
Tweakable Blockciphers with
Beyond Birthday-Bound Security

Will Landecker1, Thomas Shrimpton1, and R. Seth Terashima1

Dept. of Computer Science, Portland State University
{landeckw,teshrim,seth}@cs.pdx.edu

Abstract. Liskov, Rivest and Wagner formalized the tweakable blockcipher (TBC) primitive at CRYPTO’02.
The typical recipe for instantiating a TBC is to start with a blockcipher, and then build up a construction that
admits a tweak. Almost all such constructions enjoy provable security only to the birthday bound, and the one
that does achieve security beyond the birthday bound (due to Minematsu) severely restricts the tweak size and
requires per-invocation blockcipher rekeying.
This paper gives the first TBC construction that simultaneously allows for arbitrarily “wide” tweaks, does not
rekey, and delivers provable security beyond the birthday bound. Our construction is built from a blockcipher
and an ε-AXU2 hash function.
As an application of the TBC primitive, LRW suggest the TBC-MAC construction (similar to CBC-MAC
but chaining through the tweak), but leave open the question of its security. We close this question, both for
TBC-MAC as a PRF and a MAC. Along the way, we find a nonce-based variant of TBC-MAC that has a
tight reduction to the security of the underlying TBC, and also displays graceful security degradation when
nonces are misused. This result is interesting on its own, but it also serves as an application of our new TBC
construction, ultimately giving a variable input-length PRF with beyond birthday-bound security.

Keywords: tweakable blockcipher, beyond birthday bound, pseudorandom function, message authentication
code, unforgeability.

1 Introduction

A blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n is typically viewed as a family of permutations EK over {0, 1}n,
where the index into the family is the key K ∈ {0, 1}k. A tweakable blockcipher (TBC) extends this viewpoint
by adding a second “dimension” to the function family, called a tweak. In particular, a TBC Ẽ : {0, 1}k × T ×
{0, 1}n → {0, 1}n is a family of permutations indexed by a pair (K,T) ∈ {0, 1}k × T . There is, however, a
semantic asymmetry between the key and the tweak: the key is secret and gives rise to security, while the tweak
may be public and gives rise to variability.

Liskov, Rivest and Wagner [21] formalized the TBC primitive. Their thesis was that primitives with inherent
variability are a more natural starting point for building modes of operation, whereas classical constructions would
use a blockcipher (deterministic once the key is fixed) and induce variability by using a per-message IV or nonce.
Subsequent papers have delivered tweakable enciphering schemes (e.g. [14–16, 32, 8] and others), message authen-
tication codes (e.g. [28]), and authenticated encryption (e.g. [27, 28, 20]) modes of operation. The Skein [30] hash
function has a TBC at its core. TBC-based constructions have found widespread practical application for full-disk
encryption.

BUILDING TBCS. There are few dedicated TBC designs: the Hasty Pudding [29] and Mercy [10] ciphers na-
tively admit tweaks. The more common approach is to start from a blockcipher and build up a TBC, incorporat-
ing support for a tweak without (one hopes) sacrificing whatever security the original blockcipher offered. The
original LRW paper itself gave two constructions, which we call LRW1 and LRW2. The former construction is
LRW1[E]K(T,X) = EK(T ⊕ EK(X)) and it is a secure tweakable-PRP1 if the underlying n-bit blockcipherE is
a secure PRP, although there is a birthday-type loss in the reduction. (That is, the security bound becomes vacuous
around 2n/2 queries.) In addition to birthday-bound security, the tweakspace is limited to T ⊆ {0, 1}n. The second
LRW construction LRW2[H,E]h,K(T,X) = h(T)⊕ EK(X ⊕ h(T)) avoids this length restriction by hashing the

1 This notion is formally defined in Section 2. Informally, a TBC Ẽ is a secure tweakable-PRP if, for a random and secret
key K, the family of mappings ẼK(·, ·) is computationally indistinguishable from a family of random permutations. The
tweakable strong-PRP notion allows for inverse queries, too.

tweak. LRW prove that this is a tweakable strong-PRP when E is a secure strong-PRP and h is a random element
of an ε-almost 2-xor-universal (ε-AXU2) hash function family H . But here, too, one finds only birthday-bound
security. Variations on the LRW constructions, for example Rogaway’s XE and XEX constructions [28], similarly
offer provable security only to the birthday bound.

Tweakable blockciphers with beyond birthday-bound (BBB) security may be of particular interest for appli-
cations such as large-scale data-at-rest protection, where key management and negotiation issues seem likely to
drive up the amount of data protected by a single key. Also, when legacy restrictions require the use of Triple-DES
(where n = 64), delivering BBB security has obvious benefits. We also note that OCB mode [28] would de-
liver BBB authenticated-encryption security if constructed over a BBB tweakable blockcipher; other TBC-based
constructions with (tight) security reductions to the security of the underlying TBC would similarly benefit.

Nonetheless, constructions of TBCs with BBB security are rare. One due to Minematsu [24] achieves BBB
security, but only admits short tweaks (e.g. T = {0, 1}n−m for m ≥ n/2). It requires two blockcipher calls per
TBC invocation, and suffers an additional performance penalty by rescheduling one blockcipher key whenever the
tweak changes. This last point also violates a TBC design goal, that changing a tweak should be more efficient
than changing a key.

A NEW CONSTRUCTION WITH BBB SECURITY: CLRW2. Our main technical result is the first TBC construction
that has tweakable strong-PRP security beyond the birthday bound, admits essentially arbitrary tweaks, and does
not require per-invocation rekeying of any of the underlying objects.We call this the Chained LRW2 (CLRW2)
construction, since it can be written as LRW2[H,E]h2,K2(T, LRW2[H,E]h1,K1(T,X)); see Figure 1.

The bulk of the paper is dedicated to showing that when E is a secure strong-PRP and H is an ε-AXU2 hash
function family with ε = 2−n, the CLRW2 TBC is a tweakable strong-PRP with security against adaptive attackers
making O(22n/3) queries. Figure 2 gives a graphical comparison of our security bound and the birthday bound.

We also consider some variations of CLRW2, for example omitting internal xors, or keying the two blockci-
phers with the same key.

Note that there are many efficient constructions of ε-AXU2 families with ε ≈ 2−n and, except perhaps for very
long tweaks, the running time of CLRW2 is likely to be dominated by the two blockcipher calls.

X Y

h

h

T

E
K

E
K

Fig. 1. The CLRW2 Construction.

ANALYZING THE TBC-MAC CONSTRUCTION AND VARIANTS. In addition to formalizing the TBC primitive,
LRW suggested TBC-based constructions for (authenticated) encryption, hashing and message authentication. The
last of these has yet to receive formal analysis, so we consider it. The basic TBC-MAC construction operates
as follows. Fix k, n > 0 and let Ẽ : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n be a tweakable blockcipher. Fix
T0 ∈ {0, 1}n. Then for any key K ∈ {0, 1}k and a plaintext M = M1, . . . ,Mb consisting of n-bit blocks, define
TBCMAC[Ẽ]K(M) = Tb where Ti ← ẼK(Ti−1,Mi) for all i ∈ [1..b]. This is the TBC-MAC (over Ẽ) of the
input M .

It is intuitive to think of TBC-MAC as analogous to CBC-MAC. Indeed, if ẼK(T,X) = EK(T ⊕X) then we
have the CBC-MAC construction. But perhaps by abstracting away the details of Ẽ one can achieve better security

2

than that offered by CBC-MAC? This seems a reasonable expectation, since an attacker can directly influence the
input to the blockcipher E in CBC-MAC via the exclusive-or operation, but no such influence is guaranteed when
the chaining value (the tweak) is separated from the plaintext input block. Moreover, it is easy to build TBCs with
tweak inputs that are much larger than n bits (LRW already gave one way), and exploiting this may allow for
simple twists on the basic TBC-MAC that give better security.

We first consider TBC-MAC as a variable-input-length pseudorandom function (VIL-PRF). We show that
it is secure if the underlying TBC is a secure tweakable-PRP. Like CBC-MAC, however, TBC-MAC has only
birthday-bound security. A small benefit is that this result is not restricted to prefix-free encoded inputs as it is
for CBC-MAC. Actually, one can view TBC-MAC as an instance of the Merkle-Damgård iteration [23, 11] over
a compression function with a dedicated key input. In this setting Bellare and Ristenpart [3] have already shown
that various versions of Merkle-Damgård (plain, suffix-free encoded inputs, prefix-free encoded inputs) are PRF-
preserving.

A more interesting result is found if the underlying TBC allows “wide” tweaks, i.e. tweaks that are wider
than the blocksize. In this case, a simple nonce-based version of TBC-MAC (TBCMAC2) achieves much bet-
ter PRF security bounds. In fact, if nonces are properly respected, the mode of operation imparts no loss over
the security of the underlying TBC. Thus, TBCMAC2 instantiated with a beyond-birthday secure TBC yields a
variable-input-length PRF with beyond-birthday security. What’s more, the security bound degrades quadratically
in the maximum number of times any nonce is repeated, providing more graceful behavior than most nonce-based
constructions, which fail catastrophically when a nonce-repeat occurs. Such nonce misuse-resistance can be quite
useful in practice.

Lastly, we show that TBC-MAC is unforgeable assuming only that the underlying TBC is likewise unforgeable.
This holds only for prefix-free encoded inputs. In fact, this follows from the work of Maurer and Sjödin [22], who
give general results for the Merkle-Damgård iteration. When the prefix-free encoding restriction is lifted, we exhibit
a TBC Ẽ that is unforgeable, yet TBC-MAC over Ẽ is easily forged.

UNFORGEABILITY PRESERVATION OF TBC CONSTRUCTIONS. A final, small contribution of this work is to
address the question: What if one wants only to assume access to cryptographic primitives that are unforgeable (i.e.
unpredictable), rather than pseudorandom? No previous work addresses the provable security of TBC constructions
starting from blockciphers with this weaker security assumption. We begin this effort by considering the two TBC
constructions from LRW. We show that LRW1 is not unforgeability preserving. That is, we build a blockcipher E
that is unforgeable but for which is it easy to forge LRW1[E]. (In fact, we use LRW1 against itself in this result!)
Likewise for LRW2, we show that there is an ε-AXU2 hash function family and an unforgeable blockcipherE such
that LRW2[H,E] is easily forged. (Again, we use LRW1 again to construct the E we need.) For space reasons,
these results appear in Appendix E. At this time, we do not know if CLRW2 remains unforgeable given only
unforgeable underlying blockciphers.

ADDITIONAL RELATED WORK. We have already mentioned the paper of Liskov et al. [21] as the starting point
for our work. Goldenberg et al. [17] show how to build a TBC by directly tweaking the Luby-Rackoff construction.
Using n-bit random functions, the resulting 2n-bit TBC has tweakable strong-PRP security to roughly 2n queries,
and can accommodate a tweak of length `n using `+ 6 rounds.

Coron et al. [9] show that a three-round Feistel construction over an n-bit TBC with a wide tweak yields a
2n-bit TBC that has beyond birthday-bound security if the underlying TBC does. Our CLRW2 construction meets
this requirement.

The PMAC1 construction by Rogaway [28] builds a (parallelizable) VIL-PRF from a TBC, achieving birthday-
bound security. Recently, Yasuda [34] introduced the PMAC plus construction, which has O(22n/3) security
like TBCMAC2 but is more efficient and parallelizable. PMAC plus could be viewed as a construction over a
tweakable blockcipher (which might be called the “XXE” construction, following Rogaway’s naming convention),
but neither the construction nor the proof is cast this way. Separately, Yasuda [33] proves that Algorithm 6 from
ISO 9797-1 and SUM-ECBC both have security against O(22n/3) queries.

The WMAC construction of Black and Cochran [6] is a stateful hash-then-MAC construction that, like our
TBCMAC2 construction, allows for graceful (quadratic) security degradation when nonces are repeated. There
are various methods for using randomness to build VIL-PRFs with beyond birthday-bound security; for example
MACRX [2], RMAC [19], randomized WMAC and enhanced hash-then-MAC [25]

We note that real-world protocols such as TLS [31] employ nonce-based PRFs by using per-message sequence
numbers. Nonce-based PRFs also have applications in secure memory; see Garay et al. [18] and references therein.

3

Bellare and Ristenpart [3] study unforgeability preservation of iterated Merkle-Damgård constructions in the
dedicated-key compression-function setting. They show that, in general, these iterations do not preserve unforge-
ability; however, their counterexample does not apply to TBC-MAC because the compression function they con-
struct is not a TBC.

Zhang et al. [35] study so-called rate-1 MACs constructed from variations of the PGV [26, 7] blockcipher-
based compression functions. They show that certain of these compression functions, for example f(T,X) =
EK ⊕ T (X), iterate (through T) to unforgeable MACs under the assumption that the underlying blockcipher is
related-key unpredictable for specific related-key functions. In the case of our example, the related-key functions
are {K 7→ K ⊕ T | T ∈ {0, 1}|K|}. But in this example and others, assuming that the blockcipher is related-key
unforgeable is equivalent to assuming that the compression function is an unforgeable TBC, and thus chaining
through the tweak leads to TBC-MAC. Hence our results generalize some of those given by Zhang et al. [35].
We note that TBCs like EK ⊕ T (X) are inefficient choices for iteration through the tweak, since they require
rescheduling the blockcipher key each round.

We mention in passing that the basic three-key enciphered CBC construction due to Dodis et al. [12] can, in
large, part be viewed as an instance of TBC-MAC over the LRW1 TBC. (The IV is no longer a fixed value, but
depends on the first input block.)

2 Preliminaries

NOTATION. When X is a set, we write x $←X to mean that an element (named x) is uniformly sampled from X .
We overload the notation for probabilistic algorithms, writing x $←M to mean that algorithmM runs and outputs a
value named x. WhenX and Y are strings, we writeX‖Y for their concatenation. WhenX ∈ {0, 1}∗ we write |X|
for its length and, if 1 ≤ i < j ≤ |X|we writeX[i..j] for the substring running from its ith to jth characters, or the
empty string ε otherwise. For a string X of even length n, we define XL and XR to be X[1..n2] and X[(n2 +1)..n],
respectively. For a tuple of strings (X1, X2, . . . , Xr) we define |(X1, X2, . . . , Xr)| = |X1‖X2‖ · · · ‖Xr|. The set
{0, 1}n is the set of all n-bit strings, ({0, 1}n)r is the set of all nr-bit strings understood as r blocks of n-bits each,
and ({0, 1}n)+ is the set of all strings that are a positive number of n-bit blocks in length. When X ∈ ({0, 1}n)+,
we write X1, . . . , Xb

n←X to mean that X is parsed into b blocks of n-bits each. For strings X,Y ∈ ({0, 1}n)+
we define the predicate CommonPFi(X,Y) to be true if and only if X and Y agree on their first i blocks of n-bits,
i.e. Xj = Yj for all 1 ≤ j ≤ i where Xj , Yj ∈ {0, 1}n. When X ⊆ ({0, 1}n)+ and M ∈ ({0, 1}n)+, we also
define PrefixX (M) to be the function that returns the blockwise longest common prefix that M shares with strings
in X . An adversaryA is a probabilistic algorithm that takes zero or more oracles. We often use the notationA⇒x
to denote the event (defined over some specified probability space) that some algorithm A outputs value x.

We make use of the code-based game-playing framework of Bellare and Rogaway [5]. WhenG is a game andA
an adversary, we write Pr

[
GA⇒ y

]
for the probability that the Finalize procedure of game G outputs y when

executed with adversary A. The probability is over the coins of G and A. When the Finalize procedure is trivial,
returning whatever A does, we omit the procedure from the game and write Pr

[
AG⇒ y

]
for the probability

that A outputs y when executed with game G. In games, all boolean flags are initialized to false and all arrays are
initially undefined at every point.

FUNCTION FAMILIES AND (TWEAKABLE) BLOCKCIPHERS. Let K,D and R be sets, where at least K is non-
empty. A mapping F : K × D → R can be thought of as a function family F = {FK} where for each K ∈ K
we assign FK(·) = F (K, ·). We will use both representations of the family, as a two-argument mapping and as a
set indexed by the first argument, choosing whichever is most convenient. We write Func(D,R) for the set of all
mappings from D to R. We write Perm(n) to denote the set of all permutations (bijections) over {0, 1}n. We can
view each of these as function families with some understood ordering.

A blockcipher is a function family E : K × {0, 1}n → {0, 1}n such that for all K ∈ K the mapping EK(·) ∈
Perm(n). We write BC(K, n) to mean the set of all such blockciphers, shortening to BC(k, n) whenK = {0, 1}k.
A tweakable blockcipher (TBC) is a function family Ẽ : K× (T × {0, 1}n)→ {0, 1}n such that for every K ∈ K
and T ∈ T ⊆ {0, 1}∗ the mapping ẼK(T, ·) is a permutation over {0, 1}n. The set T is called the tweakspace of
the TBC, and the element T ∈ T is the tweak.

4

SECURITY NOTIONS. Let F : K×D → R be a function family, and letA be an adversary taking one oracle. Then
we define

Advprf
F (A) = Pr

[
K

$←K : AFK(·)⇒ 1
]
− Pr

[
ρ

$← Func(D,R) : Aρ(·)⇒ 1
]

to be the PRF advantage of A attacking F . Here, and throughout, the probability is over the random choices of the
described experiment and those of the adversary. We define

Advuf-cma
F (A) = Pr

[
K

$←K ; (M, τ)
$←AFK(·) : FK(M) = τ ∧ new-msg

]
to be the UF-CMA advantage (or “forging” advantage) of A. Here the event new-msg holds iff the string M was
never asked by A to its oracle.

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher, and let Ẽ : {0, 1}k × (T × {0, 1}n) → {0, 1}n be a
tweakable blockcipher. Let K $← {0, 1}k, π $← Perm(n), and Π $← BC(T , n). Then we define

Advprp
E (A) = Pr

[
AEK(·) ⇒ 1

]
− Pr

[
Aπ(·) ⇒ 1

]
Advsprp

E (A) = Pr
[
AEK(·),E−1

K (·) ⇒ 1
]
− Pr

[
Aπ(·),π

−1(·) ⇒ 1
]

Advp̃rp

Ẽ
(A) = Pr

[
AẼK(·,·) ⇒ 1

]
− Pr

[
AΠ(·,·) ⇒ 1

]
Advs̃prp

Ẽ
(A) = Pr

[
AẼK(·,·),Ẽ−1

K (·,·) ⇒ 1
]
− Pr

[
AΠ(·,·),Π−1(·,·) ⇒ 1

]
to be (respectively) the PRP, strong PRP, tweakable-PRP, and tweakable strong-PRP advantages ofA, an adversary
taking the indicated number of oracles. These probabilities are over the random coins of A and the random choices
of K, π, and Π , as appropriate.

A function family F : K × D → R is ε-almost 2-XOR-universal (ε-AXU2) if for all distinct X,X ′ ∈ D and
Y ∈ R, Pr

[
K

$←K : FK(X)⊕ FK(X ′) = Y
]
≤ ε.

RESOURSES AND CONVENTIONS. We consider the following adversarial resources: the running time t, the number
of oracle queries asked q, and the total length of these queries µ. For the PRP and strong PRP notions, we suppress µ
since it is implicitly computable from q and the blocksize. In the UF-CMA advantage, µ includes the length of the
output forgery attempt (M, τ). It will often be the case that queries (and forgery attempts) are strings in ({0, 1}n)+
for some blocksize n > 0, and here it will be convenient to speak of the total number of blocks σ = µ/n. The
running time of an adversary is relative to some (implicit) fixed underlying model of computation. Running times
will always be given with respect to some security experiment, and we define the running time to include the time
to execute the entire experiment. We assume that adversaries do not make pointless queries: they do not repeat
queries, nor do they ask queries that are outside of the domain of oracles they may access.

3 Tweakable SPRP-security of CLRW2

The centerpiece of this work is a TBC construction that provides BBB security, admits a large tweakspace, and does
not require rekeying of any underlying object. Given a blockcipherE : {0, 1}k×{0, 1}n → {0, 1}n is blockcipher,
and a hash function family H : KH × D → {0, 1}n, the CLRW2 construction Ẽ[H,E] : (KH)2 × ({0, 1}k)2 ×
D × {0, 1}n → {0, 1}n is given by

Ẽ[H,E]h1,h2,K1,K2(T,X) = EK2(EK1(X ⊕Hh1(T))⊕Hh1(T)⊕Hh2(T))⊕Hh2(T).

The following theorem is our main technical result.

Theorem 1. Fix k, n > 0 and let E : {0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher. Fix a non-empty set KH , and
let D ⊆ {0, 1}∗. Let H : KH × D → {0, 1}n be an ε-AXU2 function family. Let Ẽ = Ẽ[H,E] be the CLRW2
construction, defined above. Let A be an adversary asking a total of q queries to its oracles, running in time t. Let
ε̂ = max{ε, 1/(2n − 2q)}. Then there exists an adversary B using the same resources, such that

Advs̃prp

Ẽ
(A) ≤ 2Advsprp

E (B) +
6q3ε̂2

1− q3ε̂2
.

5

0

1

S
ec
u
ri
ty

b
o
u
n
d

0 20 40 60 80 100

log2 q

CLRW2
Birthday-Bounded TBCs

Fig. 2. The maximum advantage of an adversary making q queries agaisnt CLRW2 (solid line) and construc-
tions limited by the birthday bound, q2/2n (dashed line). Here, n = 128, ε = 2−n, and we have assumed the
Advsprp

E (B) term is negligible.

This bound deserves some interpretation. Consider ε = 2−n (since there are efficient constructions meeting
this), and assume q ≤ 2n−2. Then ε̂ ≤ 1/2n−1 ≈ 2−n for interesting values of n. Now the additive term in the
bound is at most p when q ≤ (p/(p+6))1/3ε̂−2/3, so for any small constant p we have q = O(22n/3). Thus when
Advsprp

E (B) is sufficiently small, CLRW2 is secure as a tweakable-SPRP up to about 22n/3 queries.2 Figure 2
gives a graphical comparison of our bound and the standard birthday bound.

PROOF OVERVIEW. The proof of Theorem 1 is quite long and involved, so we’ll start by giving a high-level
overview of it. Proofs demonstrating birthday-bound security for TBC constructions typically “give up” if the
adversary can cause a collision at a blockcipher input. In constructions like LRW1 and LRW2, the TBC output
is no longer random, even when the blockcipher has been replaced by a random permutation. We overcome this
problem by using two rounds of LRW2, and showing that it takes two independent collisions on the same query to
force non-random CLRW2 outputs.

The chief difficulty is ensuring that the second LRW2 round can withstand a collision so long as there was not
also one on the first round. To this end, we argue that given a collision-free first round, the resulting distribution of
CLRW2 output values — including those which require a second-round collision to obtain — is extremely close to
that of an ideal TBC.

The bulk of the proof is a sequence of games bounding the success probability of an adversary in the information-
theoretic setting, where the blockciphers have been replaced by random permutations. The first three games address
first-round collisions, and show that the distribution of CLRW2 outputs is consistent with that of an ideal cipher
unless there is simultaneous a second-round collision. Our next three games address the case in which there is
no first-round collision. By swapping the order in which dependent random variables are assigned values, we can
choose the output early on in the game, and gain insight into the distribution by which it is governed. This distri-
bution is shown to be very close to the ideal one. The final two games are used to derive an upper bound for the
probability that the adversary can set a “bad flag”, which would force the game to exhibit non-ideal behavior. In
the end, we are able to assume that the adversary is non-adaptive by giving it explicit control over oracle return
values. At that point, the ε-AXU2 property can be applied.

Proof. For notational simplicity, we write h1 forHh1 , and h2 forHh2 ; this should cause no confusion. The majority
of the proof will consider the construction Ẽ with EK1

and EK2
replaced with random permutations π1 and π2,

which we write as Ẽh1,h2,πi,π2 . At the end we can make a standard move to lift to the fully complexity theoretic
setting.

Let A be an adversary making q queries. If the i th query is to the left (encryption) oracle, we denote the query
with (Ti, Xi) and the response with Yi; if the query is to the right (decryption) oracle, the roles of Xi and Yi are

2 We note that Advsprp
E (B) will be at least t/2k ≈ q/2k by exhaustive key search so, q = 22n/3 requires k > 2n/3, which

is met by AES (k = n = 128) and DES (k = 56, n = 64).

6

reversed. We denote by Yi the set of permissible (tweak-respecting) return values for an encryption oracle query,
and similarly, Xi is the set of permissible return values for a decryption oracle query. That is,

Yi = {0, 1}n \ {Yj : j < i, Tj = Ti}
Xi = {0, 1}n \ {Xj : j < i, Tj = Ti} .

Given a set S ⊆ {0, 1}n and a string x ∈ {0, 1}n we define S ⊕ x = {s⊕ x : s ∈ S}. The permutations π1
and π2 are constructed lazily, while h1 and h2 are already defined. Initially, boolean variables have the value false,
integers are zero, and all other variable types are undefined (equal to ⊥).

Game G1 (refer to Appendix A to see the games used in this proof) simulates Ẽ exactly by lazily sampling val-
ues for π1 and π2. Note that there is a certain symmetry between the encryption and decryption oracles. This sym-
metry arises from the fact that Ẽ is the dual of Ẽ−1, in the sense that Ẽ−1h1,h2,π1,π2

(Y, T) = Ẽh2,h1,π
−1
2 ,π−1

1
(Y, T).

The bulk of this proof concerns showing that a sequence of games are identical, or are identical until a specified
event occurs (a boolean variable is set to true). When arguing that transitions between games are correct in this
sense, we will exploit the above symmetry by limiting our discussion to changes in the encryption oracle, and
hence to queries made to that oracle; the arguments used to justify the corresponding changes in the decryption
oracle are practically identical. Therefore fix some value i ∈ [1..q], and assume the i th query is to the encryption
oracle.

In Game G2, we change what happens when there is a collision at the first block cipher: we sample Yi from
the ideal distribution, but raise a bad flag if we also encounter a collision at the input of second block cipher
(bad1) or if Yi is already in the defined range (bad2). See Figure 6. Game G3 is identical to Game G2, ex-
cept Yi is not reassigned after a bad flag is set. Hence Pr

[
AG1⇒ 1

]
= Pr

[
AG2⇒ 1

]
≤ Pr

[
AG3⇒ 1

]
+

Pr
[
AG3 : bad1 ∨ bad2

]
.

Next we modify the section of code in Game G3 that is executed when no collision occurs at π1; i.e., when
Xi ⊕ h1(Ti) 6= Xj ⊕ h1(Tj) for all j < i. Note that the random variables Z and Yi are dependent. In Game G3,
Z is chosen before Yi, but as long as the joint distribution as preserved we may reverse this order. The resulting
game will be equivalent to Game G3. As always, the decryption oracle will be modified in a similar manner.

To describe the correct distribution for Yi, partition {0, 1}n into four sets, S1, S2, S3 and S4. These sets are
defined with respect to an oracle query (Ti, Xi) such that no collision occurs at π1; that is, such thatXi ⊕ h1(Ti) 6∈
Dom(π1). (When referring to Dom(·) outside of pseudocode, we refer to the set of points at which the function is
defined at the instant the adversary makes its i th oracle call [and similarly for Rng(·)]; the game currently being
used to define the oracle should be clear from context). For y ∈ {0, 1}n, we say y is permissible when y ∈ Yi,
and y is possible when Pr [Yi = y] > 0, given our assumption that Xi ⊕ h1(Ti) 6∈ Dom(π1) and the oracles’
execution histories for the first i− 1 queries.

Let S4 be the set of all non-permissible values. Note that if y is not permissible (it has been returned on a query
that used tweak Ti), then y is not possible (since Ẽ(Ti, ·) is a permutation and queries are distinct); hence S4 is a
subset of the impossible values. Let S3 be the set of impossible values that are permissible.

We now subdivide the set of possible values based on the conditional branch on Line 317 in Game G3. Some
values for Yi will only be returned if the choice of Z causes a collision at π2, while others can only be assigned
in the absence of such a collision; the former will be S2, the latter S1. More formally, one can see that y is not
possible if and only if y ⊕ h2(Ti) ∈ Rng(π2) and π−12 (y ⊕ h2(Ti))⊕ h2(Ti)⊕ h1(Ti) ∈ Rng(π1) Therefore let
S1 = {y : y ⊕ h2(Ti) 6∈ Rng(π2)}, and let S2 be the set of all other possible values.

In summary,

S1 = {y : y ⊕ h2(Ti) 6∈ Rng(π2)}

S2 =
{
y : y ⊕ h2(Ti) ∈ Rng(π2), π

−1
2 (y ⊕ h2(Ti))⊕ h2(Ti)⊕ h1(Ti) ∈ Rng(π1)

}
S3 = Yi \ (S1 ∪ S2)

=
{
y : y ⊕ h2(Ti) ∈ Rng(π2), π

−1
2 (y ⊕ h2(Ti))⊕ h2(Ti)⊕ h1(Ti) ∈ Rng(π1)

}
\ Yi

S4 = Yi = {Yj : j < i, Tj = Ti} .

When these sets are used in pseudocode, it is understood that they are defined at the time the oracle call is made;
although Rng(π1) (for example) may change as code executes, S2 does not change until the next query. When

7

referred to by a decryption oracle, the definitions for these sets are the same up to the previously mentioned
duality.

We will now compute the probability that Yi will be in each of these sets (again, under the assumption that
there is no collision at the first block cipher; i.e, that Li = Xi ⊕ h1(Ti) 6∈ Dom(π1)). Since S3 and S4 contain
only impossible values, Pr [Yi ∈ S3 ∪ S4 | Li 6∈ Dom(π1)] = 0. Let N =

∣∣∣Rng(π1)∣∣∣. Given y ∈ S2 and Li 6∈
Dom(π1), Yi = y if and only if Z = π−12 (y ⊕ h2(Ti))⊕ h2(Ti)⊕ h2(Ti). This value is in Rng(π1) by definition
of S2, and so this event happens with probability 1/N . Hence,

Pr [Yi ∈ S2 | Li 6∈ Dom(π1)] = |S2| /N and Pr [Yi ∈ S1 | Li ⊕ 6∈ Dom(π1)] = (N − |S2|)/N.

Fig. 3. When there is no collision at π1, the distribution governing Ẽ’s outputs is very close to the distribution
an ideal cipher would provide. Horizontal scaling suggests plausible relative sizes of each |Sk|: likely |S1| �
|S2 ∪ S4| � |S3|. This graph is accurate for the oracles in Games 1–5.

Ideally, Yi would be distributed as pTBC(y) := Pr
[
Y

$←Yi ; Y = y
]
= 1/(2n − |S4|) (for y 6∈ S4) and zero

otherwise. However, we have shown that if there is no collision at π1 on the i th query, then Yi is distributed as

pG3(y) := Pr [Yi = y | Li 6∈ Dom(π1)] =

N−|S2|
N |S1| if y ∈ S1

1
N if y ∈ S2

0 if y ∈ S3 ∪ S4

See Figure 3. Now, let V $← ξ(p) denote that the random variable V is equal to one with probability p and is
zero otherwise. In Game G4 (see Figure 7), we decide whether to sample Yi from S1 or from S2 based on an
appropriately weighted coin flip. It follows that Z is uniformly distributed from Rng(π1); letting

S′ =
{
z ∈ Rng(π1) : z ⊕ h1(Ti)⊕ h2(Ti) ∈ Dom(π2)

}
and S′′ = Rng(π1) \ S′, we have

Pr [Z = z | z ∈ S′] = Pr [V = 1 ∧ Z = z | z ∈ S′] + Pr [V = 0 ∧ Z = z | z ∈ S′]
= Pr [Z = z|z ∈ S′ ∧ V = 1]Pr [V = 1]

=
1

|S′|
|S2|∣∣∣Rng(π1)∣∣∣ =

1∣∣∣Rng(π1)∣∣∣ ,

8

and similarly for z ∈ S′′. Therefore π1(Li) is assigned a uniformly random value from Rng(π1), as desired.
Games G3 and G4 are therefore equivalent.

For j = 1, 2, 3, 4, let ∆j =
∑
y∈Sj (|pG3(y)− pTBC(y)|) (see Figure 3). Because total probability is always

one, ∆1 +∆2 = ∆3. In Game G5, we reverse the order in which Yi and Vi are sampled. To show that Vi follows
the same distribution in Games G4 and G5, we denote the corresponding random variables used by these two
games as VG4 and VG5, respectively. Let Y ′ be the value initially assigned to Yi in Game G5 (Line 612). Note that
Pr [Y ′ ∈ S3] = ∆3. We have:

Pr [VG5 = 1] = Pr [Y ′ ∈ S2] +

(
∆2

∆1 +∆2

)
Pr [Y ′ ∈ S3] = Pr [Y ′ ∈ S2] +∆2 = Pr [VG4 = 1] .

The final value for Yi is in S2 (S1) if and only if VG5 = 1 (VG5 = 0), in which case it is distributed uniformly
among the values of this set. Hence the final value of (Yi, Vi) has the same distribution in Games G4 and G5, and
so the two games are equivalent.

Game G6 is identical to Game G5 until bad3 is set. Therefore Pr
[
AG3⇒ 1

]
= Pr

[
AG5⇒ 1

]
≤ Pr

[
AG6⇒ 1

]
+

Pr
[
AG6 : bad3

]
. Similarly, Pr

[
AG3 : bad1 ∨ bad2

]
= Pr

[
AG5 : bad1 ∨ bad2

]
≤ Pr

[
AG6 : bad1 ∨ bad2

]
+

Pr
[
AG6 : bad3

]
.

At this point, Yi is always sampled from Yi, and once assigned, its value is never changed. Consequently, we
can move this assignment to outside the if block. The resulting game, Game G7, is shown in Figure 7. Game G7
behaves exactly as an ideal TBC, and in particular, Pr

[
AG7⇒ 1

]
= Pr

[
AΠ(·,·),Π−1(·,·)⇒ 1

]
.

We now give the adversary control over what value is assigned to Yi (or Xi, in the case of decryption queries)
in Game G8, but insist that it be in Yi or Xi, as appropriate. We also simplify program flow by removing the now-
unnecessary variable Vi. Because the adversary can compute Yi and Xi, he may simulate the oracles of Game G7
if desired; hence, he can set the bad flags in Game G8 with probability at least as high as any adversary can set the
corresponding flags in Game G7. The oracle’s outputs are now deterministic, and may be (trivially) computed by
the adversary in advance. Hence, we may assume without loss of generality that the adversary is non-adaptive.

For the rest of this proof, all probabilities will be with respect to the experiment AG8 (unless the experiment is
explicitly stated).

Let Q be the event that for there exist i, j, and k (with j, k 6= i) such that Xi ⊕ h1(Ti) = Xj ⊕ h1(Tj) and
Yi ⊕ h2(Ti) = Yk ⊕ h2(Tk). That is, Q indicates the i th query is responsible for collisions at both π1 and π2.
Our strategy is to show thatQ is extremely unlikely, since it requires two independent collisions involving a single
query. Barring such a query, we can show that the probability of a bad flag being set is very small.

By definition of Q and the ε-AXU2 property of H ,

Pr [Q] ≤
q∑
i=1

∑
j,k 6=i

Pr [h1(Tj)⊕ h1(Ti) = Xj ⊕Xi] Pr [h2(Tk)⊕ h2(Ti) = Yk ⊕ Yi] < q3ε2.

Define βj = maxÃ

(
Pr
[
ÃG8 : badj | ¬Q

])
and βj(i) = maxÃ

(
Pr
[
ÃG8 : badj on query i | ¬Q

])
. We

consider the event in the latter definition to “trigger” even if it has also triggered on an earlier query. (This definition
assumes q is not so large that Pr [¬Q] = 0, but since our bound becomes vacuous before this threshold, this is
not an issue.) When bounding βj(i), we will assume the i th query is made to the encryption oracle; as before, the
other case is symmetric.

Because bad2 can only be set if the conditions for Q are met, we immediately have that β2 ≤ Pr [Q] ≤ q3ε2.
Note that bad1 is set on query i if and only if there exist j, k < i such that

Xi ⊕ h1(Ti) = Xj ⊕ h1(Tj) and π1(Li)⊕ h1(Ti)⊕ h2(Ti) = π1(Lk)⊕ h1(Tk)⊕ h2(Tk),

where we remind the reader that Li = Xi ⊕ h1(Ti). Our goal now is to bound

β1(i) = Pr [∃k < i : π1(Li)⊕ π1(Lk) = R(i, k) | ∃j < i : Li = Lj ∧ ¬Q] · Pr [∃j < i : Li = Lj | ¬Q] ,

where for brevity we introduce R(i, k) = h1(Ti)⊕ h2(Ti)⊕ h1(Tk)⊕ h2(Tk).

9

Because queries are unique and Ẽ(Ti, ·) is a permutation, Li = Lj is only possible if Ti 6= Tj , bringing the
ε-AXU2 property into scope. Hence

Pr [∃j < i : Li = Lj | ¬Q] =
Pr [∃j < i : Li = Lj ∧ ¬Q]

Pr [¬Q]

≤ Pr [∃j < i : Li = Lj]

1− q3ε2
≤ qε

1− q3ε2
.

We now wish to bound Pr [∃k < i : π1(Li)⊕ π1(Lk) = R(i, k) | ∃j < i : Li = Lj ∧ ¬Q] (the other factor
in our bound for β1(i)), so assume that there is some j < i such that Li = Lj and that ¬Q.

Fix k ∈ [1..i− 1]. Consider the case that Li = Lk. Then π1(Li) = R(i, k) is equivalent to h1(Ti)⊕ h1(Tk) =
h2(Ti)⊕ h2(Tk). Because queries must respect per-tweak permutivity, Ti 6= Tk; hence by the ε-AXU2 property
of H , in this case β1(i) ≤ ε.

On the other hand, if Li 6= Lk, we will trace the execution history of the game backwards to when the values
eventually assigned to π1(Li) and π1(Lk) become determined. Define root(x) = min {m : Lx = Lm}. Let i′ =
root(i), and let k′ = root(k). Since Li = Lj for some j < i, it follows that i′ < i. Therefore, by our assumption
that Q does not occur, there is no ` 6= i′ such that Y` ⊕ h2(T`) = Yi′ ⊕ h2(Ti′). Hence on query i′, π1(Li) is
sampled from a set of size at least 2n − 2q; this sampling occurs indirectly through the random variable Z, itself
sampled either on Line 813 or 836, depending on which oracle receives query i′.

Now we compute when the value of π1(Lk) = π1(Lk′) is determined. If there is no ` < k′ such that
Y` ⊕ h2(T`) = Yk′ ⊕ h2(Tk′), then π1(Lk′) is likewise sampled indirectly from a set of size at least 2n−2q. How-
ever, if such an ` exists, then π1(Lk) = π−12 (Yk′ ⊕ h2(Tk′))⊕ h2(Tk′)⊕ h1(Tk′), and we are forced to backtrack
further to when π−12 (Y` ⊕ h2(T`)) = π−12 (Yk′ ⊕ h2(Tk′)) was defined. Fortunately, our assumption that the condi-
tions forQ are not met saves us from having to backtrack far. Let `′ = min {m : Y` ⊕ h2(T`) = Ym ⊕ h2(Tm)}.
Then ¬Q implies `′ = root(`′). Hence on query `′, π−12 (Y`′ ⊕ h2(T`′)) = π−12 (Y` ⊕ h2(T`)) is sampled, through
Z, from a set of size at least 2n − 2q. In the first of these two cases, let r = k′; in the second, let r = `′. After
query r completes, the value which will be assigned to π1(Lk) is deterministic.

Suppose without loss of generality that i′ > r. Then π1(Li) = π1(Lk)⊕R(i, k) only if on query i′, π1(Li) =
π1(Li′) is assigned the unique value that makes the former equation true; this happens with probability at most
1/(2n − 2q).

Let ε̂ = max(ε, 1/(2n−2q)). Then Pr [π1(Li)⊕ π1(Lk) = R(i, k) | ∃j < i : Li = Lj ∧ ¬Q] ≤ ε̂. We have

β1 ≤
q∑
i=1

β1(i) ≤
q∑
i=1

i−1∑
k=1

qε̂2

1− q3ε̂
<

q3ε̂2

1− q3ε̂2
.

If the encryption oracle query (Ti, Xi, Yi) would cause bad3 to be set, then one can see by inspection that the
decryption oracle query (Ti, Yi, Xi) would set bad1. Therefore the upper bound we derived for β1(i) may also be
used for β3(i), and as a consequence, the upper bound for β1 also bounds β3.

By the fundamental lemma of game playing,

Pr
[
AẼh1,h2,π1,π2 (·,·),Ẽ

−1
h1,h2,π1,π2

(·,·)⇒ 1
]
= Pr

[
AG1⇒ 1

]
≤ Pr

[
AG3⇒ 1

]
+ Pr

[
AG3 : bad1 ∨ bad2

]
≤ Pr

[
AG6⇒ 1

]
+ Pr

[
AG6 : bad1 ∨ bad2

]
+ 2Pr

[
AG6 : bad3

]
≤ Pr

[
AG7⇒ 1

]
+ Pr

[
AG8 : bad1 ∨ bad2

]
+ 2Pr

[
AG8 : bad3

]
≤ Pr

[
AG7⇒ 1

]
+ β1 + Pr [Q] + 2(β1 + Pr [Q])

≤ Pr
[
AΠ(·,·),Π−1(·,·)⇒ 1

]
+

6q3ε̂2

1− q3ε̂2
.

Thus by a standard argument, there exists a B such that

Advs̃prp

Ẽ
(A) ≤ 2Advsprp

E (B) +
6q3ε̂2

1− q3ε̂2
.

10

This completes the proof. �

ATTACKS ON SIMPLER VARIANTS. Having seen our construction, one wonder if simpler variants work. For ex-
ample, consider CLRW2 without the first Hh2

(T) XOR operation, leaving

Ẽh1,h2,K1,K2(T,X) = Hh2(T)⊕ EK2(Hh1(T)⊕ EK1(Hh1(T)⊕X)).

This variation permits birthday-bound attack. Namely, an adversary could submit queries in pairs, (Ti, X ′) and
(Ti, X

′′), where X ′ and X ′′ are fixed, and a new random tweak is used for each pair. By remembering the values
Ẽ(Ti, X

′)⊕ Ẽ(Ti, X
′′), which are independent of Hh2

, it could detect collisions in Hh1
, say by using a hash

table. That is, if Hh1(Ti) = Hh1(Tj), then Ẽ(Ti, X
′)⊕ Ẽ(Ti, X

′′) = Ẽ(Tj , X
′)⊕ Ẽ(Tj , X

′′). The converse is
false, but false positives could be weeded out by testing a small number ofX-values. Such an adversary would gain
advantage close to one. Similar variations on Ẽ permit analogous attacks, though we believe (but do not prove)
that omitting the second Hh1

(T) XOR operation yields a construction secure against adversaries constrained to
chosen-plaintext attacks.

One might also wish to try setting K2 = K1. While we know of no attacks here, modifying our proof to
accomodate this change would be non-trivial. In particular, bounding β1 required us to trace back through a game’s
execution history to determine when π1 became defined at particular points; this task would be messier and more
difficult to verify if π2 = π1. Still, this may merit future investigation.

4 PRF-security of TBC-MAC

THE TBC-MAC FUNCTION FAMILY. Fix k, n > 0 and let Ẽ : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n be a
tweakable blockcipher. We define the TBC-MAC function family TBCMAC[Ẽ] : {0, 1}k × ({0, 1}n)+ → {0, 1}n
as follows. On input K ∈ {0, 1}k and M ∈ ({0, 1}n)+, let TBCMAC[Ẽ]K(T,M) = Tb where T0 = 0n; let
M1, · · · ,Mb

n←M , and Ti ← ẼK(Ti−1,Mi) for i ∈ {1, . . . , b}. To extend the domain to {0, 1}∗, one could
introduce an explicit, unambiguous padding rule mapping {0, 1}∗ → ({0, 1}n)+, say mapping M 7→ M ‖ 10r
where r is the smallest integer needed to reach a block boundary. But for simplicity we assume that all strings
input to TBCMAC[Ẽ] are block-aligned. We extend this assumption by writing TBCMACpf for the TBC-MAC
construction restricted to prefix-free encoded, block-aligned inputs.

BUILDING FROM A “NARROW” TWEAKSIZE TBC. Our first result in this section is a natural one. We prove that
TBC-MAC is a secure PRF if the underlying TBC Ẽ, with n-bit tweaks and blocksize, is secure as a tweakable-
PRP. One might hope that the security bound for TBCMAC[Ẽ] is better than for CBC-MAC over an n-bit blockci-
pher, since the former is intuitively a “stronger” object than the latter. This is not the case. This is because the IV
is fixed; thus an adversary can ask a series of distinct one-block messages and wait for a collision. Considering the
information-theoretic setting, the fixed IV effectively reduces the ideal cipher to a random permutation in the first
round, and so the standard PRP-PRF distinguishing attack forces us to accept birthday-bound security. The follow-
ing theorem closely follows the code-based game-playing proof of CBC-MAC due to Bellare and Rogaway [5].
We note that a tighter bound could be achieved (with more work) following the techniques of Bellare et al. [4]. The
proof appears in Appendix B .

Theorem 2. (TBCMAC is a PRF.) Fix n > 0. Let Ẽ : {0, 1}n × ({0, 1}n × {0, 1}n) → {0, 1}n be a tweakable
blockcipher. Let A be an adversary running in time t, asking q queries, each of length at most ` blocks of n-bits.
Then

Advprf

TBCMAC[Ẽ]
(A) ≤ Advp̃rp

Ẽ
(B) +

(q`)2

2n

for an adversary B that runs in time t′ = t+O(`q) and asks at most q′ = q` queries.

BUILDING FROM A “WIDE” TWEAKSIZE TBC. The LRW2 and CLRW2 constructions each give TBC that can
handle tweaks that are potentially much larger than the blocksize. So we now consider the security of a nonce-based
version of TBC-MAC based upon such a TBC. In particular, fix k, n, b > 0 and let Ẽ : {0, 1}k × ({0, 1}n+b+1 ×
{0, 1}n)→ {0, 1}n be a tweakable blockcipher with tweaksize n+ b+1 bits and blocksize n bits. For an `-block

11

message M1, . . . ,M` where ` > 1, nonce N ∈ {0, 1}b, and a fixed T0 = IV , define TBCMAC2[Ẽ]K(N,M) as
T` = ẼK(T`−1 ‖1‖N,M`) where for i = 1 to `−1, Ti = ẼK(Ti−1 ‖0‖0b,Mi). We say that a PRF-adversary A
is nonce-respecting (for TBCMAC2) if it never repeats a nonce. The multiplicity α of a nonce N is the number of
times it is used in an attack, e.g. α = 1 for every nonce if the attack is nonce-respecting.

Theorem 3. (TBCMAC2 is a PRF.) Fix n > 0 and b ≥ 0. Let Ẽ : {0, 1}n × ({0, 1}n+b+1 × {0, 1}n) → {0, 1}n
be a tweakable blockcipher. Let TBCMAC2[Ẽ] be as described above. Let A be an adversary that runs in time t,
asks q queries for the form (N,M) where the length of M is at most ` blocks. Assume that there are r distinct
values of N among these queries, and let α1, . . . , αr denote the multiplicities of these. Then

Advprf

TBCMAC2[Ẽ]
(A) ≤ Advp̃rp

Ẽ
(B) +

1

2n+1

(
r∑
i=1

αi(αi − 1)

)
+

r∑
i=1

(
αi
2

)
(2`+ 1)(2`)

2n

where B runs in time t′ = t + O(q`) and asks at most q′ = q` queries. Specifically, if A is nonce-respecting,
Advprf

TBCMAC2[Ẽ]
(A) ≤ Advp̃rp

Ẽ
(B).

Proof. The second claim follows immediately from the first, since αi = 1 for all i if A is nonce-respecting. So we
prove the first claim.

We omit proof of the standard switch from the complexity-theoretic to the information-theoretic setting, wherein
adversary B simulates the PRF experiment for TBCMAC2 over ẼK or Π , depending upon its own oracle. The
remainder of the proof is the core technical piece, which proceeds by a sequence of code-based games.

For ease of notation, we write TBCMAC2[Π] instead of TBCMAC2[BC(n+b+1, n)]Π with the understanding
thatΠ is a uniform element from BC(n+b+1, n). Also, in the psuedocode we use Dom(Π(T, ·)) to denote the set
of domain points under the (lazily sampled) random permutation Π(T, ·) that have been assigned a corresponding
range value. Likewise, the set Rng(Π(T, ·)) denotes the set of stings in {0, 1}n that have not yet been associated
to any domain point under Π(T, ·). Games are shown in Figure 4.

Game G0 faithfully simulates TBCMAC2[Π], using lazy sampling to establish the random Π . Game G1 does
likewise, but always returns a uniform random string. Letting bad = bad1 ∨ bad2, we see that these games
are identical-until-bad, so Pr

[
AG0⇒ 1

]
− Pr

[
AG1⇒ 1

]
≤ Pr

[
AG1 sets bad

]
. Since G1 returns a ran-

dom string no matter what the value of bad, we drop unneccessary instructions and move to game G2 with
Pr
[
AG1 sets bad

]
= Pr

[
AG2 sets bad

]
≤ Pr

[
AG2 sets bad1

]
+ Pr

[
AG2 sets bad2

]
. It is easy to see that

the first summand is at most (1/2n+1)
∑r
i=1(αi)(αi − 1) by a union bound. Game G3 is the same as G2 with the

setting of bad1 removed. Thus we have Pr
[
AG1 sets bad

]
≤ (1/2n+1)(

∑r
i=1 αi(αi−1))+Pr

[
AG3 sets bad2

]
.

The setting of bad2 is more complicated to analyze, because the adversary controls Ms
b and Ns. We see that

bad2 is set only if for some 1 ≤ r < s ≤ q we have T rbr−1 = T sbs−1 and Nr = Ns. Notice that in terms of setting
bad2 the particular value assigned to Π(T sbs−1 ‖N

s,Ms
bs
) is irrelevant. It only matters that the domain point has

been previously assigned a value. Moreover, these values are never used in the for-loop (because Ns = 1 ‖ N).
So the adversary could itself have selected up front the values T sbs to be returned and, also up front, picked the q
pairs (N, M) that optimize the chance of bad2. So in G4 we no longer sample T sbs , and no longer return any value;
we simply mark domain points as defined. Thus Pr

[
AG3 sets bad2

]
≤ Pr

[
AG4 sets bad2

]
. Fix the optimal

set of (N, M) for setting bad2 in G4. Finally in game G5 we delay the setting of bad2 until the end, exchange
the procedure F for a for-loop over the fixed nonce-message pairs, and sample the entire ideal cipher Π at the
beginning instead of using lazy sampling. We note that G5 sets bad2 at least as often as does G4, since the latter
only requires a tweak collision. Hence Pr

[
AG4 sets bad2

]
≤ Pr [G5 sets bad2] .

Once Π is fixed, the order in which the (Ni, Mi), i ∈ [s], are put through the for-loop does not matter, so we
assume that they are ordered lexicographically by their first component. Thus we can think of the messages as
being processed in groups “named” by their common nonce value. By assumption, there are r such groups with
sizes α1, . . . , αr, respectively. Let Coll1, . . . ,Collr be the events that bad2 is set by members of the corresponding
groups. Then we have Pr [G5 sets bad2] ≤

∑r
i=1 Pr [Colli in G5]. Collecting up results we have

Pr
[
AG1 sets bad

]
≤ (2/2n)

r∑
i=1

αi(αi − 1) +

r∑
i=1

Pr [Colli in G5] .

12

At this point we notice that if α1 = · · · = αr = 1, then all terms on the right side are zero. Thus if the attack is
nonce-respecting, then our reduction is as tight as possible. In general, every i ∈ [r] for which αi = 1 contributes
zero to the right side. Assume that αi > 1 for some i ∈ [r]. The probability that Colli is bounded as follows.
Consider any two messages M, M′ that are associated to the same nonce. By Lemma 2 we know the probability that
these collide is at most (2`)2/2n since each message is at most ` blocks long. By taking a union bound over all
such pairs of messages we obtain

Pr
[
AG1 sets bad

]
≤ (2/2n)

r∑
i=1

αi(αi − 1) +

r∑
i=1

(
αi
2

)
(2`+ 1)(2`)/2n

and our proof is complete. �

5 Unforgeability-Preservation of TBC-MAC

TBC-MAC preserves the unforgeability of its underlying TBC when the TBC-MAC inputs are prefix-free. Since,
qualitatively, this amounts to a new application of an existing result by Maurer and Sjödin [22], we defer our proof
to Appendix D .

Theorem 4. (TBCMACpf preserves UF-CMA.) Fix k, n > 0, and let Ẽ : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n
be a TBC. Let A be an adversary for TBCMACpf [Ẽ] that runs in time t, asks q queries, these totaling σ blocks of
n-bits in length. Then there exist adversaries B and C such that

Advuf-cma
TBCMACpf [Ẽ]

(A) ≤ σ(σ − 1)

2
Advuf-cma

Ẽ
(B) +Advuf-cma

Ẽ
(C)

where B runs in time tB ≤ t, asks qB ≤ σ queries totalling σB ≤ 2σ blocks; and where C runs in time tC = t,
asks qC = σ queries totalling σC = 2σ blocks.

However, if adversaries may mount an attack using non-prefix-free inputs, it is possible to forge TBC-MAC.3

The following lemma says that there exists a TBC F̃ ,shown in Figure 13, that is unforgeable if some underlying
TBC Ẽ is. Liskov et al. [21] provide a TBC Ẽ with the required signature.

Lemma 1. Let Ẽ : {0, 1}k × {0, 1}3n × {0, 1}n → {0, 1}n be a tweakable blockcipher. Let F̃ : {0, 1}k ×
{0, 1}2n × {0, 1}2n → {0, 1}2n be a tweakable blockcipher defined by

F̃K(TL ‖ TR, XL ‖XR) = XL ⊕ TR ‖ ẼK(XL ‖ TL ‖ TR, XR).

Then Advuf-cma
F̃

(A) ≤ Advuf-cma
Ẽ

(B) where the resources of adversaries A and B are the same.

Proof. F̃ is a tweakable blockcipher because, given the tweak T and key K, one can invert F̃K(T,X) = Y by
evaluating X = YL ⊕ TR ‖ Ẽ−1K (YL ⊕ TR ‖TL ‖TR, YR). Therefore F̃K(T, ·) is a permutation for every tweak T .

Now, let B be a forging adversary for Ẽ that runs as follows. Adversary B runs A, responding to A’s queries
by using its own oracle for Ẽ. When A outputs its forgery ((T ∗, X∗), Y ∗), let B output (X∗L ‖ T ∗L ‖ T ∗R, X∗R, Y ∗R)
as its own forgery.

If A’s forgery is valid, it must be the case that

Y ∗ =F̃K(T ∗, X∗)

=X∗L ⊕ T ∗R ‖ ẼK(X∗L ‖ T ∗L ‖ T ∗R, X∗R)

hence Y ∗R =ẼK(X∗L ‖ T ∗L ‖ T ∗R, X∗R)

3 We note that Bellare and Ristenpart [3] have already shown that the Merkle-Damgård iteration is not unforgeability preserv-
ing for arbitrary inputs. However, their counterexample does not suffice here, because the compression function they build is
not a TBC.

13

Games G0 , G1

procedure F (N,M):

s← s+ 1

Ns ← 1 ‖N
Ms

1 , . . . ,M
s
bs

n←Ms ←M

T s
0 ← IV

for i = 1 to bs − 1 do
if Ms

i ∈ Dom(Π(T s
i−1 ‖ 0, ·)) then

T s
i ← Π(T s

i−1 ‖ 0,Ms
i)

else
T s
i

$← Rng(Π(T s
i−1 ‖ 0, ·))

Π(T s
i−1 ‖ 0,Ms

i)← T s
i

τs ← T s
bs

$←{0, 1}n

if T s
bs ∈ Rng(Π(T s

bs−1 ‖Ns, ·)) then

bad1 ← true ; T s
bs

$← Rng(Π(T s
bs−1 ‖Ns, ·))

if Ms
bs ∈ Dom(Π(T s

bs−1 ‖Ns, ·)) then
bad2 ← true ; T s

bs ← Π(T s
bs−1 ‖Ns,Ms

bs)

Π(T s
bs−1 ‖Ns,Ms

bs)← T s
bs

if bad1 ∨ bad2 then Return T s
bs

Return τs

Games G2 ,G3

procedure F (N,M):

s← s+ 1

Ns ← 1 ‖N
Ms

1 , . . . ,M
s
bs

n←Ms ←M

T s
0 ← IV

for i = 1 to bs − 1 do
if Ms

i ∈ Dom(Π(T s
i−1 ‖ 0, ·)) then

T s
i ← Π(T s

i−1 ‖ 0,Ms
i)

else
T s
i

$← Rng(Π(T s
i−1 ‖ 0, ·))

Π(T s
i−1 ‖ 0,Ms

i)← T s
i

T s
bs

$←{0, 1}n

if T s
bs ∈ Rng(Π(T s

bs−1 ‖Ns, ·)) then bad1 ← true

if Ms
bs ∈ Dom(Π(T s

bs−1 ‖Ns, ·)) then bad2 ← true

Π(T s
bs−1 ‖Ns,Ms

bs)← T s
bs

Return T s
bs

Game G4

procedure F (N, M):

s← s+ 1

Ns ← 1 ‖ N
Ms1, . . . , M

s
bs

n← Ms

T s
0 ← IV

for i = 1 to bs − 1 do
if Msi ∈ Dom(Π(T s

i−1 ‖ 0, ·)) then
T s
i ← Π(T s

i−1 ‖ 0, Msi)
else
T s
i

$← Rng(Π(T s
i−1 ‖ 0, ·))

Π(T s
i−1 ‖ 0, Msi)← T s

i

if U[T s
bs−1 ‖ Ns, Msbs] = defined then bad2 ← true

U[T s
bs−1 ‖ Ns, Msbs]← defined

Game G5

Π
$← BC(n+ b+ 1, n)

for s = 1 to q do
Ns ← 1 ‖ N
Ms1, . . . , M

s
bs

n← Ms

T s
0 ← IV

for i = 1 to bs − 1 do
T s
i ← Π(T s

i−1 ‖ 0, Msi)

if (∃r 6= s)((T s
br−1 ‖ Nr) = (T s

bs−1 ‖ Ns))
then bad2 ← true

Fig. 4. Games for Theorem 3. We write 0 for 0 ‖ 0b, and IV is some fixed string.

It must also be the case thatA’s final query (T ∗, X∗) be a new query. This implies that (X∗L‖T ∗L‖T ∗R, X∗R) is a new
query as well, as we have only rearranged the forgery’s n-bit blocks. Clearly, then,B successfully forges whenever
A does. Furthermore, B makes the same number of queries as A does. Therefore, if A runs in time t making q
queries totalling σ blocks, Advuf-cma

F̃
(A) ≤ Advuf-cma

Ẽ
(B), where the resources of B are t′ = t, q′ = q queries,

these totalling σ′ = σ blocks. This is due to the fact that each of A’s q queries contain a 2n-bit tweak and a 2n-bit
message (a total of 4n bits per query), and each of B’s q queries contain a 3n-bit tweak and an n-bit message (also
totalling 4n bits per query). �

We now show that TBC-MAC instantiated with F̃ admits efficient forging attacks if arbitrary inputs are allowed.

14

Theorem 5. (TBCMAC is not UF-CMA preserving.) Let Ẽ be a tweakable blockcipher and let F̃ be as defined in
Lemma 1. Then there exists an adversary A that asks q = 2 queries totalling σ = 12 blocks of n-bits such that
Advuf-cma

TBCMAC[F̃]
(A) = 1.

Proof. Consider the adversary A that queries Y 1 ← TBCMAC[F̃]K(02n ‖ 02n), and then forges with X∗ = 02n

and Y ∗ = 0n ‖ Y 1
L . The forgery is valid; we leave the confirmation of this fact to the interested reader. �

References

1. J. An and M. Bellare. Constructing VIL-MACs from FIL-MACs: Message authentication under weakened assumptions.
Advances in Cryptology – CRYPTO 1999, LNCS vol. 1666, Springer, pp. 252–269, 1999.

2. M. Bellare, O. Goldreich and H. Krawczyk. Stateless evaluation of pseudorandom functions: Security beyond the birthday
barrier. Advances in Cryptology – CRYPTO 1999, LNCS vol. 1666, Springer, pp. 270-287

3. M. Bellare and T. Ristenpart. Hash functions in the dedicated-key setting: Design choices and MPP transforms. Interna-
tional Colloquium on Automata, Languages, and Programming – ICALP 2007, LNCS vol. 4596, Springer, pp. 399–410,
2007.

4. M. Bellare, K. Pietrzak, P. Rogaway. Improved security analyses for CBC MACs. Advances in Cryptology – CRYPTO
2005, LNCS vol. 3621, Spring, pp. 527–541, 2005.

5. M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-playing proofs.
Advances in Cryptology – EUROCRYPT 2006, LNCS vol. 4004, Springer, pp. 409–426, 2006.

6. J. Black and M. Cochran. MAC Reforgability. Fast Software Encryption – FSE 2009, LNCS vol. 5665, Springer, pp. 345–
362, 2009.

7. J. Black, P. Rogaway, T. Shrimpton and M. Stam. An analysis of the blockcipher-based hash functions from PGV. Journal
of Cryptology, vol. 23, no. 4, pp. 320–325, Springer, 2010.

8. D. Chakraborty and P. Sarkar. A new mode of encryption providing a tweakable strong pseudo-random permutation. Fast
Software Encryption – FSE 2006, LNCS vol. 4047, Springer, pp. 293-309, 2006

9. J-S. Coron, Y. Dodis, A. Mandal and Y. Seurin. A Domain Extender for the Ideal Cipher. Theory of Cryptography – TCC
2010, LNCS vol. 5978, Springer, pp. 273-289, 2010.

10. P. Crowley. Mercy: A Fast Large Block Cipher for Disk Sector Encryption. Fast Software Encryption – FSE 2000, LNCS
19787, pp. 49-63, 2000.

11. I. Damgård. A design principle for hash functions. Advances in Cryptology – CRYPTO 1989, LNCS vol. 435, Springer,
pp. 416–427, 1989.

12. Y. Dodis, K. Pietrzak and P. Puniya. A new mode of operation for block ciphers and length-preserving MACs. Advances
in Cryptology – EUROCRYPT 2008, LNCS vol. 4965, Springer, pp. 198–219, 2008.

13. Y. Dodis and J. Steinberger. Message authentication codes from unpredictable block ciphers. Advances in Cryptology –
CRYPTO 2009, LNCS vol. 5677, Springer, pp. 267–285, 2009.

14. S. Halevi and P. Rogaway. A tweakable cnciphering mode. Advances in Cryptology – CRYPTO 2003, LNCS vol. 2729,
Springer, pp. 482–499, 2003.

15. S. Halevi and P. Rogaway. A parallelizable enciphering mode. Topics in Cryptology – CT-RSA 2004, LNCS vol. 2964,
Springer, pp. 292–304, 2004.

16. S. Halevi. Invertible Universal Hashing and the TET Encryption Mode. Advances in Cryptology – CRYPTO 2007, LNCS
vol. 4622, Springer, pp. 412-429, 2007.

17. D. Goldenberg, S. Hohenberger, M. Liskov, E.C. Schwartz and H. Seyalioglu. On Tweaking Luby-Rackoff Blockciphers.
Advances in Cryptologoy – ASIACRYPT 2007, LNCS vol. 4833, Springer, pp. 342–356, 2007

18. J. Garay, V. Kolesnikov and R. McLellan. MAC precomputation with applications to secure memory. 12th Information
Security Conference – ISC 2009, LNCS vol. 5735, Springer, pp. 427–442, 2009.

19. E. Jaulmes, A. Joux and F. Valette. On the security of randomized CBC-MAC beyond the birthday paradox limit: A new
construction. Fast Software Encryption –FSE 2002, LNCS vol. 2365, Springer, pp. 237–251, 2002.

20. T. Krovetz and P. Rogaway. The Software Performance of Authenticated-Encryption Modes. Fast Software Encryption –
FSE 2011, LNCS vol. 6733, Springer, pp. 306–327, 2011.

21. M. Liskov, R. Rivest and D. Wagner, Tweakable block ciphers. Advances in Cryptology – CRYPTO 2002, LNCS vol. 2442,
Springer, pp. 31–46, 2002.

22. U. Maurer and J. Sjödin. Single-key AIL-MACs from any FIL-MAC. International Colloquium on Automata, Languages,
and Programming – ICALP 2005, LNCS vol. 3580, Springer, pp. 472–484, 2005.

23. R. Merkle. One way hash functions and DES. Advances in Cryptology – CRYPTO ’89, LNCS vol. 435, Springer, pp. 428–
446, 1989.

24. K. Minematsu. Beyond-birthday-bound security based on tweakable block cipher. Fast Software Encryption – FSE 2009,
LNCS vol. 5665, Springer, pp. 308–326, 2009.

15

25. K. Minematsu. How to Thwart Birthday Attacks against MACs via Small Randomness. Fast Software Encryption – FSE
2010, LNCS vol. 6147, Springer, pp. 230–249, 2010.

26. B. Preneel, R. Govaerts and J. Vandewalle. Hash functions based on block ciphers: A synthetic approach. Advances in
Cryptology – CRYPTO 1993, LNCS vol. 773, Springer, pp. 368–378, 1993.

27. P. Rogaway, M. Bellare, J. Black and T. Krovetz. OCB: A Block-Cipher Mode of Operation for Efficient Authenticated
Encryption. ACM Conference on Computer and Communication Security – CCS 2001, ACM Press, pp. 196-205, 2001.

28. P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC Advances in
Cryptology – ASIACRYPT 2004, LNCS vol. 3329, Springer, pp. 13–31, 2004.

29. R. Schroeppel. The hasty pudding cipher. NIST AES proposal, available at
http://www.cs.arizona.edu/∼rcs/hpc, 1998.

30. M. Bellare, T. Kohno, S. Lucks, N. Ferguson, B. Schneier, D. Whiting, J. Callas and J. Walker. Provable Security Support
for the Skein Hash Family. http://www.skein-hash.info/sites/default/files/skein-proofs.pdf

31. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.1. Internet RFC 4346, 2006.
32. P. Wang, D. Feng and W. Wu. HCTS: A varible-input-length enciphering mode. Information Security an Cryptology –

CISC 2005, LNCS vol. 3822, Springer, pp. 175-188, 2005.
33. K. Yasuda. The Sum of CBC MACs Is a Secure PRF Topics in Cryptology – CT-RSA 2010, LNCS vol. 5985, pp. 366–381,

2010.
34. K. Yasuda. A New Variant of PMAC: Beyond the Birthday Bound Advances in Cryptology – CRYPTO 2011, LNCS

vol. 6841, pp. 596–607, 2011.
35. L. Zhang, W. Wu, P. Wang, L. Zhang, S. Wu and B. Liang. Constructing rate-1 MACs from related-key unpredictable

block ciphers: PGV model revisted. Fast Software Encryption – FSE 2010, LNCS vol. 6147, Springer, pp. 250–269, 2010.

A Games for Theorem 1

This appendix contains the games used in the proof of Theorem 1.

GAME G1

100 Procedure Ẽ(T,X):
101 i← i+ 1; Xi ← X; Ti ← T

102 Li ← Xi ⊕ h1(Ti)

103 if Li ∈ Dom(π1) then
104 Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

105 if Mi ∈ Dom(π2) then
106 Yi ← π2(Mi)⊕ h2(Ti)

107 else
108 Yi

$← Rng(π2)⊕ h2(Ti)

109 π2(Mi)← Yi ⊕ h2(Ti)

110 else
111 Z

$← Rng(π1); π1(Li)← Z

112 Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

113 if Mi ∈ Dom(π2) then
114 Yi ← π2(Mi)⊕ h2(Ti)

115 else
116 Yi

$← Rng(π2)⊕ h2(Ti)

117 π2(Mi)← Yi ⊕ h2(Ti)

118 return Yi

119 Procedure Ẽ−1(T, Y):
120 i← i+ 1; Yi ← Y ; Ti ← T

121 Ni ← Yi ⊕ h2(Ti)

122 if Ni ∈ Rng(π2) then
123 Mi ← π−1

2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

124 if Mi ∈ Rng(π1) then
125 Xi ← π−1

1 (Mi)⊕ h1(Ti)

126 else
127 Xi

$←Dom(π1)⊕ h1(Ti)

128 π−1
1 (Mi)← Xi ⊕ h1(Ti)

129 else
130 Z

$←Dom(π2); π−1
2 (Ni)← Z

131 Mi ← π−1
2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

132 if Mi ∈ Rng(π1) then
133 Xi ← π−1

1 (Mi)⊕ h1(Ti)

134 else
135 Xi

$←Dom(π1)⊕ h1(Ti)

136 π−1
1 (Mi)← Xi ⊕ h1(Ti)

137 return Xi

Fig. 5. Game G1 simulates Ẽ by using lazy sampling to define the random permutations.

16

GAMES G2 , G3

300 Procedure Ẽ(T,X):
301 i← i+ 1; Xi ← X; Ti ← T

302 Li ← Xi ⊕ h1(Ti)

303 if Li ∈ Dom(π1) then
304 Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

305 Yi
$←Yi

306 if Mi ∈ Dom(π2) then
307 bad1 ← true

308 Yi ← π2(Mi)⊕ h2(Ti)

309 else
310 if Yi ⊕ h2(Ti) ∈ Rng(π2) then
311 bad2 ← true

312 Yi
$← Rng(π2)⊕ h2(Ti)

313 π2(Mi)← Yi ⊕ h2(Ti)

314 else
315 Z

$← Rng(π1); π1(Li)← Z

316 Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

317 if Mi ∈ Dom(π2) then
318 Yi ← π2(Mi)⊕ h2(Ti)

319 else
320 Yi

$← Rng(π2)⊕ h2(Ti)

321 π2(Mi)← Yi ⊕ h2(Ti)

322 return Yi

323 Procedure Ẽ−1(T, Y):
324 i← i+ 1; Yi ← Y ; Ti ← T

325 Ni ← Yi ⊕ h2(Ti)

326 if Ni ∈ Rng(π2) then
327 Mi ← π−1

2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

328 Xi
$←Xi

329 if Mi ∈ Rng(π1) then
330 bad1 ← true

331 Xi ← π−1
1 (Mi)⊕ h1(Ti)

332 else
333 if Xi ⊕ h1(Ti) ∈ Dom(π1) then
334 bad2 ← true

335 Xi
$←Dom(π1)⊕ h1(Ti)

336 π−1
1 (Mi)← Xi ⊕ h1(Ti)

337 else
338 Z

$←Dom(π2); π−1
2 (Ni)← Z

339 Mi ← π−1
2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

340 if Mi ∈ Rng(π1) then
341 Xi ← π−1

1 (Mi)⊕ h1(Ti)

342 else
343 Xi

$←Dom(π1)⊕ h1(Ti)

344 π−1
1 (Mi)← Xi ⊕ h1(Ti)

345 return Xi

GAME G4

400 Procedure Ẽ(T,X):
401 i← i+ 1; Xi ← X; Ti ← T

402 Li ← Xi ⊕ h1(Ti)

403 if Li ∈ Dom(π1) then
404 Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

405 Yi
$←Yi

406 if Mi ∈ Dom(π2) then
407 bad1 ← true

408 else
409 if Yi ⊕ h2(Ti) ∈ Rng(π2) then bad2 ← true

410 π2(Mi)← Yi ⊕ h2(Ti)

411 else
412 Vi

$← ξ(|S2| /
∣∣∣Rng(π1)

∣∣∣)
413 if Vi = 1 then
414 Yi

$← S2

415 else if Vi = 0

416 Yi
$← S1

417 if Yi ∈ S2 then
418 Z ← π−1

2 (Yi ⊕ h2(Ti))⊕ h2(Ti)⊕ h1(Ti)

419 else if Yi ∈ S1

420 Z
$← Rng(π1) \ (Dom(π2)⊕ h2(Ti)⊕ h1(Ti))

421 π2(Z ⊕ h1(Ti)⊕ h2(Ti))← Yi ⊕ h2(Ti)

422 π1(Li)← Z

423 Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

424 return Yi

425 Procedure Ẽ−1(T, Y):
426 i← i+ 1; Yi ← Y ; Ti ← T

427 Ni ← Yi ⊕ h2(Ti)

428 if Ni ∈ Rng(π2) then
429 Mi ← π−1

2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

430 Xi
$←Xi

431 if Mi ∈ Rng(π1) then
432 bad1 ← true

433 else
434 if Xi ⊕ h1(Ti) ∈ Dom(π1) then bad2 ← true

435 π−1
1 (Mi)← Xi ⊕ h1(Ti)

436 else
437 Vi

$← ξ(|S2| /
∣∣∣Dom(π2)

∣∣∣)
438 if Vi = 1 then
439 Xi

$← S2

440 else if Vi = 0

441 Xi
$← S1

442 if Xi ∈ S2 then
443 Z ← π1(Xi ⊕ h1(Ti))⊕ h1(Ti)⊕ h2(Ti)

444 else if Xi ∈ S1

445 Z
$←Dom(π2) \ (Rng(π1)⊕ h1(Ti)⊕ h2(Ti))

446 π−1
1 (Z ⊕ h2(Ti)⊕ h1(Ti))← Xi ⊕ h1(Ti)

447 π−1
2 (Ni)← Z

448 Mi ← π−1
2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

449 return Xi

Fig. 6. Game G2 resamples invalid Yi values, and so behaves identically to Game G1. Game G3, which excludes boxed com-
mands, behaves as like an ideal TBC for encryption queries that cause collisions at π1 (and decryption queries that cause
collisions at π2). Game G4 behaves identically to Game G3, except that the order in which Z and Yi are sampled is reversed.
This happens by assigning Yi a value based on a weighted coin toss (Vi).

17

GAMES G5 , G6

600 Procedure Ẽ(T,X):
601 i← i+ 1; Xi ← X; Ti ← T

602 Li ← Xi ⊕ h1(Ti)

603 if Li ∈ Dom(π1) then
604 Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

605 Yi
$←Yi

606 if Mi ∈ Dom(π2) then
607 bad1 ← true

608 else
609 if Yi ⊕ h2(Ti) ∈ Rng(π2) then bad2 ← true

610 π2(Mi)← Yi ⊕ h2(Ti)

611 else
612 Yi

$←Yi

613 if Yi ∈ S1 then
614 Vi ← 0

615 else if Yi ∈ S2

616 Vi ← 1

617 else if Yi ∈ S3

618 bad3 ← true

619 Vi
$← ξ(∆2/(∆1 +∆2))

620 Z ← π−1
2 (Yi ⊕ h2(Ti))⊕ h2(Ti)⊕ h1(Ti)

621 // Vi = ⊥ here in Game G6, so neither
622 // branch of the following if block executes
623 if Vi = 1 then
624 Yi

$← S2

625 else if Vi = 0

626 Yi
$← S1

627 if Yi ∈ S2 then
628 Z ← π−1

2 (Yi ⊕ h2(Ti))⊕ h2(Ti)⊕ h1(Ti)

629 else if Yi ∈ S1

630 Z
$← Rng(π1) \ (Dom(π2)⊕ h2(Ti)⊕ h1(Ti))

631 π2(Z ⊕ h1(Ti)⊕ h2(Ti))← Yi ⊕ h2(Ti)

632 π1(Li)← Z

633 Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

634 return Yi

635 Procedure Ẽ−1(T, Y):
636 i← i+ 1; Yi ← Y ; Ti ← T

637 Ni ← Yi ⊕ h2(Ti)

638 if Ni ∈ Rng(π2) then
639 Mi ← π−1

2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

640 Xi
$←Xi

641 if Mi ∈ Rng(π1) then
642 bad1 ← true

643 else
644 if Xi ⊕ h1(Ti) ∈ Dom(π1) then bad2 ← true

645 π−1
1 (Mi)← Xi ⊕ h1(Ti)

646 else
647 Xi

$←Xi

648 if Xi ∈ S1 then
649 Vi ← 0

650 else if Xi ∈ S2

651 Vi ← 1

652 else if Xi ∈ S3

653 bad3 ← true

654 Vi
$← ξ(∆2/(∆1 +∆2))

655 Z ← π1(Xi ⊕ h1(Ti))⊕ h1(Ti)⊕ h2(Ti)

656 // Vi = ⊥ here in Game G6, so neither
657 // branch of the following if block executes
658 if Vi = 1 then
659 Xi

$← S2

660 else if Vi = 0

661 Xi
$← S1

662 if Xi ∈ S2 then
663 Z ← π1(Xi ⊕ h1(Ti))⊕ h1(Ti)⊕ h2(Ti)

664 else if Xi ∈ S1

665 Z
$←Dom(π2) \ (Rng(π1)⊕ h1(Ti)⊕ h2(Ti))

666 π−1
1 (Z ⊕ h2(Ti)⊕ h1(Ti))← Xi ⊕ h1(Ti)

667 π−1
2 (Ni)← Z

668 Mi ← π−1
2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

669 return Xi

Fig. 7. In Game G5, the order in which Vi and Yi are reversed. Game G6 behaves identically to Game G5 until bad3 is set (i.e.,
until Yi ∈ S3).

18

GAME G7

700 Procedure Ẽ(T,X):
701 i← i+ 1; Xi ← X; Ti ← T

702 Yi
$←Yi

703 Li ← Xi ⊕ h1(Ti)

704 if Li ∈ Dom(π1) then
705 Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

706 if Mi ∈ Dom(π2) then
707 bad1 ← true

708 else
709 if Yi ⊕ h2(Ti) ∈ Rng(π2) then bad2 ← true

710 π2(Mi)← Yi ⊕ h2(Ti)

711 else
712 if Yi ∈ S1 then
713 Vi ← 0

714 else if Yi ∈ S2

715 Vi ← 1

716 else
717 bad3 ← true

718 Z ← π−1
2 (Yi ⊕ h2(Ti))⊕ h2(Ti)⊕ h1(Ti)

719 if Vi = 1 then
720 Z ← π−1

2 (Yi ⊕ h2(Ti))⊕ h2(Ti)⊕ h1(Ti)

721 else if Vi = 0

722 Z
$← Rng(π1) \ (Dom(π2)⊕ h2(Ti)⊕ h1(Ti))

723 π2(Z ⊕ h1(Ti)⊕ h2(Ti))← Yi ⊕ h2(Ti)

724 π1(Li)← Z

725 Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

726 return Yi

727 Procedure Ẽ−1(T, Y):
728 i← i+ 1; Yi ← Y ; Ti ← T

729 Xi
$←Xi

730 Ni ← Yi ⊕ h2(Ti)

731 if Ni ∈ Rng(π2) then
732 Mi ← π−1

2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

733 if Mi ∈ Rng(π1) then
734 bad1 ← true

735 else
736 if Xi ⊕ h1(Ti) ∈ Dom(π1) then bad2 ← true

737 π−1
1 (Mi)← Xi ⊕ h1(Ti)

738 else
739 if Xi ∈ S1 then
740 Vi ← 0

741 else if Xi ∈ S2

742 Vi ← 1

743 else
744 bad3 ← true

745 Z ← π1(Xi ⊕ h1(Ti))⊕ h1(Ti)⊕ h2(Ti)

746 if Vi = 1 then
747 Z ← π1(Xi ⊕ h1(Ti))⊕ h1(Ti)⊕ h2(Ti)

748 else if Vi = 0

749 Z
$←Dom(π2) \ (Rng(π1)⊕ h1(Ti)⊕ h2(Ti))

750 π−1
1 (Z ⊕ h2(Ti)⊕ h1(Ti))← Xi ⊕ h1(Ti)

751 π−1
2 (Ni)← Z

752 Mi ← π−1
2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

753 return Xi

Fig. 8. Game G7 is identical to Game G6, but simplifies some of the program flow.

19

GAME G8

800 Procedure Ẽ(T,X, Y):
801 i← i+ 1; Xi ← X; Ti ← T

802 Yi ← Y

803 Li ← Xi ⊕ h1(Ti); Ni ← Yi ⊕ h2(Ti)

804 if Li ∈ Dom(π1) then
805 Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

806 if Mi ∈ Dom(π2) then
807 bad1 ← true

808 else
809 if Yi ⊕ h2(Ti) ∈ Rng(π2) then bad2 ← true

810 π2(Mi)← Yi ⊕ h2(Ti)

811 else
812 if Yi ∈ S1 then
813 Z

$← Rng(π1) \ (Dom(π2)⊕ h2(Ti)⊕ h1(Ti))

814 π2(Z ⊕ h1(Ti)⊕ h2(Ti))← Yi ⊕ h2(Ti)

815 else if Yi ∈ S2

816 Z ← π−1
2 (Yi ⊕ h2(Ti))⊕ h2(Ti)⊕ h1(Ti)

817 else
818 bad3 ← true

819 Z ← π−1
2 (Yi ⊕ h2(Ti))⊕ h2(Ti)⊕ h1(Ti)

820 π1(Li)← Z

821 Mi ← π1(Li)⊕ h1(Ti)⊕ h2(Ti)

822 return Yi

823 Procedure Ẽ−1(T, Y,X):
824 i← i+ 1; Yi ← Y ; Ti ← T

825 Xi ← X

826 Ni ← Yi ⊕ h2(Ti); Li ← Xi ⊕ h1(Ti)

827 if Ni ∈ Rng(π2) then
828 Mi ← π−1

2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

829 if Mi ∈ Rng(π1) then
830 bad1 ← true

831 else
832 if Xi ⊕ h1(Ti) ∈ Dom(π1) then bad2 ← true

833 π−1
1 (Mi)← Xi ⊕ h1(Ti)

834 else
835 if Xi ∈ S1 then
836 Z

$←Dom(π2) \ (Rng(π1)⊕ h1(Ti)⊕ h2(Ti))

837 π−1
1 (Z ⊕ h2(Ti)⊕ h1(Ti))← Xi ⊕ h1(Ti)

838 else if Xi ∈ S2

839 Z ← π1(Xi ⊕ h1(Ti))⊕ h1(Ti)⊕ h2(Ti)

840 else
841 bad3 ← true

842 Z ← π1(Xi ⊕ h1(Ti))⊕ h1(Ti)⊕ h2(Ti)

843 π−1
2 (Ni)← Z

844 Mi ← π−1
2 (Ni)⊕ h2(Ti)⊕ h1(Ti)

845 return Xi

Fig. 9. Game G8 gives the advesary control over Yi values. Such an adversary can set bad flags at least as easily as adversaries
for Game G7 can. Additionally, adversaries for Game G8 are, without loss of generality, non-adaptive.

20

B Proof of Theorem 2

Games G0 , G1

procedure F (M):

100 s← s+ 1; Ms ←M

101 Ms
1 , . . . ,M

s
bs

n←Ms

102 P ← PrefixM(Ms); p← |P |; T s
p ← T[P]

103 for i = p+ 1 to bs
104 T s

i
$←{0, 1}n

103 if Ms
i ∈ Dom(Π(T s

i−1, ·)) then

104 bad← true ;T s
i ← Π(T s

i−1,M
s
i)

105 if T s
i ∈ Rng(Π(T s

i−1, ·)) then

106 bad← true ;T s
i

$← Rng(Π(T s
i−1, ·))

107 Π(T s
i−1,M

s
i)← T s

i

108 T[Ms
1 · · ·Ms

i]← T s
i

109 M ∪←Ms

110 Return T s
bs

Game G2

procedure F (M):

200 s← s+ 1; Ms ←M

201 Ms
1 , . . . ,M

s
bs

n←Ms

202 P ← PrefixM(Ms); p← |P |; T s
p ← T[P]

203 for i = p+ 1 to bs
204 T s

i
$←{0, 1}n

205 if Ms
i ∈ Dom(Π(T s

i−1, ·)) then bad← true

206 Π(T s
i−1,M

s
i)← T s

i

207 T[Ms
1 · · ·Ms

i]← T s
i

208 M ∪←Ms

209 Return T s
bs

Game G3

procedure F (M):

200 s← s+ 1; Ms ←M

301 Ms
1 , . . . ,M

s
bs

n←Ms

302 P ← PrefixM(Ms); p← |P |; T s
p ← T[P]

303 for i = p+ 1 to bs
305 if Ms

i ∈ Dom(Π(T s
i−1, ·)) then bad← true

306 Π(T s
i−1,M

s
i)← defined

307 T[Ms
1 · · ·Ms

i]← T s
i

$←{0, 1}n

308 M ∪←Ms

309 Return T s
bs

Game G4

procedure F (M):

400 s← s+ 1; Ms ←M

401 Ms
1 , . . . ,M

s
bs

n←Ms

402 P ← PrefixM(Ms); p← |P |; T s
p ← T[P]

403 for i = p+ 1 to bs
405 if Ms

i ∈ Dom(Π(T s
i−1, ·)) then bad← true

406 Π(T s
i−1,M

s
i)← defined

407 T[M1 · · ·Mi]← T s
i

$←{0, 1}n

408 M ∪←Ms

Game G5

for s = 1 to q
500 Ms1, . . . , M

s
bs

n← Ms

501 P ← PrefixM(Ms); p← |P |; T s
p ← T[P]

502 for i = p+ 1 to bs
503 if Msi ∈ Dom(Π(T s

i−1, ·)) then bad← true

504 Π(T s
i−1, M

s
i)← defined

505 T[Ms1 · · · Msi]← T s
i

$←{0, 1}n

506 M ∪← Ms

Game G6

for all X ∈ ({0, 1}n)+), T[X]
$←{0, 1}n

for s = 1 to q
600 Ms1, . . . , M

s
bs

n← Ms

601 P s ← PrefixM(Ms); ps ← |P s|
602 if Msps+1 ∈ Dom(Π(T[P s], ·)) then bad← true

603 Π(T[P s], Msps+1)← defined

604 for i = ps + 1 to bs − 1

606 if Msi+1 ∈ Dom(Π(T[Ms1 . . . M
s
i], ·)) then bad← true

607 Π(T[Ms1 . . . M
s
i], M

s
i+1)← defined

608 M ∪← Ms

Fig. 10. Games for the proof of Theorem 2. We define T[ε] = 0n. The setM is initially empty.

21

Proof. We omit proof of the standard switch from the complexity-theoretic to the information-theoretic setting,
wherein adversary B simulates the PRF experiment for TBCMAC[Ẽ] or TBCMAC[Π], depending upon its own
oracle. The remainder of the proof is the core technical piece, which proceeds by a sequence of code-based games.

Game G0 faithfully implements TBCMAC[Π]. Here and throughout we use Dom(Π(T, ·)) to denote the
set of domain points under the (lazily sampled) random permutation Π(T, ·) that have been assigned a corre-
sponding range value. Likewise, the set Rng(Π(T, ·)) denotes the set of stings in {0, 1}n that have not yet
been associated to any domain point under Π(T, ·). Game G1 omits the boxed statements, and hence imple-
ments a random function ρ with the same domain as TBCMAC and n-bit outputs. Thus Pr

[
ATBCMAC[Π]⇒ 1

]
=

Pr
[
AG0⇒ 1

]
and Pr [Aρ⇒ 1] = Pr

[
AG1⇒ 1

]
, and these games are identical-until-bad [5], so we have

that Advprf
TBCMAC[Π](A) ≤ Pr

[
AG1 sets bad

]
. The probability that bad ← true on line 106 of G1 is at most

(0 + 1 + · · · + (`q − 1))/2n ≤ .5(`q)2/2n. So in G2 we simply remove the check for colliding range points
under Π and have the bound Pr

[
AG1 sets bad

]
≤ Pr

[
AG2 sets bad

]
+ .5(`q)2/2n. Notice that in game G2

the actual values assigned to Π do not impact the setting of bad. In moving to game G3 we simply associate a
distinguished value defined to domain points that have been touched, and move the random sampling of T si to the
first place that it is needed (line 307). Now, in G3 the adversary learns only the output of a random function on
input M , i.e. T sbs for query Ms; inside the game these returned values are only written into T[Ms

1 · · ·Ms
bs
]. But

since queries are restricted to be prefix-free, these final values are never again used by the game, so we can simply
return to the adversary a “dummy” uniform random point Zs that is never used elsewhere. We do this in game G4.
Thus Pr

[
AG3sets bad

]
≤ Pr

[
AG4sets bad

]
.

At this point the adversary receives values that are independent of the setting of bad, so we can assume that the
adversary just picks q random values itself and not bother to return the Zs at all. Moreover, at this point we can
assume without loss that the adversary is deterministic and has hardcoded into it the string of coins that maximize
the probability that it sets bad by choice of the queries M1, . . . ,Mq . Let M1, . . . , Mq be these queries. This moves
us to game G5, where the adversary is no longer present, so we replace the procedure F (M) by a for-loop over
these fixed messages. We have Pr

[
AG4sets bad

]
≤ Pr [G5sets bad].

Finally we move to game G6. Here we make a number of structural changes that do not impact the probability
of setting bad. First we unroll the first loop of the for-loop in G5 on line 502. We no longer sample values T si
and assign these to T inside the for-loop, instead we set T to have uniform random values for every “message”
X ∈ ({0, 1}n)+; thus in particular all of the random assignments that were made in G5 are made here. Wherever
T si would have been used before, we use directly the corresponding values of T. The prefixes P are now indexed by
s (i.e. P s) as are the prefix (block)lengths p. Finally, the inner for-loop from G5 is reindexed. It is straightforward
to verify that Pr [G5 sets bad] ≤ Pr [G6 sets bad].

What remains is an analysis of the ways in which bad can be set in G6. There are four cases to consider.
Case 1: For some 1 ≤ r < s ≤ q we have (T[P r], Mrpr+1) = (T[P s], Msps+1). If P r = P s = ε then Mr and Ms

differ in their first block, so Pr
[
(T[P r], Mrpr+1) = (T[P s], Msps+1)

]
= 0 because Mr1 6= Ms1. If P r = ε and Ps 6= ε

then Pr
[
(0n, Mr1) = (T[P s], Msps+1)

]
= 2−n becauase T[P s] is uniformaly random. If P r 6= ε and P s = ε the

same reasoning applies symmetrically. If P r 6= ε and P s 6= ε then Pr
[
(T[P r], Mrpr+1) = (T[P s], Msps+1)

]
= 2−n

unless P r = P s, so assume this. But then Mrpr+1 6= Msps+1, since otherwise there would have been a longer common
prefix.
Case 2: For some 1 ≤ r < s ≤ q and pr + 1 ≤ i ≤ br − 1 we have (T[P s], Msps+1) = (T[Mr1 · · · Mri], Mri+1). If
P s = ε then we have Pr

[
(0n, Msps+1) = (T[Mr1 · · · Mri], Mri+1)

]
= 2−n. If P s 6= ε then Pr [(] (T[P s], Msps+1) =

(T[Mr1 · · · Mri], Mri+1)) = 2−n unless P s = Mr1 · · · Mri . But then Msps+1 6= Mri+1, since otherwise there would have been
a longer common prefix.
Case 3: For some 1 ≤ r < s ≤ q and ps + 1 ≤ i ≤ bs − 1 we have (T[P r], Mspr+1) = (T[Ms1 · · · Msi], Msi+1). This is
argued as in case 2, so Pr

[
(T[P r], Mspr+1) = (T[Ms1 · · · Msi], Msi+1)

]
≤ 2−n.

Case 4: For some 1 ≤ r < s ≤ q, some pr + 1 ≤ i ≤ br − 1, and some ps + 1 ≤ j ≤ bs − 1, we have
(T[Mr1 · · · Mri], Mri+1) = (T[Ms1 · · · Msj], Msj+1). The probability of this is at most 2−n unless i = j and Mr1 · · · Mri =
Ms1 · · · Msj . But this leads to contradictory values for pr and ps.

Thus in every case the probability of bad← true is at most 2−n. Since there are at most .5(`q)2 opportunities
for bad to be set, we have Pr [G6 sets bad] ≤ .5(`q)2/2n. Collecting up our results from each game step, we have
our claimed bound. �

22

C Collision Resistance Lemma for TBC-MAC

Here we give a simple result showing that TBC-MAC over an ideal cipher Π is collision resistant. We begin by
observing that TBCMAC[BC(n, n)] can be viewed as an iterated hash with compression function fΠ(T,M) =
Π(T,M). Let HΠ be the TBC-MAC construction for a particular Π ∈ BC(n, n). Then we define the collision-
finding advantage of A attacking TBC-MAC as

Advcr
TBCMAC(A) = Pr

[
Π

$← BC(n, n) ; (M,M ′)
$←AΠ : HΠ(M) = HΠ(M ′)

]
and we make the convention that when A outputs (M,M ′) it has already made all queries necessary to evaluate
HΠ(M) and HΠ(M ′). We note that this differs from the usual ideal-cipher notion of collision-resistance because
the adversary has access only to Π , and not its inverse. This notion will be sufficient for our needs.

Similarly, let fΠ(T,M) = Π(T,M) be the compression function of the TBC-MAC iteration for some par-
ticular Π ∈ BC(n, n). We define the collision-finding advantage of A in attacking this compression function
as

Advcomp
f (A) = Pr

[
Π

$← BC(n, n) ; (T,M), (T ′M ′)
$←AΠ

: ((T,M) 6= (T ′,M ′) ∧ fΠ(T,M) = fΠ(T ′,M ′)) ∨ fΠ(T,M) = 0n
]

where we note that the adversary wins by making a collision (again using only Π , not its inverse) or by find-
ing a preimage of the IV. Now a standard argument about the Merkle-Damgård iteration gives us that for any
collision-finding adversary A asking q messages of length at most ` blocks, there exists an adversary B such that
Advcr

TBCMAC(A) ≤ Advcomp
f (B), where B asks at most q` queries. Moreover, a simple union bound argument

shows that for any adversary B making q` queries, we have Advcomp
f (B) ≤ (q` + 1)(q`)/2n. Thus we have the

following lemma.

Lemma 2. Fix n > 0 and let A be a collision-finding adversary for TBC-MAC that asks q messages of length at
most ` blocks. Then Advcr

TBCMAC(A) ≤ (q`+ 1)(q`)/2n.

D Proof of Theorem 4

Proof. The proof essentially analyzes two cases: either the messages queried by A to its oracle result in some
output of Ẽ repeating (possibly across queries), or all values output by Ẽ are distinct. In the latter case, we will
show there is an adversary C that immediately turns A’s forgery into a forgery for Ẽ (in particular, the last call
to Ẽ in evaluating A’s forgery). In the former case, we show that there exists an adversary that turns Ẽ-collisions
into Ẽ forgeries.

Consider Game G0 in Figure 11. As the boxed instructions are not executed in this game and various book-
keeping objects (e.g. W , j, bad) are never surfaced, it is clear that the procedure Mac correctly implements the
TBCMACpf [Ẽ] oracle expected by A in the UF-CMA experiment. Likewise, the procedure Finalize returns 1 iff
the “winning” event of the UF-CMA experiment occurs. Thus we have Advuf-cma

TBCMACpfẼ
(A) = Pr

[
G0A⇒ 1

]
.

Now since Games G0 and G1 are identical-until-bad games, the fundamental lemma of game playing [5] gives us
that

Pr
[
G0A⇒ 1

]
− Pr

[
G1A⇒ 1

]
≤ Pr

[
G1A sets bad

]
.

Let forges be the event that Finalize returns 1, i.e. the adversary manages to forge. We note that the event forges
does not occur in Game G1 if bad← true because execution is halted in this case.

Now, for ` ∈ [1..σ− 1] let Coll` denote the event that bad← true occurs in Game G1 on the `-th call to Ẽ. Let
Coll = Coll1 ∨ Coll2 ∨ · · · ∨ Coll(σ−1), and notice that if Coll is true then exactly one of the Coll` is true because
Game G1 halts. Conditioning on Coll and using the above, we have

Advuf-cma
TBCMACpf [Ẽ]

(A) ≤ Pr1 [forges] + Pr1 [Coll]

≤ Pr1
[

forges | Coll
]
+ Pr1 [Coll]

where Pr1 [·] is the probability measured when A is in Game G1.

23

Game G0 Game G1

procedure Initialize:

10 K
$←{0, 1}k

11 T0 ← 0n;W ← {T0}; j ← 0

procedure Mac(M):
12 j ← j + 1; M j ←M

13 M j
1 , . . . ,M

j
bj

n←M j

14 for i = 1 to bj do
15 Ti ← ẼK(Ti−1,M

j
i)

16 if Ti ∈ W and @h < j such that CommonPFi(M
j ,Mh)

17 then bad← true; HALT

18 W ←W ∪ {Ti}
19 Return Tbj

procedure Finalize(M, τ):
20 Mq ←M

21 if ∃j ∈ [1..q − 1] such that Mq =M j then return 0
22 Mq

1 , . . . ,M
q
bq

n←Mq

23 T0 ← 0n

24 for i = 1 to bq − 1 do
25 Ti ← ẼK(Ti−1,M

q
i)

26 if Ti ∈ W and @h < q such that CommonPFi(M
q,Mh)

27 then bad← true; HALT

28 if ẼK(Tbq−1,M
q
bq
) = τ then Return 1 else Return 0.

adversary BẼK(·,·)
` :

10 s← 1; T0 ← 0n;W ← {T0}

When A asks query M
12 M1, . . . ,Mb

n←M

13 for i = 1 to b do
14 if s = ` then
15 T

$←W
16 Return (T,Mi)

17 Ti ← ẼK(Ti−1,Mi)

18 W ←W ∪ {Ti}
19 s← s+ 1

20 pass Tb to A

When A halts execution with output (M∗, τ∗),
21 M∗1 , . . .M

∗
b∗

n←M∗

22 for i = 1 to b∗ − 1 do
23 if s = ` then
24 T

$←W
25 Return (T,M∗i)

26 Ti ← ẼK(Ti−1,M
∗
i)

27 W ←W ∪ {Ti}
28 s← s+ 1

Fig. 11. Games for the proof of Theorem 4. Game G0 excludes the boxed text (lines 17 and 27). Game G1 includes the boxed
text. Adversary B` is for forging the TBC in the event that bad ← true on the `-th message block in Game G0, where
` ∈ [σ − 1]. Recall our convention that all boolean flags are initially false.

Consider the case that the event forges occurs in G1. Then necessarily G1-line 29 executes (the game did not
halt), so in fact Pr1 [forges] = Pr1

[
forges | Coll

]
. In this case there exists an obvious Ẽ-forging adversary C

(based on the code of game G1) that outputs ((Tbq−1,M
q
bq
), τ) as its forgery. We claim that if event (forges | Coll)

occurs in G1, then C successfully forges Ẽ. To see this, it suffices to show that C never asks (Tbq−1,M
q
bq
) to

its Ẽ-oracle during its execution. Assume not, and consider the message blocks Mh
1 ,M

h
2 , ...,M

h
w that imme-

diately preceded the first query of (Tbq−1,M
q
bq
). Either Mh

1 , . . . ,M
h
w = Mq

1 , . . . ,M
q
bq−1 or Mh

1 , . . . ,M
h
w 6=

Mq
1 , . . . ,M

q
bq−1. In the former case Mq is a prefix of some previously queried message, which violates the prefix-

free encoding of the messages. In the latter case, Coll` must have occurred for some `, which contradicts our
assumption that Coll is true. Hence Pr1

[
forges | Coll

]
≤ Advuf-cma

Ẽ
(C). The adversary C perfectly simulates an

oracle TBCMACpf [Ẽ] for A, making a single query for each block of a message queried by A. Thus C’s resources
are defined by tC = t, qC = σ, and σC = 2σ which comes from the fact that C must query the tweak in addition
to the message when simulating TBCMACpf on each block of A’s queries.

Thus it remains to bound Pr1 [Coll] to finish our proof. For ` ∈ [1..σ − 1] let B` be the adversary described
in Figure 11. Recall that if Coll is true, then exactly one of Coll` is true, and for this ` there is some 0 ≤ p < `
such that T` = Tp. Let (T`−1,M`) be the query to Ẽ that gave rise to T`. In this case, there is a 1/` chance that B`
correctly guesses the index p. If it does and (T`−1,M`) has not already been queried, then ((T`−1,M`), Tp) is a
valid Ẽ-forgery. (Note that if (T`−1,M`) had already been queried, then Coll`−1 would have held, contradicting
our assumption that Coll` holds.)

24

Therefore, Advuf-cma
Ẽ

(B`) = Pr(B` correctly guesses Tp ∧ Coll`). The fact that B` guesses Tp uniformly
from the setW , where |W| = `, gives us

Advuf-cma
Ẽ

(B`) ≥ Pr(B`(correctly guesses Tp) ∧ Coll`)

= Pr(B`(correctly guesses Tp)|Coll`) Pr(Coll`) =
1

`
Pr(Coll`).

Thus,

Pr(Coll) ≤
σ−1∑
`=1

Pr(Coll`) ≤

(
σ−1∑
`=1

`

)
Advuf-cma

Ẽ
(B) =

σ(σ − 1)

2
Advuf-cma

Ẽ
(B)

where B = B` for the value of ` that maximizes the advatange. This B runs in time at most tB = max`(t`) ≤ t,
asks at most qB = max`(q`) ≤ σ queries, these totaling at most σB = max`(σ`) ≤ 2σ which comes from the
fact that B` must query the tweak in addition to the message when simulating TBCMACpf on each block of A’s
queries. Pulling together results leads immediately to the theorem statement. �

E LRW1 and LRW2 Do Not Preserve Unforgeability

In this section we show that the two TBC constructions from Liskov et al. [21] do not preserve unforgeability.
Specifically: given a PRP-secure blockcipher, we construct an unforgeable blockcipher (with a larger domain) that,
when used in either of the constructions from Liskov et al. [21], yields a TBC that is easily forged. Curiously, we
use one of the LRW constructions in the first step of the process, i.e. building an unforgeable blockcipher from a
PRP.

BREAKING LRW1. For what follows, we refer the reader to Figure 12 for a visual representation of the various
constructions. First we construct a blockcipher from a TBC. Let Ẽ : {0, 1}n× ({0, 1}n×{0, 1}n)→ {0, 1}n be a
tweakable blockcipher. We define F Ẽ : {0, 1}n × {0, 1}2n → {0, 1}2n by F ẼK (XL ‖XR) = XR ‖ ẼK(XL, XR),
where XL and XR are the leftmost and rightmost n bits of X , respectively. It is clear that the Feistel-like F Ẽ is
invertible for any keyK, and therefore a permutation, since the preimage of YL‖YR is given byE−1K (YL, YR)‖YL.
Thus F Ẽ is a blockcipher with an n-bit key and 2n-bit blocksize.

If the underlying TBC Ẽ is unforgeable, then clearly so is the blockcipher F Ẽ , since forging the latter implies
forging the former. Likewise, it is straightforward to prove that a secure tweakable-PRP is unforgeable. We state
these simple results as lemmas; we omit the obivous reductions.

Lemma 3. Let Ẽ : {0, 1}n × ({0, 1}n × {0, 1}n) → {0, 1}n be a tweakable blockcipher, and let F Ẽ be defined
as above. Then Advuf-cma

F Ẽ
(A) ≤ Advuf-cma

Ẽ
(B), where the resources of A and B are identical.

Lemma 4. Fix n > 0, and let Ẽ : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n be a tweakable blockcipher. Let A
be an adversary running in time t, asking q queries totalling σ blocks. Then there exists adversary B such that
Advuf-cma

Ẽ
(A) ≤ Advp̃rp

Ẽ
(B) + 1

2n−q , where B runs in time t, asks q + 1 queries, these totalling σ blocks.

Thus F Ẽ is unforgeable if Ẽ is a secure tweakable-PRP. Now we leverage the results of Liskov et al. [21] to
build a tweakable-PRP from a PRP. Specifically, let E : {0, 1}n × {0, 1}n → {0, 1}n be a blockcipher, and
let LRW1[E] : {0, 1}n × ({0, 1}n × {0, 1}n) → {0, 1}n be defined by LRW1[E]K(T,X) = EK(T ⊕ EK(X)).
LRW show that Advp̃rp

LRW1[E](A) ≤ Advprp
E (B) + Θ(Q2/2n), where A makes Q queries to its oracle, and the

resources of B are essentially those of A. This result, combined with Lemmas 3 and 4 gives the following.

Lemma 5. Fix n > 0. Let E : {0, 1}n × {0, 1}n → {0, 1}n be a blockcipher, and let LRW1[E]K(T,X) =
EK(T ⊕ EK(X)) be defined as above. Let A run in time t, and ask q queries of total length σ blocks. Then there
exists a B such that

Advuf-cma
F LRW1[E](A) ≤ Advprp

E (B) +Θ((q + 1)2/2n)

where B runs in time t, asking q + 1 queries, these totalling σ blocks.

25

Now we can proceed to the main point, that the TBC LRW1[F LRW1[E]] is easily forged.

Theorem 6. (LRW1 does not preserve unforgeability.) Fix n > 0. Let E : {0, 1}n × {0, 1}n → {0, 1}n
be a blockcipher, and let LRW1[E] be the tweakable blockcipher construction defined above. Let blockcipher
F LRW1[E] : {0, 1}2n × {0, 1}2n → {0, 1}2n be defined (as above) by

F
LRW1[E]
K (XL ‖XR) = XR ‖ LRW1[E]K(XL, XR) = XR ‖ EK(XL ⊕ EK(XR))).

Then there exists an A that achieves Advuf-cma
LRW1[F LRW1[E]](A) = 1 by asking q = 3 queries totalling σ = 12 blocks.

Proof. To avoid writing LRW1[F LRW1[E]]K repeatedly, we let ẼK stand for this. Adversary A asks queries Y 1 ←
ẼK(02n, 02n), and Y 2 ← ẼK(02n, 12n) and then outputs ((T ∗, X∗), Y ∗) where (T ∗, X∗) = (1n ‖Y 1

L ⊕ Y 2
L , 1

2n)
and Y ∗ = Y 1 as its forgery. We note immediately that the forgery (T ∗, X∗) has never been queried, since T 1 =
T 2 = 02n 6= T ∗.

Now we show that A indeed produces a valid forgery. First, we have that

Y 1 = EK(EK(0n)) ‖ EK(EK(EK(EK(0n)))),

Y 2 = EK(1n ⊕ EK(1n)) ‖ EK(1n ⊕ EK(EK(1n ⊕ EK(1n))))

and hence

ẼK(T ∗, X∗) = ẼK(1n ‖ Y 1
L ⊕ Y 2

L , 1
2n)

= ẼK(1n ‖ EK(EK(0n))⊕ EK(1n ⊕ EK(1n)), 12n)

which we must show is exactly Y ∗ = Y 1. Let U denote the output of the first round of EK calculated in
the LRW1 construction, and let V denote the input to the second round of EK . Then we have both U∗ =
X∗R ‖ EK(X∗L ⊕ EK(X∗R)) = 1n ‖ EK(1n ⊕ EK(1n)) and

V ∗ = U∗L ⊕ T ∗L ‖ U∗R ⊕ T ∗R
= 1n ⊕ 1n ‖ EK(1n ⊕ EK(1n))⊕ EK(EK(0n))⊕ EK(1n ⊕ EK(1n)

= 0n ‖ EK(EK(0n))

finally giving

Y ∗ = V ∗R ‖ EK(V ∗L ⊕ EK(V ∗R)) = EK(EK(0n)) ‖ EK(EK(EK(EK(0n)))) = Y 1

which completes the proof. �

We note that if the two blockcipher calls in LRW1 were keyed with distinct keys, the proof is easily modified
to cover this case, too. (We present the result with one key because this is the construction proposed by LRW.)

BREAKING LRW2. Liskov et al. [21] give a second construction that yields a tweakable-PRP from a blockcipher
and an ε-AXU2 hash function. The LRW2 construction is as follows. Given a blockcipherE : {0, 1}n×{0, 1}n →
{0, 1}n and an ε-AXU2 hash function family H , the construction LRW2[H,E] : (K × {0, 1}n) × {0, 1}t ×
{0, 1}n → {0, 1}n is defined by LRW2[H,E](h,K)(T,X) = h(T)⊕ EK(X ⊕ h(T)). We will show that there
exists an ε-AXU2 hash function family and an unforgeable blockcipher such that LRW2 admits an efficient forging
attack that succeeds with high probablility. In particular, fix an ε-AXU2 hash function family H mapping from t
bits to n bits. Let H ′ : K × {0, 1}t → {0, 1}2n be the family defined by h′(T) = 0n ‖ h(T) for each h ∈ H . We
immediately have the following lemma, given without proof.

Lemma 6. Fix t, n > 0 and let H : K × {0, 1}t → {0, 1}n be a family of ε-AXU2 hash functions, and let H ′ be
defined as above. Then H ′ is also ε-AXU2.

26

This will be our ε-AXU2 hash function. For the blockcipher, we reuse the F LRW1[E] construction. We have al-
ready shown in Theorem 5 that this blockcipher is unforgeable if E is a secure PRP. Our next result shows that
LRW2[H ′, F LRW1[E]] does not preserve this unforgeability. See Figure 14 for a drawing of the construction.

Theorem 7. (LRW2 does not preserve unforgeability.) Fix t, n > 0. Let E : {0, 1}n × {0, 1}n → {0, 1}n be a
blockcipher. Let F LRW1[E] be defined as in Theorem 6. Let H : K×{0, 1}t → {0, 1}n be a family of ε-AXU2 hash
functions, and let H ′ be defined as above. Then there exists an adversary A that asks q = 3 queries, and achieves
Advuf-cma

LRW2[H′,F LRW1[E]](A) > 1− ε.

Proof. To avoid writing LRW2[H ′, F LRW1[E]](h′,K) repeatedly, we write K for the pair (h′,K), and write ẼK for
LRW2[H ′, F LRW1[E]](h′,K) .

Adversary A queries Y 1 ← ẼK(02n, 02n) and Y 2 ← ẼK(12n, 02n). A then forges with ((T ∗, X∗), Y ∗),
where Y ∗ = Y 2

L ‖ Y 1
L ⊕ Y 2

L ⊕ Y 2
R, and (T ∗, X∗) = (02n, 0n ‖ Y L1 ⊕ Y L2).

To aid in our analysis, we note that

ẼK(T,X) = XR ⊕ h(T) ‖ h(T)⊕ EK(XL ⊕ EK(XR ⊕ h(T))

and so Y 1 = h(02n) ‖ h(02n)⊕ EK(EK(h(02n))), and Y 2 = h(12n) ‖ h(12n)⊕ EK(EK(h(12n))).
In order to prove the theorem statement, we must prove that ((T ∗, X∗), Y ∗) is a valid forgery with probability

1− ε. To this end, we first show that ẼK(T ∗, X∗) = Y ∗, and next that (T ∗, X∗) is a new query.
To the first point, we note that

ẼK(T ∗, X∗) = ẼK(02n, 0n ‖ Y L1 ⊕ Y L2)

= ẼK(02n, 0n ‖ h(02n)⊕ h(12n))
= h(02n)⊕ h(12n)⊕ h(02n) ‖ h(02n)⊕ EK(0n ⊕ EK(h(02n)⊕ h(12n)⊕ h(02n)))
= h(12n) ‖ h(02n)⊕ EK(EK(h(12n)))

= Y 2
L ‖ Y 1

L ⊕ Y 2
L ⊕ Y 2

R

Therefore the event ẼK(T ∗, X∗) = Y ∗ is always true. To the second point, let new-msg denote the event that
(T ∗, X∗) is a new query. We note that new-msg occurs if and only if Y L1 ⊕ Y L2 6= 0n. Thus we have

Pr[new-msg] = 1− Pr[Y L1 ⊕ Y L2 = 0n] = 1− Pr[h(02n)⊕ h(12n) = 0n] > 1− ε.

where the probability is taken over the random choice of function h ∈ H. Thus we have

Advuf-cma
Ẽ

(A) = Pr
[(
ẼK(T ∗, X∗) = Y ∗

)
∧ new-msg

]
= Pr[new-msg]

> 1− ε �

We note that this counterexample is easily strengthened to the case that H is a collision-resistant hash function,
rather than merely ε-AXU2.

27

E
K

X

T

Y

E
K

X
L X

R

Y
L Y

R

E
K

E
K

LRW1[E]
K

LRW1[E]
K

X
L X

R

U
L U

R

LRW1[E]
K

V
L V

R

Y
L Y

R

T
L

T
R

Fig. 12. Figures for Theorem 6. Left: The LRW1[E] construction of an n-bit TBC from an n-bit BC. Center:
Using LRW1[E] to build a 2n-bit BC F LRW1[E]. Right: The LRW1[F LRW1[E]] TBC construction. The filled-in dot
denotes the tweak input.

X
L X

R

T
L

T
R

E
K

!

Y
L

Y
R

Fig. 13. The F̃ construction from Theorem 5

X
L

X
R

Y
L Y

R

E
K

E
K

LRW1[E]
K

T

h

Fig. 14. The LRW2[H ′, F LRW1[E]] TBC con-
struction, used in Theorem 7. Note that h′(T) =
0n ‖h(T), but for compactness we do not draw the
0n block or the exclusive-or (with 0n) operations.

28

