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Abstract—In the face of an untrusted cloud infrastructure,
outsourced data needs to be protected. Fully homomorphic
encryption is one solution that also allows performing operations
on outsourced data. However, the involved high overhead of
today’s fully homomorphic encryption techniques outweigh cloud
cost saving advantages, rendering it impractical. We present
EPiC, a practical, efficient protocol for the privacy-preserving
evaluation of a fundamental operation on data sets: frequency
counting. In an IND-CPA encrypted outsourced data set, a cloud
user can specify a pattern, and the cloud will count the number
of occurrences of this pattern in a completely oblivious manner.
EPiC’s main idea is, first, to reduce the problem of counting to
polynomial evaluation. Second, to efficiently evaluate polynomials
in a privacy-preserving manner, we extend previous work on the
Hidden Modular Group Order assumption and design a new
somewhat homomorphic encryption scheme. This scheme is highly
efficient in our particular counting scenario with a relatively
small number of possible patterns. Besides a formal analysis
where we prove EPiC’s privacy, we also present implementation
and evaluation results. We specifically target Google’s prominent
MapReduce paradigm as offered by major cloud providers. Our
evaluation performed both locally and in Amazon’s public cloud
with data sets sizes of up to 1 TByte shows only modest overhead
compared to non-private counting, attesting to EPiC’s efficiency.

I. INTRODUCTION

Cloud computing is a promising technology for larger
enterprises and even governmental organizations. Major cloud
computing providers such as Amazon or Google offer to
outsource their data and computation. The main idea is that
a cloud user can not only move his data to the cloud, but
also send operations (“algorithms”, “programs”, “code”) on
his data to the cloud. The main advantage for users lies in
the clouds’ flexible cost model: users are only charged by
use, e.g., by the total amount of storage or CPU time used.
In addition, clouds offer “elastic” services that can scale with
the users’ demands. For example, during peak times, users
can rent additional resources from the cloud. Consequently,
instead of maintaining their own data centers, users can save
costs by using cloud technologies.

One cloud computing framework that allows outsourcing
data and operating on outsourced data is Google’s prominent
MapReduce API [9]. MapReduce is offered by major public
cloud providers today, such as Amazon [1], Google [15],
IBM [18] or Microsoft [22]. MapReduce is typically used
for analysis operations on huge amounts of (outsourced) data,

e.g., scanning through data and finding patterns, counting
occurrences of specific patterns, and other statistics [16].

While the idea of moving data and computation to a
(public) cloud for cost savings is appealing, many new privacy
questions arise if delicate information is outsourced. The main
problem is that as soon as a cloud user moves his services
(data+computation) to a cloud, he automatically relinquishes
control. The user has to trust the cloud to store and protect data
against adversaries. Examples for adversaries can be hackers
that break into the cloud, i.e., the data center, to steal data.
Also, insiders such as data center administrative staff can
easily access data. As multiple cloud users are hosted on the
same data center (“multi tenancy”), even other cloud users
might try to illegally access data. Finally, as cloud providers
place data centers abroad in foreign countries with unclear
privacy laws, local authorities are threatening outsourced data.
Such attacks are realistic and have already been reported in
the real-world [14, 25, 26, 29, 33]. In conclusion, the cloud
cannot be trusted as there are many ways that adversaries
might violate data privacy.

While the encryption of data is a viable privacy protection
mechanism, it renders subsequent operations on encrypted data
by the cloud a challenging problem. To address this problem,
fully homomorphic encryption techniques have recently been
investigated, cf. Gentry [11] or see Lipmaa [21] for an
overview. Fully homomorphic encryption guarantees that the
cloud neither learns details about the stored data nor about
the results it computes. The problem with fully homomorphic
encryption, however, is its involved enormous complexity and
therewith costs. As of today, solutions are inefficient [12, 24],
and a deployment in a real-world cloud would outweigh any
cost advantage offered by the cloud. Moreover, any solution
running in a real-world cloud needs to be tailored to the
specifics of the cloud computing paradigm, e.g., MapReduce.
MapReduce comprises a specific two-phase setup, where (first)
the workload is parallelized in the Map-phase, and (second)
individual results are aggregated during the Reduce-phase to
present a combined result to the user. As of today, it is unclear
(and far from being straightforward) how fully homomorphic
encryption could be tailored to adopt to this paradigm. In
conclusion, fully homomorphic encryption is impractical for
privacy-preserving cloud computing.

This paper presents an efficient, practical, yet privacy-
preserving protocol for a fundamental data analysis primi-



tive in MapReduce: counting occurrences of patterns. In an
outsourced data set comprises a large number of various
patterns, EPiC, “Efficient PrIvacy-preserving Counting for
MapReduce”, allows the cloud user to specify a (plaintext)
pattern, and the cloud will count the number of occurrences
of this pattern in the stored ciphertexts without detecting which
pattern is being counted or how often the pattern occurs.
This allows, e.g., the oblivious computation of histograms
by the cloud. The main idea of EPiC is to transform the
problem of privacy-preserving counting to an evaluation of
a special polynomial. Inspired by Lauter et al. [20], EPiC
evaluates this polynomial efficiently by using a novel, efficient
somewhat homomorphic encryption mechanism that is based
on the Hidden Modular Group Order assumption [31] – fully
homomorphic encryption is not required. The new encryption
mechanism is efficient only in the particular context that we
target in this paper, the evaluation of polynomials with the total
number (the “domain”) of different patterns being relatively
small.

In conclusion, the contributions of this paper are:
• EPiC a new protocol to enable privacy-preserving count-

ing in MapReduce clouds. EPiC reduce the problem of
counting occurrences of patterns to the evaluation of
special polynomials that the cloud user can specify.

• A new “somewhat homomorphic” IND-CPA encryption
scheme that addresses the secure evaluation of polyno-
mials for counting in a highly efficient manner.

• An implementation of EPiC and its encryption mecha-
nism together with an evaluation in a realistic setting.
The source code is available for download [3].

II. PROBLEM STATEMENT

Overview: We will use an example application to motivate
our work. Along the lines of recent reports [30], imagine a
hospital scenario where patient records are managed electron-
ically. To reduce cost and grant access to, e.g., other hospitals
and external doctors, the hospital refrains from investing into
an own, local data center, but plans to outsource patient records
to a public cloud. Regulatory matters require the privacy-
protection of sensitive medical information, so outsourced data
has to be encrypted. However, besides uploading, retrieving or
editing patient records performed by multiple entities (hos-
pitals, doctors etc.), one entity eventually wants to collect
some statistics on the outsourced patient records without the
necessity of downloading all of them.

A. Cloud Counting

More specifically, we assume that each patient record R,
besides raw data such as maybe a picture or some doctors’
notes, also includes one (or more) field R.c containing some
patterns. In practice, this field could denote the category or
type of disease a patient is suffering from, e.g., “diabetes”
or “hypertension”. While one (or more) cloud users U add,
remove or edit records, eventually one cloud user U wants
to know, how many patients suffer from disease χ. That is,
user U wants to extract the frequency of occurrence of pattern

χ and therewith how many records contain R.c = χ. Due
to the large amount of data, downloading each patient record
is prohibitive, and the counting should be performed by the
cloud.

While encryption of data, access control, and key manage-
ment in a multi-user cloud environment are clearly important
topics, we focus on the problem of a-posteriori extracting
information out of the outsourced data in a privacy-preserving
manner. The cloud must neither learn details about the data
stored, nor any information about the counting, what is
counted, the count itself etc. Instead, the cloud processes U’s
counting queries “obliviously”.

We will now first specify the general setup of counting
schemes for public clouds and then formally define privacy
requirements. Note that throughout rest of this paper, we
will assume the “pattern” a user U might look for to be
“countable”. Without loss of generality, field R.c ∈ N.

Definition 1 (Cloud Counting): Let R denote a sequence
of records R := {R1, . . . , Rn}. Besides some random data,
each record Ri contains a countable field Ri.c ∈ N. A
privacy-preserving counting scheme comprises the following
probabilistic polynomial time algorithms:

1) KEYGEN(s) : using a security parameter s, KEYGEN
outputs a secret key S

2) ENCRYPT(S,R) : uses secret key S to encrypt the
sequence of records R. The output is a sequence of
encryptions of records E := {ER1

, . . . , ERn
}, where

ERi denotes the encryption of record Ri.
3) UPLOAD(E) : uploads the sequence of encryptions E to

the cloud.
4) PREPAREQUERY(S, χ) : this algorithms generates a

query Q out of secret S and the value χ ∈ N to be
counted.

5) PROCESSQUERY(Q, E) : performs the actual counting.
Uses a query Q, the sequence of ciphertexts E , and
outputs a result EΣ.

6) DECODE(S, EΣ) : takes secret S and query re-
sult EΣ to output a final sum σ, such that σ =∑n
i=1 fχ(Ri.c), if EΣ = PROCESSQUERY(Q, E) with

Q = PREPAREQUERY(S, χ), E = ENCRYPT(S,R),
and

fχ(x) =

{
1, if x = χ
0, otherwise.

According to this definition, the cloud user U encrypts
the sequence of records and uploads them into the cloud.
If U want to know the number of occurrences of χ in the
records, he prepares a query Q, sends Q to the cloud, and
the cloud processes Q. Finally, the cloud sends a result EΣ

back to U who can decrypt this result and learn the number of
occurrences of χ. The idea of a performing the counting in the
cloud is to put the main computational burden on the cloud
side. Both storage and computational overhead for KEYGEN,
ENCRYT, UPLOAD, PREPAREQUERY, and DECODE should be
lightweight compared to PROCESSQUERY.



B. Privacy
In the face of untrusted cloud infrastructure, cloud user U

wants to perform counting in a privacy-preserving manner.
Intuitively, the data stored at the cloud as well as the counting
operations must be protected against a curious cloud. Infor-
mally, we demand 1.) storage privacy and 2.) counting privacy
against the cloud which we will now call “adversary A”. This
adversary A should only learn “trivial” privacy properties like
the total size of outsourced data, the total number of patient
records or the number of counts performed for U .

With storage privacy, we capture the intuition that, by
storing data and counting, the cloud should not learn any
information about the content it stores. In addition, counting
privacy captures the problem that, again by storing data and
counting, the cloud should not learn any details about the
counting performed, e.g., which value is counted, whether a
value is counted twice or what the resulting count is.

Inspired by traditional indistinguishability [13], we formal-
ize our privacy requirements using a game based definition.
Our privacy games for storage privacy (GAME1) and counting
privacy (GAME2) are played between adversary A (represent-
ing the cloud) and a challenger (representing user U).

Both games comprise a learning and a challenge phase. The
learning phase, cf. Algorithm 1, is the same for GAME1 and
for GAME2. The difference lies only in the challenge phases.
While one could certainly join the two different privacy
notions and games into one, we stick to the separated setup
for ease of understanding.

Algorithm 1: Learning Phase GAME1 and GAME2

Challenger: S := KEYGEN(s);
for i := 1 to T do
A → Challenger: R := {R1, . . . , Rn};
Challenger: E := ENCRYPT(S,R);

Q := PREPAREQUERY(S, χ);
EΣ := PROCESSQUERY(Q, E);
σ := DECODE(S, EΣ);

Challenger→ A : {E , Q,EΣ, σ};
end

Learning Phase GAME1 and GAME2: First, the challenger
executes KEYGEN to derive a new secret key S, and A
enters the learning phase. Here, A computes a sequence of
records R and a value χ to be counted and sends it to the
challenger. The challenger encrypts the sequence of records,
and prepares a new query based on the supplied χ. Finally,
the challenger counts for χ, i.e., executes the PROCESSQUERY
algorithm and sends the encrypted records, the query, and the
(encrypted) result back to A. This interaction between A and
the challenger is repeated T times.
Challenge Phase GAME1(A): In the challenge phase, cf. Algo-
rithm 2, A selects a distinct pair of sequences of records and
queries (R0, χ0) and (R1, χ1) with |R0| = |R1| and sends it
to the challenger. The challenger randomly selects b ∈ {0, 1}
and executes Eb := ENCRYPT(S,Rb) to encrypt a sequence

Algorithm 2: Challenge Phase GAME1(A)

A → Challenger: (R0, χ0), (R1, χ1), |R0| = |R1|;
Challenger: b← {0, 1};

Eb := ENCRYPT(S,Rb);
Qb := PREPAREQUERY(S, χb);
EΣb

:= PROCESSQUERY(Qb, Eb);
Challenger→ A: {Eb, Qb, EΣb

};
A : guess b′;

if b′ = b then
output 1;

of records, Qb := PREPAREQUERY(S, χb) to generate a new
query Qb, and EΣb

:= PROCESSQUERY(Qb, Eb) to generate
a result. All this is sent back to A. Therewith, A guesses b′.
The outcome of GAME1 is 1, if b = b′.

Algorithm 3: Challenge Phase GAME2(A)

A → Challenger: R, (χ0, χ1);
Challenger: b← {0, 1};

E := ENCRYPT(S,R);
Qb := PREPAREQUERY(S, χb);
EΣb

:= PROCESSQUERY(S, χb);
Challenger→ A : {Qb, EΣb

};
A: guess b′

if b′ = b then
output 1;

Challenge Phase GAME2(A): A selects a sequence of records
R, two distinct queries (χ0, χ1), and sends {R, χ0, χ1} to the
challenger. Now, the challenger randomly selects b ∈ {0, 1}
and executes E := ENCRYPT(S,R) to encrypt the sequence
of records, Qb := PREPAREQUERY(S, χb) to generate a new
query Qb, and finally EΣb

:= PROCESSQUERY(S, χb). The
challenger sends {Qb, EΣb

} back to A. Note that A does not
receive E . A guesses b′. The outcome of GAME2 is 1, if b = b′.

Privacy Definition After the description of GAME1 and
GAME1, we can now formally define privacy for cloud-based
counting.

Definition 2 (Privacy): A cloud counting scheme is
(T, ε1, ε2)-privacy-preserving, iff

Pr(GAME1(A) = 1) ≤ 1

2
+ ε1(s) and

Pr(GAME2(A) = 1) ≤ 1

2
+ ε2(s)

for all probabilistic polynomial time adversaries A with run-
ning time T . Functions ε1(s) and ε2(s) are negligible, i.e.,
ε1(s) < 1

sn1
and ε2(s) < 1

sn2
for any n1, n2 ∈ N and

sufficiently large security parameter s.
Discussion: The difference between GAME1 and GAME2

is A’s goal. In the real-world, GAME1 reflects an adversary
who knows or can even manipulate the data to be stored and
the queries made, and he sees query results. A’s goals is to
learn something (new) about the data stored in the cloud. If



Definition 2 holds, than any two “transcripts” that A sees,
i.e., two sets of encrypted data, queries, and encrypted query
results, are computationally indistinguishable for A.

In GAME2, A’s goal is, by using the same means as in
GAME1, to learn something (new) about the query (and their
results). Here, any two “transcripts” of queries and encrypted
query results are computationally indistinguishable for A.

In the real-world, such an adversary that we envision could
be the cloud infrastructure.

Limitations: Note that the adversary must specify the
same length for the two sets of patient records in GAME1.
Otherwise, just by looking at the size of the encrypted records,
A could win GAME1. While there exist mitigation strategies,
e.g., by using padding and artificially increasing the size of the
data, these are typically contradictory to cloud efficiency and
low cost. There are also other, “trivial” privacy properties that
can be leaked in a scenario like ours. For example, the fact
that a doctor makes a certain number of queries, or queries
at certain times during the day might leak some information
about the outsourced data. Again, mitigation strategies exists,
e.g., fake queries, but we leave this for future work. We
conjecture that loss of those “trivial” privacy properties can
be acceptable in many real-world scenarios. We also consider
only semi-honest clouds (“honest-but-curious”) in this paper.
A fully malicious cloud could selectively carry out a DoS-
attack, deviate from protocol execution and try to perform
attacks similar to “reaction attacks” [17]. While these attack
are certainly valid, we leave them for future work.

C. MapReduce

The efficiency of counting relies on the performance of
PROCESSQUERY which involves processing huge data in the
cloud. Cloud computing usually processes data in parallel
via multiple nodes in the cloud data center based on some
computation paradigm. For efficiency, PROCESSQUERY has to
take the specifics of that computation into account. One of the
most widespread, frequently used framework for distributed
computation that is offered by major cloud providers today is
MapReduce. In the following, we will give a very compressed
overview about MapReduce, only to understand EPiC. For
more details, refer to Dean and Ghemawat [9].

In the MapReduce framework, a user uploads his data into
the cloud. During upload, data is automatically split into pieces
(InputSplits) and distributed among the nodes in the cloud’s
data center. If the user wants the cloud to perform an operation
on the outsourced data, he uploads an implementation of his
operation, e.g., Java .class files, to the cloud. More precisely,
the user has to provide implementations of two functions, the
so called map function and the reduce function – these two
functions will be executed by the cloud on the user’s data.

A MapReduce “job” runs in two phases. Nodes in the data
center storing an InputSplit (Mapper nodes) scan through their
InputSplit and evaluate the user’s map function on data. This
operation is performed by all Mappers in parallel. The output
of each Map function evaluation is a set of key-value pairs.
All key values pairs are sent to so called Reducer nodes.

The Reducer nodes collect key-value pairs emitted by
Mappers and aggregate them using the user provided reduce
function. Reducers produce a final output that is sent back to
the user.

This setup takes advantage of the parallel nature of a cloud
data center and allows for scalability and elasticity.

III. EPIC PROTOCOL

Overview: EPiC’s main rationale is to perform the counting
in the cloud by evaluating a polynomial. Cloud user U sends
a polynomial Pχ(x) to the cloud that is specific to the value χ
he is interested in. The cloud evaluates Pχ(x) on each stored
record’s countable value Ri.c. The outcomes of all individual
polynomial evaluations is a (large) set of monomials. The
cloud now simply adds monomials with the same exponent
and sends the sums back to U . Based on the received sums
of monomials, U can learn the number of occurrences of χ in
the investigated set of records.

There are three challenges with this approach.
First, the cloud has to evaluate polynomial Pχ(x) on

encrypted data. More precisely, to avoid the cloud to learn
any information about the stored data (as in storage privacy,
see Section II-B), all patient records are encrypted using an
IND-CPA encryption mechanism.

Second, although U sends Pχ(x) to the cloud for evaluation,
the cloud must neither learn χ nor any other information about
the query, see counting privacy. The query, i.e., Pχ(x) itself
must be IND-CPA encrypted, but still its evaluation by the
cloud has to be possible.

Third, the polynomial evaluation has to be extremely effi-
cient, as the cloud evaluates Pχ(x) on every of the potentially
huge number n of records. An expensive polynomial evalu-
ation, e.g., based on fully homomorphic encryption, bilinear
pairings, modular exponentiations or other expensive crypto-
graphic primitives, would outweigh cloud cost advantages.

Somewhat homomorphic encryption: EPiC addresses the
above challenges by employing a new “somewhat” homomor-
phic encryption scheme that is inspired by the idea of Lauter
et al. [20]. Our scheme is originally additive, but we can extend
it to allow for multiplication, too, by allowing the size of the
ciphertext to grow linearly with the number of multiplications.
As EPiC’s polynomial evaluation requires only few multipli-
cations to compute monomials, the overhead remains modest
– see Section IV. Compared to other additive homomorphic
schemes such as Paillier’s, our encryption has the advantage
of using only integer addition and multiplication instead of
expensive modular exponentiation. We prove security of EPiC
based on the Hidden Modular Group Order assumption [31].

While EPiC encrypts the countable fields of each record
using the new somewhat homomorphic encryption “ENC” to
give semantically secure (IND-CPA) encryption, the remainder
of the patient record is encrypted using AES-CBC. As we use
random IVs, this encryption is also IND-CPA [5].

MapReduce: Moreover, regarding efficiency, we stress the
fact that EPiC’s setup using polynomial evaluation seamlessly
suits the MapReduce paradigm: the large amount of data,



patient records, can be split and distributed for homomorphic
polynomial evaluation in parallel by different Mappers in the
cloud’s data center. The aggregation, i.e., the homomorphic
addition of monomials with the same exponent can finally be
done by Reducers within the reduce phase.

A. Polynomial Counting

Besides other data, each patient record Ri in EPiC contains
a countable field Ri.c. If U wishes to count occurrences of χ,
the idea is that U prepares a polynomial

Pχ(x) =

{
1, if x = χ
0, otherwise.

Therewith, the cloud can scan through the set
R = {R1, . . . , Rn} of all patient records and compute∑n
i=1 Pχ(Ri.c).
If we assume the domain for χ and Ri.c to be D =

{0, 1, 2, . . . , |D| − 1} ⊆ N, then one way to generate a
polynomial Pχ(x) is to compute

Pχ(x) :=
∏
xj 6=χ

x− xj
χ− xj

=

|D|−1∑
j=0

aj · xj ,

where xj are all possible elements of D. The polynomial
Pχ(x) is of degree |D| − 1 and uniquely defined by its
coefficients aj .

However, the countable fields are IND-CPA encrypted to
ENC(Ri.c) in EPiC using the somewhat homomorphic encryp-
tion. One way to evaluate Pχ(x) in an oblivious manner would
be to send (IND-CPA) encrypted coefficients ENC(aj) to the
cloud. The cloud would now compute the “encrypted” sum

EΣ :=

n∑
i=1

Pχ(ENC(Ri.c))

=

n∑
i=1

|D|−1∑
j=0

ENC(aj) · (ENC(Ri.c))
j .

Yet, for improved performance, EPiC chooses a
slightly different approach: for each record ENC(Ri)
with encrypted countable field ENC(Ri.c) the cloud
simply computes the set of all |D| monomials
{1, ENC(Ri.c), ENC(Ri.c)

2, . . . , ENC(Ri.c)
|D|−1} and

sends back to U the |D| sums

{n,
∑n
i=1 ENC(Ri.c),

∑n
i=1 (ENC(Ri.c))

2,

· · ·∑n
i=1 (ENC(Ri.c))

|D|−1}.

User U can now decrypt EΣj =
∑n
i=1 (ENC(Ri.c))

j to get
plaintext sums of monomials Σj :=

∑n
i=1 (Ri.c)

j
, 0 ≤ j ≤

|D| − 1. Finally, U computes

σ :=

|D|−1∑
j=0

aj · Σj = Pχ(x).

Note that, if |D| is reasonably small, the sums EΣj can be
evaluated efficiently by the cloud, see Section IV.

B. Somewhat homomorphic encryption

We now describe EPiC’s somewhat homomorphic encryp-
tion scheme using standard notation. Note that our scheme is
a secret key homomorphic encryption scheme.

Main Idea

The main idea of our encryption scheme is borrowed from
the Hidden Modular Group Order assumption scheme by
Trostle and Parrish [31]. To encrypt a plaintext P , a random
number r is selected and, together with some system parameter
η, added to P , i.e., r · 2η + P . Finally, a random parameter
b ∈ Zp for some large prime p is multiplied, resulting in
ciphertext C := b · (r · 2η + P) mod p. This setup has the
interesting property that the random r·2η can be “canceled out”
during decryption by computing mod 2η . However before, b
is removed by multiplying with b−1 mod p. Informally speak-
ing, the Hidden Modular Group Order assumption by Trostle
and Parrish [31] now states that if p and b are sufficiently large
and secret, an adversary cannot compute P . We formally prove
IND-CPA for this encryption later in Section III-D.

We choose this special somewhat homomorphic scheme
simply due to its efficiency for the must crucial operation:
the computation of monomials in the cloud. As the cloud
has to scan through a large amount of records, it needs to
compute a huge number of monomials. The way we perform
the exponentiation for monomials is around two orders of
magnitude faster than the one by Lauter et al. [20].

Again, we stress that our scheme is not a “general” ho-
momorphic encryption scheme, because ciphertexts increase
(linearly) with the number of additions and multiplications.
This renders it useful only for the specific application that we
consider where the domain of the countable field is relatively
small. Moreover for sound decryption, our scheme requires
to know the total number of exponentiations performed. This
information, too, is only available in our special scenario.

Description

EPiC’s somewhat homomorphic encryption is defined by
the following set of algorithms.
• KEYGEN(s1, s2, n, |D|) : Parameters s1, s2 ∈ N are

security parameters, n ∈ N represents the upper bound for
the total number of records in the data set, and |D| ∈ N
is the size of the domain of the countable values fields.
KEYGEN computes

1) value η := dlog2 n+ (|D| − 1) · log2(|D| − 1)e.
2) a random large prime p, where

|p| = s1 + dlog2 ne+ (s2 + η)(|D| − 1).

3) a random b ∈ Zp.
We explain the selection of η and p further below.
The secret key, the output of KEYGEN, is defined as S :=
{p, b}.

• ENC(S,P) : Select random number r, |r| = s2. The
plaintext P is encrypted to ciphertext

C := b · (r · 2η + P) mod p.



• ADD(C1, C2) : Compute

C′ := C1 + C2.

This addition takes place in the integers, there is no mod-
ulo reduction. Consequently, the length of the ciphertext
increases to:

|C′| =
{
|C1|+ 1, if |C1| = |C2|
max(|C1|, |C2|), otherwise

• EXPONENTIATE(C, j) : With j ∈ N, compute

C′ := Cj .

Again, note that this is integer exponentiation, there is no
modulo computation, and the ciphertext length increases
to |C′| := j · (|C| − 1) + 1.

• DEC(S, Cj , j) : To decrypt, compute b−j ·Cj mod p mod
2η . Notice the soundness of our protocol:

b−j · Cj mod p mod 2η = b−j · [b · (r · 2η + P)]j

mod p mod 2η

= (r · 2η + P)j mod 2η

= Pj .

We assume that the decryption mechanism “knows” the
exponent j of the ciphertext. This is a valid assumption in
our special scenario where the cloud returns the (ordered)
sequence of encrypted monomials. So, U knows the
exponent 0 ≤ j ≤ |D| − 1 for each ciphertext.

Homomorphic Properties

Our scheme is additively homomorphic:
DEC(Cj1 + Cj2, j)

= b−j · [bj · (r1 · 2η + P1)j + bj · (r2 · 2η + P2)j ]

mod p mod 2η

= [(r1 · 2η + P1)j + (r2 · 2η + P2)j ] mod p mod 2η

= b−j · (bj · (r1 · 2η + P1)j) mod p mod 2η

+b−j · (bj · (r2 · 2η + P2)j) mod p mod 2η

= DEC(Cj1, j) + DEC(Cj2, j)
= Pj1 + Pj2 .

Note that the third equality above holds for all r1, r2,P1,P2,
only if

(r1 · 2η + P1)j + (r2 · 2η + P2)j < p

or

(b−1 · ENC(S,P1))j + (b−1 · ENC(S,P2))j < p. (1)

Moreover, our scheme is multiplicatively homomorphic:

DEC(Ci1 · C
j
2, i+ j)

= b−(i+j) · [bi · (r1 · 2η + P1)i · bj · (r2 · 2η + P2)j ]

mod p mod 2η

= [(r1 · 2η + P1)i · (r2 · 2η + P2)j ] mod p mod 2η

= b−i · [bi · (r1 · 2η + P1)i mod p mod 2η

·b−j · [bj · (r2 · 2η + P2)j mod p mod 2ηe

= DEC(Ci1, i) · DEC(Cj2, j)
= P i1 · P

j
2 .

Again, the third equality above holds for all r1, r2,P1,P2,
only if

(r1 · 2η + P1)i · (r2 · 2η + P2)j < p

or

(b−1 · ENC(S,P1))i · (b−1 · ENC(S,P2))j < p (2)

Conditions in (1) and (2) have impact on the selection of p.

How to select p

The above conditions for the additive and multiplicative
homomorphic properties imply inequality

n∑
i=1

(b−1 · ENC(S, Ri.c))
j
< p

which must be valid for all values of Ri.c, j, and ri as chosen
during encryption. This yields

p > n · ((2s2 − 1) · 2η + |D| − 1)|D|−1. (3)

Since |D| � 2η , inequality (3) can be rewritten as

p > n · 2(s2+η)(|D|−1)

or
|p| ≥ dlog2 ne+ (s2 + η)(|D| − 1).

In addition, as our scheme relies on the Hidden Modular
Group Order assumption, a security parameter s1 has to be
added to the length of p, see Trostle and Parrish [31] for more
details. Finally, p is a prime of length

|p| = s1 + dlog2 ne+ (s2 + η)(|D| − 1).

How to select η

To enable decryption of encrypted monomials Σj , the
following additional condition is required for η:

2η > Σj =

n∑
i=1

(Ri.c)
j

for all values of Ri.c, j. Therewith,

2η > n · (|D| − 1)|D|−1

or
η = dlog2 n+ (|D| − 1) · log2(|D| − 1)e.

We will formally prove IND-CPA for this encryption
scheme in Section III-D.



C. Detailed Protocol Description

We use the notation as introduced in Section II-A.
1) KEYGEN(s): Based on security parameters s, cloud user

U chooses s1, s2 for the somewhat homomorphic encryption
together with a symmetric key K for a block cipher such
as AES. U also computes KEYGEN(s1, s2, n, |D|) for the
somewhat homomorphic encryption, determining an upper
bound n for the total number of patient records that might
be stored and value for the domain D of the countable field.
The secret key S is the output of the somewhat homomorphic
encryption and K, i.e., S := {p, b,K}.

2) ENCRYPT(S,R): Assume U wants to store n patient
records R = {R1, . . . , Rn}. Each record Ri is encrypted
separating the countable field Ri.c from the rest of the record.
• Ri.c is encrypted using the somewhat homomorphic

encryption mechanism, i.e., ENC({p, b}, Ri.c).
• For the rest of the record Ri, a random initialization

vector IV is chosen and the record is AESK − CBC
encrypted. Using the random IV makes this encryption
IND-CPA.

In conclusion, a record Ri encrypts to

ERi
:= {ENC({p, b}, Ri.c), IV,AESK − CBC(Ri)}.

The output of ENCRYPT is the sequence of encrypted
records. E := {ER1

, . . . , ERn
}.

3) UPLOAD(E): Upload simply sends all records as one
large file to the MapReduce cloud where the file is automati-
cally split into InputSplits.

4) PREPAREQUERY(S, χ): To prepare a query for χ, U
computes the |D| coefficients aj of polynomial Pχ(x) as
described in Section III-A. To increase performance, the
coefficients aj are not sent to the cloud. The cloud will be
only required to compute the monomials. Storing aj’s locally
not only reduces computation overhead on the cloud, but
will also perfectly prevent the cloud from learning which
value is counted. Consequently in EPiC, the output Q of
PREPAREQUERY that is sent to the cloud is empty.

5) PROCESSQUERY(Q, E): Based on the data set size
and the cloud configuration, the MapReduce framework has
selected M Mapper nodes and R Reducer nodes during
UPLOAD. Each Mapper node stores one InputSplit.

Algorithm 4 depicts the specification of EPiC’s map and
reduce functions that will be executed by the cloud. In the
mapping phase, for each input record in their locally stored
InputSplits, the Mappers compute in parallel all exponents
(from 1 to |D|−1) of the countable field and output key-value
pairs for each exponent which contain the order and value of
the computed exponent. In MapReduce, output of the Mappers
is then automatically sent to Reducers (“emit”). Each Reducer,
based on the given pairs of order and value of the exponents,
computes the sum of exponents of the same order and sends
the results back to the cloud user. In the reduce phase, the
size of those results is much smaller than the original set size,
therefore allowing the cloud user to quickly compute the final
result locally.

Algorithm 4: PROCESSQUERY

MapReduce Framework:

select M Mappers and R Reducers

For each Mapper m:

while input available do
read {ENC({p, b}, Ri.c), IV,AESK − CBC(Ri)}
for j = 1 to |D| − 1 do

emit {j, (ENC({p, b}, Ri.c))j}
end

end

For each Reducer r:

for j = 1 to |D| − 1 do
Σrj ← 0

end
while input available do

read {j, (ENC(Ri.c))
j}

Σrj ← Σrj + (ENC(Ri.c))
j

end
for j = 1 to |D| − 1 do

write {j,Σrj}
end

6) DECODE(S, EΣ): Cloud user U receives EΣ, the se-
quence of encrypted sums. As of Section III-A, U computes
Σj := DEC({p, b}, EΣj ), 1 ≤ j ≤ |D| as shown in Algo-
rithm 5.

Using the Σj and the previously computed aj , U computes
the total number of occurrences of χ in the outsourced set of
records σ :=

∑|D|−1
j=0 aj · Σj .

Algorithm 5: DECODE

U:

while input available do
read {j,Σrj};
Σj ← Σj + Σrj ;

end
σ ←

∑|D|−1
j=0 aj · Σj

D. Security Analysis

Lemma 1: Based on the Hidden Modular Group Order
Assumption, EPiC’s encryption scheme is IND-CPA.

Proof (Sketch): Our EPiC encryption is based on Trostle
and Parrish’s computationally Private Information Retrieval
(cPIR) scheme [31]. Trostle and Parrish do not formally
prove that their cPIR is IND-CPA secure, but they prove
that it satisfies a formally defined security property (see their
Definition 4.2). Their cPIR is shown to satisfy this security
property under the Hidden Modular Group Order Assumption
(HMGOA). They also provide evidence to support the claim
of hardness of HMGOA. EPiC’s IND-CPA security directly
derives from the security property of their cPIR.



More precisely, the cPIR protocol is defined and proven to
be secure, if, for any probabilistic polynomial time adversary
A, A cannot distinguish the least significant bits (“LSB”) of
a sequence of PIR values from uniform sampling by more
than a negligible function of the key size. EPiC’s encryption
embeds the plaintext in the η least significant bits.

In our notation, the cPIR security property can be stated as
follows:

Pr[A predicts LSB(e) = m] ≤ 1

2η
+ ε(s) (4)

for any plaintext m, and ciphertext e, where LSB(e) are the
η least significant plaintext bits corresponding to ciphertext e,
and s is a sufficiently large security parameter. We re-formalize
this notion of security by defining a simple game. Assume
an adversary A can query an HMGOA oracle OHMGOA, by
sending a bitstring m. O randomly selects b ∈ {0, 1}. If b = 0,
then the oracle randomly changes (at least one of) the low
order bits of m and encrypts the result to e using Trostle and
Parrish’s scheme. If b = 1, the oracle sends the encryption e
of m back to A. Now, A has to decide whether LSB(e) = m.

Now, assume that EPiC is not IND-CPA. Therefore, there
exists a PPT adversary A′ that on selecting two plaintexts
(m0, m1) and given a ciphertext Cb = ENC(S,mb) encrypted
by an EPiC oracle OEPiC with random b ∈ {0, 1} is able
to guess whether Cb corresponds to m0 or m1 with a non-
negligible probability advantage ε′ over guessing. Such an
adversary A′ can now directly be used to break the security of
Trostle and Parrish’s cPIR violating HMGOA by constructing
a new adversary A that employs A′ as a subroutine.
A simulates OEPiC to A′ and receives two plaintexts

(m0,m1). A randomly selects mb, b ∈ {0, 1} and forwards it
to OHMGOA, which sends back e to A. This value e is again
simply forwarded to A′. If A′ outputs a value b′ = b, then
A knows that e corresponds to (unmodified) mb and outputs
LSB(e) = m. Otherwise, if A′ aborts, A aborts, too. A is
successful in 50% of the cases, i.e., when OHMGOA selects
not to change a bit of m. A requires the same number of
steps as A′ and its advantage is ε = ε′

2 , rendering our proof
tight. Therewith, A is an adversary that efficiently breaks the
scheme of Trostle and Parrish.

Lemma 2: Based on the Hidden Modular Group Order
Assumption, EPiC is a privacy-preserving cloud counting
scheme.

Proof (Sketch): This proof is based on the IND-CPA
property of the encryption.

Our notion of privacy-preserving for cloud-based counting
security is formalized in Definition 2. We need to prove two
properties, the first corresponds to storage-privacy, and the sec-
ond corresponds to counting-privacy. We consider the specific
case of the detailed protocol described in Section III-C.

• Storage-privacy: The storage-privacy property is defined
in the challenge phase of GAME1 as formalized in Algo-
rithm 3.

The adversary is supposed to guess the value
of b when given {Eb, Qb, EΣb

} where Eb :=
ENCRYPT(S,Rb), Qb := PREPAREQUERY(S, χb), and
EΣb

:= PROCESSQUERY(Qb, Eb). Breaking the storage-
privacy means that there exists a PPT adversary A who
guesses bit b with a probability such that

Pr(GAME1(A) = 1) ≤ 1

2
+ ε1(s) (5)

is violated.
However, note that Qb is empty and leaks no information.
EΣb

can be computed by anyone who has access to Eb
and therefore does not leak any additional information
about b than Eb. This is because of the specific somewhat
homomorphic properties of EPiC encryption. Therefore,
only Eb can help A in guessing the value of b. However,
Eb is the result of encrypting Rb. Therefore, the storage-
privacy property reduces to the IND-CPA property of
EPiC’s encryption, where R0 and R1 represent the
selected plaintexts and Eb the challenge ciphertext. The
existence of a PPT adversary who can guess bit b with a
non-negligible probability would imply that EPiC is not
IND-CPA secure.

• Counting-privacy: The counting-privacy property is de-
fined in the challenge phase of GAME2 as formalized in
Algorithm 3.
No PPT adversary should be able to guess bit b with
probability higher than 1

2 + ε2(s) for some negligible
function ε2(s), i.e.,

Pr(GAME2(A) = 1) ≤ 1

2
+ ε2(s). (6)

Here, b determines the evaluation point χb for forming the
query Qb. A powerful property of our protocol is that no
information about χb (or b) is sent to the cloud. As a mat-
ter of fact, the output Q of PREPAREQUERY that is sent
to the cloud is always empty. The user receives from the
cloud the output of PROCESSQUERY(S) which consists
of the sum of monomials evaluations

∑n
i=1 (ENC(Ri.c))

j

for every j. The user can then compute the answer to∑n
i=1 Pχ(x) for any χ. The cloud computation, and the

communicated information being completely independent
from the value b, the probability that an adversary guesses
b is exactly 1

2 . From the perspective of counting-privacy,
the proposed scheme is even information-theoretically
(“unconditionally”) secure.

IV. EVALUATION

To show its real-world applicability, we have implemented
and evaluated EPiC in the Hadoop MapReduce framework
v1.0.3 [4]. The source code is available for download [3].

Our evaluation is twofold: first, we have evaluated EPiC on
a local “cloud” comprising just a single server with multiple
CPUs. Moreover, we have deployed and evaluated EPiC on
Amazon’s public MapReduce cloud [1].



Implementation: Our EPiC implementation is written in
Java, and all cryptographic operations are unoptimized, relying
on Java’s standard BigNumber data type. Still, exponentiation,
EXPONENTIATE(C, j), e.g., with j = 15 and |C| ≈ 4000 takes
< 2ms on a 1.8GHz Intel Core i7 laptop, a single addition is
not measurable with < 1ms. We would like to stress that the
exponentiation, the most critical operation in our scenario, is
two orders of magnitude faster than the one by Lauter et al.
[20] – there, a single multiplication already consumes 40ms
on a stronger CPU with 2.1GHz.

In our evaluation, we use security parameters s1 = 400 bits
as suggested by Trostle and Parrish [31] for good security and
s2 = |r| = 160 bits. We have implemented a data generator
program to randomly generate patient records with a countable
field. We set |D| = 16, allowing for 16 different categories
or types of diseases. As our evaluation targets comparing the
performance of EPiC counting to non-private counting, we use
encryption and decryption on the countable field only. Other
fields are not considered during the evaluation.

IO overhead: As shown in Algorithm 4, each Mapper
writes |D| − 1 exponents for each record to the Reducers.
Although the Mappers and the Reducers exchange data usually
via high-speed links, the data transfer time is not negligible
and can be a key aspect of performance [9]. In the context
of our EPiC protocol, we reduce the exchanged data among
Mappers and Reducers by letting the Mappers compute the
sum of exponents of the same order before giving the results
to the Reducers. In other words, the sum computation is not
only performed at the Reducers, but also at the Mappers. This
improvement is shown in Algorithm 6.

Algorithm 6: Improved Mapper
For each Mapper m:

for j = 1 to |D| − 1 do
Σmj ← 0

end
while input available do

read {ENC({p, b}, Ri.c), IV,AESK − CBC(Ri)}
for j = 1 to |D| − 1 do

Σmj ← Σmj + (ENC(Ri.c))
j

end
end
for j = 1 to |D| − 1 do

emit {j,Σmj}
end

A. Local Evaluation

First, we have evaluated EPiC’s performance for small-scale
data sets on a server “cloud”. The server, running Arch Linux
2011.08.19, is equipped with 2 Intel Xeon E5620 2.4GHz
processors, each with 4 cores and 12MB of cache. This reflects
to a cloud with a total 8 nodes (Mappers/Reducers). Total
memory of the system is 48GB.

1) Variable data set size: Coming back to our example
application scenario with patient records, in a first experiment,
we fix the size of each record to 1MB. In the real world, this
would reflect to a patient record that might, besides doctoral
notes and prescription, also comprise, e.g., an X-ray picture.
The data set size (x-axis) is varied from 10GB to 100GB.
Figure 1 shows the average counting time of the whole data
set for different sizes. Each sampling point is measured for
10 runs, relative standard deviation was low at ≈ 10%. The
y-axis shows the total time for MapReduce to evaluate the
user’s query. This is the time that a user has to pay for to,
e.g., Amazon [2]. We show both, the time for EPiC as well as
the time a “non-privacy-preserving” counting takes, i.e., the
countable field is not encrypted and directly counted.

Moreover, we also show the overhead ratio between EPiC
and non-private counting. The additional overhead introduced
by EPiC over non-private counting is less than 36%. As
Amazon’s pricing scales directly proportional with the CPU
time. This would also the additional amount of money user
U would have to pay Amazon. We conjecture that only 36%
overhead over non-privacy-preserving counting is acceptable
in many real-world situations, rendering EPiC practical.

Note that the overhead suddenly increases from around
50GB due to the fact that the system has 48GB of RAM, and
more processed data need more caching and IO operations,
thus causing higher overhead. The overhead is also consider-
able in non-private counting (Figure 2).

2) Variable record size: To also evaluate the effect of the
size of the records on general performance, we run the system
with a fixed data set size of 30GB. The record size is then
changed from 100KB to 1MB (accordingly, the number of
records changes from 300000 to 30000). Figure 3 shows that,
while IO time remains unchanged, a higher number of records
increases counting time in EPiC. However, for small record
sizes such as 100KB, the ratio between EPiC and non-private
counting is still under 80%. That is, EPiC is efficient even for
small patient records.

B. Amazon evaluation

To also evaluate the scalability of EPiC with big data, we
conducted intensive experiments on Amazon’s public cloud.
As Amazon imposes an (initial) limit of 20 instances per
job, we have restricted ourselves to 20 Extra Large On-
Demand instances [2]. Each instance comprises 8 processors
with 2.13GHz Intel Xeon CPU, 4MB of cache, and total 7GB
of memory. The comparison of performance between EPiC
and non-private counting is depicted in Figure 4. Again, the
overhead remains modest and remains below 60% even for
huge total data sizes of 1TByte. We conclude that EPiC is
practical in many real-world scenarios.

V. RELATED WORK

Protection the privacy of outsourced data and delegated
operations in a cloud computing environment is the perfect set-
ting for fully homomorphic encryption. While there is certainly
a lot of ongoing research in fully homomorphic encryption
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(see Lipmaa [21] for an overview), current implementations
indicate high storage and computational overhead [12, 24].
This renders fully homomorphic encryption impractical for
cloud computing.

Similar to EPiC, Lauter et al. [20] observe that, depending
on the application, weaker “somewhat” homomorphic encryp-
tion might be sufficient. Lauter et al. [20]’s scheme is based
on a protocol for lattice-based cryptography by Brakerski
and Vaikuntanathan [8]. However, for the application scenario
considered in this paper, EPiC’s somewhat homomorphic
encryption scheme allows for much faster exponentiation.

Our work bears some similarity with the work of Kamara
and Raykova [19]. That paper develops fully hiding algorithms
to evaluate uni/multi-variate polynomials at a given point.
In particular, they develop mechanisms that preserve the
secrecy of the evaluation point though randomized reducibility
techniques, and even the secrecy of the polynomial using
somewhat homomorphic schemes that allow for one multipli-
cation and an arbitrary subsequent number of additions (e.g.,
2DNF-HE [7]). However, their techniques do not solve the

problem where the evaluation point is stored on the cloud
indistinguishably encrypted. EPiC exploits a property of the
Trostle and Parrish [31] scheme to allow for exponentiation
followed by an arbitrary number of additions.

Other research has addressed similar problems of perform-
ing operations on outsourced data, such as privacy-preserving
searching on encrypted data [6, 23, 28, 32]. While searching
and counting might be closely related, it is far from straight-
forward to adopt these schemes to perform efficient count-
ing in a highly parallel cloud computing, e.g., MapReduce
environment. Also notice that, e.g., Boneh et al. [6] rely on
the computation of very expensive bilinear pairings for each
element of a data set, rendering this approach impractical in
a cloud setting.

Much research has been done to compute statistics in a
privacy-preserving manner using differential privacy, see the
seminal paper by Dwork [10]. Contrary to the threat model
considered in this paper, the adversary is not the infrastructure
(a database in their case), but a curious adversary trying to
learn information about individual entries in the database. The



idea of differential privacy is to add noise to aggregated query
results. In this context, also the application of differential
privacy to MapReduce clouds has been investigated [27].
EPiC, however, addresses the opposite problem where a user
does not trust the cloud infrastructure.

VI. CONCLUSION

In this paper, we presented EPiC to address a fundamental
problem of statistics computation on outsourced data: privacy-
preserving counting. EPiC’s main idea is to count occur-
rences of patterns in outsourced data by a privacy-preserving
evaluation of special polynomials. Using a “somewhat ho-
momorphic” encryption mechanism, the cloud does neither
learn any information about outsourced data nor about queries
performed. Our implementation and evaluation results for
MapReduce running on Amazon’s cloud with up to 1 TByte
of data show only modest overhead compared to non-privacy-
preserving counting. Contrary to related work, this makes
EPiC practical in a real-world cloud computing setting today.
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