
On the Security of Dynamic Group Signatures:

Preventing Signature Hijacking∗

Yusuke Sakai† Jacob C. N. Schuldt‡ Keita Emura§ Goichiro Hanaoka¶

Kazuo Ohta‖

July 31, 2012

Abstract

We identify a potential weakness in the standard security model for dynamic group signatures
which appears to have been overlooked previously. More specifically, we highlight that even if
a scheme provably meets the security requirements of the model, a malicious group member
can potentially claim ownership of a group signature produced by an honest group member by
forging a proof of ownership. This property leads to a number of vulnerabilities in scenarios in
which dynamic group signatures are likely to be used. We furthermore show that the dynamic
group signature scheme by Groth (ASIACRYPT 2007) does not provide protection against this
type of malicious behavior.

To address this, we introduce the notion of opening soundness for group signatures which
essentially requires that it is infeasible to produce a proof of ownership of a valid group signature
for any user except the original signer. We then show a relatively simple modification of the
scheme by Groth which allows us to prove opening soundness for the modified scheme without
introducing any additional assumptions.

We believe that opening soundness is an important and natural security requirement for
group signatures, and hope that future schemes will adopt this type of security.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [12], allow a group member to anonymously
sign a message on behalf of the group. More specifically, anyone will be able to verify that a signature
originates from a group member, but the signature does not reveal the identity of the signer, not

∗An extended abstract appears in The 15th International Conference on Practice and Theory in Public Key
Cryptography (PKC 2012).
†The University of Electro-Communications, Japan. The first author is supported by a JSPS Fellowship for Young

Scientists. yusuke.sakai@uec.ac.jp
‡National Institute of Advanced Industrial Science and Technology, Japan. The second author is supported by a

JSPS Fellowship for Young Scientists. jacob.schuldt@aist.go.jp
§National Institute of Information and Communications Technology, Japan. This work was done when the third

author was a postdoctoral researcher at Center for Highly Dependable Embedded Systems Technology, Japan Ad-
vanced Institute of Science and Technology. k-emura@nict.go.jp
¶National Institute of Advanced Industrial Science and Technology, Japan. hanaoka-goichiro@aist.go.jp
‖The University of Electro-Communications, Japan. kazuo.ohta@uec.ac.jp

1

even to other members of the group. Group membership is controlled by an authority called the
issuer, who handles enrollment of users through an interactive join protocol. To prevent misuse of
the signing capabilities obtained by group members, another authority called the opener can revoke
the anonymity of a signature and identify the signer of the message.

Following the introduction of group signatures, a series of different security requirements were
proposed for this primitive, each of which aims at addressing a specific security concern by augment-
ing or refining previous notions, e.g. unforgeability, exculpability, traceability, coalition resistance,
framing resistance, anonymity and unlinkability. These security notions were later consolidated in
the security model proposed by Bellare, Micciancio, and Warinschi [2] who introduce two strong se-
curity requirements, full-anonymity and full-traceability, which imply all of the previously proposed
notions of security.

However, a drawback of the model by Bellare, Micciancio, and Warinschi [2] is that only static
group signature schemes are considered i.e. the set of group members is fixed, and the private
key material of each group member is generated in the setup phase of the scheme. Furthermore,
the authority controlling the group (which acts as both the issuer and opener) is considered to be
fully trusted. To address this, Bellare, Shi, and Zhang [3] extended the model of [2] to capture
dynamic group signature schemes in which a user can dynamically join the group by engaging in
a join protocol with the issuer. Furthermore, to reduce trust in the opener, the model adopts the
approach by Camenisch and Michels [11], and requires that the opener produces a non-interactive
and publicly verifiable proof that a given signature was produced by a given signer. The model
introduces three formal security notions: anonymity, traceability, and non-frameability. The former
two notions are adaptations of the full-anonymity and full-traceability notions to the dynamic group
signature setting. The latter notion, non-frameability, requires that even if a malicious opener and
issuer collude, they cannot frame an honest user by producing a signature and corresponding
opening which identify the honest user as the signer, when the honest user did not produce the
signature in question.

Limitations of Non-Frameability. While non-frameability is a strong security notion, it only
partly covers the security properties one would intuitively expect to gain when the opener is required
to produce a non-interactive and publicly verifiable proof of an opening. More specifically, the non-
frameability notion only ensures that the opener cannot frame an uncorrupted user by constructing
a proof that the user is the signer of a signature he did not produce. However, no guarantee is given
regarding an opening involving a corrupted user. This leaves open the possibility that an opening
showing that a malicious or corrupted user is the signer of a signature produced by an honest user,
can be constructed. Furthermore, this might not require the opener to be corrupted or malicious,
in which case a malicious user might be able to independently forge a proof showing that he is the
signer of any signature of his choice.

Depending on the concrete scenario in which a dynamic group signature scheme is used, the
ability to forge an opening proof might become a real security concern. We highlight several
potential threats that this ability gives rise to:

• Signer impersonation. The most obvious threat is signer impersonation. This is a problem
if a group signature scheme is used for an anonymous auction as suggested in [1]. In this
scenario, the bidders correspond to group members, and when submitting a bid, a group
member will attach a group signature on his bid. The opener serves as the auctioneer, and

2

will make the opening of the signature on the highest bid public. This will enable anyone to
verify who the winner of the auction is. However, a malicious bidder may forge a proof of
ownership of the signature on the highest bid and may insist that he/she is the winner.

A similar situation occurs if a dynamic group signature scheme is used to implement an
authentication scheme with identity escrow [25]. In this case, a malicious group member can
claim to be the user who authenticated himself to a server (and provide a proof thereof) when
this is not the case.

• Proxy confession. The ability to open a group signature is introduced to keep the group
members accountable of the messages signed on behalf of the group. However, assume that a
signature on some message causes a dispute, but the real signer wants to avoid being blamed
for this. Then the real signer asks (or intimidates) another group member to forge a proof of
ownership of the signature and take the blame.

• Key exposure. Consider the case in which a group member’s private key is exposed and falls
into the hands of a malicious user. This will not only allow the malicious user to construct
future signatures on any message of this choice, but will furthermore allow him to claim (and
prove) that the original user is the signer of any previously generated signature.

Our Contribution. We highlight the above described potential weakness of the security guar-
antee provided by the formal model of Bellare, Shi, and Zhang [3]. Furthermore, we show that this
is not only a property of the security model, but that the most efficient dynamic group signature
schemes enable a malicious group member to forge a proof of ownership of a signature.

To address this, we propose a new security notion for dynamic group signatures which we denote
opening soundness. We consider two variants of this notion, weak opening soundness and (ordinary)
opening soundness. The former is intended to address the above highlighted security threats in
an intuitive and straightforward manner, and will rule out the possibility that a malicious group
member can produce a proof of ownership of a signature generated by an honest user. The latter
considers a stronger adversary who has access to the private key of the opener, and who is only
required to produce two different openings of a maliciously constructed signature. The notion of
opening soundness implies the notion of weak opening soundness.

As a positive result, we prove that the generic construction of a dynamic group signature scheme
by Bellare, Shi, and Zhang [3] achieves opening soundness. We furthermore propose a modification
of the scheme by Groth [21] which allows us to prove opening soundness of the modified scheme. In
contrast, we show that the original scheme does not provide weak opening soundness. In addition,
we briefly discuss opening soundness of the random oracle scheme [16, 4]. A summary of our results
regarding opening soundness of the above mentioned schemes can be seen in Table 1.

Related Work. Since the first proposal of group signature by Chaum and van Heyst, many effi-
cient constructions have been proposed, most of which are relying on the random oracle model [1,
7, 10, 24, 16, 13, 4]. Many initial schemes were based on the strong-RSA assumption. The first
group signature schemes based on assumptions of the discrete-logarithm type were achieved inde-
pendently by Camenisch and Lysyanskaya [10], and Boneh, Boyen, and Shacham [7]. The former
scheme is based on the LRSW assumption, while the latter is based on the q-strong Diffie-Hellman
assumption. Kiayias, Tsiounis, and Yung proposed the notion of traceable signature [23], which

3

Table 1: Summary of the results. The mark “?” means it is an open question whether the scheme
has the given property or not. The rightmost column denotes the section in which the security of
the corresponding scheme is discussed.

Opening Soundness Weak Opening Soundness

Our Variant of [21] Yes Yes (§5.1)
Bellare-Shi-Zhang [3] Yes Yes (§4)
Furukawa-Imai [16] No ? (§4)
Bichsel et al. [4] No ? (§4)
Groth (full version) [21] No No (§4)

can be seen as an extension of group signature with additional anonymity-revocation functionali-
ties. One of these functionalities is that of allowing a group member to claim the authorship of a
signature, however, its security requirement does not care about the possibility in which a malicious
member falsely claims the authorship of an honestly generated signature by another.

Constructions which are provably secure without random oracles were only recently achieved.
Besides the generic construction relying on non-interactive zero-knowledge (NIZK) proofs for gen-
eral NP languages, Groth constructed the first concrete group signature scheme with constant
signature size by exploiting the properties of bilinear groups [19], though signatures are extremely
large. Boyen and Waters proposed group signature schemes [8, 9] whose signature sizes are quite
compact. In particular the latter scheme has signatures consisting only of six group elements of a
composite order group. The drawback of these schemes is that they only achieve weaker security
guarantees, that is, they only provide so called CPA-anonymity in the security model of Bellare,
Micciancio, and Warinschi [2]. Groth proposed another group signature scheme [20, 21] which has
constant signature size (roughly one or two kilobytes) and which is provably secure in the dynamic
group signature model of Bellare, Shi, and Zhang [3] without relying on random oracles.

2 Preliminaries

2.1 Group Signatures

In this section, we briefly review the model and the security notions of group signatures, presented
by Bellare, Shi, and Zhang [3]. A group signature scheme consists of the following seven algorithms:

GKg: This is the group key generation algorithm which, on input 1k, returns the keys (gpk , ik , ok),
where gpk is a group public key, ik is an issuing key, and ok is an opening key.

UKg: This is the user key generation algorithm which, on input gpk , returns a personal public and
private key pair (upk , usk). Each user i will generate a personal key pair (upk i, usk i) before
engaging in the joining protocol which is described below. It is assumed that anyone can
obtain an authentic copy of the public key of any user. (This might be implemented via a
standard public key infrastructure.)

Join/Issue: This is the pair of interactive algorithms which implement the joining protocol run by
a user i and the issuer. The algorithm Join, which is run by the user, takes (gpk , upk , usk) as

4

input, whereas Issue, which is run by the issuer, takes (gpk , upk , ik) as input. Upon successful
completion of the protocol, Join outputs a private signing key gsk i for user i, and Issue outputs
the registration information of user i which is stored in reg [i], where reg is a registration table
maintained by the issuer.

GSig: This is the group signing algorithm run by a user i, which, on input gpk , a signing key gsk i,
and a message m, returns a group signature Σ.

GVf: This is the group signature verification algorithm which, on input (gpk ,m,Σ), returns 1 to
indicate that Σ is a valid signature on m, or 0 otherwise.

Open: This is the opening algorithm run by the opener, which, on input (gpk , ok , reg ,m,Σ), returns
(i, τ), where i specifies that the originator of the signature Σ is the user i, and τ is a non-
interactive proof of this. In case the algorithm fails to identify the originator of the signature,
it outputs i = 0. Note that Open requires access to the registration table reg .

Judge: This is the judge algorithm which, on input (gpk , i, upk i,m,Σ, τ), outputs either 1 or 0
indicating that the proof τ is accepted as valid or invalid, respectively.

The model in [3] introduces four requirements for a group signature scheme, namely, correct-
ness, anonymity, non-frameability, and traceability. The correctness notion requires that honestly
generated signatures will be accepted as valid by the verification algorithm, can be opened by the
opening algorithm, and that the judging algorithm will accept the resulting proof as valid. The
anonymity notion requires that no information about the identity of a signer is leaked from a
group signature, even if the signing keys of all group members and the issuer are exposed. The
non-frameability notion requires that no adversary corrupting both the opener and the issuer, can
produce a signature and an opening proof that identify an uncorrupted group member as the signer,
when the uncorrupted group member did not produce the signature in question. The traceability
notion requires that an adversary corrupting the opener and controlling a group of malicious group
members, cannot produce a valid signature that cannot be opened correctly.

The formal definitions of the four notions are given as follows. We first define several oracles
needed for security notions:

AddU(i): The add-user oracle runs UKg(gpk) and Join/Issue protocol to add an honest user. It
returns the user public key upk of the user. The oracle add i to the set HU.

RReg(i): The read-registration-table oracle reveals the content of the registration table reg [i].

SndToU(i,M): The send-to-user oracle at first sets up a user public/secret key pair by (upk i, usk i)←
UKg(gpk) and add i to the set HU. The oracle then allows the adversary to engage a group-
joining protocol of the user i on the behalf of the corrupted issuer. The message M is sent to
the user i who follows the protocol Join(gpk , upk i, usk i). The response of the user is returned
to the adversary.

WReg(i,M): The write-registration-table oracle updates reg [i] to M .

USK(i): The user-secret-keys oracle reveals the secret keys (usk i, gsk i) of the user i to the adversary.

CrptU(i,M): The corrupt-user oracle sets the user public key of the user i to M and add i to the
set CU.

5

Open(m,Σ): The open oracle returns the opening (i, τ) ← Open(gpk , ok ,m,Σ) of the signature Σ
under the message m.

Chb(m, i0, i1): The challenge oracle returns a challenge Σ∗ ← GSig(gpk , gsk ib ,m). The users i0 and
i1 needs to be in the set HU.

GSig(i,m): The signing oracle returns a signature Σ← GSig(gpk , gsk i,m) on the message m of the
user i, who needs to be in the set HU.

SndToI(i,M): The send-to-issuer oracle allows the adversary to engage a group-joining protocol on
behalf of the corrupted user i. The message M is sent to the issuer who follows the protocol
Issue(gpk , upk i, ik). The response of the issuer is returned to the adversary. The user i needs
to be in the set CU.

The correctness and security requirements for a group signature scheme are as follows:

Definition 1. A group signature scheme is said to have correctness if

Pr[(gpk , ik , ok)← GKg(1k); (i,m)← AAddU,RReg(gpk);

Σ← GSig(gpk , gsk i,m); (j, τ)← Open(gpk , ok , reg ,m,Σ)

: GVf(gpk ,m,Σ) = 0 ∨ i 6= j ∨ Judge(gpk , i, upk i,m,Σ, τ) = 0]

is negligible in k for any adversary A.

Definition 2. A group signature scheme is said to have anonymity if

Pr[b← {0, 1}; (gpk , ik , ok)← GKg(1k); b′ ← ASndToU,WReg,USK,CrptU,Open,Chb(gpk , ik) : b = b′]−1

2

is negligible in k for any probabilistic polynomial-time adversary A.

Definition 3. A group signature scheme is said to have non-frameability if

Pr[(gpk , ik , ok)← GKg(1k); (m,Σ, i, τ)← ASndToU,WReg,USK,CrptU,GSig(gpk , ok , ik)

: GVf(gpk ,m,Σ) = 1 ∧ i ∈ HU ∧ Judge(gpk , i, upk i,m,Σ, τ) = 1

∧ A queried neither USK(i) nor GSig(i,m)]

is negligible in k for any probabilistic polynomial-time adversary A.

Definition 4. A group signature scheme is said to have traceability if

Pr[(gpk , ik , ok)← GKg(1k); (m,Σ)← ACrptU,SndToI,AddU,USK,RReg(gpk , ok);

(i, τ)← Open(gpk , ok , reg ,m,Σ) : GVf(gpk ,m,Σ) = 1

∧ (i = 0 ∨ Judge(gpk , i, upk i,m,Σ, τ) = 0)]

is negligible in k for any probabilistic polynomial-time adversary A.

6

2.2 Other Primitives

Public-Key Encryption. A public key encryption scheme consists of three algorithms (EKg,
Enc,Dec), which satisfy the following correctness condition: For any security parameter ` ∈ N,
any plaintext m ∈ {0, 1}∗, any random tape r for EKg, and any random tape s for Enc, the
condition Dec(dk ,Enc(pk ,m; s)) = m holds, where pk and dk are output from EKg as (pk , dk) ←
EKg(1`; r). In this paper we require a public key encryption scheme to satisfy the security notion
of indistinguishability under chosen-ciphertext attack (IND-CCA) [27].

Digital Signature. A digital signature scheme consists of three algorithms (SKg,Sign,Ver),
which satisfy the following correctness condition: For any security parameter ` ∈ N, any mes-
sage m ∈ {0, 1}∗, any random tape r for SKg, and any random tape s for Sign, the condition
Ver(vk ,m,Sign(sk ,m; s)) = > holds, where vk and sk are output from SKg as (vk , sk)← SKg(1`; r).
In this paper we use two types of security for digital signature schemes. One is the standard secu-
rity notion of unforgeability under adaptive chosen message attack (EUF-CMA), and the other is
strong one-time signatures. See [18] for exact definitions.

Target Collision-Resistant Hash Functions. A family of functions is called target collision-
resistant if no algorithms, which firstly chooses an input and then is given a description of a
function in the family, can find another input that produces the same output to the first input.
The formal definition we need is as follows: A function generator HashGen(1`) takes as input a
security parameter and outputs a function H. The family of functions is said to be target collision-
resistant when Pr[(x, s)← A;H ← HashGen(1`);x′ ← A(H, s) : H(x) = H(x′)∧x 6= x′] is negligible
for any polynomial-time algorithm A.

Non-interactive Proofs. A non-interactive proof system for an NP-relation R ∈ {0, 1}∗×{0, 1}∗
defining L = {x|(x,w) ∈ R for some w} consists of three algorithms (K,P, V), which satisfy the
following correctness and soundness conditions: For correctness, it is required that for any security
parameter ` ∈ N, any common reference string crs ← K(1`), and any pair (x,w) ∈ R, it holds
that V (1`, crs, x, P (1`, crs, x, w)) = >; for soundness, it is required that for any ` ∈ N and any
probabilistic polynomial-time algorithm A, the probability Pr[crs ← K(1`); (x, π) ← A(1`, crs) :
V (1`, crs, x, π) = >∧x 6∈ L] is negligible. We will later use three types of proof systems, one which
is witness indistinguishable [15], one which is zero-knowledge [5, 14] and one which is simulation-
sound zero-knowledge [28].

Bilinear Maps and Groth-Sahai Proofs. Bilinear groups are groups G and GT with the same
order that have an efficiently computable bilinear map e : G × G → GT . Let G be a probabilistic
polynomial-time algorithm that outputs a group parameter gk = (p,G,GT , e, g) where p is the
order of G and GT , e is a non-degenerates bilinear map e : G×G→ GT , and g is a generator of G.

Groth and Sahai [22] introduced a framework for very efficient non-interactive proof for the
satisfiability of relations in bilinear groups, including pairing product equations. The proof system
consists of algorithms (KNI, P, V,X). The algorithm KNI(gk) takes a group parameter gk as input
and outputs (crs, xk), where crs is a common reference string and xk is a trapdoor extraction key
for extracting a witness from a proof. The algorithm P (crs, x, w) outputs a proof π for an equation

7

described by x whose witness is w. A proof π is verified by running V (crs, x, π). The algorithm
Xxk (x, π) extracts a witness from the proof π which passes the verification algorithm.

There are two types of Groth-Sahai proof systems, (KNI, PNIWI, VNIWI, X) and (KNI, PNIZK, VNIZK, X),
which respectively provide witness-indistinguishability and zero-knowledge. The two types of proof
systems have identical common reference string generation algorithms, and can share a single com-
mon reference string. Furthermore, there are two types of reference strings: one yields perfect
soundness, and the other yields perfect witness indistinguishability or perfect zero-knowledge, de-
pending on the type of proof system. For further details see [22].

Tag-based Encryption. Tag-based encryption is an extension of public key encryption, which
associates an additional “tag” with a ciphertext. The exact syntax is as follows: A key generation
algorithm G(1`) generates a public key pk and a secret key dk ; an encryption algorithm Epk (t,m)
takes as input a public key pk , a tag t, and a plaintext m, and outputs a ciphertext c; a decryption
algorithm Ddk (t, c) takes as input a decryption key dk , a tag t, and a ciphertext c and outputs a
plaintext m or a special symbol ⊥ indicating the decryption failed. The correctness condition only
ensures that the plaintext is recovered when the tags used in the encryption and the decryption
are identical.

In this paper we use Kiltz’s construction of tag-based encryption [26], which is explained below.
The scheme can be built on bilinear groups. Let gk = (p,G,GT , e, g) be a group description. The
key generation algorithm chooses random integers φ, η ← Zp and random elements K,L← G, and
sets pk = (F,H,K,L) where F = gφ and H = gη and dk = (φ, η). A ciphertext of a plaintext
m under a tag t is computed as y = (y1, y2, y3, y4, y5) = (F r, Hs,mgr+s, (gtK)r, (gtL)s). The
decryption algorithm decrypts a ciphertext (y1, y2, y3, y4, y5) under a tag t by checking e(F, y4) =

e(y1, g
tK) and e(H, y5) = e(y2, g

tL) and outputs y3/y
φ
1 y

η
2 if the two equations hold, otherwise

outputs ⊥. This encryption scheme is secure against selective-tag weak chosen-ciphertext attacks
if the decisional linear assumption holds [26]. Another interesting property is that the scheme
has public verifiability in the sense that it can be efficiently checked whether a given five-tuple
(y1, y2, y3, y4, y5) lies in the range of the encryption algorithm under a given public key pk and a
given tag t by checking the two equations e(F, y4) = e(y1, g

tK) and e(H, y5) = e(y2, g
tL).

3 Opening Soundness

In this section we give a formal definition of opening soundness. Specifically, we introduce two
variants of opening soundness, weaker and stronger definitions.

The weaker definition, named weak opening soundness, is intended to address the security
concerns discussed in the introduction in a straightforward manner, and will rule out the possibility
that a malicious user can claim ownership of a signature produced by an honest user by forging an
opening proof. The definition is as follows:

Definition 5. A group signature scheme is said to have weak opening soundness if

Pr[(gpk , ik , ok)← GKg(1k); (m, i, i∗, s)← AAddU(·)(gpk);

Σ← GSig(gpk , gsk i,m); τ∗ ← AAddU(·)(s,Σ, gsk i∗)

: i 6= i∗ ∧ i, i∗ ∈ HU ∧ Judge(gpk , i∗, upk i∗ ,m,Σ, τ
∗) = 1]

8

is negligible for all polynomial time adversaries A, where the oracle AddU is defined as follows:

AddU: On a query i ∈ N, the oracle runs (upk i, usk i) ← UKg(gpk), then executes the protocol
(gsk i, reg i) ← 〈Join(gpk , upk i, usk i), Issue(gpk , ik)〉, adds i to a set HU , and lastly returns
upk i.

Note that the adversary is only allowed to receive the secret signing key of a single user i∗.
Hence, this definition will not rule out attacks involving a corrupted opener, and therefore cannot
contribute towards reducing trust in this entity.

In contrast, the stronger definition, named opening soundness, is intended to rule out the
possibility that an adversary can produce two different openings of a signature, even if he is allowed
to corrupt the opener and all the users in the system, and furthermore generate the signature in
question maliciously. The definition is as follows:

Definition 6. A group signature scheme is said to have opening soundness if

Pr[(gpk , ik , ok)← GKg(1k); (m,Σ, i1, τ1, i2, τ2)← ACrptU,WReg(gpk , ok , ik)

: GVf(gpk ,m,Σ) = 1 ∧ i1 6= i2 ∧ Judge(gpk , i1, upk i1 ,m,Σ, τ1) = 1

∧ Judge(gpk , i2, upk i2 ,m,Σ, τ2) = 1]

is negligible for all polynomial time adversaries A, where the oracle CrptU(i,M) sets the user public
key of the user i to be M , and the oracle WReg(i,M) sets reg [i] to M .

While the weaker definition provides a minimum level of protection against the type of attacks
described in the introduction, we believe that, when applied to the scenarios mentioned in the
introduction, any dynamic group signature scheme should provide (ordinary) opening soundness to
prevent any type of attack which exploits ambiguity of openings, or involves a corrupted opener.
Furthermore, we will show that this level of security can be achieved efficiently by showing that
our modified version of the scheme by Groth provides opening soundness (See Sect. 5 for details).

4 Opening Soundness of Existing Schemes

We will now take a closer look at some of the existing dynamic group signature schemes, and
highlight the level of opening soundness (ordinary, weak or none) achieved by these. Note that
since the Bellare-Shi-Zhang security model for dynamic group signatures does not considers opening
soundness, a security proof in this model will not allow us to make any conclusions regarding the
opening soundness of existing schemes.

In this section, we will focus on the standard model scheme by Groth described in [21] (note
that the updated scheme in [21] is slightly different from the scheme described in [20]) and the
generic construction of a dynamic group signature scheme by Bellare, Shi, and Zhang [3]. More
specifically, we will show that the scheme by Groth does not have weak opening soundness whereas
the generic construction by Bellare, Shi and Zhang has opening soundness. We further show that
the random oracle model schemes by Furukawa and Imai [16] and Bichsel et al. [4] do not have
opening soundness. Interestingly, while these schemes do not provide opening soundness, there
seems to be no obvious attack against the weak opening soundness of these.

9

GKg(1k):
gk ← G(1k); H ← HashGen(1k)
(f, h, z)← G; T = e(f, z)
(crs, xk)← KNI(gk)
(F,H,U, V,W,U ′, V ′,W ′)← crs
K,L← G; pk ← (F,H,K,L)
(gpk , ik , ok)
← ((gk ,H, f, h, T, crs, pk), z, xk)

Join/Issue(User i: gpk ; Issuer: gpk , ik):
Run the coin-flipping protocol in [21]

The user obtains vi = gxi and xi
and the issuer obtains vi

Issuer: r ← Zp
(ai, bi)← (f−r, (vih)rz)
set reg [i]← vi
send (ai, bi) to the user

User: If e(ai, hvi)e(f, bi) = T ,
set gsk i ← (xi, ai, bi)

Open(gpk , ok , reg ,m,Σ):
(b, v, σ)
← Xxk (crs, (gpk , a,H(vk sots)), π)

Return (i, σ) if there is i so v = reg [i],
else return (0, σ)

GSig(gpk , gsk i,m):
(vk sots, sk sots)← KeyGensots(1

k)
(Repeat until H(vk sots) 6= −xi)

ρ← Zp; a← aif
−ρ; b← bi(hvi)

ρ

σ ← g1/(xi+H(vksots))

π ← PNIWI(crs, (gpk , a,H(vk sots)), (b, vi, σ))
y ← Epk (H(vk sots), σ)
ψ ← PNIZK(crs, (gpk , y, π), (r, s, t))
σsots ← Signsksots

(vk sots,m, a, π, y, ψ)
Return Σ = (vk sots, a, π, y, ψ, σsots)

GVf(gpk ,m,Σ):
Return 1 if the following holds:

1 = Vervksots((vk sots,m, a, π, y, ψ), σsots),
1 = VNIWI(crs, (gpk , a,H(vk sots)), π),
1 = VNIZK(crs, (gpk , π, y), ψ), and
1 = ValidCiphertext(pk ,H(vk sots), y),

else return 0

Judge(gpk , i, reg [i],m,Σ, σ):
Return 1 if

i 6= 0 ∧ e(σ, vigH(vksots)) = e(g, g),
else return 0

Figure 1: The Groth group signature scheme [21].

The Groth Scheme. Figure 1 shows a description of the Groth scheme. Below, we will expand
on the description given in the figure. However, before discussing the implementation details of the
Groth scheme, we note that the scheme diverge slightly from the description of a dynamic group
signature scheme given in the Bellare-Shi-Zhang model [3]. Specifically, in [3], a user is assumed to
independently generate a public/private key pair (upki, uski), and then afterwards obtain a group
signing key gski by interacting with the issuer in the Join protocol. In the Groth scheme [21], on the
other hand, a user generates a public/private key pair jointly with the issuer in the Join protocol.
The public key for user i will be stored in reg[i] by the issuer, and the corresponding private key
will be the group signing key gski of user i. This intuitively corresponds to a scheme in which the
user key generation algorithm UKg is merged with the Join protocol. Note that in this setup it is
assumed that user i and the issuer agree upon the content of reg [i]. To ensure this, it is suggested
in [21] that the user signs the content of reg [i], using a separate signing key, and that an entry in
reg is only considered to be valid if the content is signed by the corresponding user.

To model the security of this type of scheme, a few minor changes are required to the security
model presented in Sect. 2.1. Specifically, the public key upki of user i is simply defined as the

10

content of reg [i], and we no longer consider the write-registration-table oracle WReg in the security
definitions, but only the corrupt oracle CrptU which allows the adversary to set the public key
upki (i.e., the content of reg [i]) to a given value, i.e., the WReg oracle is simply removed from the
security definitions. Furthermore, since the issuer is the only party which can insert the public key
of a user in reg , and the issuer will only do so upon successful completion of the Join protocol, we
no longer consider the corrupt oracle CrptU in the traceability security definition, but only SndToI
which allows the adversary to interact with the (honest) issuer in the Join protocol, i.e., the CrptU
oracle is removed from the definition. Lastly, the oracles AddU and SendToU will no longer run the
algorithm UKg since this algorithm is not defined for the scheme. With these changes, we obtain a
security model equivalent to the model presented by Groth [21].

We will now return to the implementation details of the Groth scheme. In the group key
generation algorithm GKg, the elements f, h, T correspond to a verification key of the Zhou-Lin
signature scheme [29], whereas z corresponds to the signing key. Furthermore, pk is a public key
of Kiltz’s tag-based encryption scheme. Note that the first two elements of pk and the common
reference string crs for the non-interactive Groth-Sahai proofs are identical.

In the group signing algorithm GSig, a group member constructs two non-interactive Groth-
Sahai proofs. The first proof π, constructed via PNIWI, shows knowledge of a signature σ, a
verification key v and a part b of a (re-randomized) certificate (a, b) which satisfy e(a, hv)e(f, b) =
T ∧ e(σ, vgH(vksots)) = e(g, g). The first part a of the certificate can be safely revealed as part of
the group signature since it does not leak any information about the identity of the member due to
the re-randomization. The second proof ψ, constructed via PNIZK, demonstrates that the plaintext
of y is same as the witness σ used in π. More specifically, the tag-based encryption y has the form
(y1, y2, y3, y4, y5) = (F ry , Hsy , gry+syσ, (gH(vksots)K)ry , (gH(vksots)L)sy), while the Groth-Sahai proof
π contains a commitment c = (c1, c2, c3) = (F rcU t, HscV t, grc+scW tσ). The proof demonstrates
that there exists (r, s, t) such that (c1y

−1
1 , c2y

−1
2 , c3y

−1
3) = (F rU t, HsV t, gr+sW t). When y and c

encrypt the same message, there exists (r, s, t) that satisfies above equation, but if y and c encrypt
different messages, no such tuple (r, s, t) exists.

The verification algorithm GVf will, in addition to the verification of the two non-interactive
proofs and the one-time signature, verify that the ciphertext y is a valid ciphertext, using the
algorithm ValidCiphertext. This algorithm is easily implemented for the tag-based encryption
scheme by Kiltz (see the last paragraph of Sect. 2 for details).

We will now show how a malicious group member can forge a opening proof which shows that he
is the signer of any signature Σ produced by user i. As described above, an opening proof consists
of a certified signature σ on vksots which is part of Σ. To verify the opening proof, it is only verified
that σ is a valid signature on vksots under the verification key vi of the user in question.

Hence, a malicious user i′ who wants to impersonate the signer of the group signature Σ on m,
simply uses his own private signing key xi′ to construct a new signature σ′ on vksots, and publicizes
this as an opening proof together with his own identity i′. This proof will be accepted by the Judge
algorithm since σ′ is a valid signature in vksots.

We formally state this as a theorem:

Theorem 1. The Groth group signature scheme does not provide weak opening soundness.

Proof. We describe an algorithm for producing a forged proof: When the adversary receives the
security parameter 1` and a group public key gpk , it firstly issues two queries AddU(1) and AddU(2)
in order to add two members 1 and 2 the group. The adversary then requests the challenge by out-

11

putting (i, i∗,m) = (1, 2, 0`), and receives a tuple (Σ, gsk2), where Σ = (vk sots, a, π, y, ψ, σsots) and
gsk2 = (x2, a2, b2). The adversary forges a proof of ownership by computing σ∗ = g1/(x2+H(vksots))

and outputs σ∗ (Notice that vk sots is taken from the group signature Σ).
One can easily verify that Judge(gpk , reg , 2,m,Σ, σ∗) actually outputs 1, which means that the

algorithm successfully breaks the opening soundness.

The Bellare-Shi-Zhang Scheme. Below, we will give an intuitive description of the generic
construction of a dynamic group signature scheme by Bellare, Shi, and Zhang [3]. For a full
description, see Appendix A.

In the Bellare-Shi-Zhang construction, each group member i has a key pair (vk i, sk i) of an
EUF-CMA secure signature scheme. The issuer also possesses his own key pair (ak , ck) of the
signature scheme. The issuer signs the message 〈i, vk i〉 to obtain the signature cert i, and sends
cert i to the user i. A group signature on a message m by the user i is a pair (C, π): here C is
an encryption of 〈i, vk i, cert i, s〉, s is a signature on m under the key pair (vk i, sk i), and the NIZK
proof π proves that the plaintext encrypted in C is of the form 〈i, vk , cert , s〉 and that cert and s
are a valid certificate on vki and a valid signature on the message in question, respectively. The
opener attributes a group signature Σ = (C, π) to the user i by providing an NIZK proof τ for
another statement (i.e., different from that of π), which shows the existence of a decryption key that
corresponds to the opener’s public key and that under that key C is decrypted to 〈i, vk i, cert i, s〉.

This simple scheme provides opening soundness. Intuitively, this is due to the correctness of
the public key encryption used to encrypt the signature and the certificate, and the soundness of
the NIZK proof system for τ . The correctness condition of public key encryption ensures that
given a public key pk and a ciphertext C, the decryption of C is determined uniquely. Now, let us
assume that an adversary of the opening soundness game outputs a tuple (m,Σ, i1, τ1, i2, τ2) where
Σ = (C, π) and wins the game. The proof τ1 proves that C decrypts to 〈i1, vk , cert , s〉 for some vk ,
cert , and s, whereas τ2 proves that C decrypts to a different plaintext 〈i2, vk ′, cert ′, s′〉 for some vk ′,
cert ′, and s′. However, this should not be possible since the decryption of C under a fixed public
key is unique. Hence, the adversary breaks the soundness of the NIZK proof system.

This is captured by the following theorem.

Theorem 2. The Bellare-Shi-Zhang construction (Fig. 3) provides opening soundness, assum-
ing that the non-interactive proof systems (P1, V1) and (P2, V2) provide soundness with negligible
soundness error.

For a formal proof, see Appendix A.

The Furukawa-Imai Scheme. The Furukawa-Imai group signature scheme [16] does not have
opening soundness, which we will show in the following.

The scheme makes use of a group G (with generator g) in which the decisional Diffie-Hellman
assumption holds, in addition to bilinear groups (G1,G2,GT) with an asymmetric bilinear map
e : G1 × G2 → GT . In the scheme, each group member i has a public key Qi = gxi and the
corresponding secret key xi. The public key Qi is encrypted in a group signature with (a kind of)
ElGamal encryption. Let (R, V) = (Qig

r, Sr) be the ciphertext that appears in a group signature,
where S = gs is the public key of the ElGamal encryption. The opener possesses the decryption key
s, and identifies the signer by decrypting the ciphertext. An opening contains a proof of knowledge

12

of w such that Qi = R/V 1/w, where Qi is the public key of the specified member (The opener uses
s as the witness for the above equation).

If the adversary corrupts the opener and two different members i and j, the adversary can
construct two different openings of a single signature, each of which attributes the signature to user
i and user j, respectively. The adversary proceeds as follows: At first the signature is honestly
generated by the user i. Let (R, V) = (gxi+r, Sr) be the ciphertext contained in this signature.
The first opening is also honestly generated by the opener to attribute the signature to i. The
second proof is generated by computing a proof of knowledge w that satisfies Qj = R/V 1/w with
the witness w = sr/(xi + r − xj). This proof attributes the signature to the user j. Note that the
randomness r for the encryption is reused to forge the second proof. This is the reason why the
adversary needs to corrupt the user i, not only the user j and the opener.

The Bichsel et al. Scheme. In the Bichsel et al. scheme [4], a group member receives a
Camenisch-Lysyanskaya signature on a random message ξ from the issuer. To generate a group
signature, the member rerandomizes this certificate and computes a “signature of knowledge” of ξ
on the message m in question. This rerandomized certificate on ξ and the signature of knowledge
of ξ on m constitute the group signature.

The issuer should not know the random message ξ, because otherwise non-frameability is com-
promised. For this reason, in the group-joining protocol, ξ is jointly generated by the user and the
issuer as follows: The user i chooses a random exponent τi and sends r̃ = x̃τi to the issuer, while
the issuer also chooses a random κi and computes w̃ = r̃ · x̃κi = x̃τi+κi . This τi + κi will be used as
the random message ξ mentioned above. To establish a publicly verifiable connection between this
ξ and the user i, the user i generates an (ordinary) signature on ki = e(g, r̃) with a key pair which
is previously registered in a public key infrastructure.

To open a signature, the opener uses w̃ to identify the user which corresponds to the rerandom-
ized certificate in the group signature, which is a Camenisch-Lysyanskaya signature on the user’s
ξ. However, since w̃ makes the Camenisch-Lysyanskaya signature publicly verifiable, it cannot be
used as an opening. Instead, the opener produces a non-interactive zero-knowledge proof of w̃ and
κi such that ki = e(g, w̃)/e(g, x̃)κi and provides the signature on ki. To verify this opening, a third
party simply verifies the non-interactive zero-knowledge proof and the signature.

Unfortunately this scheme does not satisfy opening soundness. Assume a malicious signer
obtains a group signature by an honest user, and further obtains an honestly generated opening of
the signature. The proof of ownership contains ki and a signature on this by the honest user. The
malicious signer replaces the signature on ki with his own signature on ki. This forged opening
passes the verification.

5 Achieving Opening Soundness

In this section we present a variant of the Groth scheme, which provides opening soundness (besides
anonymity, non-frameability, and traceability).

5.1 The Modified Groth Scheme

The High-Level Idea. Let us first consider a general approach for achieving opening soundness.

13

The opener, who has the secret opening key, will always be able to determine the correct opening
of a group signature. To provide opening soundness, the opener needs to convince others that a
given opening is correct. The easiest way to do that is to make the opening key public, but this
will compromise the anonymity of the scheme. Instead, the opener can provide an NIZK proof of
the correctness of an opening, to convince any third party. This is, in fact, the approach used in
the Bellare-Shi-Zhang construction.

If the opening algorithm essentially corresponds to a “decryption” of a ciphertext contained
in the group signature (this is the case for many existing schemes), we might be able to take a
different and more efficient approach. In particular, if the encryption scheme provides randomness
recovering, the opener can simply release the randomness used for the ciphertext in question instead
of an expensive zero-knowledge proof. Any third party will then be able to verify the correctness of
an opening by re-encrypting the relevant information with the randomness provided by the opener,
and then confirm that the resulting ciphertext is the same as the one contained in the signature.

In the Groth scheme, an opening essentially corresponds to the decryption of a linear encryption
scheme. While linear encryption is not randomness-recovering, the opener is able to release related
values which, together with the use of a bilinear map, will allow a third party to confirm that the
decryption was done correctly. This property will allow us to add opening soundness to the original
scheme. More specifically, in our variant of the Groth scheme, the opener, given a ciphertext
(c1, c2, c3) = (F r, Hs, vgr+s), reveals gr and gs as a part of an opening. Using the properties
of the bilinear map, these values can replace the exact randomness r and s when checking the
correspondence between a ciphertext and a decryption: If a third party, given gr and gs, wants
to check the correspondence between a ciphertext (c1, c2, c3) and a decryption v, he simply checks
whether the equations e(F, gr) = e(c1, g), (H, gs) = e(c2, g), and v = c3/(g

rgs) hold. If this is the
case, he accepts the decryption as valid.

The above described modification to the Groth scheme will ensure that a verifier running the
Judge algorithm is able to verify that the public user key vi, given as part of an opening, is the
same as the public user key used in the proof π which is contained in the group signature. This will
ensure that two different openings containing different public user keys cannot both be accepted as
valid for a single group signature. While this property is very close to opening soundness, it will
not address the possibility that two different user have the same public key. To rule this out, we
make the following additional change to the Groth scheme: we let both the verification algorithm
GVf and the judge algorithm Judge take the registration table reg as input i.e. we assume that reg
is made public (note that this is allowed in the original scheme [21]). With this change, the Judge
algorithm can simply check whether the public key, given as part of an opening, corresponds to the
public key of more than one user, and reject the opening if this is the case. However, to ensure that
the scheme remains traceable, the verification algorithm will have to implement a similar check.
Hence, we will simply reject any signature or opening in the case the registration table reg contains
repeated public keys. Note that to preserve correctness, this change also requires us to ensure that
no honest execution of the Join protocol generates repeated public keys.

We note that the used approach to the verification of a decryption result is essentially the same
as that used by Galindo et al. [17] in the context of public key encryption with non-interactive
opening (PKENO). Furthermore, we note that in [17], the application of PKENO schemes to group
signature is briefly discussed as a mechanism for simplifying the construction of an opening. Here,
we will show that this approach is able to ensure the opening soundness of group signature schemes.

14

Description of our variant. The Groth scheme can achieve opening soundness with the small
modification shown in Fig. 2.

Join/Issue(User i: gpk ; Issuer: gpk , ik):
Run the coin-flipping protocol in [21]

The user obtains vi = gxi and xi
and the issuer obtains vi
(Repeat until vi 6= reg [j] for all j)

Issuer: r ← Zp
(ai, bi)← (f−r, (vih)rz)
set reg [i]← vi
send (ai, bi) to the user

User: If e(ai, hvi)e(f, bi) = T
set gsk i ← (xi, ai, bi)

GVf(gpk , reg ,m,Σ):
Return 1 if the following holds:

1 = Vervksots((vk sots,m, a, π, y, ψ), σsots),
1 = VNIWI(crs, (gpk , a,H(vk sots)), π),
1 = VNIZK(crs, (gpk , π, y), ψ),
1 = ValidCiphertext(pk ,H(vk sots), y),
and reg [i] 6= reg [j] for all i 6= j

else return 0

Open(gpk , ok , reg ,m,Σ):
If GVf(gpk , reg ,m,Σ) = 0, return (0,⊥)
(b, v, σ)← Xxk (crs, (gpk , a,H(vk sots)), π)
(dF , dH)← xk ; (y1, . . . , y5)← y

τF := y
1/dF
1 ; τH := y

1/dH
2

Return (i, (σ, τF , τH))
if there is i so v = reg [i],

else (0,⊥)

Judge(gpk , i, reg ,m,Σ, (σ, τF , τH)):
vi ← reg [i]
Return 1 if the following holds:
GVf(gpk , reg ,m,Σ) = 1,

i 6= 0, e(σ, vig
H(vksots)) = e(g, g),

e(F, τF) = e(y1, g), e(H, τH) = e(y2, g),
and στF τH = y3,

else return 0

Figure 2: The proposed modification of the Groth group signature scheme. The algorithms that
do not appear in the figure are exactly the same as in Fig. 1.

Theorem 3. The modified Groth scheme shown in Fig. 2 provides opening soundness.

Proof. Let us consider the game in Definition 6, and let gpk be the group public key in the game,
where the key is parsed as (F,H, · · ·), and let (m,Σ, i, τ, i′, τ ′) be the output of the adversary.
Furthermore, let Σ, τ , and τ ′ be parsed as follows: Σ = (vk sots, a, π, y, ψ, σsots) in which y =
(y1, y2, y3, y4, y5), τ = (σ, τF , τH) and τ ′ = (σ′, τ ′F , τ

′
H).

We hereafter show that given a fixed Σ, it must hold that i = i′: Given a fixed Σ (in particular
y1, y2, and y3), the verification equations

e(F, τF)
?
= e(y1, g) ∧ e(H, τH)

?
= e(y2, g) ∧ στF τH

?
= y3

uniquely determine τF , τH , and σ. Since both τ = (σ, τF , τH) and τ ′ = (σ′, τ ′F , τ
′
H) are accepted by

Judge and hence must satisfy the verification equations, we must have that (σ, τF , τH) = (σ′, τ ′F , τ
′
H).

Now, since σ = σ′ and the equation e(σ, vgH(vksots)) = e(g, g) uniquely determines v given fixed
σ and H(vk sots), that vi and vi′ satisfy e(σ, vig

H(vksots)) = e(g, g) and e(σ, vi′g
H(vksots)) = e(g, g)

respectively, must imply that vi = vi′ . Hence, since vi = reg [i] 6= reg [j] = vj for all i 6= j, we
conclude that i = i′.

15

The changes shown in Fig. 2 yields a scheme which is secure in the Bellare-Shi-Zhang model
i.e. the anonymity, the non-frameability, and the traceability of the original Groth scheme are
maintained. This will be shown in the following.

Theorem 4. The modified Groth scheme provides anonymity if the decisional linear assumption
holds in G, the one-time signature scheme is strongly unforgeable, and the hash function is target
collision-resistant.

Proof. Let A be an adversary that have the advantage ε in the anonymity game. To bound the
probability ε we gradually modify the game played by A. In the following Si denotes the event
that the adversary A successfully guesses the bit b = b′ interacting with the environment of Game
i.

Game 0. Game 0 is identical to the game in the definition of anonymity. In this game we have
that Pr[S0] = 1/2 + ε.

Game 1. We modify the behavior of the Open oracle as follows: If the Open oracle receives a
valid signature which reuses the verification key vk∗sots from the challenge Σ∗, then the game
aborts. Due to the strong unforgeability of the one-time signature scheme (KeyGensots,
Signsots,Versots), this modification does not change the success probability of A with more
than a negligible amount, that is, we have that |Pr[S0]− Pr[S1]| is negligible.

Game 2. We further modify the Open oracle to abort when a queried signature contains a one-time
signature verification key vk sots that, when applying the hash function H, collides with the
challenge verification key vk∗sots i.e. H(vksots) = H(vk∗sots). This causes at most a negligible
change in the probability in which A successfully guess the challenge bit due to the collision
resistant property of H.

Game 3. We then modify how the Open oracle obtains a signer identity i: When the Open oracle
is required to open a group signature, it first extracts a witness (b, v, σ) from the proof π
using the extraction key xk. However, in Game 3, instead of then searching for i such that
reg [i] = v (which is done until Game 2), the Open oracle searches for i such that

e(σ, vig
H(vksots)) = e(g, g)

that is, σ is a valid signature on vk sots under vi. Note that the above verification equation
uniquely defines vi given a signature σ and a message H(vk sots). Furthermore, since the
perfect soundness of π guarantees that σ is a valid signature on H(vk sots) under the extracted
v, the vi identified in the above procedure must be identical to v, and hence, the user identity
i returned by the oracle does not vary between Game 2 and Game 3.

Game 4. We now modify how the Open oracle obtains the signature σ: Specifically, in Game 4,
the Open oracle obtains σ by decrypting y with xk , instead of extracting σ from the proof of
knowledge π. Due to the perfect soundness of ψ, this modification produces the same σ as in
Game 3.

Game 5. Now we change how (σ, τF , τH) is computed. Instead of decrypting y with xk (recall that
xk consists of logg F and loggH), we proceed as follows: In the generation of the public key of

16

the tag-based encryption, K and L are constructed as K := F κ and L := Hλ. The Open oracle
then uses κ and λ to compute (σ, τF , τH) as τF := (y4/y

κ
1)1/H(vksots), τH := (y5/y

λ
2)1/H(vksots),

and σ := y3/τF τH . As shown in Lemma 1, this will not change the behavior of the oracle.

Game 6. In this game we switch the common reference string from a string providing perfect
soundness to a string providing perfect witness-indistinguishability and perfect zero-knowledge,
respectively, for the two types of proof systems used in the scheme. Since to two types of ref-
erence strings are computationally indistinguishable under the decisional linear assumption,
the success probability of the adversary will not change by more than a negligible amount.
Note that this change is possible because the Open oracle no longer needs the extraction key
xk . Furthermore, in this game, all proofs ψ are simulated with the zero-knowledge trapdoor.

Game 7. Finally we change the component y3 in the challenge to a random element in G. As shown
in Lemma 2, this will not introduce more than a negligible change in the success probability
of the adversary assuming the decisional linear assumption holds.

In Game 7 we can conclude that Pr[S7] = 1/2, because the view of the adversary is independent
from the challenge bit b. Specifically, the challenge (vk∗sots, a, π, y, ψ, σ

∗
sots) contains no information

on b. Indeed, vk∗sots is independently generated in the setup, a is distributed uniformly due to
rerandomization, the perfectly witness-indistinguishable proof π distributes independently from the
witness and hence the bit b, y is merely a random encryption, ψ does not contain the information
on b since it is computed from y and the zero-knowledge trapdoor, and finally σ∗sots is a signature
on 〈vk∗sots,m, a, π, y, ψ〉, which are all independent of b as seen above. The oracles (Open, SndToU,
WReg, USK and CrptU) also behave independently of b.

Finally we prove that the changes in Game 5 and Game 7 will only introduce a negligibly change
in the success probability of the adversary.

Lemma 1. Pr[S4] = Pr[S5].

Proof (of Lemma 1). We will show that the response of the Open oracle does not change between
Game 4 and Game 5.

Consider a group signature Σ = (vk sots, a, π, y, ψ, σsots) submitted to the Open oracle. If the
ciphertext y, which is a part of Σ, does not pass the validity check ValidCiphertext, the oracles in
both games simply outputs ⊥.

Hence, we consider the case in which the ciphertext y passes the validity check. In this case we
can assume that there exist r and s in Zp such that y1 = F r, y2 = Hs, y4 = (gH(vksots)K)r, and
y5 = (gH(vksots)L)s. We now show that the three equations τF = gr, τH = gr and σ = y3/g

r+s hold
in both games, and hence, the openings (τF , τH , σ) returned by Open in Game 4 and Game 5 are
identical.

Consider the first two equations. In Game 4, τF and τH are computed as τF := y
1/dF
1 and τH :=

y
1/dH
2 . Since F = gdF and H = gdH , τF = y

1/dF
1 = (F r)1/dF = gr and τH = y

1/dH
2 = (Hs)1/dH = gs

hold. In Game 5, τF and τH are computed as τF := (y4/y
κ
1)1/H(vksots) and τH := (y5/y

λ
2)1/H(vksots),

where K = F κ and L = Hλ. Thus

τF =

(
y4
y1κ

)1/H(vksots)

=

(
(gH(vksots)K)r

(F r)κ

)1/H(vksots)

= gr

17

and

τH =

(
y5
y2λ

)1/H(vksots)

=

(
(gH(vksots)L)s

(Hs)λ

)1/H(vksots)

= gs.

Lastly, consider the third equation σ = y3/g
r+s. Note that σ is computed as σ := y3/y

1/dF
1 ydH3 in

Game 4, whereas it is computed as σ := y3/(y4/y
κ
1)1/H(vksots)(y5/y

λ
2)1/H(vksots) in Game 5. Since we

have already established that y
1/dF
1 = (y4/y

κ
1)1/H(vksots) = gr and y

1/dH
2 = (y5/y

λ
2)1/H(vksots) = gs,

we can conclude that the two computations yield the same value y3/g
r+s.

Lemma 2. |Pr[S6]− Pr[S7]| is negligible if the decisional linear assumption holds.

Proof (of Lemma 2). To see this we construct a simulator that distinguishes a linear tuple from
a random tuple, given that |Pr[S6] − Pr[S7]| is non-negligible for some A. The simulator receives
the description of bilinear groups gk and a tuple (F,H, g, F r, Hs, R) where R is gr+s or a random
group element, and simulates either Game 6 or Game 7, respectively.

Given gk and (F,H, g, F r, Hs, R), the simulator constructs a witness-indistinguishable common
reference string on the top of g, F , H together with a zero-knowledge trapdoor, which can be done
because the trapdoor consists of only the discrete logarithms of U ′, V ′, W ′ with respect to F , H,
and g. Then the simulator sets up K, L as K := F c1g−H(vk∗sots), L := Hc2g−H(vk∗sots) where c1, c2
are randomly chosen from Zp. The rest of the public verification key gpk is honestly generated,
and the adversary A is run with input gpk and ik .

When the adversary A issues an oracle query, the simulator responds as follows: User join-
ing queries, both corrupted and uncorrupted, is dealt with by simply following the real proto-
col. The challenge request (i0, i1,m) is handled by picking a random bit b, computing a and
π correctly from the signing key xib of user ib, computing a ciphertext y as (y1, y2, y3, y4, y5) :=
(F r, Hs, Rσ, (F r)c1 , (Hs)c2), generating a simulated proof ψ from the zero-knowledge trapdoor, and
generating a one-time signature σsots on (vk∗sots,m, a, π, y, ψ). When the simulator receives an open
query (vk sots, a, π, y, ψ, σsots), the simulator first verifies the signature, and if the signature does not
pass the verification, it returns ⊥. In the case the signature is valid, the simulator computes

τF := (yc11 /y4)
1/(H(vk∗sots)−H(vksots)), τH := (yc22 /y5)

1/(H(vk∗sots)−H(vksots)), σ := y3/τF τH ,

finds i for which σ is a valid signature on the message vk sots under vi = reg [i], and outputs
(i, (σ, τF , τH)). If no such i is found, output (0,⊥).

Finally the adversary outputs a bit b′ and halts. The simulator outputs 1 if b = b′, and outputs
0 if b 6= b′.

In the above simulation, if R in the tuple given to the simulator is equal to gr+s, the simulated
oracle response is identical to that of Game 6. On the other hand, if R is randomly chosen, the
simulation is identical Game 7. Hence if |Pr[S6]−Pr[S7]| is non-negligible, the simulator’s advantage
in distinguishing linear tuples is also non-negligible.

These two lemmas complete the proof of Theorem 4.

Non-frameability and traceability can be proven more easily since these security notions do
not require simulation of the Open oracle. For non-frameability, once an opening of the modified
scheme that compromises the non-frameability notion is produced, one can obtain an opening for
the original scheme (by simply dropping the extra components of τF and τH) which will compromise

18

the non-frameability of the original scheme. The proof of the following theorems are essentially
identical to the original proofs given in [21], and are therefore not given here.

Theorem 5. The modified Groth scheme provides non-frameability assuming the q-SDH assump-
tion [6] holds, the one-time signature scheme is existentially unforgeable under a weak chosen
message attack, and that the hash function is collision resistant.

Theorem 6. The modified Groth scheme provides traceability assuming the q-U assumption [21]
holds.

6 Conclusion

We have identified an overlooked security concern for dynamic group signatures, namely, the pos-
sibility that a false opening proof can be produced by a corrupt user. To address this concern,
we defined (two variants of) a new security notion denoted opening soundness, and furthermore
discussed the opening soundness of several existing schemes. As a result, we have shown that the
Bellare-Shi-Zhang construction [3] provides opening soundness as it is, and that small modifications
to the Groth scheme (of the full version) [21] allow this scheme to provide opening soundness as well.
We have also briefly discussed the opening soundness of some of the random oracle schemes [16, 4],
but leave further investigation of these schemes as future work.

Acknowledgment

The authors would like to thank the anonymous reviewers of PKC 2012 for their helpful comments.
Furthermore, the authors would like to thank Benôıt Libert for pointing out the similarity between
the idea for obtaining opening soundness in the Groth scheme, and techniques of [17].

References

[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-
resistant group signature scheme. In M. Bellare, editor, CRYPTO 2000, volume 1880 of LNCS,
pages 255–270. Springer, Heidelberg, 2000.

[2] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal defini-
tions, simplified requirements, and a construction based on general assumptions. In E. Biham,
editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 644–644. Springer, Heidelberg, 2003.

[3] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic
groups. In A. Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 136–153. Springer,
Heidelberg, 2005.

[4] P. Bichsel, J. Camenisch, G. Neven, N. P. Smart, and B. Warinschi. Get shorty via group
signatures without encryption. In J. A. Garay and R. De Prisco, editors, SCN 2007, volume
6280 of LNCS, pages 381–398. Springer, Heidelberg, 2010.

[5] M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive zero-knowledge. SIAM J.
Comput., 20(6):1084–1118, 1991.

19

[6] D. Boneh and X. Boyen. Short signatures without random oracles and the SDH assumption
in bilinear groups. J. Cryptol., 21:149–177, 2008.

[7] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 227–242. Springer, Heidelberg, 2004.

[8] X. Boyen and B. Waters. Compact group signatures without random oracles. In S. Vaudenay,
editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 427–444. Springer, Heidelberg, 2006.

[9] X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group signatures. In
T. Okamoto and X. Wang, editors, PKC 2007, volume 4450 of LNCS, pages 1–15. Springer,
Heidelberg, 2006.

[10] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 56–72. Springer,
Heidelberg, 2004.

[11] J. Camenisch and M. Michels. A group signature scheme with improved efficiency (extended
abstract). In K. Ohta and D. Pei, editors, ASIACRYPT ’98, volume 1514 of LNCS, pages
160–174. Springer, Heidelberg, 1998.

[12] D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, EUROCRYPT ’91,
volume 547 of LNCS, pages 257–265. Springer, Heidelberg, 1991.

[13] C. Delerablée and D. Pointcheval. Dynamic fully anonymous short group signatures. In
P. Nguyen, editor, VIETCRYPT 2006, volume 4341 of LNCS, pages 193–210. Springer, Hei-
delberg, 2006.

[14] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs based
on a single random string. In 31st Annual Symposium on Foundations of Computer Science,
pages 308–317. IEEE Computer Society, 1990.

[15] U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols. In 22nd
Annual ACM Symposium on Theory of Computing, pages 416–426. ACM, 1990.

[16] J. Furukawa and H. Imai. An efficient group signature scheme from bilinear maps. In C. Boyd
and J. M. González Nieto, editors, ACISP 2005, volume 3574 of LNCS, pages 92–128. Springer,
Heidelberg, 2005.

[17] D. Galindo, B. Libert, M. Fischlin, G. Fuchsbauer, A. Lehmann, M. Manulis, and D. Schröder.
Public-key encryption with non-interactive opening: New constructions and stronger defini-
tions. In D. J. Bernstein and T. Lange, editors, AFRICACRYPT 2010, volume 6055 of LNCS,
pages 333–350. Springer, Heidelberg, 2010.

[18] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[19] J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In X. Lai and K. Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pages
444–459. Springer, Heidelberg, 2006.

20

[20] J. Groth. Fully anonymous group signatures without random oracles. In K. Kurosawa, editor,
ASIACRYPT 2007, volume 4833 of LNCS, pages 164–180. Springer, Heidelberg, 2007.

[21] J. Groth. Fully anonymous group signatures without random oracles. Manuscript, May 17,
2010. http://www.cs.ucl.ac.uk/staff/J.Groth/CertiSignFull.pdf.

[22] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In N. Smart,
editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, 2008.

[23] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In C. Cachin and J. Camenisch,
editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 571–589. Springer, Heidelberg, 2004.

[24] A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In R. Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 198–214. Springer, Heidelberg, 2005.

[25] J. Kilian and E. Petrank. Identity escrow. In H. Krawczyk, editor, CRYPTO ’98, volume 1462
of LNCS, pages 169–185. Springer, Heidelberg, 1998.

[26] E. Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi and T. Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 581–600. Springer, Heidelberg, 2006.

[27] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. In J. Feigenbaum, editor, CRYPTO ’91, volume 576 of LNCS, pages 433–
444. Springer, Heidelberg, 1992.

[28] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext secu-
rity. In 40th Annual Symposium on Foundations of Computer Science, pages 543–553. IEEE
Computer Society, 1999.

[29] S. Zhou and D. Lin. Shorter verifier-local revocation group signatures from bilinear maps.
In D. Pointcheval, Y. Mu, and K. Chen, editors, CANS 2006, volume 4301 of LNCS, pages
126–143. Springer, Heidelberg, 2006.

A Omitted Definitions and Proofs

For completeness, we provide a complete description of the Bellare-Shi-Zhang construction and a
formal proof of Theorem 2.

The description of the scheme is presented in Fig. 3. The construction is a generic construc-
tion from a EUF-CMA secure signature scheme (SKg, Sign,Ver), a IND-CCA secure public-key
encryption scheme (EKg,Enc,Dec), a simulation-sound zero-knowledge non-interactive proof sys-
tem (K1, P1, V1), and a zero-knowledge non-interactive proof system (K2, P2, V2). The proof system
(K1, P1, V1) is for the relation

((pk , ak ,m,C), (i, vk ′, cert , σ, r)) ∈ R1

⇐⇒ Verak (〈i, vk ′〉, cert) = 1 ∧ Vervk ′(m, s) = 1 ∧ Encpk (〈i, vk ′, cert , s〉; r) = C,

while the proof system (K2, P2, V2) is for the relation

((pk , C, i, vk , cert , σ), (dk , R)) ∈ R2 ⇐⇒ EKg(1k;R) = (pk , dk) ∧ Dec(dk , C) = 〈i, vk , cert , σ〉.

21

GKg(1k):
crs1 ← K1(1

`); crs2 ← K2(1
`)

R← {0, 1}k; (pk , dk)← EKg(1k;R)
(ak , ck)← SKg(1k)
gpk := (1k, crs1, crs2, pk , ak)
ok := (dk , R); ik := ck
Return (gpk , ok , ik)

UKg(1k):
(upk , usk)← SKg(1k)
Return (upk , usk)

Join/Issue :
Join(gpk , upk i, usk i):

(vk i, sk i)← SKg(1k); si ← Signusk i
(vk i)

Send (vk i, si) to the issuer
Issue(gpk , upk i, ik):

If Verupk i
(vk i, si) = 1 then

cert i ← Signck (〈i, vk i〉)
reg [i] := (vk i, si),

Else cert i := ε
Send cert i to the user

User:
gsk i := (i, vk i, sk i, cert i)

GSig(gpk , gsk i,m):
Parse gpk as (1k, crs1, crs2, pk , ak)
Parse gsk i as (i, vk i, sk i, cert i)
σ ← Signsk i

(m)
r ← {0, 1}k; C ← Encpk (〈i, vk i, cert i, σ〉; r)
π1 ← P1(1

k, (pk , ak ,m,C),
(i, vk i, cert i, σ, r), crs1)

Return Σ := (C, π);

GVf(gpk , reg ,m,Σ):
Parse gpk as (1k, crs1, crs2, pk , ak)
Parse Σ as (C, π1)
Return V1(1

k, (pk , ak ,m,C), π1, crs1)

Open(gpk , ok , reg ,m,Σ):
Parse gpk as (1k, crs1, crs2, pk , ak)
Parse ok as (dk , R)
Parse Σ as (C, π1)
M ← Decdk (C)
Parse M as 〈i, vk , cert , σ〉
If reg [i] 6= ε then

Parse reg [i] as (vk i, si)
Else vk i := ε; si := ε
π2 ← P2(1

k, (pk , C, i, vk , cert , σ), (dk , R), crs2)
If V1(1

k, (pk , ak ,m,C), π1, crs1) = 0 then
Return (0, ε)

If vk 6= vk i or reg [i] = ε then
Return (0, ε)

τ := (vk i, si, i, vk , cert , σ, π2)
Return (i, τ)

Judge(gpk , reg , i, upk i,m,Σ, τ):
Parse gpk as (1k, crs1, crs2, pk , ak)
Parse Σ as (C, π1)
If (i, τ) = ε then

Return V1(1
k, (pk , ak ,m,C), π1, crs1) = 0

Parse τ as (v̄k , s̄, i′, vk ′, cert ′, σ′, π2)
If V2(1

k, (C, i′, vk ′, cert ′, σ′), π2, crs2) = 0 then
Return 0

If i = i′ and Verupki(v̄k , s̄) = 1
and p̄k = pk ′ then
Return 1

Else Return 0

Figure 3: The Bellare-Shi-Zhang group signature scheme [3].

The proof of Theorem 2 is as follows:

Proof. Let (GKg,UKg, Join, Issue,GSig,GVf,Open, Judge) be the Bellare-Shi-Zhang construction.
Let us consider an adversary A that is run in the environment of the opening soundness experiment,
and let succ be the event that A breaks the opening soundness of the scheme.

We will show that the probability Pr[succ] is negligible. Toward this end we define three

22

events invalid, non-trace1, and non-trace2. The event invalid is that A outputs (M,Σ, i, τ, i′, τ ′) such
that the group signature Σ = (c, π) contains a ciphertext c that has no corresponding plaintext
m and randomness r which satisfy c = Epk (m; r). The event non-trace1 denotes that, for the
ciphertext c output by A, there exists no decryption key dk that satisfies pk = G(1k, dk) and
Ddk (c) = 〈i1, vk , cert , s〉 for some vk , cert , and s, and finally non-trace2 denotes the same event for
i2.

By the union bound, we obtain an upper bound for Pr[succ] as

Pr[succ] ≤ Pr[succ ∧ ¬invalid ∧ ¬non-trace1 ∧ ¬non-trace2]
+ Pr[succ ∧ invalid] + Pr[succ ∧ non-trace1] + Pr[succ ∧ non-trace2].

The last three terms Pr[succ ∧ invalid], Pr[succ ∧ non-trace1], and Pr[succ ∧ non-trace2] are all
negligible due to the soundness of the underlying zero-knowledge proof systems which are assumed
to have negligible soundness error i.e. if the event invalid occurs, it is straightforward to construct an
algorithm which breaks the soundness of (K1, P1, V1), and likewise, if either of the events non-trace1,
or non-trace2 occur, it is straightforward to construct algorithms which break the soundness of
(K2, P2, V2).

The remaining part is to show that Pr[succ∧¬invalid∧¬non-trace1 ∧¬non-trace2] is negligible.
This term is in fact exactly equal to zero, due to the correctness of the public key encryption
scheme used. The condition ¬invalid∧¬non-trace1∧¬non-trace2 means that there are two different
decryption keys dk1 and dk2 that correspond to the same public key pk (i.e., there are random
tapes ρ1 and ρ2 such that (pk , dk1) = EKg(1k; ρ1) and (pk , dk2) = EKg(1k; ρ2)) but which produce
different decryption results for a single valid ciphertext c. The correctness condition requires that if
a ciphertext c is honestly generated under a public key pk , two decryption keys which are different
but correspond to the same public key pk , produce the same decryption results. Since the above
situation contradicts this requirement, the probability Pr[succ∧¬invalid∧¬non-trace1∧¬non-trace2]
is equal to zero.

23

