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Abstract

Functional encryption is an emerging paradigm for public-key encryption that enables fine-
grained control of access to encrypted data. In this work, we present new perspectives on security
definitions for functional encryption, as well as new lower bounds on what can be achieved. Our
main contributions are as follows:

• We show a lower bound for functional encryption that satisfies a weak (non-adaptive)
simulation-based security notion, via pseudo-random functions. This is the first lower
bound that exploits unbounded collusions in an essential way.

• We put forth and discuss a simulation-based notion of security for functional encryption,
with an unbounded simulator (called USIM). We show that this notion interpolates
indistinguishability and simulation-based security notions, and has strong correlations to
results and barriers in the zero-knowledge and multi-party computation literature.
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1 Introduction

Functional encryption is a new paradigm for public-key encryption that enables fine-grained control
of access to encrypted data. For instance, it provides the ability to generate and release secret keys
associated with a keyword that can decrypt only those documents that contain the keyword. More
generally, functional encryption allows the owner of a “master” secret key to release restricted secret
keys that reveal a specific function of encrypted data. This stands in stark contrast to traditional
encryption, where access to the encrypted data is all or nothing: namely, given the secret key, one
can decrypt and read the entire plaintext, but without it, nothing about the plaintext is revealed
at all (other than its length).

Functional Encryption. A functional encryption scheme is associated with a function F (·, ·)
on two inputs, a “function key” K and a “function input” M , secret keys SKK are associated with
a function F (K, ·) and ciphertexts CT with an input M .1 In broad terms, functional encryption
requires that the owner of a secret key SKK and a ciphertext CT (corresponding to message M) be
able to compute F (K,M), but learn nothing else about M itself. (Typically, and throughout this
work, we assume that the function F as well as the function keys K are public.)

Moreover, security should hold in the presence of collusions amongst “key holders”, that is,
malicious users should not be able to combine their secret keys to learn unauthorized information.
More formally, a collusion of users that hold secret keys SKK1 , . . . ,SKKq and an encryption of M
should learn nothing else about M apart from F (K1,M), . . . , F (Kq,M), for any polynomial q.

An important subclass of functional encryption is that of public-index predicate encryption.
Here, the function input M is a pair (ind, µ) where ind is an index and µ the payload message. Let
P be a Boolean predicate defined on function keys and indices, the functionality F is given by:

F (K, (ind, µ)) =

 (ind, µ) if P (K, ind) = 1

(ind,⊥) otherwise

Predicate encryption captures and generalizes a large number of previous constructions, including
identity-based encryption (IBE) [Sha84, BF01, Coc01, BW06], fuzzy IBE [SW05, ABV+12],
attribute-based encryption (ABE) [GPSW06, LOS+10], and inner product encryption [KSW08,
LOS+10, AFV11]. Specifically, IBE corresponds to P being the equality predicate. Moreover,
essentially all known constructions are examples of public-index predicate encryption schemes or
its variants, with a few exceptions – constructions in [BF01, BW06, KSW08] achieve a stronger
private-index security notion in which the index ind also remains hidden from the adversary.

Recent Work. Boneh, Sahai and Waters [BSW11] and O’Neill [O’N10] were the first to put
forth a general formal framework for functional encryption. They considered two security notions
for functional encryption, namely: indistinguishability (IND) based security and simulation (SIM)
based security. The former stipulates that it is infeasible to distinguish encryptions of any two
messages, without getting a secret key that decrypts the ciphertexts to distinct values; the latter
stipulates the existence of an efficient simulator that given F (K1,M), . . . , F (Kq,M), outputs the
view of the colluders that are given an encryption of M as well as secret keys SKK1 , . . . ,SKKq .

Both of these notions may be further refined in two ways: adaptive (AD) versus non-adaptive
(NA) which capture whether the adversary’s queries to the key derivation oracle may or may

1An alternative approach is associate secret keys to functions and ciphertexts to function inputs. This is equivalent
to our approach by taking F to be the universal circuit.
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realizable for public-index realizable for all functions

xx-yy-IND open open

xx-yy-SIM
open no (Section 4)(xx = 1 OR yy = NA)

many-AD-SIM no [BSW11] no ←

xx-yy-USIM
open open(xx = 1 OR yy = NA)

many-AD-USIM no [BSW11] ] no ←

Figure 1: Summary of results and open problems. Results from this work are marked with
boldface. Results implicit in previous works are marked with ]. Results that are trivially implied
by results in a previous column are marked with←. The second and third columns indicate whether
the definition is realizable for all public-index predicate encryption schemes (e.g. IBE) and for all
functions respectively. USIM refers to the notion of unbounded simulation discussed in Section 1.2.

not depend on the challenge ciphertext; and one versus many, referring to whether the adversary
receives a single or multiple challenge ciphertexts. Together, these give rise to eight security notions
xx-yy-zzz, where xx ∈ {1,many}, yy ∈ {NA,AD}, and zzz ∈ {IND, SIM}.

We note that in general, indistinguishability based security provides a weaker guarantee than
simulation based security (that is, xx-yy-SIM implies xx-yy-IND and xx-yy-IND does not imply
xx-yy-SIM in general); on the other hand, we have that 1-yy-IND implies many-yy-IND. Boneh,
et al. [BSW11] pointed out that indistinguishability based security is vacuous and inadequate for
certain functionalities, which indicate that we should opt for simulation-based security whenever
possible.2 O’Neill [O’N10] showed that NA-IND and NA-SIM are equivalent for some subclass of
functionalities that are roughly speaking, “easy to invert”.

All prior positive results achieve many-AD-IND security or relaxations there-of.3 The only known
impossibility result we have for general functional encryption is that of Boneh et al. [BSW11] for
realizing the IBE functionality under many-AD-SIM security. In particular, in light of known results,
it is entirely conceivable that we can realize functional encryption for all efficient functionalities
under either 1-AD-SIM security (thus 1-AD-IND and many-AD-IND security) or many-NA-SIM
security.

In this work, we narrow the gap between existing security definitions for functional encryption,
as well as that between existing constructions and impossibility results. Our results are as follows.

1.1 New Lower Bound: Impossibility for Simulation-based Definitions

Our main result rules out general functional encryption under the one message secure, non-adaptive
simulation definition (1-NA-SIM). In particular, this rules out both of the scenarios presented at
the end of the preceding section (i.e. 1-AD-SIM or many-NA-SIM for general functionalities) in a
strong sense. This is the first lower bound that exploits unbounded collusions in an essential way.
We compare the impossibility result from [BSW11] with ours in Figure 2.

2[BSW11, Section 5.3] presents an “equivalence” between many-AD-IND and many-AD-SIM in the programmable
random oracle model for public-index predicate encryption. For this work, we consider only the standard model.

3A commonly used relaxation of AD-IND security for predicate encryption is that of “selective security” [CHK03].
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Theorem 1.1 (Informal). There exists a functionality F for which there is no 1-NA-SIM-secure
function encryption scheme.

Specifically, assuming the existence of a family of weak pseudo-random function wPRF(·, ·), we show
that there does not exist a functional encryption scheme for the functionality:

F (K,M) = wPRF(M,K),where the message M is the PRF seed

We show that the ciphertext size in a 1-NA-SIM-secure scheme realizing this functionality must grow
with the size of the collusion; this yields a contradiction, since the scheme must handle unbounded
collusions. In fact, the result is unconditional since any non-trivial functional encryption scheme
gives rise to a one-way function and thus pseudo-random functions.

The key observation is as follows. Suppose the adversary requests for q secret keys corresponding
to random K1, . . . ,Kq and then requests for an encryption of a random M . Then, the simulated
ciphertext together with the q simulated secret keys constitute a description of the values
wPRF(M,K1), . . . ,wPRF(M,Kq), which is essentially a sequence of q truly random bits via pseudo-
randomness. By a standard information-theoretic argument, this means that the length of the
ciphertext plus the secret keys must grow with q. To obtain a lower bound on the ciphertext size,
we carefully exploit the fact that the simulator has to generate the secret keys before it sees the
output of wPRF(M, ·). Then, the simulator has to generate a small ciphertext that “explains” all
these pseudorandom values which is impossible using a compressibility argument. More generally,
we show that (1) weak pseudo-random functions are “incompressible”, and (2) NA-SIM-secure
functional encryption only exists for “compressible” functionalities. (In particular, the functionality
for all public-index predicate encryption is compressible.)

This idea is reminiscent of the obfuscation impossibility result of Goldwasser and Kalai [GK05],
although the precise settings are quite different (in particular, functional encryption and program
obfuscation seem incomparable, although related, objects).

Implications. The basic idea described above can be extended to a lower bound for even weaker
forms of the simulation-based definition, including (a non-adaptive variant of) the definition of
Boneh, Sahai and Waters [BSW11]. Here, we mention yet another implication of this idea.

Gorbunov, Vaikuntanathan and Wee [GVW12] recently presented a 1-AD-SIM-secure functional
encryption scheme for all functions, assuming that the adversary can only corrupt an a-priori
bounded number of users (and thus, get the corresponding secret keys). One of the shortcomings
of their bounded-collusion security notion as well as their construction is that the parameters of
the system, and especially the size of the ciphertext depends on the collusion bound q. A natural
question is whether their ciphertexts can be made to have size independent of q (or, at the very
least, o(q)).4 Indeed, in light of the results of Dodis, Katz, Xu and Yung [DKXY02] and most
recently, Goldwasser, Lewko and Wilson [GLW12] in the context of bounded-collusion IBE, one
might expect that achieving “short” ciphertexts is actually be possible in general.

Unfortunately, our techniques result in a strong negative answer to this question.

Corollary 1.2. There exists a family of functions F such that for every q = q(κ), there are no
q-collusion resistant 1-NA-SIM-secure functional encryption schemes with ciphertexts of size o(q).

4The previous lower bound for many-AD-SIM IBE in [BSW11] (which says that the secret key size must grow
with the number of challenge ciphertexts) is not applicable here as the [GVW12] construction considers only a single
challenge ciphertext.
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1.2 New Perspectives: Unbounded Simulation

The preceding lower bound together with those of Boneh, Sahai and Waters [BSW11] show that
even fairly weak simulation-based definitions of functional encryption are unachievable for a large
and natural class of functions. This state of affairs begs the question:

What is a meaningful and generally realizable security notion for functional encryption?

While we do not provide a definitive answer to this question in our work, we firmly believe that
the quest for the right definition should incorporate insights from secure computation and zero
knowledge. Indeed, several recent works [GVW12, SS10] exploited techniques and insights from
secure computation [Yao86, BGW88, BMR90] to derive general feasibility results for functional
encryption with bounded collusions.

We put forth USIM security, where the simulator has unbounded computational power. In
particular, this would allow us to circumvent our lower bound in the previous section. Similar
notions have been considered for zero knowledge and secure computation [Pas03, PS04, BS05].5

Before presenting our results for USIM security, we first provide an intuitive interpretation of
what USIM security buys us, via the real/ideal paradigm. Recall that polynomial-time simulation-
based security for functional encryption guarantees that against a computational bounded adversary
holding a secret key SKK , an encryption of M leaks no more information about M than what an
efficient adversary can deduce given F (K,M) (and K); allowing unbounded simulation means that
an encryption of M leaks no more information about M than what a computationally unbounded
adversary can deduce given F (K,M) (and K). Indeed, in the case of public-index predicate
encryption, F (K,M) does hide M completely against a computationally unbounded adversary
that only holds keys for which the predicate is false. One could even make the case that for public-
index predicate encryption, USIM security is “as good as” SIM security!6 On the other hand,
for functionalities that only hide information about M computationally, USIM security would be
inadequate and SIM security remains the desirable notion.

Next, we establish basic relations between USIM security and SIM, IND security, namely it is
“sandwiched” between the two, that is, for yy ∈ {NA,AD}:

yy-IND ⇐ yy-USIM ⇐ yy-SIM

This inclusion yields a simple “litmus test” for checking if IND security is inadequate for a
functionality F : IND security is inadequate whenever USIM security is inadequate, namely F (·,M)
reveals more information about M to an unbounded adversary than an efficient adversary.

Furthermore, with this notion in mind, we refine and further clarify two results in [BSW11]:

• the counter-example separating indistinguishability and simulation-based notion (which
encodes a one-way permutation into the functionality) in fact separates efficient and
unbounded simulation; there, the functionality inherently leaks more information to an
unbounded adversary than an efficient adversary. That is, the result really points to the
inadequacy of the unbounded simulation security (and not indistinguishability-based notion)
for certain functionalities.

5The works on zero knowledge and secure computation focus on quasi-polynomial-time simulators. We observe
that our lower bound also rules out quasi-polynomial-time simulators assuming the existence of one-way functions
with sub-exponential hardness.

6O’Neill [O’N10, Section 4] showed that NA-IND and NA-SIM are equivalent for public-index predicate encryption.
This does not subsume the point we are making because our argument applies also to the adaptive setting. Indeed,
AD-IND and AD-SIM are provably not equivalent for public-index predicate encryption; under standard assumptions,
we have AD-IND-secure IBE, whereas AD-SIM-secure IBE do not exist.
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• the lower bound for IBE under many-AD-SIM security extends to many-AD-USIM; that is, the
result is fundamentally about a simulation-based security notion, and not about efficiency.

The reader is referred to Figure 1 for a survey of our results and open problems, and to
Appendix C for results on the unbounded simulator definition.

1.3 Discussion

FunctoMania. Let’s be wishful thinkers for a minute – suppose we can have whatever we hope
for in functional encryption, call this world “Functomania”. What does Functomania look like? In
light of the existing (im)possibilities, there will be two incomparable “dream results”:

• 1-AD-SIM secure public index predicate encryption for all efficient predicates; such schemes
also satisfy 1-AD-IND, 1-AD-USIM, and many-AD-IND security.

• 1-AD-USIM secure functional encryption for all efficient functionalities; such schemes also
satisfy 1-AD-IND and many-AD-IND security.

Given the current state of affairs in functional encryption, establishing either result in the affirmative
(or even under the weaker 1-AD-IND security) will be considered a major break-through.

The IND-(U)SIM Conundrum. From a definitional stand-point, SIM/USIM-based security
notions are preferable to IND-based security notion, as they offer a stronger security guarantee
that has a natural, intuitive and aesthetically pleasing interpretation via the real/ideal paradigm.
On the other hand, IND-based security notion allows us to bypass the impossibility results given
in [BSW11] and in this work; in addition, they guarantee message composability in that security
with a single ciphertext implies security for multiple ciphertexts (and so does NA-SIM considered
in [GVW12]). We do not offer a complete answer to this conundrum; instead, we point out that
1-AD-SIM and 1-AD-USIM appear to be an adequate compromise for predicate encryption and
general functional encryption respectively. We also note that such a conundrum is not unique to
functional encryption, and has indeed previously surfaced and widely studied in the context of zero
knowledge [FS90, Pas03] and secure multi-party computation [PS04, BS05, MPR06]. One notable
difference is that in zero knowledge and secure computation, super-polynomial time simulation
offers concurrency; this is not the case for functional encryption. (The lower bound for many-
AD-USIM-secure IBE indicates that even unbounded-time simulation does not help with message
composability.)

2 Functional Encryption

A functional encryption scheme FE for a functionality F =
{
Fκ : Kκ ×Mκ → Yκ

}
κ∈N, where Kκ,

Mκ and Yκ refer to the functionality key, message and output spaces respectively, consists of four
algorithms FE = (FE.Setup,FE.Keygen, FE.Enc,FE.Enc) defined as follows.7

• Setup FE.Setup(1κ) is a probabilistic polynomial time (p.p.t.) algorithm takes as input the
unary representation of the security parameter and outputs the master public and secret keys
(MPK,MSK).

• Key Generation FE.Keygen(MSK,K) is a p.p.t. algorithm that takes as input the master
secret key MSK and a functionality key K ∈ K and outputs a corresponding secret key SKK .

7We will drop the subscript κ when describing these quantities (and instead, refer to F,K,M and Y) when there
is no cause for confusion.
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Our impossibility result Boneh, Sahai and Waters
(Theorem 4.2) ([BSW11, Theorem 2])

adaptive vs. non-adaptive non-adaptive adaptive

one vs. many messages one message many messages

one vs. many secret-key queries many queries one query

class of functionalities weak PRFs IBE

Figure 2: A comparison between the BSW lower bound (see also Section C.2) and ours for functional
encryption. The underlines indicates the stronger result. For example, the first row says that our
impossibility result rules out even a non-adaptive notion of security and is thus, stronger than the
BSW result that rules out an adaptive notion.

• Encryption FE.Enc(MPK,M) is a p.p.t. algorithm that takes as input the master public
key MPK and a message M ∈M and outputs a ciphertext CT.

• Decryption FE.Dec(SKK ,CT) is a deterministic algorithm that takes as input the secret key
SKK and a ciphertext CT and outputs a string Y ∈ Y.

Definition 2.1 (Correctness). A functional encryption scheme is correct if ∀K ∈ K,M ∈M,

Pr

[
(MPK,MSK)← FE.Setup(1κ);

FE.Dec(FE.Keygen(MSK,K),FE.Enc(MPK,M)) 6= F (K,M)

]
= negl(κ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Enc.

2.1 A Simulation-based Definition of Security

In this section, we present a simulation-based definition of functional encryption, similar in spirit
to the way one defines security for secure computation via the ideal/real paradigm. We define the
security game for a single message since our lower bounds apply to this weaker setting. However,
this definition can be easily extended to many messages setting (see Appendix B).

Definition 2.2 (1-NA-SIM- and 1-AD-SIM- Security). Let FE be a functional encryption scheme
for a family of functions F =

{
Fκ : Kκ×Mκ → Yκ

}
κ∈N. Consider a p.p.t. adversary A = (A1, A2)

and a stateful p.p.t. simulator Sim.8 Consider the following two experiments:

ExprealFE,A(1κ): ExpidealFE,Sim(1κ):

1: (MPK,MSK)← FE.Setup(1κ)

2: (M, st) ←AFE.Keygen(MSK,·)
1 (MPK)

3: CT← FE.Enc(MPK,M)

4: α ← A
O(MSK,·)
2 (MPK,CT, st)

5: Output (M,α)

1: MPK← Sim(1κ)

2: (M, st)← A
Sim(·)
1 (MPK)

3: CT← SimF (·,M)(1κ, 1|M |)

4: α← A
O′(·)
2 (MPK,CT, st)

5: Output (M,α)

8One can replace a stateful simulator can be replaced by a regular (stateless) simulator that outputs a state sts
upon each invocation which is carried over to its next invocation.

6



We distinguish between two cases of the above experiment:

1. The adaptive experiment, where:

• the oracle O(MSK, ·) = FE.Keygen(MSK, ·), and

• the oracle O′(·) is the simulator, namely SimF (·,M)(·).

We call a stateful simulator algorithm Sim admissible if, on each input K, Sim makes just a
single query to its oracle F (·,M) on K itself.

The functional encryption scheme FE is then said to be simulation-secure for one message
against adaptive adversaries (1-AD-SIM-secure, for short) if there is an admissible stateful
p.p.t. simulator Sim such that for every p.p.t. adversary A = (A1, A2), the following two
distributions are computationally indistinguishable:{

ExprealFE,A(1κ)

}
κ∈N

c
≈
{
ExpidealFE,Sim(1κ)

}
κ∈N

2. The non-adaptive experiment, where the oracles O(MSK, ·) and O′(·) are both the “empty
oracles” that return nothing.

The functional encryption scheme FE is then said to be simulation-secure for one message
against non-adaptive adversaries (1-NA-SIM-secure, for short) if there is an admissible stateful
p.p.t. simulator Sim such that for every p.p.t. adversary A = (A1, A2), the two distributions
above are computationally indistinguishable.

Remarks on the Definition. Our definition is stronger than that in [BSW11] but weaker than
that in [GVW12]; our lower bound in Section 4 holds for all three definitions. Amongst the three,
the one in [GVW12] is the only for which we know a composition theorem where security for one
message implies security for many messages, in the non-adaptive setting. Note that composition
in the non-adaptive setting is the “best” we can hope for; composition in the adaptive setting is
essentially impossible by many-AD-SIM lower bound for IBE [BSW11]. In more detail:

• In [BSW11], the simulator is given oracle access to A2, which it can call on any ciphertext.
Therefore, it can “rewind” the adversary A2 and adaptively reconstruct the view, which is
problematic for composition [PRS02, Lin04, BMQU07]. We call this a “rewinding” definition.
In our “straight-line” definition, the simulator must commit to a ciphertext once and for all,
which makes it stronger.

• Unlike our definition, the [GVW12] definition does not allow the simulator to fake or
“program” the setup parameters and the secret keys. The difficulty in proving a composition
theorem for our definition lies in that the simulator may use “trapdoor” information from
faking the setup parameters and secret keys while simulating the ciphertext.

We note that in the equivalence of NA-IND and NA-SIM under pre-image sampleability in [O’N10,
Section 4], the NA-SIM-simulator actually satisfies the stronger definition in [GVW12].

The Indistinguishability-based Definition of Security. We define the non-adaptive NA-IND
and the adaptive AD-IND notions of security in Appendix A.

7



3 Preliminaries

Notations. Let D denote a distribution over some finite set S. Then, x ← D is used to denote
the fact that x is chosen from the distribution D. When we say x ← S, we simply mean that x
is chosen from the uniform distribution over S. Unless explicitly mentioned, all logarithms are to
base 2. For n ∈ N, let [n] denote the set of numbers 1, . . . , n. Let κ denote the security parameter.

Definition 3.1 (wPRF). Let wPRF = {wPRFκ}κ∈N denote a family of efficiently computable
functions where wPRFκ : {0, 1}n(κ) × {0, 1}m(κ) → {0, 1}k(κ), the first argument of which is called
the seed to the wPRF and the second argument is the input.

For every probabilistic polynomial time oracle distinguisher Dist, consider the following two
experiments:

• RealDist(1
κ): Choose s

$← {0, 1}n(κ) and run Dist with access to a probabilistic oracle Oreal(s)
which, when invoked, chooses a uniformly random x ← {0, 1}m(κ) and returns the pair
(x,wPRFκ(s, x)). This experiment outputs whatever Dist outputs.

• RandDist(1
κ): Choose a uniformly random function R : {0, 1}m(κ) → {0, 1}k(κ) and run Dist

with access to a probabilistic oracle Orand(R) which, when invoked, chooses a uniformly
random x ← {0, 1}m(κ) and returns the pair (x,R(x)). This experiment outputs whatever
Dist outputs.

We say wPRF is a weak pseudo-random function if for all p.p.t. distinguishers Dist,∣∣Pr[RealDist(1
κ) = 1]− Pr[RandDist(1

κ) = 1]
∣∣ = negl(κ)

where the probabilities are over the choice of s and R, as well as the coin-tosses of Dist and the
oracles Oreal and Orand.

In our impossibility result, we will use a weak pseudo-random function with seed length n(κ) = κ
and output length k(κ) = 1.

4 Impossibility Results for Functional Encryption

In this section, we present our main lower bound for 1-NA-SIM-secure functional encryption.
We begin with a notion of “incompressible” functions. Then, we show that (1) weak pseudo-
random functions are “incompressible”, and (2) 1-NA-SIM-secure functional encryption only exists
for “compressible” functions. Putting the two together yields our lower bound.

4.1 Incompressible Functions

We first define a family of compressible functions. Informally, we say that a family of functions
{Fκ} is (`, t)-compressible if for a list of uniformly random function descriptions f1, . . . , f` ∈ Fκ
and a uniformly chosen input s, there is some efficiently computable description of f1(s), . . . , f`(s)
of size t. Note that if there is no efficiency requirement, then any family is (`, |s|)-compressible.

Definition 4.1 (Incompressible Functions). Let ` = `(κ) and t = t(κ) be functions of the security
parameter κ. A family of functions F = {Fκ}κ∈N is (`, t)-compressible if there exist a family of
(deterministic) compressor circuits {Cκ}κ∈N and a family of decompressor circuits {Dκ}κ∈N such
that:
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• (polynomial size) the circuits Cκ and Dκ have size poly(κ, `).

• (mild compression) for sufficiently large κ,
∣∣Cκ(f1, . . . , f`, y1, . . . , y`)

∣∣ = t, where yi = fi(s).

• (correctness) there is a polynomial p = p(κ) such that

Pr[s
$← {0, 1}κ,f1, . . . , f`

$← Fκ, yi = fi(s) :

Dκ(f1, . . . , f`,Cκ(f1, . . . , f`, y1, . . . , y`)) = (y1, . . . , y`)] ≥ 1/p(κ)

where the probability is taken over the choice of s as well as the functions f1, . . . , f`.

The family F is (`, t)-incompressible if it is not (`, t)-compressible.

We now give examples of (in)compressible functions. First, consider the notion of pre-
image samplable family of functions introduced by O’Neill [O’N10] which requires that given
f1(x), . . . , f`(x), there is a polynomial-time algorithm that returns an arbitrary x′ such that
fi(x

′) = fi(x) for all i. In our language, this says that the family F is (`, |x′|)-compressible;
the compression algorithm simply outputs x′.

Next, consider an arbitrary public-index functionality, where the functionality F is given by:

F (K, (ind, µ)) =

 (ind, µ) if P (K, ind) = 1

(ind,⊥) otherwise

It is easy to see that this functionality is (`, |(ind, µ)|)-compressible. On input

F (K1, (ind, µ)), . . . , F (K`, (ind, µ))

If P (Ki, ind) = 1 for some i, then the compression algorithm outputs (ind, µ). If P (Ki, ind) = 0 for
all i, then the algorithm outputs (ind,⊥).

On the other hand, as we show below (see Lemma 4.1), any family of (weak) pseudo-
random functions is incompressible in a strong sense. More precisely, consider a family of
functions F = {fxi(·) = wPRF(·, xi)} where xi serves as the input to the pseudo-random
function. Informally, the incompressibility is due to the fact that a sequence (fx1(s), . . . , fx`(s)) =
(wPRF(s, x1), . . . ,wPRF(s, x`)) is indistinguishable from a sequence of uniformly random bits, which
are clearly incompressible.

Lemma 4.1 (weak PRFs are (`, ` − κ)-incompressible). Let wPRF = {wPRFκ : {0, 1}κ ×
{0, 1}m(κ) → {0, 1}}κ∈N be a family of weak pseudo-random functions, where m(κ) = ω(log κ).
Define fx(s) = wPRF(s, x). Consider a family F = {Fκ}κ∈N defined as

Fκ =
{
fx(·) : |x| = m(κ)

}
Then, F is (`, `− κ)-incompressible.

Proof. Assume, for the sake of contradiction, that F is (`, ` − κ)-compressible. Namely, there are
families of compressor and decompressor circuits (C,D) that satisfy Definition 4.1. We show how
to construct a distinguisher DistO that distinguishes between the case where O = wPRF(s, ·) is a
pseudo-random oracle that outputs pairs (xi, yi = wPRFκ(s, xi)) where xi are uniformly random,
and the case where O outputs strings (xi, yi = R(xi)) where xi and R are uniformly random strings
and function, respectively. DistO proceeds as follows.
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• Choose a sufficiently large κ such that∣∣Cκ(f1, . . . , f`, y1, . . . , y`)
∣∣ = `− κ

• Query the oracle O to obtain pairs of strings of the form (xi
$← {0, 1}m(κ), yi). Define the

functions fxi(·) := wPRF(·, xi).

• Run the compressor Cκ to get a string

γ ← Cκ(fx1 , . . . , fx` , y1, . . . , y`)

• Outputs 1 if and only if
Dκ(fx1 , . . . , fx` , γ) = (y1, . . . , y`)

We now show that the distinguisher succeeds with non-negligible advantage 1/p(κ) − 2−κ in
breaking the weak pseudo-random function family wPRF.

If O is the pseudo-random oracle, then the samples DistO gets are of the form (xi, yi ←
wPRF(s, xi)). Hence, by correctness of C and D,

Dκ(fx1 , . . . , fx` ,Cκ(fx1 , . . . , fx` , y1, . . . , y`)) = (y1, . . . , y`)

with probability at least 1/p(κ). Thus, the distinguisher in this case outputs 1 with probability at
least 1/p(κ) as well.

On the other hand, if O outputs pairs of strings of the form (xi, yi ← R(xi)) for a randomly
chosen function mapping R, we now show that the distinguisher above outputs 1 with probability
at most 2−κ. In the analysis below, we assume that x1, . . . , x` are distinct, for which we need to
pay a price of an additive `2 · 2−m(κ) = negl(κ) term in the distinguishing error.

Pr[DistO outputs 1]

≤ Pr
x1,...,x`

$←{0,1}m(κ)

y1,...,y`
$←{0,1}

[
∃γ : |γ| = `− κ and Dκ(fx1 , . . . , fx` , γ) = (y1, . . . , y`)

]

≤
∑

γ∈{0,1}`−κ
Pr

x1,...,x`
$←{0,1}m(κ)

y1,...,y`
$←{0,1}

[
Dκ(fx1 , . . . , fx` , γ) = (y1, . . . , y`)

]
(via a union bound)

=
∑

γ∈{0,1}`−κ
2−` (since y1, . . . , y` are random and independent of x1, . . . , x`, γ)

≤ 2`−κ · 2−` = 2−κ

This yields the required contradiction to the security of wPRF.

4.2 The Impossibility Result

We are now ready to state and prove our main theorem.

Theorem 4.2. There exists a family of functions F for which there are no 1-NA-SIM-secure
functional encryption schemes.
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Proof. We consider two cases.

Case 1: Assume there exists a family of weak pseudo-random functions

wPRF = {wPRFκ : {0, 1}κ × {0, 1}m(κ) → {0, 1}}κ∈N

where m(κ) = ω(log κ). Let fx(s) = wPRF(s, x) and consider a family F = {Fκ}κ∈N defined as

Fκ =
{
fx(·) : |x| = m(κ)

}
Assume, for the sake of contradiction, there exist a 1-NA-SIM-secure function encryption scheme

FE for F , and let |CT| denote the length of a ciphertext in the scheme. Let ` = `(κ) = |CT|+ κ.
From Lemma 4.1, we know that F is (|CT + κ, |CT|)-incompressible. However, Lemma 4.3

below tells us that since there is a 1-NA-SIM secure scheme for F , the family F is (|CT|+ κ, |CT|)-
compressible. This gives us the desired contradiction, and therefore, there cannot exist a 1-NA-SIM-
secure functional encryption scheme for F .

Case 2: Assume there does not exist a family of weak pseudo-random functions. Also, for the sake
of contradiction, assume there exists a 1-NA-SIM-secure function encryption scheme for all families
of functions F .

In particular, this means that there is a functional encryption scheme for the empty function
family (namely, a family F that does not contain any functions at all). A 1-NA-SIM-secure scheme
FE for F is also a secure public-key encryption scheme. Since public-key encryption implies one-
way functions, which in turn imply pseudo-random functions [GGM86, HILL99], we obtain the
desired contradiction.

Lemma 4.3 (1-NA-SIM ⇒ (`, |CT|)-compressibility). Let F = {Fκ}κ∈N be a family of functions.
Suppose there exists a 1-NA-SIM-secure functional encryption scheme for the functionality:

F (f, s) = f(s), f ∈ Fκ

Then, the family F is (`, |CT|)-compressible for any polynomially bounded ` = `(κ), where |CT|
denotes size of the encryption of s.

Informally, the compression algorithm works as follows: on input f1, . . . , f` and f1(s), . . . , f`(s),
the output is the simulated ciphertext corresponding to an encryption of s. The decompression
algorithm then evaluates the decryption algorithm, which is guaranteed to produce f1(s), . . . , f`(s).

Proof. Let (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) denote the encryption scheme for the function-
ality F . Consider the adversary A = (A1, A2) in the 1-NA-SIM security experiment that acts as
follows:

• A1 chooses f1, . . . , f`
$← F independently at random and requests for the corresponding secret

keys SK1, . . . ,SK`. In addition, it chooses s
$← {0, 1}m(κ) and outputs s as the challenge

message, and (f1, . . . , f`,SK1, . . . ,SK`) as the state.

• A2 outputs α composed of the challenge ciphertext and the state (f1, . . . , f`,SK1, . . . ,SK`).

Let Sim denote the (admissible) stateful p.p.t. simulator guaranteed by 1-NA-SIM security. We
show how to use the simulator to construct a family of (deterministic) compressor and decompressor
circuits Cρ and Dρ, indexed by a random string ρ corresponding to the random tape for the
simulator:

11



• The compressor Cρ, on input f1, . . . , f` and y1, . . . , y` works as follows: first, compute MPK←
Sim(1κ; ρ) and secret keys {SKi : SKi ← Sim(fi; ρ)}i∈[`]. Then compute and output CT as
the compressed string, where queries F (fi, s) are answered with yi:

CT← SimF (·,s)(1|m(κ)|)

• The decompressor Dρ, on input f1, . . . , f` and CT first reconstructs the master public key
MPK← Sim(1κ; ρ) and the set of secret keys:

{SKi : SKi ← Sim(fi; ρ)}i∈[`]

Note that Dρ has the same randomness ρ hard-wired, and so the secret keys SKi are exactly
the same as those used by Cρ. Finally, it computes and outputs:{

yi ← FE.Dec(SKi,CT)
}
i∈[`]

Formally, we output (Cρ,Dρ) for a random ρ, which is a pair of polynomial-size circuits. Clearly,
we achieve (`, |CT|)-compressibility, since the size of CT is determined by the functional encryption
scheme and independent of `. To establish correctness, it suffices to show that:

Pr
ρ,s,f1,...,f`

[Dρ(f1, . . . , f`,Cρ(f1, . . . , f`, f1(s), . . . , f`(s))) = (f1(s), . . . , f`(s))] ≥ 1− negl(κ)

Here, we will rely on the correctness of the functional encryption scheme as well as 1-NA-SIM-
security. First, consider the distinguisher Dist that given the output (s,CT, f1, . . . , f`, SK1, . . . ,SK`)
of the adversary A2 proceeds as follows:

Output 1 iff for all i ∈ [`], FE.Dec(SKi,CT) = fi(s).

Observe that by correctness of the encryption scheme, Dist outputs 1 with probability 1− negl(κ)
given the output of the adversary A2 in the 1-NA-SIM experiment. Therefore, by 1-NA-SIM-security,
Dist also outputs 1 with probability 1 − negl(κ) given the output of the (admissible) simulator,
where the randomness is taken over the coin tosses ρ of the simulator, along with the random
choices of s, f1, . . . , f`.

This shows that the pair of circuits (Cρ,Dρ) for a uniformly random ρ is a correct compressor-
decompressor pair, establishing the lemma.

We point out here that our lower bound extends to the setting where the simulator is not
required to be admissible, by using a family of (standard) pseudo-random functions.

Finally, the argument here generalizes to showing that functional encryption secure against an
a-priori bounded number q = q(κ) of collusions is impossible if one insists on small ciphertexts
(namely, ciphertexts with much fewer than q bits). This matches the recent result of [GVW12] who
construct such functional encryption schemes with ciphertexts of size polynomial in q.

Corollary 4.4. There exists a family of functions F such that for every q = q(κ), there are no
q-collusion resistant 1-NA-SIM-secure functional encryption schemes. with ciphertexts of size o(q).

4.3 Extensions: Impossibility of Weaker Simulation-based Definitions

The idea behind our impossibility result is robust enough to apply to various relaxations of the
simulation-based security definition. In this section, we describe a number of such extensions of
our result.
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Impossibility for the selective and random-input definitions. In the selective model, the
adversary is required to commit to the secret key queries f1, . . . , fq as well as the challenge input
s before the setup phase. In particular, this means that the adversary will not be able to pick
up the functions or the challenge input depending on the system parameters. Variants of the
selective security model are frequently considered in the literature as a relaxations of regular security
notions (see, e.g., [BB11, GPSW06, AFV11]). Another relaxation one can consider is one where
the adversary is not allowed to choose the functions or the challenge, but instead, they are chosen
uniformly at random.

Our lower bound easily extends to these weaker notions, simply because the adversary we
consider in the proof of Lemma 4.3 chooses the functions and the challenge uniformly at random,
and independent of the system parameters.

Impossibility for the non-adaptive BSW Definition (the “Rewinding Definition”). The
main difference between the definition proposed by [BSW11] and our definition in Section 2 is that
whereas our definition restricts the simulator to be “straight-line”, the BSW definition allows the
simulator to “rewind” the adversary and interact with it in order to generate the view. For more
details, we direct the reader to the discussion after Definition 2.2.

The proof of Lemma 4.3 transparently extends to the BSW definition. The adversary A is the
same as in the proof. The compressor C runs the simulator, executing the code of the designated
adversary A to compute the response whenever the simulator queries (“rewinds”) A. Also, since
the simulator is admissible, the queries it makes to the functionality are exactly the ones that the
compress knows the answer to. As before, we can make the impossibility result work for even
non-admissible simulators by appealing to regular (rather than weak) PRFs.

Impossibility for Secret-key Functional Encryption. In the setting of secret-key functional
encryption (first considered by Shi, Shen and Waters [SSW09] in its predicate encryption variant),
the encryption algorithm relies on the master secret key to produce the ciphertext for an input M .

All our impossibility results carry over to the setting of secret key functional encryption since in
the proof of Lemma 4.3, neither the compressor nor the decompressor needs to run the encryption
algorithm and generate ciphertexts.
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A Indistinguishability-based Definition of Security

Definition A.1 (NA-IND- and AD-IND-Security). Let FE be a functional encryption scheme for
a family of functions F =

{
Fκ : Kκ ×Mκ → Yκ

}
κ∈N. For every p.p.t. adversary A = (A1, A2),

consider the following two experiments:
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Exp
(0)
FE,A(1κ): Exp

(1)
FE,A(1κ):

1: (MPK,MSK)← FE.Setup(1κ)

2: (M0,M1, st)← A
FE.Keygen(MSK,·)
1 (MPK)

3: CT← FE.Enc(MPK,M0)

4: b← A
O(MSK,·)
2 (MPK,CT, st)

5: Output b

1: (MPK,MSK)← FE.Setup(1κ)

2: (M0,M1, st)← A
FE.Keygen(MSK,·)
1 (MPK)

3: CT← FE.Enc(MPK,M1)

4: b← A
O(MSK,·)
2 (MPK,CT, st)

5: Output b

Define an admissible adversary A = (A1, A2) as one such that for each oracle query K of A,
F (K,M0) = F (K,M1). We distinguish between two cases of the above experiment:

1. The adaptive experiment, where the oracle O(MSK, ·) = FE.Keygen(MSK, ·): the functional
encryption scheme FE is said to be indistinguishable-secure for one message against adaptive
adversaries (1-AD-IND-secure, for short) if for every polynomial function ` = `(κ) and every
admissible p.p.t. admissible adversary A = (A1, A2), the advantage of A defined as below is
negligible in the security parameter κ:

AdvFE,A(κ) :=
∣∣Pr[Exp

(0)
FE,A(1κ) = 1]− Pr[Exp

(1)
FE,A(1κ) = 1]

∣∣
where the probability is over the random coins of the algorithms of the scheme FE and that
of A.

2. The non-adaptive experiment, where the oracle O(MSK, ·) is the “empty oracle” that returns
nothing: the functional encryption scheme FE is said to be indistinguishable-secure for one
message against non-adaptive adversaries (1-NA-IND-secure, for short) if for every admissible
p.p.t. adversary A = (A1, A2), the advantage of A defined as above is negligible in the security
parameter κ.

We do not distinguish between one and many message security since this definition composes
[GVW12].

B Many-Message Simulation-based Definition of Security

Definition B.1 (many-NA-SIM- and many-AD-SIM- Security). Let FE be a functional encryption
scheme for a family of functions F =

{
Fκ : Kκ ×Mκ → Yκ

}
κ∈N. Consider a p.p.t. adversary

A = (A1, A2) and a stateful p.p.t. simulator Sim. Consider the following two experiments:

ExprealFE,A(1κ): ExpidealFE,Sim(1κ):

1: (MPK,MSK)← FE.Setup(1κ)

2: ({Mi}i∈[`], st) ←A
FE.Keygen(MSK,·)
1 (MPK)

3: CTi ← FE.Enc(MPK,Mi) for all i ∈ [`]

4: α ← A
O(MSK,·)
2 (MPK, {CTi}i∈[`], st)

5: Output ({Mi}i∈[`], α)

1: MPK← Sim(1κ)

2: ({Mi}i∈[`], st)← A
Sim(·)
1 (MPK)

3: {CTi}i∈[`] ← Sim{F (·,Mi)}i∈[`]({1|Mi|}i∈[`])
4: α← A

O′(·)
2 (MPK, {CTi}i∈[`], st)

5: Output ({Mi}i∈[`], α)
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We distinguish between two cases of the above experiment:

1. The adaptive experiment, where:

• the oracle O(MSK, ·) = FE.Keygen(MSK, ·), and

• the oracle O′(·) is the simulator, namely Sim{F (·,Mi)}i∈[`](·).

We call a stateful simulator algorithm Sim admissible if, on each input K, Sim makes just a
single query to its oracle F (·,M) on K itself.

The functional encryption scheme FE is then said to be simulation-secure for many messages
against adaptive adversaries (many-AD-SIM-secure, for short) if there is an admissible stateful
p.p.t. simulator Sim such that for every polynomial function ` = `(κ), every p.p.t. adversary
A = (A1, A2), the following two distributions are computationally indistinguishable:{

ExprealFE,A(1κ)

}
κ∈N

c
≈
{
ExpidealFE,Sim(1κ)

}
κ∈N

2. The non-adaptive experiment, where the oracles O(MSK, ·) and O′(·) are both the “empty
oracles” that return nothing.

The functional encryption scheme FE is then said to be simulation-secure for many messages
against non-adaptive adversaries (many-NA-SIM-secure, for short) if there is an admissible
stateful p.p.t. simulator Sim such that for every polynomial function ` = `(κ), every p.p.t.
adversary A = (A1, A2), the two distributions above are computationally indistinguishable.

We define many-AD-USIM and many-NA-USIM identically to the above definition, except with
computationally unbounded simulator.

C Indistinguishability and Unbounded Simulation

In this section, we put forth the notion of unbounded-simulation secure functional encryption. We
argue that this is a very natural notion of security, with counterparts in the worlds of multiparty
computation and zero knowledge [Pas03, PS04, BS05]. Unbounded simulation security further
elucidates the power and limitations of indistinguishability-based definitions, and captures the
spirit of some known separations (see below).

The definition of unbounded-simulation security (in both the adaptive and non-adaptive
settings) is the same as Definition 2.2, except that the simulator is not restricted to run in
polynomial time.

C.1 Relationship between SIM, USIM and IND

Theorem C.1. Let FE be a functional encryption scheme for a family of functions F =
{
Fκ :

Kκ ×Mκ

}
κ∈N. Then, if FE is AD-SIM (resp. NA-SIM) secure then it is also AD-USIM (resp.

NA-USIM) secure. In addition, if FE is AD-USIM(resp. NA-USIM) secure then it is AD-IND (resp.
NA-IND) secure.

Proof. AD-SIM(NA-SIM) ⇒ AD-USIM(NA-USIM): This claim is trivial since the unbounded
simulator can just run the poly-time simulator, in both the adaptive and non adaptive cases.
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AD-USIM(NA-USIM)⇒ AD-IND(NA-IND): We prove this claim by showing the contrapositive.
Let A = (A1, A2) be the adversary that breaks AD-IND(resp. NA-IND) security of the FE scheme.
We construct an adversary B = (B1, B2) from A. In our construction, if A is a AD-IND (resp.
NA-IND) adversary, then B is a AD-USIM (resp. NA-USIM) adversary.

• BFE.Keygen(MSK,·)
1 (MPK): Run A

FE.Keygen(MSK,·)
1 (MPK). Answer A1’s key queries using

FE.Keygen oracle. Finally, A1 outputs two messages M0,M1 and a state sta. Now, choose a
random bit b and output (M, st) = (Mb, [sta,M0,M1]).

• BO(MSK,·)
2 (MPK,CT, st): Invoke A

O(MSK,·)
2 (MPK,CT, sta) and output whatever bit b′ it

outputs. In the adaptive case, if A2 makes any oracle queries, answer them using own oracle.

The output of the real experiment is (Mb, st = [sta,M0,M1], α = b′,K1, . . . ,Kq). Hence, with
probability significantly greater than a half b = b′ and the distinguisher can verify this. Now we
claim that there is no unbounded simulator Simu for the adversary (B1, B2) in the adaptive or non-
adaptive case. In particular, we argue that the simulator Simu cannot guess bit b′ with probability
better than a half. We observe:

• The IND adversary A = (A1, A2) is admissible, hence, for all queries {K ′i}i∈[q′] that A makes
to B, and hence B makes to Simu, we have that F (K ′i,M0) = F (K ′i,M1). The view of Simu

is statistically independent of the challenge bit b.

• Since the queries K1, . . . ,Kq are part of the output of the experiment, Simu is restricted
to make admissible queries only to the function oracle, otherwise a distinguisher can easily
distinguish between the real and ideal worlds. Thus, it must be the case that F (Ki,M0) =
F (Ki,M1), ∀i ∈ [q]. Hence, the view of Simu is also statistically independent of the challenge
bit b.

Putting these together, we deduce that the view of the simulator is statistically independent
of the challenge bit b, thus the probability it guesses b correctly is at most 1/2. Therefore, the
simulator Simu cannot produce the output indistinguishable from the real experiment.

C.2 Impossibility of AD-USIM IBE

We observe that the impossibility of realizing the IBE functionality under many-AD-SIM as shown
in [BSW11, Section 5.1] (which is in turn similar to the impossibility result for non-committing
encryption given in [Nie02]) extends to many-AD-USIM. For self containment, we provide a recap
of the argument.

Let κ denote the security parameter and ` be an upper bound on the secret key length produced
by FE.Keygen for security parameter κ. Assume that both the identity and the payload message
are bits. Then, the real world adversary behaves as follows (refer to Definition 2.2) (1) A1 makes
no secret key queries and outputs M = {(0,M0, 0), . . . , (0,M`+κ)} where each Mi, i ∈ [` + κ]
is a uniformly random bit, and all payload messages correspond to identity 0. (2) The adaptive
adversary A2 requests for the SK0.

Note that the admissible simulator Sim can only query the function oracle F (·,Mi) after A2

requests the secret key SK0, and thus cannot learn the payload bits until such point. However,
Sim has to simulate the tuple of `+ κ ciphertexts before it sees the actual payload bits. Thus, the
simulator has to produce a fixed string of CTs which, upon decryption with an ` bit secret key, need
to produce an arbitrary `+κ bits – which is impossible. This argument holds even if the simulator
is computationally unbounded, hence we conclude that many-AD-USIM is impossible, even for IBE.
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C.3 Illustrative Examples and Discussion

In this section we discuss some examples to separate the various notions of security.

AD-SIM and AD-USIM : We observe the following example from [BSW11, Section 4.2] separating
AD-SIM and AD-IND also separates AD-SIM and AD-USIM.9 Let π be a one-way permutation and
consider the functionality F that only admits one key K = 1, defined as follows:

F (1, x) = π(x)

Note that this functionality satisfies our “litmus test” in 1.2 for checking if IND security is inadequate
— π(x) hides x from a computationally bounded adversary, but reveals x to an unbounded
adversary.

Now, consider the FE.Enc algorithm that outputs a public-key encryption of x on input x;
FE.Keygen algorithm that outputs the secret key for the public-key encryption on input K = 1;
FE.Dec recovers x and outputs π(x). It was shown in [BSW11] that this scheme AD-IND-secure but
not AD-SIM-secure. We observe that this scheme is also AD-USIM-secure, provided the underlying
encryption scheme is “non-committing” (c.f. [GVW12, Section 4.1]). The simulator proceeds as
follows:

• If the adversary makes a secret key query before seeing the ciphertext, then the simulator
learns π(x) by querying the ideal functionality on K = 1, and then computes x via “brute
force” and encrypts it.

• Otherwise, the simulator generates a “non-committing” simulated ciphertext. If the adversary
makes a secret key query after seeing the ciphertext, then the simulator learns π(x) by
querying the ideal functionality on K = 1, computes x via “brute force”, and generates
a consistent secret key.

AD-IND and AD-USIM : We do not have a natural example of a scheme which is AD-IND-
secure but not AD-USIM-secure, which we leave as an open problem. We point out that the naive
approach of replacing the one-way permutation in the preceding example with a collision resistant
hash function does not seem to work; if the encryptor picks the hash function, then the adversary
could potentially pick a “bad” hash function for which it knows a pair of collisions.

Summary. We summarize some of the properties of USIM security: (1) It clarifies the inadequacy
of indistinguishability-based security definitions as pointed out in [BSW11, Section 4.2]; specifically,
the statement therein that “game-based formulation essentially ignores any computational hiding
properties of the function, and therefore offers no security guarantees that could be meaningfully
combined with such computational considerations”, is really a statement about USIM security. (2)
It potentially admits realizations for a large class of functionalities; it allows us to circumvent
our 1-NA-SIM lower bound, but is nonetheless ultimately limited by many-AD-SIM lower bound
for IBE. (3) Unbounded simulation is a natural notion, with analogues in zero knowledge and
secure computation [Pas03, PS04, BS05], and comparisons with these can aid our understanding of
functional encryption. (4) For certain functionalities, USIM may be “good enough”; understanding
when this happens could further clarify existing constructions.

9We need to modify the construction to account for the fact that we do not admit the “empty” key.
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