− α−7).

(ii) Let K = Q(ζ9) and α =
√
−3 = 2 ζ3

9 +1.

k = 9, ρ = 4,

r(x) = Φ9(x),

π(x) = ζ9
6 ((−α−3)x4 + (α+3)x3 + (α−3)x+ 2α).

7 Sparse families

In this section we generalize Algorithm 18 to construct sparse families in an analogous way
as the Brezing-Weng method was generalized to construct such families of elliptic curves
(see [7]). If (r(x), π(x)) is a family of abelian varieties with π(x) = ζs(f1(x)+f2(x)

√
f(x)),

then (f1(x), f2(x)) mod r(x) is a solution of the system

NK1/Q(x)(ζs(X + Y
√
−f)− 1) = Φk(X

2 + fY 2) = 0, (11)

where K1 = Q(x, ζs,
√
−f). Hence to construct sparse families we should find polynomials

r(x) ∈ Q[x] and f(x) ∈ Z[x], where r(x) is irreducible and f(x) satisfies Lemma 16, such
that system (11) has solutions in the number field L = Q[x]/(r(x)), and take f1, f2 to be
lifts of these solutions. Such number fields are described in the following lemma, which
generalizes Lemma 3.

Lemma 22. Let f ∈ Z[x] satisfy Lemma 16 and deg f = 1, 2. Let r(x) ∈ Q[x] be irre-

ducible such that ζs, ζk,
√
−f̄ ∈ L = Q[x]/(r(x)), where a bar denotes reduction mod r(x).

Then system (11) has solutions in L of the form

X =
ζ−1
s + ζkζs

2
, Y = ±ζ

−1
s − ζkζs
2
√
−f̄

. (12)

Proof. As in the proof of Lemma 6 we first show that solutions in the field of fractions of
S = Q[x, ζs, ζk,

√
−f ] are of the above form. Then for a prime ideal P in S over r reduction

mod PSP yields the desired result by Lemma 7.

Hence we have the following algorithm; in the next section we give a simplified version
to construct complete families with variable discriminant.
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Algorithm 23. Input: A number field L containing primitive roots of unity ζs, ζk. Output:
A sparse family (r(x), π(x)) of ϕ(s)-dimensional ordinary abelian varieties with embedding
degree k, or ∅.

1. Find r(x) ∈ Q[x] such that L = Q[x]/(r(x)).

2. Let f1 ∈ Q[x] be the lift of X = ζ−1
s +ζsζk

2 with deg f1 < deg r.

3. If f1 6= 0 and 2f1(x) ∈ Z for some x ∈ Z, let f(x) = a2x
2 + a1x + a0 for integers

a0, a1, a2 ∈ [−m,m], where a2 > 0 and m ∈ Z.

4. If f is square-free and
√
−f̄ ∈ L, let f2 ∈ Q[x] be the lift of Y = ζ−1

s −ζsζk
2
√
−f̄

with

deg f2 < deg r.

5. Let π(x) = ζs
(
f1(x) + f2(x)

√
−f(x)

)
.

6. Return (r(x), π(x)) if q(x) = f2
1 (x) + f2

2 (x)f(x) represents primes.

Note that the resulting families have ρ-value

ρ =
2gmax{deg f1, deg f2 + 1}

deg r
≤ 2g.

We now show how to construct sparse families of ordinary abelian surfaces with k = 3, 4, 6
and ρ = 2. These families are analogous to constructions for elliptic curves with k = 3, 4, 6
and ρ = 1 due to Miyaji et al. [25], Scott and Barreto [32], and Galbraith et al. [15].

Example 24. Let s = 3, 4, and K = Q(ζs). Let k = 3, 4, 6, and ζk ∈ L = K = Q[x]/(r(x))
for r(x) ∈ Q[x]. In order to construct a family (r(x), π(x)) with π(x) = ζs(f1(x) +
f2(x)

√
−f(x)) and ρ = 2, we must find a polynomial f(x) ∈ Z[x] as in step 4 of Algorithm

23 such that f2 is constant. Since f2 is the lift of Y = (ζ−1
s − ζsζk)/2

√
−f̄ , we must have

Y ∈ Q. We can assume Y = 1, since c2f and Y/c yield the same family for each c ∈ Q×.
Then for fixed ζs, ζk ∈ L, f̄ is uniquely determined by f̄ = −(ζ−1

s − ζsζk)2/4 = ax̄+ b for
some a, b ∈ Q. So we can take f = ax+ b+ cr(x) for c ∈ Q, c > 0. As f1 we take the lift
of X = (ζ−1

s − ζsζk)/2. If f1 6= 0, 2f1(x) ∈ Z for some x ∈ Z, and q(x) represents primes,
we obtain the desired family. For example, we have the following families with ρ = 2:

k = 3,

r(x) = 4x2 + 2x+ 1,

π(x) = ζ3
6

(
6x+ 3 +

√
−(12x2 + 60x+ 3))

)
,

k = 4,

r(x) = 4x2 + 1,

π(x) = i
2

(
− 2x− 1 +

√
−(12x2 + 4x+ 3)

)
,

k = 6,

r(x) = 4x2 − 2x+ 1,

π(x) = ζ3
2

(
− 2x− 1 +

√
−(12x2 − 4x+ 3)

)
.
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Example 25. Let k = 8, s = 4, and L = Q(ζ8). For f = 7x2 − 10x + 7 we have
fmodΦ8(x) = −(−2ζ3

8 + 2ζ2
8 − ζ8 − 1)2. We have the following family with ρ = 3:

r(x) = Φ8(x),

π(x) = i
2

(
− x2 + x+ (2x2 + 3x+ 2)

√
−(7x2 − 10x+ 7)

)
.

8 Complete families with variable discriminant

In this section we modify Algorithm 23 to construct complete families with variable dis-
criminant (r(x), π(x)), where π(x) = ζs(f1(x) + f2(x)

√
−f(x)) and f(x) = ax + b. Sub-

stituting x← (x− b)/a, we can assume that f = x. Then by Lemma 22, L = Q[x]/(r(x))
is a number field containing ζs, ζk, and

√
−x̄. Let us note that a polynomial r(x) ∈ Q[x]

such that L = Q[x]/(r(x)) and
√
−x̄ ∈ L can be obtained as the minimal polynomial of

a primitive element z ∈ L such that
√
−z ∈ L. Hence we have the following variant of

Algorithm 23.

Algorithm 26. Input: A number field L such that ζs, ζk ∈ L. Output: A complete family
with variable discriminant (r(x), π(x)) of ϕ(s)-dimensional ordinary abelian varieties with
embedding degree k, or ∅.

1. Find a primitive element z ∈ L such that
√
−z ∈ L.

2. Let r(x) be the minimal polynomial of z and L = Q[x]/(r(x)).

3. Let X = ζ−1
s +ζsζk

2 and Y = ζ−1
s −ζsζk
2
√
−x̄ for all ζs, ζk ∈ L.

4. Let f1(x), f2(x) ∈ Q[x] be lifts of X,Y with deg fi < deg r, i = 1, 2.

5. Let π(x) = ζs(f1(x) + f2(x)
√
−x).

6. Return (r(x), π(x)) if f1 6= 0, 2f1(x) ∈ Z for some x ∈ Z, and q(x) = f2
1 (x) + xf2

2 (x)
represents primes.

The resulting families have ρ-value

ρ =
gmax{2 deg f1, 1 + 2 deg f2}

deg r
≤ g(2 deg r − 1)

deg r
< 2g.

In the examples below we take as L the cyclotomic field L = Q(ζs, ζk) = Q(ζl), where
l = lcm(s, k). A crucial step in the above algorithm is to find a primitive element z ∈ L
such that

√
−z ∈ L, which can be chosen in the following ways:

– If l is odd, then
√
ζl = ±ζ(l+1)/2

l , so we can take z = ζ2l = −ζl and r(x) = Φ2l(x).
Similarly, if l/2 is odd, we can take r(x) = Φl(x).

– If 4|l, then
√
±ζl 6∈ Q(ζl), but there may exist a ∈ Z such that

√
−ζl/a ∈ Q(ζl). Then

we can take z = ζl/a and r(x) = Φl(ax).

– As in the method of Kachisa, Schaefer, Scott [22] we can vary elements z0 = a0 +a1ζl+

· · · + aϕ(l)−1ζ
ϕ(l)−1
l , which have small integer coefficients in the cyclotomic basis, and

use z = −z2
0 .

In the examples below we will also give a necessary condition on discriminant d so that
q(dx2) could represent primes.
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Example 27. (i) Let k = 27, s = 3, and L = Q(ζ27). We obtain the complete family with
variable discriminant d ≡ 3 (mod 8) and ρ = 2.11

r(x) = Φ54(x),

π(x) = ζ3
2

(
x9 − x5 − 1− (x9 − x4 − 1)

√
−x
)
.

For example, we can generate the following parameters:

d = 987

x = 1

r = 790148551064734600930099312825768542489884551187609503 (179-bits prime)

π =
ζ3
2

(888903004305345672187555919− 888903004306281391354749065
√
−987)

q = 195166692112988613822582015870901680456901569249646823659

y2 = x6 + x3 + 151105907749622646118621216513432167109227634777454854520

ρ = 2.078

d = 2091

x = 3

r = 87647142292548622866816999275560889615442894153311051288206627370105425215 463 (255-bits prime)

π =
ζ3
2

(296052600550220841104719607209577744879− 888157801650662530394935347022383083571
√
−2091)

q = 412379804486441270587675183690854571980192627889184083816045552664656156778750593

y2 = x6 + x3 + 56578159329796760688848304124543683168097550241972892000909998577765239565174952

ρ = 2.094

(ii) Similarly, for k = 54, s = 3, and L = Q(ζ54), we obtain the complete family with
variable discriminant d ≡ 3 (mod 8) and ρ = 2.11

r(x) = Φ54(x),

π(x) = ζ3
2

(
x9 + x5 − 1 + (x9 + x4 − 1)

√
−x
)
.

Example 28. (i) Let s = 3, k = 12 and L = Q(ζ12); then
√
−ζ12/2 ∈ L. We have the

following family with discriminant d ≡ 3 (mod 8) and ρ = 3.5:

r(x) = Φ12(2x),

f1(x) = ζ3
2

(
− 8x3 + 4x2 − 1 + (8x3 − 4x− 1)

√
−x
)

Example 29. Let k = 8, s = 4, and L = Q(ζ8). Let r(x) be the minimal polynomial
of z = −(ζ8 − 1)2. We have the following family with discriminant d = 1, 7 (mod 8) and
ρ = 7/2:

r(x) = x4 + 4x3 + 8x2 − 8x+ 4,

π(x) = i
24

(
− 3x3 − 15x2 − 36x+ 6 + (x3 + 5x2 + 16x+ 2)

√
−x
)
.
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Table 1. Best ρ-values of complete families with variable discriminant ((r(x), π(x)) such that deg r(x) < 25,
which are given in the appendix.

k ρ d deg r

2 3.00 3 (mod 8) 2
3 3.00 1, 3, 7, 9 (mod 10) 2
4 3.00 3 (mod 4) 2
5 3.00 1 (mod 4) 8
6 3.00 any 2
7 2.50 3mod8 12
8 3.50 1, 7 (mod 8) 4
9 2.33 3mod8 6
10 3.50 any 8
11 2.40 1 (mod 4) 20
12 3.50 3mod8 4
13 2.25 3mod8 24
14 2.50 3mod8 12
15 2.75 3mod8 8
16 3.75 some 8
18 2.33 3mod8 6
20 3.75 3mod8 8
21 2.66 1 (mod 4) 12

k ρ d deg r

22 2.7 3 (mod 8) 10
24 3.75 2, 10, 11, 19 (mod 24) 8
26 2.25 3mod8 24
27 2.11 3mod8 18
28 3.08 3mod8 24
30 2.75 3mod8 8
33 2.30 3mod8 20
36 3.50 3mod8 12
39 2.33 1mod4 24
42 2.83 3mod8 12
45 2.58 3mod8 24
54 2.11 3mod8 18
60 3.75 3mod8 14
66 2.30 3mod8 20
78 2.42 3mod4 24
84 3.75 3mod8 24
90 2.58 3mod8 24
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9 Appendix: Complete families ((r(x), π(x)) with variable discriminant
and best ρ-values such that deg r(x) < 25.

k = 2, ρ = 3

r(x) = Φ6(x)

π(x) = ζ3
2

(
2x− 1 + x

√
−x
)

k = 3, ρ = 3

r(x) = x2 + 11x+ 49

π(x) = ζ3
70

(
7x+ 56 + (x− 17)

√
−x
)

k = 4, ρ = 3

r(x) = x2 − 6x+ 25

π(x) = i
40

(
5x+ 5 + (x+ 9)

√
−x
)

k = 5, ρ = 3

r(x) = Φ30(x)

π(x) = ζ3
2

(
− x6 + x5 + x− 1− (x3 + x2)

√
−x
)

k = 6, ρ = 3

r(x) = Φ6(x)

π(x) = ζ3
2

(
x− 2 + (x− 1)

√
−x
)

k = 7, ρ = 2.5

r(x) = Φ42(x)

π(x) = ζ3
2

(
x7 + x4 − 1 + (x7 + x3 − 1)

√
−x
)

k = 8, ρ = 3.5

r(x) = x4 + 4x3 + 8x2 − 8x+ 4

π(x) = i
24

(
− 3x3 − 15x2 − 36x+ 6 + (x3 + 5x2 + 16x+ 2)

√
−x
)

k = 9, ρ = 2.33

r(x) = Φ18(x)

f1(x) = ζ3
2

(
x6 − x3 + 1 + (x3 + x2 − 1)

√
−x
)

k = 10, ρ = 3.5

r(x) = Φ30(5x)

π(x) = ζ3
2

(
− 78125x7 − 15625x6 + 3125x5 + 625x4 + 125x3 + 25x2 − 2

+(15625x6 − 6250x5 − 1250x4 − 250x3 + 25x2)
√
−x
)
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k = 11, ρ = 2.4

r(x) = Φ66(x)

f1(x) = ζ3
2

(
− x12 + x11 + x− 1 + (x6 + x5)

√
−x
)

k = 12, ρ = 3.5

r(x) = Φ12(2x)

f1(x) = ζ3
2

(
− 8x3 + 4x2 − 1 + (8x3 − 4x− 1)

√
−x
)

k = 13, ρ = 2.25

r(x) = Φ78(x)

f1(x) = ζ3
2

(
x13 − x7 − 1 + (x13 − x6 − 1)

√
−x
)

k = 14, ρ = 2.5

r(x) = Φ42(x)

π(x) = ζ3
2

(
x7 − x4 − 1 + (−x7 + x3 + 1)

√
−x
)

k = 15, ρ = 2.75

r(x) = Φ30(x)

f1(x) = ζ3
2

(
x5 − x3 − 1 + (x5 − x2 − 1)

√
−x
)

k = 16, ρ = 3.75

r(x) = x8 + 76x6 + 678x4 + 332x2 + 1

π(x) = i
30464

(
29x7 − 29x6 + 2173x5 − 2173x4 + 17175x3 − 17175x2 − 21009x+ 5777

+(5777x7 − 229x6 + 439081x5 − 17389x4 + 3918979x3 − 154335x2 + 1935139x

−71215)
√
−x
)

k = 18, ρ = 2.33

r(x) = Φ18(x)

π(x) = ζ3
2

(
x3 − x2 − 1 + (−x3 + x+ 1)

√
−x
)

k = 20, ρ = 3.75

r(x) = Φ20(2x)

π(x) = i
2

(
− 64x6 + 32x5 + 16x4 − 4x2 + 1 + (128x7 − 32x5 − 4x2 − 1)

√
−x
)

k = 21, ρ = 2.66

r(x) = Φ42(x)

π(x) = ζ3
2

(
− x8 + x7 + x− 1 + (x4 + x3)

√
−x
)
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k = 22, ρ = 2.7

r(x) = Φ22(x)

π(x) = ζ3
2

(
x11 − x8 − 1 + (−x13 + x5 + x2)

√
−x
)

k = 24, ρ = 3.75

r(x) = x8 + 80x6 + 456x4 + 320x2 + 16

π(x) = ζ3
10752

(
− 176x7 + 28x6 − 14040x5 + 2240x4 − 77088x3 + 12656x2 − 40480x+ 1792

+(177x7 + 34x6 + 14150x5 + 2704x4 + 79892x3 + 14248x2 + 50552x+ 9024)
√
−x
)
.

k = 26, ρ = 2.25

r(x) = Φ78(x)

π(x) = ζ3
2

(
x13 + x7 − 1− (x13 + x6 − 1)

√
−x
)

k = 27, ρ = 2.11

r(x) = Φ54(x)

π(x) = ζ3
2

(
x9 − x5 − 1 + (−x9 + x4 + 1)

√
−x
)

k = 28, ρ = 3.08

r(x) = Φ84(2x)

π(x) = ζ3
2

(
16384x14 − 32x5 − 1 + (262144x18 − 131072x17 + 65536x16 + 32768x15

−4096x12 − 1024x10 + 64x6 − 4x2 − 1)
√
−x
)

k = 30, ρ = 2.75

r(x) = Φ30(x)

π(x) = ζ3
2

(
x5 + x3 − 1 + (−x5 − x2 + 1)

√
−x
)

k = 33, ρ = 2.3

r(x) = Φ33(−x)

f1(x) = ζ3
2

(
x11 + x6 − 1 + (x11 + x5 − 1)

√
−x
)

k = 36, ρ = 3.5

r(x) = Φ36(2x)

f1(x) = ζ3
2

(
64x6 − 32x5 − 1 + (1024x10 + 512x9 − 128x7 − 16x4 − 1)

√
−x
)

k = 39, ρ = 2.33

r(x) = Φ78(x)

f1(x) = ζ3
2

(
− x14 + x13 + x− 1− (x7 + x6)

√
−x
)
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k = 42, ρ = 2.83

r(x) = Φ42(x)

π(x) = ζ3
2

(
x7 + x5 − 1x+ (x8 + x3 − x)

√
−x
)

k = 45, ρ = 2.58

r(x) = Φ90(x)

π(x) = ζ3
2

(
x15 + x8 − 1(x15 + x7 − 1)

√
−x
)

k = 54, ρ = 2.11

r(x) = Φ54(x)

π(x) = ζ3
2

(
x9 + x5 − 1 + (x9 + x4 − 1)

√
−x
)

k = 60, ρ = 3.75

r(x) = Φ60(2x)

π(x) = ζ3
2

(
32768x15 + 16384x14 + 4096x12 − 256x8 − 64x6 − 16x4 + 1

+(4096x12 + 1024x10 − 128x7 + 32x5 − 4x2 − 1)
√
−x
)

k = 66, ρ = 2.3

r(x) = Φ66(x)

π(x) = ζ3
2

(
x11 − x6 − 1 + (−x11 + x5 + 1)

√
−x
)

k = 78, ρ = 2.42

r(x) = Φ78(x)

π(x) = ζ3
2

(
x13 − x8 − 1 + (x14 − x6 − x)

√
−x
)

k = 84, ρ = 3.75

r(x) = Φ84(2x)

π(x) = 1
2 i
¯
g(16384x14 + 2x− 1 + (−4194304x22 − 131072x17 + 65536x16 − 4096x12

−2048x11 − 1024x10 + 256x8 + 64x6 + 16x4 − 4x2 − 1)
√
−x
)

k = 90, ρ = 2.58

r(x) = Φ90(x)

f1(x) = 1
2

(
x15 − x8 − 1 + (−x15 + x7 + 1)

√
−x
)
.


