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Abstract. In the face of an untrusted cloud infrastructure, outsourced data needs
to be protected. We present EPiC, a practical protocol for the privacy-preserving
evaluation of a fundamental operation on data sets: frequency counting. In an en-
crypted outsourced data set, a cloud user can specify a pattern, and the cloud will
count the number of occurrences of this pattern in an oblivious manner. A pattern
is expressed as a Boolean formula on the fields of data records and can specify
values counting, range counting, and conjunctions/disjunctions of field values.
We show how a general pattern, defined by a Boolean formula, is arithmetized
into a multivariate polynomial and used in EPiC. To increase the performance
of the system, we introduce a new somewhat homomorphic encryption scheme
based on a previous work on the Hidden Modular Group assumption. This scheme
is highly efficient in our particular counting scenario. Besides a formal analysis
where we prove EPiC’s privacy, we also present implementation and evaluation
results. We specifically target Google’s prominent MapReduce paradigm as of-
fered by major cloud providers. Our evaluation performed both locally and in
Amazon’s public cloud with data sets sizes of up to 1 TByte shows only modest
overhead compared to non-private counting, attesting to EPiC’s efficiency.

1 Introduction

Cloud computing is a promising technology for large enterprises and even governmen-
tal organizations. Major cloud computing providers such as Amazon and Google offer
users to outsource their data and computation. The main advantage for users lies in the
clouds’ flexible cost model: users are only charged by use, e.g., total amount of storage
or CPU time used. In addition, clouds “elastic” services allows the users to efficiently
scale resources to satisfy dynamic load. The appeal and success of outsourcing data
and operating on outsourced data is exemplified by Google’s prominent MapReduce
API [9]. MapReduce is offered by major public cloud providers today, such as Ama-
zon [1], Google [13], IBM [15] or Microsoft [18]. MapReduce is typically used for
analysis operations on huge amounts of (outsourced) data, e.g., scanning through data
and finding patterns, counting occurrences of specific patterns, and other statistics [14].

While the idea of moving data and computation to a (public) cloud for cost savings
is appealing, trusting the cloud to store and protect data against adversaries is a serious
concern for users. Examples for adversaries can be hackers that break into the cloud
(data center) to steal data, insiders such as data center administrative staff who can eas-
ily access data, and other cloud users hosted on the same data center (“multi tenancy”).
Finally, as cloud providers place data centers abroad in foreign countries with unclear
privacy laws, local authorities are threatening outsourced data. Such attacks are realistic
and have already been reported in the real-world [12, 21, 22, 25, 31].



The encryption of data is a viable privacy protection mechanism, but it renders sub-
sequent operations on encrypted data a challenging problem. To address this problem,
Fully Homomorphic Encryption (FHE) techniques have been investigated, cf. Gentry
[10] or see Vaikuntanathan [28] for an overview. FHE guarantees that the cloud neither
learns details about the stored data nor about the results. However, today’s FHE schemes
are still overly inefficient [8, 11, 20, 29], and a deployment in a real-world cloud would
outweigh any cost advantage offered by the cloud. Furthermore, any solution running in
a real-world cloud needs to be tailored to the specifics of the cloud computing paradigm,
e.g., MapReduce. MapReduce comprises a specific two-phase setup, where (first) the
workload is parallelized in the Map-phase, and (second) individual results are aggre-
gated during the Reduce-phase to present a combined result to the user.

This paper presents an efficient, practical, yet privacy-preserving protocol for a fun-
damental data analysis primitive in MapReduce: counting occurrences of patterns [14].
In an outsourced data set comprising a large number of encrypted data records, EPiC,
“Efficient PrIvacy-preserving Counting for MapReduce”, allows the cloud user to spec-
ify a (plaintext) pattern, and the cloud will count the number of occurrences of this
pattern (and therefore histograms) in the stored ciphertexts without detecting which
pattern is being counted or how often the pattern occurs. A pattern is expressed as
a Boolean formula on the fields of data records and can therefore specify a specific
field value, a range of field values, but also more complex patterns consisting of con-
junctions/disjunctions of fields values. For example, in an outsourced data set of patient
health records, a pattern could be age ∈ [50, 70] and (diabetes = 1 or hypertension =
1). The main idea of EPiC is to transform the problem of privacy-preserving pat-
tern counting into a summation of polynomial evaluations. Our work is inspired by
Lauter et al. [17] to use somewhat homomorphic encryption to address specific privacy-
preserving operations. In EPiC, we extend previous work on cPIR protocols [27] to de-
sign a new somewhat homomorphic encryption scheme, which is particularly efficient
in the context that we target in this paper, the summation of polynomial evaluations.
We also show how a general pattern, defined by a Boolean formula, is arithmetized into
a multivariate polynomial over GF (2), optimizing for efficiency. In conclusion, the
contributions of this paper are:

– EPiC, a new protocol to enable privacy-preserving pattern counting in MapReduce
clouds. EPiC reduces the problem of counting occurrences of a pattern to the sum-
mation of a multivariate polynomial evaluated on the cloud encrypted records.

– A new “somewhat homomorphic” encryption scheme specifically addressing se-
cure counting in a highly efficient manner.

– An implementation of EPiC and its encryption mechanism together with an exten-
sive evaluation in a realistic setting. The source code is available for download [6].

2 Problem Statement

Overview: We will use an example application to motivate our work. Along the lines
of recent reports [26], imagine a hospital scenario where patient records are managed
electronically. To reduce cost and grant access to, e.g., other hospitals and external
doctors, the hospital refrains from investing into an own, local data center, but plans



to outsource patient records to a public cloud. Regulatory matters require the privacy-
protection of sensitive medical information, so outsourced data has to be encrypted.
However, besides uploading, retrieving or editing patient records performed by multiple
entities (hospitals, doctors etc.), one entity eventually wants to collect some statistics
on the outsourced patient records without the necessity of downloading all of them.

2.1 Cloud Counting

More specifically, we assume that each patient record R, besides raw data such as
maybe a picture or some doctors’ notes, also includes one or more fields R.c contain-
ing some patterns. In practice, this field could denote the category or type of disease a
patient is suffering from, e.g., “diabetes” or “hypertension”. While one (or more) cloud
users U add, remove or edit records, eventually one cloud user U wants to know, how
many patients suffer from disease χ. That is, user U wants to extract the frequency of
occurrence of pattern χ and therewith how many records contain R.disease = χ. Due
to the large amount of data, downloading each patient record is prohibitive, and the
counting should be performed by the cloud.

While encryption of data, access control, and key management in a multi-user cloud
environment are clearly important topics, we focus on the problem of a-posteriori ex-
tracting information out of the outsourced data in a privacy-preserving manner. The
cloud must neither learn details about the data stored, nor any information about the
counting, what is counted, the count itself etc. Instead, the cloud processes U’s counting
queries “obliviously”. We will now first specify the general setup of counting schemes
for public clouds and then formally define privacy requirements. Note that through-
out the rest of this paper, we will assume the “pattern” a user U might look for to be
“countable”.

Definition 1 (Cloud Counting). Let R denote a sequence of records R := {R1, . . . , Rn}.
Besides some random data, each record Ri contains m different “countable fields”
Ri,k, 1 ≤ k ≤ m. Dk denotes the domain of the k-th field. Without loss of general-
ity, we assume each value stored in the k-th field of the i-th record can take values
Ri,k ∈ Dk = {0, 1, . . . , |Dk| − 1}, |Dk| is the domain size1 of Dk. For the “multi-
domain” of m countable fields we write D = D1 × · · · × Dm. A privacy-preserving
counting scheme comprises the following probabilistic polynomial time algorithms:

1. KEYGEN(κ) : using a security parameter κ, outputs a secret key S.
2. ENCRYPT(S,R) : uses secret key S to encrypt the sequence of records R. The

output is a sequence of encryptions of records E := {ER1 , . . . , ERn}, where ERi

denotes the encryption of record Ri.
3. UPLOAD(E) : uploads the sequence of encryptions E to the cloud.
4. PREPAREQUERY(S, χ) : this algorithms generates an encrypted query Q out of

secret S and the pattern χ ∈ D.
5. PROCESSQUERY(Q, E) : performs the actual counting. Uses a query Q, the se-

quence of ciphertexts E , and outputs a result EΣ .

1 Domain size |Dk| indicates the number of different values a field can take. We will use ∥ · ∥
later to denote the size in bits of some argument, e.g., ∥Dk∥ = ⌈log2 |Dk|⌉, ∥x∥ = ⌈log2 x⌉.



6. DECODE(S, EΣ) : takes secret S and EΣ to output a final result, the occurrences
of the specified pattern in R.

According to this definition, cloud user U encrypts the sequence of records and
uploads them into the cloud. If U wants to know the number of occurrences of χ in
the records, he prepares a query Q, which is – as we will see later – simply a fixed-
length sequence of encrypted values generated from the user-defined plaintext query.
U then sends Q to the cloud, and the cloud processes Q. Finally, the cloud sends a
result EΣ back to U who can decrypt this result and learn the number of occurrences
of χ. The idea of a performing the counting in the cloud is to put the main computa-
tional burden on the cloud side. Both storage and computational overhead for KEYGEN,
ENCRYT, UPLOAD, PREPAREQUERY, and DECODE should be lightweight compared
to PROCESSQUERY. The definition’s non-countable random data, e.g., an image, can be
IND-CPA (AES-CBC) encrypted. Therewith, it is of no importance for privacy below.

2.2 Privacy

In the face of a untrusted cloud infrastructure, cloud user U wants to perform counting
in a privacy-preserving manner. Intuitively, the data stored at the cloud as well as the
counting operations must be protected against a curious cloud. Informally, we demand
1.) storage privacy, where the cloud does not learn anything about stored data, and
2.) counting privacy, where the cloud does not learn anything about queries and query
results. The cloud, which we now call “adversary” A, should only learn “trivial” privacy
properties like the total size of outsourced data, the total number of patient records or
the number of counts performed for U .

We formalize privacy for counting using a game-based setup. In the following, ϵ(κ)
denotes a negligible function in the security parameter κ.

Definition 2 (Storage privacy). Let bit(j, Ri,k) be the j-th bit of the k-th field of
a record Ri. A challenger generates two same-size same-field-types sets of records
{R(0)

i }, {R(1)
i } and two patterns {χ0, χ1}. The challenger then uses ENCRYPT and

PREPAREQUERY to compute the encrypted sets of records E0, E1 and two encrypted
counting queries Qχ0

, Qχ1
. Using PROCESSQUERY, he evaluates E0 with Qχ0

and E1
with Qχ1 to get encrypted results EΣχ0

, EΣχ1
. The challenger sends I := {E0, E1, Qχ0 ,

Qχ1
, EΣχ0

, EΣχ1
} to adversary A. A protocol preserves storage privacy, iff for any

probabilistic polynomial time (PPT) algorithm A, the probability of correctly deter-
mining whether any bit of any Ri in any data set is equal to any other bit is not higher
than a random guess. That is, ∀χ0, χ1, 0 ≤ i0, i1 ≤ n, 1 ≤ k0, k1 ≤ m, 0 ≤ j0 ≤
∥Dk0∥, 0 ≤ j1 ≤ ∥Dk1∥, b0, b1 ∈ {0, 1}:∣∣∣∣Pr[A(I) determines “ bit(j0, R

(b0)
i0,k0

) = bit(j1, R
(b1)
i1,k1

)”]− 1

2

∣∣∣∣ ≤ ϵ(κ).

Definition 3 (Counting privacy). A challenger generates two same-size same-field-
types sets of records, and two patterns χ0, χ1, P r[χ0 = χ1] = 1

2 , uses ENCRYPT,
PREPAREQUERY, and PROCESSQUERY, and sends encrypted I := {E0, E1, Qχ0 , Qχ1 ,



EΣχ0
, EΣχ1

}, to A. Now, A outputs whether χ0 equals χ1, i.e., χ0
?
= χ1. A protocol

preserves counting privacy, iff for any PPT algorithm A the probability of outputting
correctly is not better than a random guess:∣∣∣∣Pr[A(I) outputs χ0

?
= χ1 correctly ]− 1

2

∣∣∣∣ ≤ ϵ(k).

With storage privacy, we capture the intuition that, by storing data and counting, the
cloud should not learn any information about the content it stores. In addition, count-
ing privacy captures the problem that, again by storing data and counting, the cloud
should not learn any details about the counting performed, e.g., which value is counted,
whether a value is counted twice or what the resulting count is.

2.3 MapReduce

The efficiency of counting relies on the performance of PROCESSQUERY which in-
volves processing huge amounts of data in the cloud. Cloud computing usually pro-
cesses data in parallel via multiple nodes in the cloud data center based on some com-
putation paradigm. For efficiency, PROCESSQUERY has to take the specifics of that
computation into account. One of the most widespread, frequently used framework for
distributed computation that is offered by major cloud providers today is MapReduce.
In the following, we will give a very compressed overview about MapReduce, only to
understand EPiC. For more details, refer to Dean and Ghemawat [9].

In the MapReduce framework, a user uploads his data into the cloud. During upload,
data is automatically split into pieces (InputSplits) and distributed among the nodes
in the cloud’s data center. If the user wants the cloud to perform an operation on the
outsourced data, he uploads an implementation of his operation, e.g., Java .class files, to
the cloud. More precisely, the user has to provide implementations of two functions, the
so called map function and the reduce function – these two functions will be executed
by the cloud on the user’s data.

A MapReduce “job” runs in two phases. Nodes in the data center storing an Input-
Split (Mapper nodes) scan through their InputSplit and evaluate the user’s map function
on data. This operation is performed by all Mappers in parallel. The output of each Map
function evaluation is a set of key-value pairs. All key values pairs are sent to so called
Reducer nodes. The Reducer nodes collect key-value pairs emitted by Mappers and ag-
gregate them using the user provided reduce function. Reducers produce a final output
that is sent back to the user. This setup takes advantage of the parallel nature of a cloud
data center and allows for scalability and elasticity.

3 EPiC Protocol

Before presenting EPiC, we briefly discuss why possible straightforward solutions do
not work in our particular application scenario. This motivates the need for more so-
phisticated solutions such as EPiC.

Precomputed Counters: One could imagine that the cloud user, in the purpose of
counting a value χk in a single countable field Dk, simply stores encrypted counters



for each possible value of χk in domain Dk in the cloud. Each time records are added,
removed or updated, the cloud user updates the encrypted counters. However, this ap-
proach does not scale very well in our scenario where multiple cloud users (different
“doctors”) perform updates and add or modify records. An expensive user side locking
mechanism would be required to ensure consistency of the encrypted counter values.
Moreover, in the case of more complex queries involving multiple countable fields, all
possible combinations of counters would need to be updated by users involving a lot of
user side computation.

Per-Record Counters (“Voting”): Alternatively and similar to a naive voting scheme,
to enable counting for a single countable field Dk, each encrypted record stored in the
cloud could be augmented with an encrypted “voting” field containing |Dk| subsets,
each of log2 n bits. If a record’s countable value in field Dk matches the value cor-
responding to a subset, then the LSB of the according subset is set to 1. The cloud
only sums the encrypted voting fields (using additive homomorphic encryption) for all
records. Again, such an approach does not allow flexible queries. To support counting
on m fields, the user would need to compute 2m counters for each record (2m combi-
nations for m fields) when adding, removing, or modifying a record. This puts a high
burden on the user. In conclusion, these straightforward solutions require heavy user-
side computation, bad for light-weight client such as mobile devices. Moreover, they do
not provide efficient, practical, and flexible counting solutions for multi-user, multiple
field data sets.

3.1 EPiC Overview

For ease of exposition, we first introduce EPiC for the simpler case of counting on
only one field (m = 1,D = D1) using univariate polynomial evaluation. Later, we
extend the technique to support counting on Boolean combinations of multiple fields
D1, . . . ,Dm based on multivariate polynomials.

EPiC’s main rationale is to perform the counting in the cloud by evaluating an in-
dicator polynomial, as query Q, specific to the value χ the cloud user U is interested
in. Conceptually, the cloud evaluates Pχ(x) on the value stored in the single countable
field of each record. The outcome of all individual polynomial evaluations is a (large)
set of values of either “1” or “0”. The cloud now adds these values and sends the sum
back to U , who learns the number of occurrences of χ in the investigated set of records.

3.2 Counting on a single field

If U wishes to count occurrences of χ in the single-field data set in an oblivious man-

ner, the idea is to prepare a univariate indicator polynomial Pχ(x) =

{
1, if x = χ
0, otherwise

and scan through the data set R = {R1, . . . , Rn} of all patient records to compute
the sum

∑
x Pχ(x). The result is the number of occurrences of χ in the data set. One

way to generate a polynomial Pχ(x) is to construct the interpolation polynomial in the
Lagrange form Pχ(x) :=

∑|D|−1
j=0 aj · xj :=

∏
α∈D,α̸=χ

x−α
χ−α , where α are all possible

values in D except χ. The polynomial Pχ(x) is of degree |D| − 1, and its coefficients
aj are uniquely determined based on χ.



In EPiC’s settings, each countable value Ri,k is encrypted to ERi,k
(in single-

field case, k = 1). User U prepares the indicator polynomial based on χ and encrypts
coefficients aj to Eaj then sends them to the cloud, which now computes the encrypted
sum EΣ :=

∑n
i=1 Pχ(ERi,1) =

∑n
i=1

∑|D|−1
j=0 Eaj · (ERi,1)

j . In order for the cloud
to compute EΣ , additively and multiplicatively homomorphic properties are required
for the encryption, which we describe in Section 3.5. Finally, U simply receives back
EΣ and only decrypts the count σ := DEC(EΣ) = Pχ(x). This does not require high
computational costs at the user, suiting the cloud computing paradigm well.

Cloud computation cost: Our counting technique above requires n · |D| additions,
n · |D| multiplications of coefficients Eaj and monomials Ej

Ri,1
, and n · |D| exponen-

tiations. Note that in the case of a small domain, i.e., |D| = 2, there are no exponenti-
ations, and multiplications dominate the computational costs of this approach. We can
furthermore improve efficiency by rearranging the order of computations as follows:

EΣ :=
n∑

i=1

Pχ(ERi,1) =
n∑

i=1

|D|−1∑
j=0

Eaj · (ERi,1)
j =

|D|−1∑
j=0

(Eaj ·
n∑

i=1

(ERi,1)
j). (1)

Therewith, only |D| multiplications are required. We will apply this technique also to
multiple field counting later, significantly improving performance.

Oblivious counting: Our indicator polynomial based counting method is oblivious:
first, the query is submitted to the cloud as a sequence of encrypted coefficients of the
indicator polynomial; second, no matter what query is made, exactly |D| coefficients
(including 0-coefficients) are sent, thus preventing the cloud to infer query information
based on the query size.

3.3 Counting patterns defined by a Boolean formula

We now extend the indicator polynomial based counting technique towards a general
solution for counting patterns defined by any Boolean combination of multiple fields
in the data set. That is, each (patient) record can contain multiple countable fields,
such as Ri,1, Ri,2, . . . , Ri,m. The key technique for defining an indicator polynomial
corresponding to an arbitrary Boolean expression among multiple fields is to transform
Boolean operations to arithmetic operations, which is similar to arithmetization, cf.
Babai and Fortnow [5] or Shamir [23].

Conjunctive counting: Assume cloud user U is interested in counting the number of
records that have their countable fields set to the pattern χ = (χ1, . . . , χm). Here, χk,
1 ≤ k ≤ m, denotes the queried value in the k-th field. Let φ = (x1 = χ1∧ . . .∧xm =
χm) be the conjunction among m fields in the data set. User U can now construct
Pφ(x̂) =

∏m
k=1 Pχk

(xk), where x̂ = (x1, . . . , xm) denotes the variables in the multi-
variate polynomial Pφ(x̂), and Pχk

(xk) is the univariate indicator polynomial of the
single k-th field for counting the single value χk as defined in Section 3.2. There-
with, Pφ(x̂) is the multivariate indicator polynomial for the desired pattern χ. Note
that the size of the multi-domain D is |D| =

∏m
k=1 |Dk|, and the degree of Pφ(x̂) is∑m

k=1 (|Dk| − 1).



Disjunctive counting: Assume the data set has 2 countable fields, and U’s objec-
tive is to count the number of records that have value χ1 in D1 or value χ2 in D2.
The multivariate indicator polynomial for this disjunction is Pχ1∨χ2(x̂) = Pχ1(x1) +
Pχ2(x2) − Pχ1∧χ2(x̂), where Pχ1(x1), Pχ2(x2) are univariate indicator polynomials
for D1,D2, respectively, and Pχ1∧χ2(x̂) is a multivariate indicator polynomial for con-
junctive counting between D1 and D2. This method can be easily generalized to design
counting query for disjunctions of m fields.

Complementary counting: U can count records that do not satisfy a condition among
fields by “flipping” the satisfying indicator polynomial: P¬φ(x̂) = 1− Pφ(x̂).

Integer range counting: Assume U wants to count records having a single field Dk

lying in an integer range [a, b], i.e., φ = (xk = a ∨ xk = a+ 1 ∨ . . . ∨ xk = b). Based
on disjunctive constructing method, we have P[a,b](xk) = Pa(xk) +Pa+1(xk) + . . .+
Pb(xk) − Pa∧a+1 − . . .; Since (xk = u) and (xk = v) are exclusive disjunctions for
any u ̸= v ∈ [a, b], P[a,b](xk) reduces to P[a,b](xk) =

∑b
χk=a Pχk

(xk).
In summary, EPiC’s oblivious counting technique based on indicator polynomial

allows counting with respect to any Boolean formula on multiple fields. Users can con-
struct complex queries such as integer comparisons, e.g., Pχk≤a(xk) = P[0,a](xk), or
Pχk>a(xk) = P[a+1,|Dk|−1](xk). Our initial motivating example of Section 1 can be

expressed as: Page∈[50,70] and (dia=1 or hyp=1)(x̂) =
(∑70

age=50 Page(x̂)
)
·

(Pdia=1(x̂) + Phyp=1(x̂)− Pdia=1(x̂) · Phyp=1(x̂)).
Although the user-defined queries are different in construction and length, the en-

crypted queries Q always have exactly |D| =
∏m

k=1 |Dk| encrypted coefficients (includ-
ing 0-coefficients). As in the case of single-fields, this prevents the cloud to differentiate
queries based on query sizes. To improve performance, we also apply the computation
method of (1) for the sequence Ê(Ri) = (ERi,1 , . . . , ERi,m) of encrypted fields and
coefficients aĵ corresponding to monomials xj1

1 · xj2
2 · · ·xjm

m :

EΣ =
n∑

i=1

Pχ(Ê(Ri)) =
∑
ĵ∈D

(Eaĵ
·

n∑
i=1

m∏
k=1

(ERi,k
)jk), ĵ = (j1, . . . , jm) ∈ D, (2)

3.4 Optimization through arithmetization in GF (2)

EPiC’s efficiency relies on the computations performed by the cloud. As discussed
above, there are no exponentiations required for counting on a binary field. Conse-
quently, we convert “generic” fields (of large domain size) into multiple binary fields,
thereby avoiding costly exponentiations. Note that as the conversion preserves Boolean
expression output, results shown in Section 3.3 still hold, and protocol details discussed
later in Section 3.6 remain unchanged.

Our idea is to store every generic field Dk as separate binary fields Dk,1, Dk,2, . . .,
Dk,∥Dk∥. Therefore, m generic fields D1, . . . ,Dm become

∑m
k=1 ∥Dk∥ binary fields

D1,1, . . . ,D1,∥D1∥, . . . ,Dm,1, . . . ,Dm,∥Dm∥. The indicator polynomial for counting χk

= (χk,1, . . . , χk,∥Dk∥) in field Dk is now constructed as Pχk,1∧...∧χk,∥Dk∥(xk,1, . . . ,

x1,∥Dk∥) =
∏∥Dk∥

l=1 Pχk,l
(xk,l), where xk,l indicates the l-th bit in Dk, and χk,l de-

notes the corresponding queried bit value. Applying arithmetization to “transform”



from Boolean to multivariate polynomials, Boolean expressions of m generic fields can
be converted into equivalent multiple binary fields. For convenience, we call the conver-
sion to binary fields “GF(2) arithmetized” (shortly “G”), while the original is “Basic”
(shortly “B”). We note that although the number of coefficients (denoted as #) of the
GF(2) arithmetized multivariate indicator polynomial corresponding to each query re-
mains the same as in the generic case, i.e., #G = |D(G)| = 2∥D

(G)∥ = 2
∑m

k=1 ∥Dk∥ =∏m
k=1 |Dk| = |D(B)| = #B , the (multivariate) degree of the GF(2) arithmetized poly-

nomial is much lower at deg(PG) =
∑m

k=1 ∥Dk∥ <
∑m

k=1(|Dk|−1) = deg(PB). Our
“transformation” into multiple binary fields and resulting lower degree polynomials re-
duces computational costs on the cloud significantly. We refer to EPiC’s evaluation in
Section 4 for details.

3.5 Encryption

Since EPiC’s indicator polynomial based counting technique involves additions and
multiplications on ciphertexts, a homomorphic encryption scheme is needed as a build-
ing block. While there already exist various schemes [8, 10, 17, 29], their computational
complexities are high, rendering their use in current clouds impractical. Although EPiC
can seamlessly integrate related work, we use a novel, specific encryption scheme. This
scheme does not enjoy the same properties as related work, but is especially practical
in the setting we target.

EPiC’s somewhat homomorphic encryption: We design a somewhat homomorphic
encryption scheme derived from the computational Private Information Retrieval (cPIR)
technique of Trostle and Parrish [27]. Our new scheme is a secret key encryption
scheme, where the cloud does not have the secret key to decrypt the data, but instead
blindly performs operations on outsourced data. EPiC’s somewhat homomorphic en-
cryption is defined by the following set of operations.

– KEYGEN(s1, s2, n, |D|): Parameters s1, s2 ∈ N are security parameters, n ∈ N
is the upper bound for the total number of records in the data set, and |D| is the
multi-domain size of m countable fields. KEYGEN computes 1.) a random prime q
such that q > n, 2.) a random prime p where ∥p∥ ≥ s1 + ∥n∥+ ∥q∥+

∑m
k=1(s2 +

∥q∥) · (|Dk| − 1), and 3.) a random b ∈ Zp. We discuss the selection of q and p
further below. The secret key, the output of KEYGEN, is defined as S := {p, b}.

– ENC(P): Selects random number r, ∥r∥ ≤ s2, and encrypts the plaintext P to
C = ENC(P) := b · (r · q + P) mod p. In the rest of the paper, we instead use the
following shorthand: C = ENC(P) := b · e(P) mod p, where e(x) := r · q + x.

– DEC(C): Decrypts C by computing P = DEC(C) := b−1 · C mod p mod q.

The addition and multiplication operations on ciphertexts take place in the inte-
gers. There is no modulo reduction, as the cloud does not know p. One can verify that
this scheme provides additively and multiplicatively homomorphic properties (see Ap-
pendix A). Note that a multiplication of ciphertexts will increase the exponent of b in
the result. Therefore, in general, a decryption of a ciphertext after (j−1) multiplications
has to be Pj = DEC(Cj , j) := b−j · Cj mod p mod q. So, contrary to related work, de-
cryption requires knowing the number of multiplications performed on the ciphertext.



Also, EPiC’s encryption scheme does also not allow addition of two ciphertexts that
have different exponents of b, i.e., are results of a different number of multiplications.
In the particular context of EPiC, we can accept these limitations, and we gain high
computation efficiency in return. Finally, this scheme is only somewhat homomorphic:
as the cloud cannot perform modulo operations, ciphertexts increase for every multipli-
cation and addition (see Appendix A). This requires a careful selection of q and p in
advance, such that decryption remains possible.

Encrypting data and query: We employ this encryption scheme to encrypt both count-
able fields and query. For the privacy requirements (discussed later), we use different
secret keys for data fields and query. Each countable field is encrypted using the secret
key S = {p, b} mentioned above: ERi,k

= ENC(S, Ri,k). The encryption of a counting
query Q, as a sequence of encrypted coefficients Eaĵ

, however, is more complicated.
For each new counting query Q, the user U generates a random number b′ ∈ GF (p)

to create a new secret key S ′ = {p, b′}. A simple method of encrypting aĵ to Eaĵ
=

ENC(S ′, aĵ) does not allow the decryption of the total sum EΣ due to different expo-
nents of b in the multivariate monomials, explained below.

Consider the cloud computation in (2). Every ĵ-th, ĵ = (j1, . . . , jm), multivari-
ate monomial

∏m
k=1(ERi,k

)jk has a multi-degree that is dependent on ĵ. More pre-
cisely, deg

∏m
k=1(ERi,k

)jk =
∑m

k=1 jk, denoted as d1(ĵ). If aĵ was simply encrypted
to Eaĵ

= ENC(S ′, aĵ), each product Eaĵ
·
∑n

i=1

∏m
k=1(ERi,k

)jk would contain b of
different degree d1(ĵ). This would prohibit additions among them to obtain the decrypt-
able final sum EΣ . Our approach is to “augment” the exponents of b in the coefficients.
Specifically, we encrypt aĵ to

Eaĵ
:= ENC(S ′, aĵ) · (ENC(S, 1))d2(ĵ) = b′ · bd2(ĵ) · e(aĵ) mod p, (3)

where d2(ĵ) =
∑m

k=1(|Dk| − jk − 1). Therewith, the final sum EΣ will contain b′ of
degree 1, and b of degree d = d1(ĵ) + d2(ĵ) =

∑m
k=1(|Dk| − 1), which is independent

of ĵ. All multivariate monomials now have the same exponents of b, allowing successful
decryption of EΣ .

Decryption and requirements: Consider a ciphertext C = ENC(P) = b · e(P) mod p

and its decryption procedure: DEC(C) = b−1 · C mod p mod q
(1)
= e(P) mod p mod

q
(2)
= e(P) mod q

(3)
= P . For this to hold, we need: (1) b−1 ∈ GF (p); (2) e(P) ∈

GF (p); (3) P ∈ GF (q). While the first condition automatically holds for prime p, the
other conditions need careful selection of p and q. In EPiC, the user U receives the
encrypted final sum EΣ from the cloud. The last two conditions apply to the decryption
of EΣ as follows:

1. σ ∈ GF (q) ⇐⇒ n < q.
2. e(σ) ∈ GF (p) ⇐⇒

∑
ĵ∈D(e(aĵ) ·

∑n
i=1

∏m
k=1(e(Ri,k))

jk) < p. The prime p
must be chosen such that it satisfies the last inequality for any value of e(aĵ) and
e(Ri,k). Manipulating the last inequality, we can establish the lower bound on the
size of p: ∥p∥ ≥ ∥n∥+ ∥q∥+

∑m
k=1(s2 + ∥q∥) · (|Dk| − 1). As our scheme relies



on the Hidden Modular Group Order assumption, a security parameter s1 has to be
added to the size of p (see [27] for more details):

∥p∥ ≥ s1 + ∥n∥+ ∥q∥+
m∑

k=1

(s2 + ∥q∥) · (|Dk| − 1). (4)

3.6 Detailed Protocol Description

With all ingredients ready, we now describe EPiC using the notation of Section 2.1.

KEYGEN(s) Based on security parameter κ, cloud user U chooses s1, s2 for the some-
what homomorphic encryption together with a symmetric key K for a block cipher such
as AES. U also computes KEYGEN(s1, s2, n, |D|) for the somewhat homomorphic en-
cryption, determining an upper bound n for the total number of patient records that
might be stored and a value for the domain D of the countable field. Secret key S is the
output of the somewhat homomorphic encryption KEYGEN and K, i.e., S := {p, b,K}.

ENCRYPT(S,R) Assume U wants to store n patient records R = {R1, . . . , Rn}.
Each record Ri is encrypted separating the countable values Ri,k from the rest of the
record. Ri,k is encrypted using the somewhat homomorphic encryption mechanism,
i.e., ERi,k

:= ENC({p, b}, Ri,k). For the rest of the record Ri, a random initialization
vector IV is chosen and the record is AESK −CBC encrypted. In conclusion, a record
Ri encrypts to ERi := {ERi,1 , . . . , ERi,m , IV,AESK − CBC(Ri,rest)}. The output of
ENCRYPT is the sequence of encrypted records. E := {ER1 , . . . , ERn}.

UPLOAD(E) Upload simply sends all records as one large file to the MapReduce cloud
where the file is automatically split into InputSplits.

PREPAREQUERY(S, χ) To prepare a query for χ, U computes the |D| coefficients aĵ ,
ĵ ∈ D, of the indicator polynomial Pχ(x̂) as described in Section 3.3. A new secret
key S ′ = {p, b′} is generated (Section 3.5) and associated to the query. Coefficients aĵ
are encrypted according to Equation (3), using the new secret key S ′, and sent to the
cloud. The cloud will be using these coefficients to perform the evaluation of Pχ(x̂).
Consequently in EPiC, the output Q of PREPAREQUERY sent to the cloud is Q :=
{Eaĵ

, ĵ ∈ D}.

PROCESSQUERY(Q, E) Based on the data set size and the cloud configuration, the
MapReduce framework has selected M Mapper nodes and 1 Reducer node. Each Map-
per node stores one InputSplit.

Algorithm 1 depicts the specification of EPiC’s map and reduce functions that will
be executed by the cloud. In the mapping phase, for each input record in their locally
stored InputSplits, the Mappers compute in parallel all monomials of the countable
fields and add the same-degree monomials together. After the Mappers finish scan-
ning over all records in their InputSplits, the sums of monomials are output as key-
value pairs. These pairs contain the multi-degree ĵ as key, and the computed sum sĵ as
value. In MapReduce, output of the Mappers is then automatically sent to the Reducer
(“emit”). The sums sĵ emitted by each Mapper are taken over records in the InputSplit
corresponding to that Mapper only. The Reducer, therefore, based on the sums received



Algorithm 1: PROCESSQUERY

For each Mapper M :

init sĵ := 0, ∀ĵ ∈ D
forall ERi in InputSplit(M) do

read {ERi,1 , . . . , ERi,m}
forall ĵ = (j1, . . . , jk) ∈ D do

sĵ := sĵ +
∏m

k=1 (ERi,k )
jk

end
end
emit {ĵ, sĵ}, ∀ĵ ∈ D

Reducer R:

init EΣ := 0, Sĵ := 0, ∀ĵ ∈ D
forall {ĵ, sĵ} in MappersOutput do

Sĵ := Sĵ + sĵ
end
forall ĵ in D do

EΣ := EΣ + Ea
ĵ
· Sĵ

end
write {EΣ}

from all Mappers, combines them together to obtain the global sums, i.e., the sums over
all records in the data set. In a last step, the Reducer uses the coefficients received from
U to evaluate the polynomial by computing the inner product with the global sums. The
result is sent back to U and can be decrypted to obtain the count value.

DECODE(S, EΣ) Cloud user U receives EΣ and computes σ = DEC(EΣ , d,S,S ′) :=
b′−1 · b−d · EΣ mod p mod q, where d =

∑m
k=1(|Dk| − 1).

Privacy: Due to space constraints, EPiC’s formal proofs can be found in Appendix B.

4 Evaluation

To show its real-world applicability, we have implemented and evaluated EPiC in the
Hadoop MapReduce framework v1.0.3 [4]. The source code is available for down-
load [6]. We have evaluated EPiC on Amazon’s public MapReduce cloud [1]. Our EPiC
implementation is written in Java, and all cryptographic operations are unoptimized, re-
lying on Java’s standard BigInteger data type. Still, exponentiation, e.g. Cj , with j = 15
and |C| ≈ 4000 takes < 2ms on a 1.8GHz Intel Core i7 laptop, a single addition is not
measurable with < 1µs. Figure 3 shows a benchmark of various operations on the ci-
phertexts using our encryption scheme. We would like to stress that the exponentiation,
the most critical operation in our scenario, is two orders of magnitude faster than the
one by Lauter et al. [17] – there, a single multiplication already consumes 40ms on a
stronger CPU with 2.1GHz. In our evaluation, we use security parameters s1 = 400
bits as suggested by Trostle and Parrish [27] for good security, and s2 = |r| = 160 bits.
We have implemented a data generator program to randomly generate patient records
with m countable fields with size between 4 and 10 bits. As our evaluation targets com-
paring the performance of EPiC counting to non-private counting, we use encryption
and decryption on the countable fields only. Other fields are not considered during the
evaluation.

In this section, we evaluate the performance of EPiC by comparing our “Basic” and
“GF(2) arithmetized” solutions with “non-privacy-perserving” solution. Unless other-
wise stated, the single/multi-domain size in both “Basic” and “GF(2) arithmetized”
solutions is always set to the same value |D| for valid comparison. For shorter presenta-
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tion, we use “B” as index of the cost in Basic approach, and “G” in GF(2) arithmetized
approach. We also set u = s1 + ∥n∥ + ∥q∥, v = s2 + ∥q∥ and use them as fixed
parameters (with respect to |D|) when evaluating the cost.

4.1 Size of prime p

As mentioned in Section 3.5, while the prime q depends only on the number of records
n, the prime p also depends on |D|. Derived from (4), we show the benefit of GF(2)
arithmetized approach by demonstrating that a conversion to multiple binary fields re-
duces ∥p∥ significantly: ∥p∥B = u+ (|D| − 1) · v and ∥p∥G = u+ ∥D∥ · v.

Figure 1 shows the logarithmic increase of ∥p∥ with GF(2) arithmetized approach
and linear increase with Basic approach.

4.2 Storage cost

The storage cost depends on the size of the data stored on the cloud. The larger the data
is, the more the user has to pay for to the cloud, e.g. Amazon S3 [3]. In the following,
we only focus on the size of the countable fields, which is determined by the size of
prime p. Other fields are not considered.

Since the encrypted value in a countable field is an element in GF (p), its size is
at most ∥p∥. In Basic approach, each record stores ∥p∥B bits for only one field. In
GF(2) arithmetized approach, each record stores ∥D∥ binary fields, each of size ∥p∥G.
Therefore, the required storage is SB = u+(|D|−1) ·v and SG = ∥D∥· (u+∥D∥·v).

Again, in Figure 2, we see a linear increase of storage in terms of the domain size
|D| in Basic approach, while the GF(2) arithmetized approach consumption increase
only logarithmically. This demonstrates a significant improvement on reducing the data
size when “splitting” them into bit fields.

4.3 User computation and communication cost

Computation cost U prepares the query in plaintext, which incurs very low compu-
tation cost compared to the cloud computation performed on ciphertexts. The encryp-
tion of one coefficient takes roughly 1ms (Figure 3), resulting in approximately |D| ms
for encrypting |D| coefficients in the query, regardless of using Basic or GF(2) arith-
metized. The count is obtained by decrypting only one final sum, therefore the total
computation cost at the user side is negligible compared to the cloud cost.
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Communication cost

Sending query: Due to oblivious counting, user U prepares and sends all |D| coefficients
corresponding to all monomials to the cloud. The transferred size of the encrypted
coefficients, however, is |D| · ∥p∥, depending on the size of p. Consequently, the query
size is QB = |D| · (u+ (|D| − 1) · v) and QG = |D| · (u+ ∥D∥ · v).

Example: for a data set containing n = 106 records with a countable field of domain
size |D| = 1024, the query size is QB = 22.5 MBytes, and QG = 280 KBytes.

Receiving answer: The size of the received ciphertext (final sum) depends on the max-
imum size of the multivariate monomial. The size of a monomial is determined by the
number of performed multiplications, i.e., its multi-degree. Consequently, the answer
size depends on the size of monomials of the maximum multi-degree, i.e., |D| in the Ba-
sic approach, and ∥D∥ in the GF(2) arithmetized approach. We have AB = |D|·∥pB∥ =
|D| · (u+ (|D| − 1) · v) and AG = ∥D∥ · ∥pG∥ = ∥D∥ · (u+ ∥D∥ · v).

Example: for a data set containing n = 106 records with a countable field of domain
size |D| = 1024, the answer size is AB = 22.5 Mbytes, and AG = 2.7 KBytes.

Total transfer cost: The total communication cost (Figure 4) in GF(2) arithmetized ap-
proach is much less than in Basic approach: CB = QB+AB = 2·|D|·(u+(|D|−1)·v),
and CG = QG +AG = (|D|+ ∥D∥) · (u+ ∥D∥ · v).

4.4 Cloud computation

We evaluate the cloud computation cost for large-scale data sets on Amazon’s pub-
lic cloud. As Amazon imposes an (initial) limit of 20 instances per job, we restrict
ourselves to 20 Standard Large On-Demand instances [2]. Each instance comprises 4
processors with 2.27GHz Intel Xeon CPU, 4MB of cache, and total 7.5GB of memory.

Variable data set size: Coming back to our example application scenario with patient
records, in a first experiment, we fix the size of each record to 1MB. In the real world,
this would reflect to a patient record that might, besides doctoral notes and prescription,
also comprise, e.g., an X-ray picture. The data set size (x-axis) is varied from 100GB to
1TB. In this experiment, we query a countable field of size |D| = 16. Figure 5 shows
the average counting time for a MapReduce job on the whole data set of different sizes.
The y-axis shows the total time for MapReduce to evaluate the user’s query. This is
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the time that a user has to pay for to, e.g., Amazon [2]. To put our results into per-
spective, we not only show the time for both Basic and GF(2) arithmetized approaches,
but as well the time a “non-privacy-preserving” counting would take, i.e., the countable
field is not encrypted and directly counted. Moreover, we also show the overhead ra-
tio between EPiC’s two approaches and non-private counting. The additional overhead
introduced by EPiC over non-private counting is less than 20%. As Amazon’s pricing
scales directly proportional with the CPU time. This additional overhead would also be
the additional amount of money user U would have to pay Amazon. We conjecture that
only 20% overhead/additional cost over non-privacy-preserving counting is acceptable
in many real-world situations, rendering EPiC practical.

Variable record size: To also evaluate the effect of the size of the records on the general
performance, we run the system with a fixed data set size of 50GB. The record size is
changed from 100KB to 1MB. Figure 6 shows that, while IO time remains unchanged,
a higher number of records increases counting time in EPiC. However, the overhead
of EPiC is still under 20% even for small record sizes such as 100KB compared to
non-private counting. That is, EPiC is efficient even for small patient records.

Effect of multiple fields: To study the efficiency of transforming a single countable field
D into multiple subfields of different size, we conduct an experiment on a data set size
of 100GB. The data set contains a countable field of domain size |D| = 1024 (10 bits).
We compare three cases: (a) transform D into 10 single bit fields; (b) transform D into
5 fields of 2 bits; (c) transform D into 3 fields of 3 bits, 3 bits, and 4 bits. In Figure 7,
we can see that the GF(2) arithmetized approach yields the best performance.



Query types: Finally, to evaluate the effects of different query types on the performance,
we run EPiC with a fixed data set of 100 GB. Total domain size is |D| = 1024. We
make 3 different queries: (a) query for a specific value; (b) query for the MSB of the
field equal to 0; (c) query for the LSB of the field equal to 0. Figure 8 demonstrates that
there is no significant difference in counting time between different queries.

5 Related Work

Protecting privacy of outsourced data and delegated operations in a cloud computing
environment is the perfect setting for fully homomorphic encryption. While there is cer-
tainly a lot of ongoing research in fully homomorphic encryption (see Vaikuntanathan
[28] for an overview), current implementations indicate high storage and computational
overhead [11, 20], rendering fully homomorphic encryption impractical for the cloud.

Similar to EPiC, Lauter et al. [17] observe that, depending on the application,
weaker “somewhat” homomorphic encryption might be sufficient. Lauter et al. [17]’s
scheme is based on a protocol for lattice-based cryptography by Brakerski and Vaikun-
tanathan [8]. However, for the application scenario considered in this paper, EPiC’s
somewhat homomorphic encryption scheme allows for much faster exponentiation.

Superficially, our work bears similarity with the work of Kamara and Raykova [16]
that protect polynomial evaluation by randomized reduction techniques. With q being
the degree of a polynomial, the user splits each data record into 2 · q + 1 shares, each
of size 2 · q + 1. Shares are then uploaded and evaluated in parallel, and results are
aggregated. However, storage expansion, even for modest values of q, the approach
quickly becomes impractical. Also, for different polynomials, the user would need to
upload the data multiple times.

Other research has addressed similar problems of performing operations on out-
sourced data, such as privacy-preserving searching on encrypted data [7, 19, 24, 30].
While searching and counting might be closely related, it is far from straightforward to
adopt these schemes to perform efficient counting in a highly parallel cloud computing,
e.g., MapReduce environment. Also notice that, e.g., Boneh et al. [7] rely on the com-
putation of very expensive bilinear pairings for each element of a data set, rendering
this approach impractical in a cloud setting.

6 Conclusion

In this paper, we present EPiC to address a fundamental problem of statistics com-
putation on outsourced data: privacy-preserving pattern counting. EPiC’s main idea
is to count occurrences of patterns in outsourced data through a privacy-preserving
summation of the pattern’s indicator-polynomial evaluations over the encrypted dataset
records. Using a “somewhat homomorphic” encryption mechanism, the cloud neither
learns any information about outsourced data nor about the queries performed. Our im-
plementation and evaluation results for MapReduce running on Amazon’s cloud with
up to 1 TByte of data show only modest overhead compared to non-privacy-preserving
counting. Contrary to related work, this makes EPiC practical in a real-world cloud
computing setting today.
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A Somewhat homomorphic properties

Additively homomorphic: DEC(Cj
1 + Cj

2, j)

= b−j · [(b · e(P1) mod p)j + (b · e(P2) mod p)j ] mod p mod q

= [b−j · (b · e(P1) mod p)j mod p mod q] + [b−j · (b · e(P2) mod p)j mod p mod q]

= DEC(Cj
1, j) + DEC(Cj

2, j)

Multiplicatively homomorphic: DEC(Cj
1 · Ck

2 , j + k)

= b−(j+k) · [(b · e(P1) mod p)j · (b · e(P2) mod p)k] mod p mod q

= [b−j · (b · e(P1) mod p)j mod p mod q] · [b−k · (b · e(P2) mod p)k mod p mod q]

= DEC(Cj
1, j) · DEC(Ck

2 , k)

Ciphertext size: As multiplications and additions are performed on the integers without
modulo operations, the size of result increases after the each operation.

– Addition: ∥C1 + C2∥ =

{
∥C1∥+ 1, if ∥C1∥ = ∥C2∥.
max(∥C1∥, ∥C2∥), otherwise. .

– Multiplication: ∥C1 · C2∥ = ∥C1∥+ ∥C2∥ − 1.
– Scalar multiplication: ∥n · C∥ = ∥n∥+ ∥C∥ − 1.
– Exponentiation: ∥Cj∥ = j · ∥C∥ − (j − 1).

B Privacy

Lemma 1 (Storage privacy). Based on the security of the cPIR scheme by Trostle and
Parrish [27], EPiC preserves storage privacy.



Proof (Sketch).
PIR security of Trostle and Parrish [27] can be summarized as follows: an adversary

receives an encrypted PIR request QPIR = (Ev1 , . . . , Evu) from a challenger, where
vi = 1, iff the i-th row is requested from a u × u bit database, and vi = 0, otherwise.
Informally, the encrypted Evi are computationally indistinguishable from random for
the adversary.

We now prove our lemma for a single-field data set. We show that any PPT (t, ϵ)-
adversary A breaking EPiC’s storage privacy (Definition 2) in t steps with non-negligible
advantage ϵ can be used to construct an (t′, ϵ′)-adversary A′ as a subroutine breaking
the cPIR protocol by Trostle and Parrish [27].

The proof is by straightforward reduction, and we construct A′ as follows. A′ re-
ceives QPIR = (Ev1 , . . . , Evu) from a challenger. A′ splits QPIR into two halves
E0, E1, i.e., treating the PIR request as two encrypted data sets of the same size and same
field types. If u is odd, A′ removes an arbitrary element and splits. Since vi are binary,
E0, E1 are data sets containing only one binary field. A′ randomly selects l1, l2, l3, l4
and creates two counting queries Qχ0 = {Evl1

, Evl2
}, Qχ1 = {Evl3

, Evl4
}. These are

two valid queries, because for a binary field, any query contains only 2 coefficients. The
queries correspond to two arbitrary patterns χ0, χ1. Then A′ runs PROCESSQUERY on
E0 with Qχ0 , and E1 with Qχ1 , thereby obtaining EΣχ0

and EΣχ1
. Now, A′ forwards

{E0, E1, Qχ0 , Qχ1 , EΣχ0
, EΣχ1

} to A. This adversary determines in t steps whether

bit(j0, R
(b0)
i0,1

) and bit(j1, R
(b1)
i1,1

) in E are different, i.e., distinguishes any two bits in
QPIR, with advantage ϵ. Consequently, A′ automatically breaks the PIR security in
t′ = t steps with advantage ϵ′ = ϵ, rendering our reduction tight.

The proof for storage privacy in multiple field data sets is identical, if we view the
PIR request as a concatenation of many single-field data sets, i.e., each subset of the
PIR request is a single-field data set. ⊓⊔

Lemma 2 (Counting privacy). Based on the security of the cPIR scheme by Trostle
and Parrish [27], EPiC preserves counting privacy.

Proof (Counting privacy).
As of Lemma 1, {E0, E1} does not provide any information for a PPT (t, ϵ)-adversary

A that distinguishes queries in t steps with non-negligible probability advantage ϵ. We
prove counting privacy again by reduction of the security of the cPIR protocol by [27].
Assume the existence of a PPT (t, ϵ)-A above that returns “equal” or “different”. We
will use A as a subroutine to construct a new (t′, ϵ′)-adversary A′ against PIR.

Consider a PIR setting, where a challenger wants to retrieve the i0-th row from a
u× u database. Let q be a prime greater than 2. The challenger prepares a PIR request
QPIR = (Ev1 , . . . , Evu), where Evi0

= b · (rvi0 · q + 1) mod p for the requested row,
and Evj = b · rvj · q mod p for other rows, j ̸= i0, r are random numbers generated for
every Evj . The challenger sends QPIR to A′, proceeding as follows:

1. A′ creates superset S = {Q(j)}1≤j≤u of queries Q(j), where Q(j) = QPIR\{Evj}.
So, Q(j) comprises all elements of QPIR except element vj . A′ also creates an
empty set S0. Note that Q(i0) contains only encryptions of 0. For each j ̸= i0, Q(j)

contains vi0 , an encryption of 1. A′ wants to determine i0.



2. A′ selects any two subsets Q(i), Q(j) out of S, runs PROCESSQUERY and sends
{E0, E1, Q(i), Q(j), EΣi , EΣj} with randomly chosen values {E0, E1, EΣi , EΣj} to
A. Note that due to Lemma 1, A cannot determine that {E0, E1, EΣi , EΣj} are
random and do not fit queries Q(i), Q(j). Otherwise, A would learn bits of E0, E1.
Subsets Q(i), Q(j) are treated as two counting queries, each of which contains u−1
coefficients. These are valid queries for EPiC data sets with (multi-)domain size
|D| = u− 1.

3. If A returns “equal”, A′ adds indices i and j into S0, i.e., S0 = S0 ∪ {i, j} and
repeats at step 2 until S is empty. However, if A returns “different”, A′ knows that
one of them must be Q(i0). A′ then picks any k from S0 and sends {E0, E1, Q(i),
Q(k), EΣi , EΣk

} to A. If A returns “equal”, i0 = j, and i0 = k, otherwise.

The above algorithm performs at most u/2 calls to A before it breaks PIR. Thus, A′ is
a (t · u/2, ϵ)-adversary against PIR. ⊓⊔


