
Glitches and Static Power Hand in Hand

Amir Moradi and Oliver Mischke

Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{moradi,mischke}@crypto.rub.de

Abstract. Several masking schemes to protect cryptographic implemen-
tations against side-channel attacks have been proposed. A few consid-
ered the glitches, and provided security proofs in presence of such in-
herent phenomena happening in logic circuits. One which is based on
multi-party computation protocols and utilizes Shamir’s secret sharing
scheme was presented at CHES 2011. It aims at providing security for
hardware implementations – mainly of AES – against those sophisti-
cated side-channel attacks that also take glitches into account. One part
of this article deals with the practical issues and relevance of the afore-
mentioned masking scheme. We first provide a guideline on how to im-
plement the scheme for the simplest settings, and address some pitfalls in
the scheme which prevent it to be practically realized. Solving the prob-
lems and constructing an exemplary design of the scheme, we provide
practical side-channel evaluations based on a 65nm-technology Virtex-5
FPGA. We still observe univariate side-channel leakage, which is not ex-
pected according to the proven security of the scheme. We believe that
the leakage is due to a combination of static power consumption and
glitches in the circuit which is observed for the first time in practice.
Dependency of static power consumption of nano-scale devices on pro-
cessed data – which was warned before to be problematic – becomes now
critical. Our result does not invalidate the given security proof of the
scheme itself, but instead shows that the underlying model to obtain the
proofs no longer fits to the reality. This is true not only for the scheme
showcased here, but also for most other known masking schemes. As a
result, due to the still ongoing technology shrinkage most of the avail-
able data-randomizing side-channel countermeasures will not be able to
completely prevent univariate side-channel leakage of hardware imple-
mentations. Our work shows that new models must be created under
which the security of new schemes can be proven considering leakages
through both dynamic and static power consumption.

1 Introduction

With the increasing widespread of security-enabled embedded devices the pro-
tection of these devices against malicious users became of a greater concern. Even
if these devices are protected by cryptographic algorithms which are very secure
considering a black box scenario, with the discovery of side-channel attacks and
especially power analysis in the late 90s [9], algorithms which are implemented
without countermeasures can nowadays easily be broken. One of the reasons for

this is that power analysis equipment is relatively cheap and already published
attacks can be utilized by a moderately skilled attacker. This is especially both-
ersome since most of these devices must be considered as working in a hostile
environment with easy access of an attacker, lowering the inhibition threshold
to perform such an attack.

Different masking schemes, like boolean and multiplicative, have been pro-
posed in order to randomize the intermediate computations and hence provide
security against power analysis attacks. They indeed have been presented to the
community in an arms race to counteract the also evolving new side-channel at-
tacks. Most of these earlier masking schemes while considered secure under the
used security model at that time, still exhibit a detectable univariate first-order
leakage which is caused by glitches in the combinational circuits of hardware. For
instance, we can mention the schemes presented in [18] and [5] which have later
been shown to be vulnerable in [11] and [13] respectively. Taking these occur-
ring glitches into account new masking schemes have been developed claiming
glitch resistance. Threshold Implementation (TI) [15–17] is one of the more stud-
ied ones. It is based on a specific type of multi-party computation and applies
boolean masking. However, making a correct implementation which fulfills all
the requirements of TI is very challenging, and so far only the Noekeon and the
PRESENT S-boxes could be successfully realized under its definitions [17, 19].
TI is supposed to be secure only against 1st-order attacks, and accordingly it has
been shown that it can be broken by a univariate mutual information analysis
(MIA) [3, 17] or a 2nd-order univariate collision attack [12].

Another recently proposed scheme [20], also based on multi-party compu-
tation protocols, utilizes the Shamir’s secret sharing scheme [22] and claims
security not only against 1st-order attacks but also depending on the number
of shares against higher-order multivariate ones.1 One of our contributions in
this paper is to address some flaws of this scheme and accordingly provide so-
lutions, thereby allowing a practical realization of the scheme. In order to make
an exemplary architecture of this scheme we have chosen a parameter set based
on the minimum number of shares to supposedly provide protection against any
univariate attack. While we doubt the practical relevance of the scheme because
of the very high time and area overheads, more importantly we conduct practi-
cal side-channel experiments which disqualify the security claims in a real-world
scenario. We show that our evaluation platform, a Xilinx Virtex-5 FPGA, still
exhibits an exploitable univariate 2nd-order leakage of our exemplary design.

In fact, the security proof given for our target scheme is sound, and our result
does not show its shortcoming. On the contrary, it indicates the inconsistency of
the underlying model with reality, which the security proof is based on. In most
of the provably secure masking schemes only dynamic power consumption which
is a result of the circuit activity is taken into account. With the continuation of
downscaling in process technology the impact of static power gains dramatically.
This is the important point that at the moment is not considered when proving

1 A similar masking scheme using Shamir’s secret sharing with a software platform as
target has also been presented at CHES 2011 [7].

the security of a masking scheme, and indeed in our experiments this causes
the defeat of the claimed protection. By using a combination of dynamic and
static power consumption, which are inherently summed up by hardware, we
give first practical evidence that the currently used model to prove the security
of masking schemes is no longer valid when considering more advanced deep
sub-micron process technologies.

2 Preliminaries

Before focusing on our target masking scheme, we specify the definition of differ-
ent side-channel attacks w.r.t. their variate and the statistical moment applied.
An attack which combines v different time instances – usually in v different clock
cycles – of each power trace is called v-variate attack. Regardless of v the order
of an attack is defined by the order of statistical moments which are consid-
ered in the attack. For instance, a CPA [4] which combines two points of each
power trace by summing them up is a bivariate 1st-order attack, and a CPA
which applies the squared values of each trace is a univariate 2nd-order attack.
Those attacks where no specific statistical moment is applied, e.g., MIA [3], are
distinguished only by v like univariate or bivariate MIA.

2.1 Target Scheme

Although the scheme presented in [20] is more or less general, we rewrite its
basics for minimum settings and by considering the AES Rijndael as the target
algorithm. By ⊗ we denote the multiplication in GF(28) using the Rijndael irre-
ducible polynomial and by ⊕ the finite-field addition. The number of shares (and
accordingly the number of Players) is fixed to 3 (i.e., degree of the underlying
polynomial is 1, the most simplified setting in [20]). Regardless of the settings
the scheme is expected to provide security against any univariate attacks.

Before starting the shared operations, one needs to select 3 distinct non-zero
elements, so-called public points, α1, α2, α3 in GF(28). Moreover, it is required to
precompute the first row (λ1, λ2, λ3) of the inverse of the Vandermonde (3× 3)-
matrix (αj

i)1≤i,j≤3 as

λ1 = α2 ⊗ α3 ⊗ (α1 ⊕ α2)−1 ⊗ (α1 ⊕ α3)−1

λ2 = α1 ⊗ α3 ⊗ (α1 ⊕ α2)−1 ⊗ (α2 ⊕ α3)−1

λ3 = α1 ⊗ α2 ⊗ (α1 ⊕ α3)−1 ⊗ (α2 ⊕ α3)−1,

where x−1 denotes the multiplicative inverse of x in GF(28) using again the
Rijndael irreducible polynomial. These elements, α1, α2, α3 and λ1, λ2, λ3, are
publicly available to all 3 Players.

Sharing a secret x is done by randomly selecting a secret coefficient a and
computing 3 shares x1, x2, x3 as

x1 = x⊕ (a⊗ α1), x2 = x⊕ (a⊗ α2), x3 = x⊕ (a⊗ α3).

Each Player i gets only one share xi without having any information about the
other shares.

Reconstructing the secret x from the 3 shares x1, x2, x3 can be done as

x = (x1 ⊗ λ1)⊕ (x2 ⊗ λ2)⊕ (x3 ⊗ λ3).

Let us suppose a constant c and two secrets x and y which are represented
each by 3 shares x1, x2, x3 and y1, y2, y3 constructed using the same public points
α1, α2, α3 and by secret coefficients a and b respectively. In the following we
consider the essential operations required for an AES S-box computation, and
discuss about the role of each Player.

Addition with a constant, i.e., z = c ⊕ x, in the shared mode can be done
by each Player performing the addition as

Player 1 : z1 = x1 ⊕ c = x⊕ (a⊗ α1)⊕ c = (x⊕ c)⊕ (a⊗ α1)

Player 2 : z2 = x2 ⊕ c = x⊕ (a⊗ α2)⊕ c = (x⊕ c)⊕ (a⊗ α2)

Player 3 : z3 = x3 ⊕ c = x⊕ (a⊗ α3)⊕ c = (x⊕ c)⊕ (a⊗ α3).

Therefore, z1, z2, z3 correctly provide the shared representation of z.

Multiplication with a constant, i.e., z = c⊗x, c 6= 0, also can be performed
in a similar way as

Player 1 : z1 = x1 ⊗ c = (x⊕ (a⊗ α1))⊗ c = (x⊗ c)⊕ (a⊗ c⊗ α1)

Player 2 : z2 = x2 ⊗ c = (x⊕ (a⊗ α2))⊗ c = (x⊗ c)⊕ (a⊗ c⊗ α2)

Player 3 : z3 = x3 ⊗ c = (x⊕ (a⊗ α3))⊗ c = (x⊗ c)⊕ (a⊗ c⊗ α3),

and z1, z2, z3 also provide the shared representation of z considering a⊗ c as the
secret coefficient.

Addition of two shared secrets, i.e., z = x⊕ y, is easily performed by

Player 1 : z1 = x1 ⊕ y1 = x⊕ (a⊗ α1)⊕ y ⊕ (b⊗ α1) = (x⊕ y)⊕ ((a⊕ b)⊗ α1)

Player 2 : z2 = x2 ⊕ y2 = x⊕ (a⊗ α2)⊕ y ⊕ (b⊗ α2) = (x⊕ y)⊕ ((a⊕ b)⊗ α2)

Player 3 : z3 = x3 ⊕ y3 = x⊕ (a⊗ α3)⊕ y ⊕ (b⊗ α3) = (x⊕ y)⊕ ((a⊕ b)⊗ α3).

z1, z2, z3 provide the shared representation of z as well considering a⊕ b as the
secret coefficient.

Multiplication of two shared secrets, i.e., z = x⊗y, is the challenging part.
If each Player computes the multiplication of two shares as

Player 1 : t1 = x1 ⊗ y1 = (x⊗ y)⊕ (((a⊗ y)⊕ (b⊗ x))⊗ α1)⊕ (a⊗ b⊗ α2
1)

Player 2 : t2 = x2 ⊗ y2 = (x⊗ y)⊕ (((a⊗ y)⊕ (b⊗ x))⊗ α2)⊕ (a⊗ b⊗ α2
2)

Player 3 : t3 = x3 ⊗ y3 = (x⊗ y)⊕ (((a⊗ y)⊕ (b⊗ x))⊗ α3)⊕ (a⊗ b⊗ α2
3),

t1, t2, t3 are not a correct shared representation of z because according to [20]
the underlying polynomial is of a higher degree and does not have a uniform
distribution. The solution given in [20] is as follows:

1. Each Player i after computing ti, randomly selects a coefficient ai, remasks
ti as

qi,1 = ti ⊕ (ai ⊗ α1), qi,2 = ti ⊕ (ai ⊗ α2), qi,3 = ti ⊕ (ai ⊗ α3),

and sends each qi,∀j 6=i to the corresponding Player j.
2. Now each Player i has three elements q1,i, q2,i, q3,i, and reconstructs zi as

zi = (q1,i ⊗ λ1)⊕ (q2,i ⊗ λ2)⊕ (q3,i ⊗ λ3).

Indeed, z1, z2, z3 provide a correct shared representation of z considering (a1 ⊗
λ1)⊕ (a2 ⊗ λ2)⊕ (a3 ⊗ λ3) as the secret coefficient.

Square of a shared secret, i.e., z = x2, cannot be computed in a straightfor-
ward way in contrast to what is stated in [20]. If each Player i squares its share
xi as

Player 1 : z1 = x1
2 = x2 ⊕ (a2 ⊗ α1

2)

Player 2 : z2 = x2
2 = x2 ⊕ (a2 ⊗ α2

2)

Player 3 : z3 = x3
2 = x2 ⊕ (a2 ⊗ α3

2),

z1, z2, z3 do not provide a correct shared representation of z unless – as also
stated in [7] – the public points α1, α2, α3 as well as λ1, λ2, λ3 are squared. If the
result of squaring z1, z2, z3 need to contribute in later computations where other
secrets shared by original public points α1, α2, α3 are involved, z1, z2, z3 must
be remasked to provide a correct shared representation of z using the original
public points. To do so a FreshMasks scheme is proposed in [7], but we consider
the realization of squaring by giving the above mentioned shared multiplication
algorithm the same shared secrets, i.e., z = x⊗ x. This, in fact, makes a correct
representation of z using the desired unchanged public points.

In order to compute the inversion part of the AES S-box one can use the
scheme presented in [21] as

x−1 = x254 =
((
x2 ⊗ x

)4⊗(x2 ⊗ x))16⊗(x2 ⊗ x)4⊗x2.

x2 x3 x6 x12 x15 x30 x60 x120 x240 x252

(a) S-box

c1 c2 c3 c4

(b) MixColumns

Fig. 1. Block diagram of sequential operations necessary for an AES S-box and a forth
of MixColumns

Since this scheme contains only a couple of square and multiply operations, using
only the aforementioned shared multiplication algorithm the inversion part can
be realized under our defined sharing settings. In contrast to what is claimed
in both [20] and [7], the remaining part, i.e., the affine transformation, cannot
be performed in a straightforward way. That is because – as also stated in [2] –
the linear part of the affine transformation of the AES is a linear function over
GF(2) not over GF(28). The solution for this problem is to represent the affine
transformation over GF(28) and using the Rijndael irreducible polynomial. This
actually has been presented before in [14] and [6] as

Affine (x) = 63 ⊕ (05⊗ x) ⊕ (09⊗ x2) ⊕ (f9⊗ x4) ⊕ (25⊗ x8) ⊕
(f4⊗ x16)⊕ (01⊗ x32)⊕ (b5⊗ x64)⊕ (8f ⊗ x128) .

Therefore, by the diagram given in Fig. 1(a) we define the sequence of oper-
ations of a complete S-box computation considering the secret sharing restated
above. Note that the modules denoted by black

⊗
indicate the shared multipli-

cation, and those by gray
⊗

the multiplication with a constant.

3 Our Design

In order to implement the aforementioned scheme one needs to follow the require-
ments addressed in [20]. The goal of the scheme is to separate the side-channel
leakage of the computations done by each Player in order to prevent any uni-
variate leakage. As stated in [20] there are two possible ways to separate the
leakage. Either the circuit of each Player is realized by dedicated hardware, e.g.,
one FPGA per Player, which does not seem to be practical, or the operations of
each Player are separated in time. We follow the second option and have tried
to mount the whole of the scheme in one FPGA – with the goal of a global
minimum area-overhead – by the design shown in Fig. 2.

By means of a dedicated and carefully designed control unit we made sure
that the Players sequentially get active. In other words, no computation or ac-
tivity is done by the other Players when one Player is active. The design of the

�3

�2

�1

�3

�2

�1

�3

�2

�1

q1,1 q2,1 q3,1 q1,2 q2,2 q3,2 q1,3 q2,3 q3,3

a1 a2 a3

t1 t2 t3

PR
N
G

PR
N
G

PR
N
G

em1 em2 em3

em4 em4 em4 em5 em5 em5 em6 em6 em6

�1 �2 �3

z1

ea1 em1 es21 es31 es121

�1 �2 �3�1 �2 �3

z3z2

ea3 em3 es23 es33 es123ea2 em2 es22 es32 es122

selm1
em3selm3

in3in2in1

em2selm2

ea1

63

ea1

sela1

05
09
f9
25
f4
01
b5
8f

ea2

63

ea2

sela2

ea3

63

ea3

sela3

selceof

ea3

ea2

out2

out3

ea1

out1

em1

M&MSK1

AFF1

AFF2

AFF3

NMSK1

M&MSK2 M&MSK3

NMSK2 NMSK3

eo2

eo3

eo1

Fig. 2. Our design of the shared multiplication and addition to realize the AES S-box

shared multiplication module is slightly different to the other modules. In con-
trast to the others, where the computation on each share by the corresponding
Player is independent of that of the other shares, the Players in the shared mul-
tiplication module need to communicate with each other. Therefore, we had to
divide the computations of each share in this module into two parts by inserting
a register between the two steps as explained in Section 2.1 (see registers marked
by qi,j in Fig. 2).

Another important issue regarding our design is the way that the multiplex-
ers are controlled. Since the shared multiplication module needs to get different
inputs in order to realize a multiplication or a square, there should be a multi-
plexer to switch between different inputs. That is because – considering Fig. 1(a)
– the shared multiplication module performs always squaring except in steps 2, 5,
10, and 11. Control signals which select the appropriate multiplexer input must
be hazardless2. Otherwise, as an example, glitches on select signals of Player 1
while Player 2 is active will lead to concurrent side-channel leakage of two shares.
Therefore, as a solution we provided some registers to control which input to be
given to the target module.

2 In the areas of digital logic a dynamic hazard means undesirable transient changes
in the output as a result of a single input change.

For simplicity, we first explain how the shared multiplication module works:

– In the first clock cycle by activating enable signal em1 the first share of both
appropriate inputs are saved into their corresponding registers, get selected
by select signal selm1, and therefore are multiplied. At the same time the
remasking process using a new random a1 and public points α1, α2, α3 is
performed. Note that the result of these computations are not saved in this
clock cycle.

– The same procedure as in the first clock cycles is done on the second and
the third shares one after each other in the second and the third clock cycles
by activating enable signals em2 and em3 respectively.

– The results of the remasking for Player 1 (indeed provided by all 3 Players)
which are available at the input of registers q1,1, q2,1, q3,1 are stored at the
forth clock cycle by enabling signal em4. Therefore, the second step of the
module gets active and performs the unmasking using λ1, λ2, λ3 to provide
the first share of the multiplication output. Note that again the result is not
saved in this clock cycle.

– In the next two clock cycles (fifth and sixth) the same operation as the
previous clock cycle is performed for Player 2 and Player 3 consecutively by
enable signals em5 and em6.

Note that to save x2, x3, and x12 (see Fig. 1(a)) in the appropriate step, one
of the signals es2i∈{1,2,3}, es

3
i , and es12i gets enabled at the same time with the

corresponding emi signal. In fact, we need six clock cycles to completely perform
a shared multiplication or a square. It means that since we use only one shared
multiplication module in our design, in 6 × 11 = 66 clock cycles the inverse of
the given shared input is computed.

Afterwards in order to realize the affine transformation the multiplication-
addition module (modules AFF1, AFF2, and AFF3 in Fig. 2) must also con-
tribute into the computations. The Players in this module do not need to estab-
lish any communication and their computation is restricted to their own shares.
Therefore, by appropriately selecting selai∈{1,2,3} and enabling the eai signal
the multiplication with constant and the shared addition both can be done in
one clock cycle per share, i.e., three clock cycles in sum. Note that the same
techniques as before to make hazardless control signals are used in the design of
the multiplication-addition module. Also, the sequence of operations is similar
to what is expressed for the first three clock cycles of the shared multiplication
module. According to Fig. 1(a), during the affine transformation a multiplication-
addition operation must be performed prior to each and after the last square.
Therefore, after 3× 8 + 6× 7 = 66 clock cycles the operations of an affine trans-
formation is completed resulting in 132 clock cycles in sum to compute an S-box
shared output.

One optimization option is to perform the multiplication-addition and the
first three clock cycles of the squaring at the same time to save 24 clock cycles
per S-box computation. According to the definition and the requirements of the
scheme, it should not provide any security loss. However, since our main goal is
to practically examine the side-channel leakage of this scheme, we ignored this

Table 1. Area and Time overhead of our design based on XC5VLX50 Virtex-5 FPGA

(excluding state register, KeySchedule, PRNGs, initial masking, and final unmasking)

Design FF LUT Slice SB MC+ARK Encryption
% # % # % CLK CLK CLK

1 SB MC 315 1% 1387 5% 859 12% 2112 192 22 896
16 SB MC 4275 15% 21 328 74% no fit 132 12 1431

optimization to be able to separately localize the side-channel leakage of each
operation.

Though an optimized scenario to perform MixColumns is proposed in [20],
by adding more multiplexer (and select register) to the multiplication-addition
module our presented design can also realize MixColumns and AddRoundKey.
This can be done according to the diagram given by Fig. 1(b) and selecting
the appropriate coefficients c1, c2, c3, c4 corresponding to the rows of the matrix
representation of MixColumns. After finishing all SubBytes transformations of
one encryption round, i.e., 132 × 16 = 2112 clock cycles, every output byte of
the MixColumns transformation in addition to the corresponding AddRoundKey
can be computed in 3 × 4 = 12 clock cycles. That is, 12 × 16 = 192 clock
cycles for whole of the MixColumns and AddRoundKey transformations. In sum,
ignoring the required time for initial masking of the input and the key and for
(pre)computing the round keys a whole encryption process takes 2112 × 10 +
192× 9 + 3× 16 = 22 896 clock cycles.3

We should stress that – except the mentioned one – no time-optimization
option exists for our single-S-box design since no more than one share is allowed
to be processed at the same time. It is possible to reach a higher throughput
by making multiple, e.g., 16, instances of our design inside the target FPGA
and process all SubBytes and later all MixColumns in parallel. This, in fact,
leads to a very high area-overhead (addressed by Table 1) that even cannot fit
into the slices available in our target FPGA which is of the medium-size modern
series. We should emphasize that the GF(28) multiplier we employed here is a
highly optimized and pure combinational circuit, and the design is made for any
arbitrary public values αi∈{1,2,3} and λi.

4 Practical Evaluations

We used a SASEBO-GII [1] board as the evaluation platform. In order to realize
the scheme we implemented our design on the Virtex-5 (XC5VLX50) FPGA
embedded on the target board, and measured power consumption traces using a
digital oscilloscope at the sampling rate of 1GS/s. A 1Ω resistor in the VDD path,
a DC blocker, a passive probe, an amplifier, and restricting the bandwidth of the

3 In the last round MixColumns is ignored and each separate AddRoundKey on one
shared state value takes 3 clock cycles.

oscilloscope to 20MHz helped to obtain clear and low-noise measurements. All
of our target designs run by a stable 3MHz oscillator during the measurements.

We made an exemplary design which performs only the initial AddRoundKey
and SubBytes transformations on two given input bytes. We omitted the rest of
the circuit in this design to focus only on the side-channel leakage caused dur-
ing the S-box computation. The design gets two plaintext bytes p(1) and p(2),
and makes three shares of each by means of the public points α1, α2, α3 and
two separate random bytes. Two secret key bytes k(1) and k(2), which are fix
inside the design, are similarly shared using two other separate random bytes.
After XORing the corresponding shares of the plaintext and key bytes (Ad-
dRoundKey transformation) as pk(j)i = p

(j)
i ⊕ k

(j)
i , j ∈ {1, 2}, i ∈ {1, 2, 3},

the first three shares pk(1)1 , pk
(1)
2 , pk

(1)
3 are given to the S-box module. After 132

clock cycles – when the S-box shared output is ready – the second three shares
pk

(2)
1 , pk

(2)
2 , pk

(2)
3 are provided as input of the same module. Finishing the second

S-box computation, by means of λ1, λ2, λ3 the results are unmasked for result
validation.

We provided a clear trigger signal for the oscilloscope which indicates the
start of the first and the end of the second S-box computation, thereby per-
fectly aligning the measured power traces. We also restricted the measurements
to cover only the two S-box computations. In order to have the side-channel
leakage of a similar but unprotected design as a reference, we made two other
variants of our design. One is made by removing the intermediate qi,j registers
of the shared multiplication module (see Fig. 2) and modifying the control unit;
therefore, all three Players are active and perform the computation at the same
time. Comparing the side-channel leakage of this variant to that of our original
design can show the effectiveness of separating the computation of the Players.
The second variant is constructed by simply turning off the PRNGs in our orig-
inal design to keep all random bytes used for sharing and re-sharing at zero.
Examining this variant we can localize the leakage points when evaluating our
original design.

In the experiments shown below we selected the public points as (α1, α2, α3) =
(02, 03, 04) and accordingly (λ1, λ2, λ3) = (02,d2,d1). We also kept the two se-
cret key bytes fix and randomly selected the two input plaintext bytes. We start
our evaluation by examining the first variant. Note that we modified the control
unit in this version while still keeping it synchronized with the one of the original
design. In other words, each shared multiplication is done in a single clock cycle
and afterwards the circuit is idle for the next five clock cycles. The same holds
for the multiplication-addition operation, i.e., all Players are active in one clock
cycle and all off in the next two. In sum, it finishes one S-box computation in
still 132 clock cycles. This is the reason for having low power consumption in
a couple of adjacent clock cycles in an exemplary power trace of this variant
shown by Fig. 3(a) where the sequence of operations are marked.

The technique we used to evaluate the side-channel leakage of our targeted
designs is the correlation-collision attack [13]. It examines the leakage of one
circuit instance that is used in different time instances. Therefore, it perfectly

(a)

(b)

(c) (d)

Fig. 3. First variant: evaluation results (a) a sample power trace, (b) first-order, and
(c) second-order univariate attack result using 1 000 000 traces, (d) second-order over
the number of traces

suits to our targeted designs since a single module is shared for both two S-
box computations. This attack originally examines only the first-order leakage,
but according to [12] it can be adopted to use higher-order moments and ex-
amine higher-order leakage. Unless otherwise stated, we concentrate on first-
and second-order univariate leakage of our targets. As stated before, the goal of
this scheme with minimum settings is to provide security against any univariate
attack.

We collected 1 000 000 traces of the first variant and performed the aforemen-
tioned attack using the first- and second-order moments (averages and variances)
targeting the linear difference between two used key bytes, i.e., k(1) ⊕ k(2). The
results of the attack shown in Fig. 3(b) and Fig. 3(c) indicate no first-order
but obvious second-order univariate leakage in the design which was expected.
Also, Figure 3(d) shows the simplicity of recovering the second-order leakage
(ca. 30 000 traces).

The second variant, where just the PRNGs are off, has lower power consump-
tion compared to the first variant since the activity of each Player is restricted
to one clock cycle and the glitches are controlled between the two steps of the
shared multiplication module. A sample power trace of this variant is shown in
Fig. 4(a). Since no randomness is contributed into the computations, the first-
order leakage is highly expected. It is indeed confirmed by the result of the

(a)

(b) (c)

Fig. 4. Second variant: evaluation results (a) a sample power trace, (b) first-order
univariate attack result using 10 000 traces, and (c) over the number of traces

same attack as before using 10 000 measurements in Fig. 4(b) (see also Fig. 4(c)
indicating ca. 2 000 as the number of required traces).

Coming back to our original design, the power consumption traces are similar
to that of the second variant with slightly higher amplitude due to the random
numbers. Having 1 000 000 measurements of the design we performed the same
attack as before (using the first-order moments) which – as expected – led to an
unsuccessful result (depicted by Fig. 5(a)). As can be seen in Fig. 5(b), the same
attack using the second-order moment is surprisingly successful. Please note that
it means a univariate MIA [3] with a suitable model can also be successful.

5 Discussions

In order to localize the source of this univariate leakage we made and evaluated
several exemplary designs. We confirmed that at each clock cycle not more than
one Player is active and no computations on more than one share is performed.
We believe and provide practical evidence supporting the assumption that the
source of this leakage is a combination of static and dynamic power consumption.
The dependency of static power consumption on the input and output of the logic
gates has been investigated before. For instance, this issue has been pointed out
in [10], where static power consumption of sub-90nm gates in the simulation
domain is examined. Indeed, this issue was not taken as a serious threat by the
community, and our results which are based on a Virtex-5 FPGA employing a
65nm technology shows the practical relevance of this problem.

According to the diagram of our design (Fig. 2), the registers and their fol-
lowing combinational circuits contain the result of computations of each Player.
Therefore, the static power consumption of each sub-circuit related to each
Player depends on data (charges) available and stable in the registers and combi-
national circuits. However, the static power consumption of the design is the sum

(a)

(b) (c)

Fig. 5. Original design: evaluation results using 1 000 000 traces (a) first-order univari-
ate attack result, (b) second-order univariate attack result, and (c) over the number of
traces

of the aforementioned share-dependent static powers, and therefore depends on
unshared data (please see [23] for more information about the possible attacks
when the leakage of the shares are summed up).

As an evidence of our claim we refer to the attack results of both variants
of our design. In the first variant (Fig. 3(c)) correlation for the correct guess is
clearly high not only at the clock cycle in which the computation takes place
but also in the next few clock cycles when the circuit is idle. We should stress
that the correlation value does not stay high during whole of the e.g., 5, idle
clock cycles because the DC blocker – which we used in our measurement setup
– slowly cancels the influence of the static power consumption. Note that the
target FPGA was clocked at a frequency of 3MHz, by which we made sure that
the dynamic power consumption of adjacent clock cycles do not overlap. The
same holds for the second variant (Fig. 4(b)); correlation for the correct guess
does appear high not only on the peak of the clock cycles. On the contrary, it
shows the dependency of the power consumption on processed (and later saved)
data even between two consecutive clock cycles. Indeed, we showed the attack
results in Fig. 3(c) and Fig. 4(b) using much more traces than required in order
to clearly show the appearance of side-channel leakage through static power
consumption.

In order to provide more convincing evidences we repeated our experiments
on the second variant by down-clocking the target FPGA to an extremely slow
frequency of 1500Hz to keep the dynamic power consumption of two consecutive
clock cycles as far away as possible thereby observing the static power consump-
tion effect clearly. We also repeated this experiments using a SASEBO board
using a Virtex-II pro FPGA employing a 90nm transistor technology. The re-
sults of all these experiments which confirm our claim are given in the Appendix.

As a result, in our original design when the computation of each share is sep-
arated, still the total static power consumption is data dependent. We examined
our original design for several different public points α1, α2, α3. In all cases the
leakage appeared at the third clock cycle of the shared multiplication module
(when em3 – see Fig. 2 – gets active) and in some rare cases at the second clock
cycle as well. However, it never showed the leakage in the first clock cycle. It
indeed confirms our claim that the leakage of one or two shares are available
through static power consumption and are combined with the leakage of the
next share through dynamic power consumption. Furthermore, for some public
points we had to collect much more traces, e.g., 10 000 000, to clearly see the
leakage. Different public points actually have different impact on the remasking
part of the shared multiplication module and hence on its leakage. We should
emphasize that we made several other designs to avoid this leakage by changing
the input of the combinational circuit to zero after finishing their computation.
However, all of our efforts failed since the result of the computations must be
stored in a register which itself affects the static power consumption.

6 Conclusions

In this work we have demonstrated how to correctly implement a provably-
secure glitch-resistant masking scheme based on Shamir’s secret sharing and
multi-party computation protocols [20]. By making certain that in each point in
time only operations on a single share are performed, there should in theory exist
no exploitable univariate leakage. While we could show its opposite in practice,
this does not invalidate the security proofs of this scheme because the model used
in proofs takes only dynamic power consumption, e.g., by glitches, into account.
We, on the other hand, were able to extract the secrets by using a combination
of dynamic and static power consumption which is out of the scope of the proofs.
This indeed is the first practical evidence that static power consumption can also
thwart a sophisticated countermeasure.

We demonstrated that the threat of leakage by static power consumption can
no longer be ignored. Since the semiconductor technology is still shrinking, e.g.,
45nm, 40nm, and 28nm in Spartan-6, Virtex-6, and 7 series FPGAs of Xilinx,
the problem observed in this article becomes even more critical not only for
the underlying scheme of this article but also for other masking schemes, e.g.,
threshold implementation [17] and private circuits [8]. In general our findings in
this work may cloud the future of side-channel countermeasures which are based
on data randomization.

References

1. Side-channel Attack Standard Evaluation Board (SASEBO). Further information
are available via http://www.rcis.aist.go.jp/special/SASEBO/index-en.html.

2. Error in Report 2011/516: Protecting AES with Shamir’s Secret Sharing Scheme
by Louis Goubin and Ange Martinelli. Discussion forum of ePrint Archive: Re-
port 2011/516 http://eprint.iacr.org/forum/read.php?11,549,549#msg-549,
Sep 2011.

3. L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F.-X. Standaert, and N. Veyrat-
Charvillon. Mutual Information Analysis: a Comprehensive Study. J. Cryptology,
24(2):269–291, 2011.

4. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, 2004.

5. D. Canright and L. Batina. A Very Compact "Perfectly Masked" S-Box for AES.
In ACNS 2008, volume 5037 of LNCS, pages 446–459. Springer, 2008. the cor-
rected version at Cryptology ePrint Archive, Report 2009/011 http://eprint.
iacr.org/.

6. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer, 2002.

7. L. Goubin and A. Martinelli. Protecting AES with Shamir’s Secret Sharing Scheme.
In CHES 2011, volume 6917 of LNCS, pages 79–94. Springer, 2011.

8. Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware against
Probing Attacks. In CRYPTO 2003, volume 2729 of LLNCS, pages 463–481.
Springer, 2003.

9. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO 1999,
volume 1666 of LNCS, pages 388–397. Springer, 1999.

10. L. Lin and W. Burleson. Leakage-based differential power analysis (LDPA) on
sub-90nm CMOS cryptosystems. In ISCAS 2008, pages 252–255. IEEE, 2008.

11. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES
Hardware Implementations. In CHES 2005, volume 3659 of LNCS, pages 157–171.
Springer, 2005.

12. A. Moradi. Statistical Tools Flavor Side-Channel Collision Attacks. In EURO-
CRYPT 2012, volume 7237 of LNCS, pages 428–445. Springer, 2012.

13. A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-Enhanced Power Analysis
Collision Attack. In CHES 2010, volume 6225 of LNCS, pages 125–139. Springer,
2010.

14. S. Murphy and M. J. B. Robshaw. Essential Algebraic Structure within the AES.
In CRYPTO 2002, volume 2442 of LNCS, pages 1–16. Springer, 2002.

15. S. Nikova, C. Rechberger, and V. Rijmen. Threshold Implementations Against
Side-Channel Attacks and Glitches. In ICICS 2006, volume 4307 of LNCS, pages
529–545. Springer, 2006.

16. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementations of
Non-Linear Functions in the Presence of Glitches. In ICISC 2008, volume 5461 of
LNCS, pages 218–234. Springer, 2008.

17. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. J. Cryptology, 24(2):292–321, 2011.

18. E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A Side-Channel Analysis
Resistant Description of the AES S-Box. In FSE 2005, volume 3557 of LNCS,
pages 413–423. Springer, 2005.

19. A. Poschmann, A. Moradi, K. Khoo, C.-W. Lim, H. Wang, and S. Ling. Side-
Channel Resistant Crypto for Less than 2,300 GE. J. Cryptology, 24(2):322–345,
2011.

20. E. Prouff and T. Roche. Higher-Order Glitches Free Implementation of the AES
Using Secure Multi-party Computation Protocols. In CHES 2011, volume 6917 of
LNCS, pages 63–78. Springer, 2011.

21. M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. In CHES
2010, volume 6225 of LNCS, pages 413–427. Springer, 2010.

22. A. Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–613,
1979.

23. F.-X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed,
M. Kasper, and S. Mangard. The World Is Not Enough: Another Look on Second-
Order DPA. In ASIACRYPT 2010, volume 6477 of LNCS, pages 112–129. Springer,
2010.

Appendix

We reduced the clock frequency of the target FPGA to 1500Hz in order to limit
the effect of dynamic power consumption at each clock cycle of the power traces
and mainly examine the static power consumption. We also implemented the
second variant of the design on a SASEBO board which employs a Virtex-II
pro FPGA. Since it is using a 90nm transistor technology, we expect to see
the static power consumption as well. Moreover, using the SASEBO platform
we could obtain the traces with a lower amount of electrical noise compared to
SASEBO-GII due to their different PCB design and technology.

In the first step we kept the same measurement setup as stated in Section 4,
i.e., measuring at the VDD path using a DC blocker and a passive probe, but we
decreased the sampling rate to 100kS/s to avoid dealing with very long traces.
This indeed does not affect on our goal which is to examine the static power
available between consecutive clock cycles. We measured 100 000 traces of the
second variant implemented on the Virtex-II pro FPGA and mounted the same
attack as illustrated in Section 4 using the first-order moment. The attack result
is shown by Fig. 6 indicating no success in observing any dependency between
the static power consumption and the saved data since the correlation value for
the correct guess appears high only at the clock cycle peaks.

Fig. 6. Second variant on SASEBO (Virtex-II), 1500Hz, DC blocker: first-order uni-
variate attack result using 100 000 traces

Fig. 7. Second variant on SASEBO (Virtex-II), 1500Hz, GND path, passive probe,
DC50 mode: first-order univariate attack result using 100 000 traces

As stated before, we employed a DC blocker to reduce the electrical noise
and obtain clear traces. However, it can remove the effect of the static power
consumption as well if two consecutive clock cycles are far away from each other.
Therefore, we removed the DC blocker and repeated the same experiment as be-
fore on traces measured from the GND path using a passive probe and setting
the oscilloscope to DC50 ohm mode. The result of the corresponding attack de-
picted in Fig. 7 clearly shows that correlation values for the correct guess are
high not only at the clock edges but also in the time interval between some
consecutive clock cycles. This indeed confirms our claim that the information
leakage through static power consumption is practically detectable using a suit-
able measurement setup. We should stress that the attack is not as effective as
the previous experiment. The reason, as stated before, is due to the much better
and clearer traces that we could collect using the DC blocker.

We also repeated both experiments on the Virtex-5 FPGA of the SASEBO-
GII platform. The result of the first experiment – using the DC blocker – is shown
by Fig. 8, and similar to the Virtex-II case it does not provide any opportunity
to see the effect of the static power consumption. However, removing the DC
blocker and measuring at the VDD path using a differential probe led to the
result shown by Fig. 9. In this case, the traces were much more noisy than
in all previous experiments which has a strongly negative effect on the attack
efficiency. However, the influence of the static power consumption on the traces
can be observed in the attack results (Fig. 9). We should emphasize that it was
not possible to do the measurements at the GND path of SASEBO-GII. We did
a couple of tries, but the target FPGA stops to be functional due to a lack of

Fig. 8. Second variant on SASEBO-GII (Virtex-5), 1500Hz, DC blocker: first-order
univariate attack result using 100 000 traces

current. This is because the resistor in the GND path affects the current of all
VDD lines, i.e., VDD_INT, VDD_IO, VDD_AUX. However, since the resistor
in the VDD path is only affecting VDD_INT of the target FPGA, enough current
can be provided when measuring at the VDD path. All these problems are due
to the design of the SASEBO-GII platform.

Fig. 9. Second variant on SASEBO-GII (Virtex-5), 1500Hz, VDD path, differential
probe: first-order univariate attack result using 100 000 traces

