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Abstract

A t-round key alternating cipher can be viewed as an abstraction of AES. It defines a cipher E from
t fixed public permutations P1, . . . , Pt : {0, 1}n → {0, 1}n and a key k = k0‖ · · · ‖kt ∈ {0, 1}n(t+1)

by setting Ek(x) = kt ⊕ Pt(kt−1 ⊕ Pt−1(· · · k1 ⊕ P1(k0 ⊕ x) · · · )). The indistinguishability of Ek

from a random truly random permutation by an adversary who also has oracle access to the (public)
random permutations P1, . . . , Pt was investigated for t = 2 by Even and Mansour [5] and, much later,
by Bogdanov et al. [1]. The former proved indistinguishability up to 2n/2 queries for t = 1 while
the latter proved indistinguishability up to 22n/3 queries for t ≥ 2 (ignoring low-order terms). Our
contribution is to improve the analysis of Bogdanov et al. by showing security up to 23n/4 queries for

t ≥ 3. Given that security cannot exceed 2
t

t+1
n queries, this is in particular achieves a tight bound

for the case t = 3, whereas, previously, tight bounds had only been achieved for t = 1 (by Even
and Mansour) and for t = 2 (by Bogdanov et al.). Our main technique is an improved analysis of
the elegant sample distinguishability game introduced by Bogdanov et al. [1]. More specifically, we
succeed in eliminating adaptivity by considering the Hellinger advantage of an adversary, a notion
that we introduce here. To our knowledge, our result constitutes the first time Hellinger distance
(a standard measure of “distance” between random variables, and a cousin of statistical distance) is
used in a cryptographic indistinguishability proof.

Introduction

Given t permutations P1, . . ., Pt : {0, 1}n → {0, 1}n the t-round key-alternating cipher based on
P1, . . . , Pt is a blockcipher E : {0, 1}(t+1)n × {0, 1}n → {0, 1}n of keyspace {0, 1}(t+1)n and message
space {0, 1}n, where for a key k = k0‖k1‖ · · · ‖kt ∈ {0, 1}(t+1)n and a message x ∈ {0, 1}n we set

E(k, x) = kt ⊕ Pt(kt−1 ⊕ Pt−1(· · ·P1(k0 ⊕ x) · · · )). (1)

(See Figure 1.) Plainly, E(k, ·) is a permutation of {0, 1}n for each fixed k ∈ {0, 1}(t+1)n ; we let E−1(k, ·)
denote the inverse permutation. The Pi’s are called the round permutations of E and t is the number
of rounds of E. Thus t and the permutations P1, . . . , Pt are parameters determining E.

Key-alternating ciphers were first proposed (for values of t greater than 1) by the designers of
AES [3, 4], the Advanced Encryption Standard. Indeed, AES-128 itself can be viewed as a particular
instantiation of the key-alternating cipher paradigm in which the round permutations P1, . . . , Pt equal
a single permutation P (the Rijndael round function, in this case), in which t = 10, and in which only
a subset of the {0, 1}(t+1)n = {0, 1}11n possible keys are used (more precisely, the 11n bits of key are
derived pseudorandomly from a seed of n bits, making the key space {0, 1}n = {0, 1}128). However,
for t = 1 the design was proposed much earlier by Even and Mansour as a means of constructing a
blockcipher from a fixed permutation [5].

Even and Mansour accompanied their proposal with “provable security” guarantees by showing that,
for t = 1, an adversary needs roughly 2n/2 queries to distinguish E(k, ·) for a random key k (k being
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Figure 1: A t-round key alternating cipher.

hidden from the adversary) from a true random permutation, in a model where the adversary is given
oracle access to E(k, ·), E−1(k, ·) as well as to P1, P

−1
1 , where P1 is modeled as a random permutation

(in the dummy world, the adversary is given oracle access to two independent random permutations
and their inverses). Their bound was matched by Daemen [2], who showed a 2n/2-query distinguishing
attack for t = 1.

For t > 1, we can generalize the Even-Mansour indistinguishability experiment by giving the ad-
versary oracle access to P1, . . . , Pt and their inverses and to E(k, ·), E−1(k, ·) in the real world (for a
randomly chosen, hidden k ∈ {0, 1}(t+1)n), and to a tuple of t + 1 independent random permutations
and their inverses in the “ideal” or “dummy” world (see Figure 2). In this case, Daemen’s attack can

be easily generalized to an attack of query complexity 2
t

t+1
n, as pointed out by Bogdanov et al. [1],

but the security analysis of Even and Mansour does not similarly generalize to a security bound of

2
t

t+1
n (though security of 2n/2 queries still holds, and is easy to prove in a black-box fashion from the

Even-Mansour result).
Despite the advent of AES, further provable security improvements on key-alternating ciphers for

t > 1 had to wait for the afore-mentioned paper of Bogdanov et al. [1], who showed (in the same model

as Even and Mansour) security of 2
2

3
n queries for t ≥ 2 (modulo lower-order terms). This bound is tight

for t = 2, as it matches the 2
t

t+1
n-query attack, but is not sharp for t > 2—e.g., the best known attack

for t = 3 has cost 2
3

4
n, whereas the best known security bound remains 2

2

3
n. In this paper we further

this line of work by showing that key-alternating ciphers enjoy security of 2
3

4
n queries for t ≥ 3. In a

nutshell, the Even-Mansour bound is tight for t = 1, the Bogdanov et al. bound is tight for t = 2, and
our bound is tight for t = 3. It remains an open problem to prove tight bounds for t ≥ 4 (though, we

emphasize, our bound also improves the previous best of 2
2

3
n up to 2

3

4
n for t ≥ 4).

Our proof follows closely the method of Bogdanov et al. [1]. Essentially, our improvement follows by
replacing a certain “loose” statistical distance triangle inequality in [1] by a sharper inequality based on
Hellinger distance (a variant of statistical distance). In fact, this technique more generally gives a much
improved (and, in a cryptographic sense, sharp) analysis of the elegant sample distinguishability game
introduced by Bogdanov et al. The modified sample distinguishability analysis that we present is also
interesting because we show (loosely speaking) that the “statistical” advantage of an adaptive adversary
can be upper bounded by the “Hellinger” advantage of a non-adaptive adversary. It thus presents a new,
interesting instance of the paradigm common in cryptographic proofs that seeks to replace an adaptive
adversary by a non-adaptive adversary in order to upper bound advantage [8, 9, 12–14].

Our work has two main parts: (i) an improved (generic) analysis of sample distinguishability based
on the technical concept of Hellinger distance, and (ii) an application of the previous analysis to the
sample distinguishability game defined by Bogdanov et al., where the main hurdle is to upper bound
the relevant Hellinger distance (whereas Bogdanov et al. only upper bounded statistical distance).

In the paper’s first part we (re-)introduce sample distinguishability, Hellinger distance, and their
interconnection. This part contains the improved Hellinger-distance-based upper bound for sample
distinguishability that is of independent interest from the paper’s main result. In the paper’s second
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part we give more detailed definitions for key-alternating ciphers and the security experiment. We then
recall the outline of Bogdanov et al.’s security analysis for key-alternating ciphers and “plug in” our
improved sample distinguishability bound to this proof, thus obtaining the improvement from 2

2

3
n to

2
3

4
n queries for t ≥ 3 rounds.
To the best of our knowledge, this paper represents the first application of Hellinger distance in

cryptography, or to indistinguishability in general.

A notational preliminary. The statistical distance ∆(X,Y ) (more accurately known, also, as the total
variation distance) between two random variables X, Y of range S is defined as

∆(X,Y ) := max
T⊆S

(Pr[X ∈ T ]− Pr[Y ∈ T ]) =
∑

s∈S

1

2
|Pr[X = s]− Pr[Y = s]|.

It is well-known (and easily proved) that

∆(X,Y ) = sup
D
|Pr[D(X) = 1]− Pr[D(Y ) = 1]|

where the sup is taken over all (probabilistic or deterministic—it doesn’t matter) distinguishers D :
S → {0, 1}, and where Pr[D(X) = 1], Pr[D(Y ) = 1] are the probabilities that D outputs 1 when given
a sample of X and Y , respectively, these probabilities being computed over the randomness in X and
Y and over D’s coins, if any.

1 Sample Distinguishability and Hellinger Distance

We start by recalling the elegant sample distinguishability game originally introduced as a mid-level
abstraction in the proof of Bogdanov et al.

Bogdanov et al. consider a family (Xα, Yα)α∈A of pairs of random variables indexed by some finite1

set A. For each α ∈ A, Xα and Yα take values in some finite set Sα (one can assume, for conceptual
simplicity and without loss of generality, that all Sα’s are equal, say Sα = S for all α where S is some
sufficiently large finite set).

The notation D(Xα)α∈A indicates that a distinguisher D is given oracle access to a family of random
variables indexed by the set A, in this case the family (Xα)α∈A. More precisely, this means D’s query
sequence has the form α1, . . . , αq where each αi is in A, query αi being answered by a sample from Xαi

.
D may repeat queries to the same α ∈ A, in which case a “fresh” sample of Xα is returned each time to
D. All samples returned to D are independent (including, thus, samples from repeated queries to the
same α ∈ A). In general, D can be adaptive.

D’s sample distinguishability advantage with respect to the family of pairs (Xα, Yα)α∈A is defined as

∆samp

D ((Xα, Yα)α∈A) = |Pr[D(Xα)α∈A = 1]− Pr[D(Yα)α∈A = 1]|

where D(Xα)α∈A = 1 indicates the event that D outputs 1 after interacting with its oracle. The q-query
sample distinguishability of the family (Xα, Yα)α∈A is defined as

∆samp(q, (Xα, Yα)α∈A) = sup
D

∆samp

D ((Xα, Yα)α∈A)

where the sup is taken over all distinguishers D making at most q queries.

1The various finiteness assumptions are, of course, made mostly for simplicity; by replacing maximums by supremums

and discrete sums by Lebesgue integrals, the game and theory can be generalized to the case of an infinite A and arbitrary

measure spaces Sα equipped with probability measures Xα, Yα.

3



It might seem, given the independence of the various samples, that adaptivity cannot help the
distinguisher. However, as Bogdanov et al. point out, this intuition is mistaken. Bodganov et al. give
a somewhat hard-to-follow example with q = 2, |A| = 2 and maxα |Sα| = 3 that shows an adaptive
adversary can have better advantage than a non-adaptive one. A much simpler and more intuitive
example was provided to us by Liu Tianren [15]. In this example q = 2, |A| = 3, and maxα |Sα| = 2. We
put, more precisely, A = {1, 2, 3} and Sα = {0, 1} for all α ∈ A = {1, 2, 3}; the pairs (X1, Y1), (X2, Y2),
(X3, Y3) are given by the probability tables

Pr 0 1

X1 2/3 1/3

Y1 1/3 2/3

∆(X1, Y1) = 1/3

Pr 0 1

X2 1 0

Y2 3/4 1/4

∆(X2, Y2) = 1/4

Pr 0 1

X3 1/4 3/4

Y3 0 1

∆(X3, Y3) = 1/4

Here the optimal distinguisher is an adaptive distinguisher D that first queries 1, then queries 2 if the
answer to the first query is 0, and otherwise queries 3 if the answer to the first query is 1. One can
check, then, that ∆samp

D = 1
2 . On the other hand, one can also verify that

- if D non-adaptively queries (1, 1), ∆samp

D = 1/3
- if D non-adaptively queries (1, 2), ∆samp

D = 5/12 (and similarly if D non-adaptively queries (1, 3))
- if D non-adaptively queries (2, 3), ∆samp

D = 1/4 (and similarly if D non-adaptively queries (3, 2))
- if D non-adaptively queries (2, 2), ∆samp

D = 7/16 (and similarly if D non-adaptively queries (3, 3)).
Thus, the advantage of the best adaptive distinguisher is 1

2 whereas the advantage of the best non-
adaptive distinguisher is 7

16 .
We define separately the non-adaptive sample distinguishibality of a family (Xα, Yα)α∈A as

∆samp

non
(q, (Xα, Yα)α∈A) = sup

D
∆samp

D ((Xα, Yα)α∈A)

where the sup, this time, is taken over all non-adaptive distinguishersD making at most q queries (a non-
adaptive distinguisher is defined as a distinguisher that announces its sequence of queries (α1, . . . , αq) ∈
Aq at the start of the game, before receiving any query answers). We will prove, among others, that

∆samp(q, (Xα, Yα)α∈A) ≤
√

2∆samp

non (q, (Xα, Yα)α∈A) (2)

for any family (Xα, Yα)α∈A. Thus, while adaptivity helps for sample distinguishability, it helps “at most
quadratically”. In practice, it seems, the (potentially) quadratic discrepancy between the adaptive and
non-adaptive sample distinguishability advantages makes little difference for cryptographic applications
(due to the fact that there is typically little difference, e.g., between the number of non-adaptive queries
necessary for reaching distinguishing advantage 0.5 and the number necessary for reaching distinguishing
advantage 0.52/

√
2).

We will prove (2) using Hellinger distance. Coincidentally, Hellinger distance is also the appropriate
tool for upper bounding ∆samp

non —thus Hellinger distance will turn out to be “twice useful” in this paper.
Given random variables X and Y of finite range S, the Hellinger distance h(X,Y ) between X and

Y is defined via

h2(X,Y ) :=
1

2

∑

s∈S

(
√

Pr[X = s]−
√

Pr[Y = s])2

= 1−
∑

s∈S

√

Pr[X = s] Pr[Y = s]
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where the second equality is easily verified by elementary algebra. (Thus, we emphasize, h(X,Y ) is the
positive square root of the above quantities.) We note already that

1− h2(X,Y ) =
∑

s∈S

√

Pr[X = s] Pr[Y = s]

has a fairly simple expression, which will play a role later on.
Hellinger distance can be used to upper bound statistical distance and vice-versa. One has, to be

precise,

h2(X,Y ) ≤ ∆(X,Y ) ≤
√
2h(X,Y ). (3)

(The first inequality follows directly from the fact that (
√
a−
√
b)2 ≤ |a−b| for all real numbers a, b ≥ 0;

the second inequality can be proved from Cauchy-Schwarz.)
A product distribution is a random variable of the form X = (Xi)

n
i=1 where the Xi’s are (fully)

independent. One can note that if X = (Xi)
n
i=1, X = (Yi)

n
i=1 are product distributions where Xi and

Yi have finite range Si, then

1− h2(X,Y ) =
∑

(s1,...,sn)∈S1×···×Sn

√

Pr[X = (s1, . . . , sn)] Pr[Y = (s1, . . . , sn)]

=
∑

(s1,...,sn)∈S1×···×Sn

√

Pr[X1 = s1] · · ·Pr[Xn = sn] Pr[Y1 = s1] · · ·Pr[Yn = sn]

=





∑

s1∈S1

√

Pr[X1 = s1] Pr[Y1 = s1]



 · · ·
(

∑

sn∈Sn

√

Pr[Xn = sn] Pr[Yn = sn]

)

=
n
∏

i=1

(1− h2(Xi, Yi))

≥ 1−
n
∑

i=1

h2(Xi, Yi)

so, in particular,

h2(X,Y ) ≤
n
∑

i=1

h2(Xi, Yi) ≤ nmax
i

h2(Xi, Yi)

and

h(X,Y ) ≤

√

√

√

√

n
∑

i=1

h2(Xi, Yi) ≤
√
nmax

i
h(Xi, Yi). (4)

We note that statistical distance admits the similar inequalities

∆(X,Y ) ≤
n
∑

i=1

∆(Xi, Yi) ≤ nmax
i

∆(Xi, Yi) (5)

but the first inequality is typically fairly loose. Usually, the inequality

∆(X,Y ) ≤
√
2h(X,Y ) ≤ √nmax

i
h(Xi, Yi) (6)

obtained by combining (3) and (4) gives a better upper bound on ∆(X,Y ). (On a very simplified level,
our paper’s improvement boils down to the difference between (6) and (5).) We next illustrate these
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concepts with an example.

Example. Let X = (Xi)
n
i=1, Y = (Yi)

n
i=1 be product distributions where X1, . . . ,Xn are identically

distributed, and so for Y1, . . . , Yn, these distributions being given by

Pr[Xi = 1] =
1

2
+ ε Pr[Xi = 0] =

1

2
− ε

Pr[Yi = 1] =
1

2
− ε Pr[Yi = 0] =

1

2
+ ε

for some small ε. Thus, X represents n independent samples of a coin with a +ε bias towards 1, whereas
Y represents n independent samples of a coin with a +ε bias towards 0. One can show with a Chernoff
bound that n = O(1/ε2) samples are sufficient to distinguish X and Y ; that is,

∆(X,Y ) = ∆samp(n, (X1, Y1)) = Ω(1)

for n = O(1/ε2). (Here we write simply (X1, Y1) for the family (Xα, Yα)α∈A whose only member is the
pair (X1, Y1).) Also, (5) gives

∆(X,Y ) ≤ n∆(X1, Y1) = 2nε

which shows that n = O(1/ε) samples are necessary to distinguish X and Y—but O(1/ε) is a far cry
from O(1/ε2). On the other hand, (6) gives

∆(X,Y ) ≤ √nh(X1, Y1) =
√
nO(ε)

which, indeed, shows that n = O(1/ε2) samples are necessary to distinguish the biased coins. (We skip
the straightforward computation showing that h(X1, Y1) = O(ε).) In this case, therefore, (6) gives a
substantially better upper bound on ∆(X,Y ) than (5).

As one of our paper’s main results, we will prove that

∆samp(q, (Xα, Yα)α∈A) ≤
√

2qmax
α∈A

h(Xα, Yα) (7)

for any family (Xα, Yα)α∈A, and any q ∈ N. Note that (7) generalizes (6) since, obviously, ∆(X,Y ) ≤
∆samp(n, (Xi, Yi)i∈[n]) for product distributions X = (Xi)

n
i=1, Y = (Yi)

n
i=1. We continue with, as our

main goal, a proof of (7).
By a standard argument

∆samp(q, (Xα, Yα)α∈A) = sup
D

∆samp

D ((Xα, Yα)α∈A)

with the sup taken over all deterministic (adaptive) distinguishers D making at most q queries. Thus
we can restrict our attention to deterministic distinguishers.

The “query strategy” of a deterministic q-query distinguisher D for a family (Xα, Yα)α∈A can be
encoded as a tree of depth q. Each non-leaf node of the tree is labeled by a query α ∈ A where, e.g., the
root of the tree is labeled by D’s first query. For a node labeled α, there are |Sα| children for that node,
each child corresponding to some element of Sα, where Sα (we recall) is the range of Xα and Yα. When
D makes its queries, it follows the tree downward from the root to a leaf according to the answers it
receives from its oracle. Finally, each leaf is labeled with a decision: 0 or 1. Such a labeled tree fully
describes a deterministic, adaptive distinguisher D.

Take now some arbitrary (deterministic, adaptive, q-query) D, let T be the tree associated to D,
and let r be the root of T . We write Tv for the subtree of T rooted at v ∈ V (T ) and write lf(Tv) for
the set of leaves of Tv. Thus T = Tr. For ℓ ∈ lf(Tv) we write PX(v → ℓ) for the probability that leaf
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ℓ is reached if queries start at v and the oracle is (Xα)α∈A. PY (v → ℓ) is similarly defined. We also
define PX(ℓ → ℓ) = PY (ℓ → ℓ) = 1 for any leaf ℓ. We let LT

X , LT
Y be random variables of range lf(T ),

such that Pr[LT
X = ℓ] = PX(r → ℓ) and Pr[LT

Y = ℓ] = PY (r → ℓ). In other words, LT
X is distributed

according to the probability that D lands at a given leaf when the oracle is (Xα)α∈A, and likewise
with LT

Y and (Yα)α∈A. It is easy to see, then, that ∆samp

D ((Xα, Yα)α∈A) ≤ ∆(LT
X , LT

Y ) (and, moreover,
∆samp

D ((Xα, Yα)α∈A) = ∆(LT
X , LT

Y ) if D labels the leaves intelligently, e.g., if leaf ℓ has label 1 if and
only if Pr[LT

X = ℓ] ≥ Pr[LT
Y = ℓ]). In particular, by (3),

∆samp

D ((Xα, Yα)α∈A) ≤ ∆(LT
X , LT

Y ) ≤
√
2h(LT

X , LT
Y ). (8)

Say a tree T ′ is non-adaptive if all the nodes at a given level of the tree have the same label.
Obviously, the tree associated to a non-adaptive adversary (viewed as a special case of an adaptive
adversary) is a non-adaptive tree. We will show:

∃ non-adaptive T ′ of depth q s.t.∀ adaptive T of depth q, h(LT
X , LT

Y ) ≤ h(LT ′

X , LT ′

Y ) (9)

In other words, adaptivity does not help for maximizing the Hellinger distance between the probability
distributions on the leaves (even though it does help for maximizing the statistical distance between the
distributions on the leaves).

For convenience, we define

H(T ) = 1− h2(LT
X , LT

Y )

=
∑

ℓ∈lf(T )

√

Pr[LT
X = ℓ] Pr[LT

Y = ℓ]

for a tree T . Then (9) is equivalent to

∃ non-adaptive T ′ of depth q s.t.∀ adaptive T of depth q, H(LT
X , LT

Y ) ≥ H(LT ′

X , LT ′

Y ). (10)

We prove (10) by induction on q. When q = 1 the result is obvious, since it suffices to define T ′ to
be the depth-1 tree whose root is labeled by the element β ∈ A that maximizes h(Xβ , Yβ) (i.e., that
minimizes H(Xβ , Yβ)). The fact that A is finite guarantees the existence of such a β.

For the induction step, assume that (10) has been established for q ≤ t, and let T ′
t be the tree T ′

satisfying (10) for q = t. Let T be an arbitrary tree of depth t + 1. Let T (v) denote the subtree of T
rooted at v ∈ V (T ) (thus, for example, T = T (r) where r is the root of T ). Let the root r of T have
label αr ∈ A, where Xαr

, Yαr
have range Sαr

, and assume that r’s children in T are {vs : s ∈ Sαr
}.

Then

H(T ) = H(LT
X , LT

Y )

=
∑

ℓ∈lf(T )

√

Pr[LT
X = ℓ] Pr[LT

Y = ℓ]

=
∑

s∈Sαr

∑

ℓ∈lf(T (vs))

√

Pr[Xαr
= vs] Pr[L

T (vs)
X = ℓ] Pr[Yαr

= vs] Pr[L
T (vs)
Y = ℓ]

=
∑

s∈Sαr

√

Pr[Xαr
= vs] Pr[Yαr

= vs]
∑

ℓ∈lf(T (vs))

√

Pr[L
T (vs)
X = ℓ] Pr[L

T (vs)
Y = ℓ]

=
∑

s∈Sαr

√

Pr[Xαr
= vs] Pr[Yαr

= vs]H(T (vs))

≥
∑

s∈Sαr

√

Pr[Xαr
= vs] Pr[Yαr

= vs]H(T ′
t)
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= H(T ′
t)
∑

s∈Sαr

√

Pr[Xαr
= vs] Pr[Yαr

= vs]

= H(T ′
t)H(Xαr

, Yαr
).

On the other hand, if we define T ′
t+1 to be the non-adaptive tree whose root is labeled by the element

β ∈ A that minimizes H(Xβ, Yβ) and whose first-level subtrees are each equal to T ′
t , then

H(T ′
t+1) = H(T ′

t)H(Xβ , Yβ) ≤ H(T ′
t)H(Xαr

, Yαr
)

so that H(T ′
t+1) ≤ H(T ), as desired. This establishes (10) and (9).

Now let T ′ be the non-adaptive tree of depth q whose existence is guaranteed by (9) and let D′ be
the non-adaptive adversary associated to T ′, where we label the leaves of T ′ such that ℓ ∈ lf(T ′) has
label 1 if and only if Pr[LT ′

X = ℓ] ≥ Pr[LT ′

Y = ℓ]. Then ∆samp

D′ ((Xα, Yα)α∈A) = ∆(LT ′

X , LT ′

Y ) and for any
q-query adaptive distinguisher D with tree T we have

∆samp

D ((Xα, Yα)α∈A) ≤ ∆(LT
X , LT

Y ) ≤
√
2h(LT

X , LT
Y ) ≤

√
2h(LT ′

X , LT ′

Y ) ≤
√

2qmax
α∈A

h(Xα, Yα) (11)

where: (i) the second inequality follows by (3), (ii) the third inequality follows by the choice of T ′,
(iii) the fourth inequality follows by (6) because h(LT ′

X , LT ′

Y ) = h(X,Y ) where X, Y are the product
distributions (Xαi

)qi=1, (Yαi
)qi=1, where αi is the label on the i-th level of T ′. Thus we have proved (7),

which we record as a lemma:

Lemma 1 For any family (Xα, Yα)α∈A, A finite, we have

∆samp(q, (Xα, Yα)α∈A) ≤
√

2qmax
α∈A

h(Xα, Yα)

for all q ∈ N.

(One can observe that the case |A| = q = 1 of Lemma 1 is equivalent to the right-hand inequality in
(3).)

Moreover, the sequence of inequalities in (11) can be used to directly relate the adaptive and non-
adaptive sample distinguishability advantages. More exactly, since

√
2h(LT ′

X , LT ′

Y ) ≤
√

2∆(LT ′

X , LT ′

Y ) =
√

2∆samp

D′ ((Xα, Yα)α∈A) =
√

2∆samp

non (q, (Xα, Yα)α∈A)

with T ′ and D′ as in (11), and since D is an arbitrary q-query distinguisher, we find

∆samp(q, (Xα, Yα)α∈A) ≤
√
2h(LT ′

X , LT ′

Y ) ≤
√

2∆samp

non (q, (Xα, Yα)α∈A)

which proves (2). We point out that we do not know the extent to which (2) is sharp. Indeed, it
remains an interesting open problem to either find some sequence of examples showing that (2) is sharp
(up to a possible constant factor), or else to display an even closer relationship between adaptive and
non-adaptive sample distinguishabilities. In all events, however, we shall have no further use for (2),
our main tool being Lemma 1.

We finally note, parenthetically, that sample distinguishability is loosely related to the notion of free-
start distinguishability defined by Gazl and Maurer [7]. More precisely, sample distinguishability can be
seen as taking the idea of free-start indistinguishability to its logical extreme, whereby the distinguisher
is “repeatedly given a free start” at each query. (In fact, this establishes a general connection between
sample indistinguishability and general indistinguishability.)
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Ek P1
b b b b Pt

World 1

Q P1
b b b b Pt

World 2

D

Figure 2: The two worlds for the Even-Mansour security experiment. In World 1 the distinguisher D
has oracle access to random permutations P1, . . . , Pt and the key-alternating cipher Ek (cf. Eq. (1)) for
a random key k. In World 2, D has oracle access to t+ 1 independent random permutations. In either
world D also has oracle access to the inverse of each permutation.

2 Applications to Key-Alternating Ciphers

We define the PRP security of a t-round key-alternating cipher E (cf. (1)) against a distinguisher (or
“adversary”) D as

AdvPRP
E,t (D) = Pr[k = k0 · · · kt ←− {0, 1}t(n+1);DEk,P1,...,Pt = 1]− Pr[DQ,P1,...,Pt = 1]

where in each experiment Q, P1, . . . , Pt are independent uniform random permutations, where D is also
allowed to query the inverse of each of its oracles (see Figure 2), and where k = k0 · · · kt is selected
uniformly at random (and hidden from D). We further define

AdvPRP
E,t (q) = max

D
AdvPRP

E,t (D)

where the maximum is taken over all adversaries D making at most q queries. (The notation AdvPRP
E,t (·)

is thus overloaded.) We also note that, besides t, n is a parameter on which E (and hence AdvPRP
E,t (q))

depends (and naturally enough, since n is the “security parameter”).
Our main result is the following:

Theorem 1 Let N = 2n and let q = N
t

t+1/Z for some Z ≥ 1. Then, for any t ≥ 1 and assuming
q < min(N/100, N/5t), we have

Adv
PRP
E,t (q) ≤ 3q2t

N1.5
+

t+ 1

Zt
.

The above theorem is void for q > N
t

t+1 since Z ≥ 1. Thus, the provable security achieved is always

at most N
t

t+1 queries. On the other hand, the term 3q2t/N1.5 also caps security at q = N
3

4 . Thus,
roughly, Theorem 1 implies indistinguishability of the Even-Mansour cipher up to

q ≈ min(2
3

4
n, 2

t

t+1
n)

queries, which is sharp for t ≤ 3. We shall keep N = 2n for the remainder of the article.
For a large part, our proof follows the outline of Bogdanov et al. [1]. As in [1], instead of giving D

oracle access to the tuple of oracles
Ek, P1, . . . , Pt

in “world 1”, we give it oracle access to the oracles

E−1
k , P1, . . . , Pt

9



(since the inverses can be queried, this is clearly a cosmetic change—moreover the corresponding change
has no effect in world 2, since Q is anyway a uniform random permutation). We also rename E−1

k as
P0 so that, in “world 1”, D’s oracles become a (t+ 1)-tuple

P0, P1, . . . , Pt

with the property that

Pt(Pt−1(· · ·P2(P1(P0(·)⊕ k0)⊕ k1)⊕ k2 · · · )⊕ kt−1)⊕ kt = id. (12)

We can indeed think of D’s t+ 1 oracles P0, . . . , Pt as being constructed as follows in world 1: first the
key k0 · · · kt is sampled, after which permutations P0, . . . , Pt are sampled uniformly at random from all
(t + 1)-tuples (P0, . . . , Pt) satisfying (12). (In turn, one way of implementing the latter sampling is to
sample t of the t+1 permutations P0, . . . , Pt uniformly and independently at random, and to define the
remaining (t+ 1)-th permutation via (12).)

Following [1], we formally implement the interface of oracles (P0, . . . , Pt) in world 1 via an oracle
O(N, t) taking k0, . . . , kt as implicit parameters. This oracle uses lazy sampling to define P0, . . . , Pt.
Originally the Pi’s are undefined at all points. Subsequently, when the adversary makes a query Pi(x)
(the case of a backward query P−1

i (x) is similarly handled) the oracle O(N, t) defines Pi(x) according
to the following procedure:

• Let P = P(P0, . . . , Pt) be the set of all (t + 1)-tuples of permutations (P 0, . . . , P t) such that P i

extends the currently defined portion of Pi, and such that

P t(· · ·P 2(P 1(P 0(·)⊕ k0)⊕ k1) · · · ⊕ kt−1)⊕ kt = id. (13)

Then O(N, t) samples uniformly at random an element (P 0, . . . , P t) from P. The oracle sets
Pi(x) = P i(x) and returns this value.

After the above, the oracle “forgets” about P 0, . . . , P t, and samples these afresh at the next query. It
is clear that this lazy sampling process gives the same distribution as sampling the tuple (P0, . . . , Pt)
at the start of the game.

In view of applying a hybrid argument, Bogdanov et al. also define a second oracle Õ(N, t). This
oracle also defines the permutations P0, . . . , Pt via lazy sampling, and also takes the key k0 · · · kt as an
implicit input, but this time the lazy sampling process is a bit different.

We say that a sequence of partially defined permutations P0, . . . , Pt is consistent if P(P0, . . . , Pt) 6=
∅, with P(·) defined as in the description of O(N, t) above. Initially, Õ(N, t) sets the permutations
P0, . . . , Pt to be undefined everywhere. Upon receiving a forward query Pi(x), Õ(N, t) uses the following
lazy sampling procedure:

• Let U ⊆ {0, 1}n be the set of values y such that defining Pi(x) = y maintains the consistency of
P0, . . . , Pt, besides maintaining the fact that Pi is a permutation. Then Õ(N, t) samples a value
y uniformly from U , sets Pi(x) = y, and returns y.

Inverse queries are similarly treated. While it may not be immediately apparent that Õ(N, t)’s answers
are distributed any differently from O(N, t)’s, small examples can be constructed to show that, indeed,
these two oracles are statistically non-equivalent.

Theorem 1 is, via a hybrid argument, the direct consequence of the following two propositions:

Proposition 1 Let q < min(N/100, N/5t). With O(N, t) and Õ(N, t) defined as above,

Pr[k0, . . . , kt ← {0, 1}n;DO(N,t) = 1]− Pr[k0, . . . , kt ← {0, 1}n;DÕ(N,t) = 1] ≤ 3q2t

N1.5

for every distinguisher D making at most q queries.
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Proposition 2 Let q = N
t

t+1/Z for some Z ≥ 1 be such that q < N/3. With Õ(N, t) defined as above,

Pr[k0, . . . , kt ← {0, 1}n;DÕ(N,t) = 1]− Pr[DQ0,...,Qt = 1] ≤ t+ 1

Zt+1
.

for every distinguisher D making at most q queries, where Q0, . . . , Qt are independent random permu-
tations.

Proposition 2 is proved in [1]. A weaker form of Proposition 1 is also proved in [1], with a bound of
4.3q3t/N2 instead of 3q2t/N1.5. The rest of the paper is devoted to the proof of Proposition 1.

We use a sample distinguishability game to prove Proposition 1. This is the same sample distin-
guishability game used by Bogdanov et al. for the proof of “their” version of Proposition 1. Only the
game’s analysis will be different.

In view of defining this game, Bogdanov et al. first note that the adversary D can only have better
advantage at distinguishing O(N, t) from Õ(N, t) if we tell D the keys k0, . . . , kt (indeed, D is free
to disregard this information). Nextly, they observe that one can further reduce to the case in which
k0 = . . . = kt = 0n ([1] Proposition 4). (In the latter case, moreover, D obviously does not need to be
“told” k0, . . . , kt.) Letting

Adv
OÕ;0n

N,t (D) = Pr[k0 = · · · = kt = 0n;DO(N,t) = 1]− Pr[k0 = · · · = kt = 0n;DÕ(N,t) = 1].

denote the advantage of an adversary D at distinguishing O(N, t) and Õ(N, t) implemented with zero
keys, it thus suffices to prove

Adv
OÕ;0n

N,t (q) ≤ 3q2t

N1.5
(14)

where Adv
OÕ;0n

N,t (q) is defined as the sup of Adv
OÕ;0n

N,t (D) taken over all q-query distinguishers D.

When the keys are zero, O(N, t) and Õ(N, t) offer, essentially, two slightly different methods of lazy
sampling permutations P0, . . . , Pt subject to the constraint

Pt(· · ·P1(P0(·)) · · · ) = id. (15)

Moreover, the oracles O(N, t) and Õ(N, t) maintain no “internal” data structures between queries that
are hidden from the distinguisher. (Indeed, the only data structures that O(N, t) and Õ(N, t) remember
between queries are the tables P0, . . . , Pt, and the state of these tables is known to the distinguisher D
who has made the queries to fill them.) More precisely, if we let ℓi be the number of points at which
Pi (or P−1

i ) is defined before D’s i-th query, then ℓ0 + · · · + ℓt = i − 1 when D makes its i-th query,
assuming (wlog) that D has made no redundant queries. We can imagine further strengthening D by
giving D the ability to reset the state of the data structures P0, . . . , Pt arbitrarily between queries,
subject to the constraint (say) that each Pi is defined at at most q points. Giving this added power
to D brings us to a sample distinguishability game (Xα, Yα)α∈A0

in which in which the index set A0

corresponds to all possible partial settings of the permutations P0, . . . , Pt available to D and in which
the X-world and Y -world correspond to O(N, t) and Õ(N, t), respectively. (We write A0 instead of A
in order to distinguish this specific sample distinguishability from the generic sample distinguishability
game discussed in Section 1.)

We now make a number of definitions to describe the above sample distinguishability game (Xα, Yα)α∈A0

more formally. In particular, we will encode the (partially defined) permutations P0, . . . , Pt as match-
ings, to remain consistent with the terminology of [1]. The following few definitions, indeed, are more
or less all cut-and-pasted from [1].

We let V0, . . . , Vt, Vt+1 be vertex sets with |Vi| = N and where we identify Vt+1 with V0. A sequence
of matchings M = (M 0, . . . ,M t+1) whereM i is a perfect matching between Vi and Vi+1 is called circular

11



if every path starting at a vertex v ∈ V0 following the edges in M0, . . . ,M t ends at the same vertex
v ∈ Vt+1 = V0. In other words, circularity is the matching equivalent of (15).

Given a sequence M = (M0, . . . ,Mt) where each Mi is a partial matching between Vi and Vi+1, we
let

M(M)

be the set of all circular sequences M extending M , i.e. the set of all sequences M = (M0, . . . ,M t) such
that M i extends Mi for each i and such that M is circular. We say M is consistent ifM(M) 6= ∅.

A q-configuration is a pair (v0,M) such that (i) M = (M0, . . . ,Mt) is a consistent sequence of partial
matchings such that |Mi| ≤ q for all i, (ii) v0 ∈ V0 is nonadjacent to M0. The index set A0 of the sample
distinguishability game will be the set of all q-configurations. That is,

A0 = {(v0,M) : (v0,M) is a q-configuration}.

We next describe the distributions Xα and Yα. Let α = (v0,M) ∈ A0 be a q-configuration, M =
(M0, . . . ,Mt). For any vertex u ∈ V1 nonadjacent to M0, we write M ∪ {(v0, u)} for the sequence of
partial matchings (M0∪{(v0, u)},M1, . . . ,Mt). Let U ⊆ V1 be the set of vertices u such thatM∪{(v0, u)}
is consistent. We define

Pr[Xα = u] :=
M(M ∪ {(v0, u)})

M(M)
.

We note that Xα is a probability distribution on U , and that Xα is equidistributed to O(N, t) queried at
P0(v0) with keys k0 = . . . = kt = 0n and with P0, . . . , Pt defined such that Pi(x) = y ⇐⇒ (x, y) ∈Mi.
As for Yα, it is simply the uniform distribution on U . Thus Yα is equidistributed to Õ(N, t) under the
same correspondence. This completes the description of the sample distinguishability game (Xα, Yα)α∈A0

(parameterized by N and t).
We note the restriction of the sample distinguishability game to queries of the form P0(·) is without

loss of generality, by symmetry considerations and because the distinguisher can “set up” the matchings
as it wants. Thus

Adv
OÕ;0n

N,t (q) ≤ ∆samp(q, (Xα, Yα)α∈A0
)

since the sample distinguishability game only gives more power to the distinguisher and, in particular,
it suffices to show

∆samp(q, (Xα, Yα)α∈A0
) ≤ 3q2t

N1.5
when q < N/100 (16)

in order to prove Proposition 1. To prove (16) we combine Lemma 1 with a rather technical analysis
upper bounding maxα∈A0

h(Xα, Yα). The latter analysis has two basic components: a combinatorial
characterization of the “shape” of the distribution Xα (recall Yα is uniform), and, secondly, an upper
bound on h(Xα, Yα) based on this combinatorial characterization. These two components correspond,
in that order, to the following two propositions:

Proposition 3 Let q < N/3, let (Xα, Yα)α∈A0
be the sample distinguishability game described above,

and let α = (v0,M) ∈ A0 be a q-configuration. Let ρ = 2.05qt/N . Let U ⊆ V1 be the support of Yα.
Then either |U | = 1 and h(Xα, Yα) = ∆(Xα, Yα) = 0, or else |U | ≥ N −2q and there exists a set R ⊆ U
such that (i) |R| ≥ N − 2q and |U\R| ≤ q, (ii) Pr[Xα = u] = Pr[Xα = v] for all u, v ∈ R. Moreover,

Pr[Xα = u]

Pr[Xα = v]
≥ 1− ρ

for all u, v ∈ U .
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Proposition 4 Let X, Y be random variables of range U such that Y is uniform on U and such that
there exists a set R ⊆ U , |R| ≥ |U |/2, such that Pr[X = u] = Pr[X = v] for all u, v ∈ R and such that

Pr[X = u]

Pr[X = v]
≥ 1− ε

for all u, v ∈ U , for some ε ≤ 1
2 . Then

h2(X,Y ) ≤ ε2
( |T |
|R|
)2

+
ε2|T |
2|U |

where T = U\R.

Proposition 3 is proved by Bogdanov et al. and, more exactly, is established as an intermediate result
within the proof of their Lemma 2 [1]. (As a means of giving some intuition, however, we note the set
R corresponds to the set of vertices in V1 are neither adjacent to an edge of M1 or of M2—there are,
naturally, at least N − 2q such vertices.)

Before proving Proposition 4 (which amounts to a fairly straightforward computation) we show how
(16), and hence Proposition 1, can be obtained as a corollary of Propositions 3 and 4:

Proof of Proposition 1. Let U and R be as guaranteed by Proposition 3 (for some given α ∈ A0). Since
q < N/100 we have |R| ≥ N − 2q ≥ 98

100N , and |U | ≤ N , so |R| ≥ |U |/2. Moreover since q < N/5t we
have ρ = 2.05qt/N ≤ 1

2 . We can therefore apply Proposition 4 with ε = ρ = 2.05qt/N ; we find, since
|U | ≥ N − 2q and |T | = |U\R| ≤ q:

h2(Xα, Yα) ≤ ρ2
( q

N − 2q

)2
+

ρ2q

2(N − q)
≤ ρ2q

(N − q)

where we used q < N/100 in the second inequality. Thus, by Lemma 1,

∆samp(q, (Xα, Yα)α∈A0
) ≤

√

2q max
α∈A0

h(Xα, Yα) ≤
ρq√
N − q

≤ 3q2t

N1.5

again using q < N/100. �

Corollary 1 Theorem 1.

We finish, finally, with the (prosaic) proof of Proposition 4:

Proof of Proposition 4. Since ε ≤ 1
2 , (1− ε)−1 ≤ 1 + 2ε. By an averaging argument, there exists some

u0, u
′
0 ∈ U such that Pr[X = u0] ≤ 1/|U |, Pr[X = u′0] ≥ 1/|U |. Therefore

Pr[X = u] ∈ [(1− ε)/|U |, (1 + 2ε)/|U |]

for all u ∈ U . In particular,
|T |(1− ε)

|U | ≤ Pr[X ∈ T ] ≤ |T |(1 + 2ε)

|U |
(recall T = U\R) implying

1− |T |(1− ε)

|U | ≥ Pr[X ∈ R] ≥ 1− |T |(1 + 2ε)

|U | .

Let pR = Pr[X ∈ R]/|R|. By definition, then pR = Pr[X = u] for all u ∈ R. We have

pR ≥ 1

|R|

(

1− |T |(1 + 2ε)

|U |

)
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=
1

|R|

(

1− (|U | − |R|)(1 + 2ε)

|U |

)

=
1

|R|

( |U |
|U | −

(|U | − |R|) + 2ε(|U | − |R|)
|U |

)

=
1

|R|

( |R| − 2ε(|U | − |R|)
|U |

)

=
1

|U | − 2ε
( 1

|R| −
1

|U |
)

(17)

and

pR ≤ 1

|R|

(

1− |T |(1− ε)

|U |

)

=
1

|U | + ε
( 1

|R| −
1

|U |
)

.

We also note that pR ≥ 1
2|U | , as can be seen from (17) and from the fact that |R| ≥ |U |/2.

By concavity,
√
x is upper bounded by its tangent line approximation at x = b; namely,

√
b+ h ≤

√
b+

1

2
hb−

1

2

for all b ≥ 0 and all h ∈ [−b,∞). Thus

√
pR −

√

1

|U | ≤
√

1

|U | + ε
( 1

|R| −
1

|U |
)

−
√

1

|U |

≤
√

1

|U | +
1

2
ε
( 1

|R| −
1

|U |
)

√

|U | −
√

1

|U |

=
1

2
ε
( 1

|R| −
1

|U |
)

√

|U |

and (using pR ≥ 1
2|U |)

√

1

|U | −
√
pR =

√

pR + (
1

|U | − pR)−
√
pR

≤ √
pR +

1

2
(
1

|U | − pR)p
− 1

2

R −√pR

≤ 1

2
(
1

|U | − pR)
√

2|U |

≤ ε
( 1

|R| −
1

|U |
)

√

2|U |.

Therefore
∣

∣

∣

∣

∣

√

1

|U | −
√
pR

∣

∣

∣

∣

∣

≤ ε
( 1

|R| −
1

|U |
)

√

2|U |
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and

(√

1

|U | −
√
pR

)2

≤ 2ε2|U |
( 1

|R| −
1

|U |
)2

= 2ε2|U |
( |U | − |R|
|U ||R|

)2

=
2ε2

|U |
( |T |
|R|
)2

.

Therefore

∑

u∈R

(
√

Pr[X = u]−
√

Pr[Y = u])2 ≤ |R|2ε
2

|U |
( |T |
|R|
)2

≤ 2ε2
( |T |
|R|
)2

(using |R| ≤ |U |).
Next, let u ∈ T . Then

√

Pr[X = u]−
√

Pr[Y = u] ≤
√

(1 + 2ε)/|U | −
√

1/|U |

≤
√

1/|U |+ 1

2
(2ε/|U |)

√

|U | −
√

1/|U |

= ε/
√

|U |.

Also,

√

Pr[Y = u]−
√

Pr[X = u] ≤
√

1/|U | −
√

(1− ε)/|U |
=

√

(1− ε)/|U |+ ε/|U | −
√

(1− ε)/|U |

≤
√

(1− ε)/|U |+ 1

2
(ε/|U |)

√

|U |/(1 − ε)−
√

(1− ε)/|U |

≤ ε/
√

2|U |

(using 1/(1 − ε) ≤ 2). Therefore

∑

u∈T

(
√

Pr[X = u]−
√

Pr[Y = u])2 ≤ |T | ε
2

|U | .

Altogether, therefore, we find that

h2(X,Y ) =
1

2

∑

u∈U

(
√

Pr[X = u]−
√

Pr[Y = u])2 ≤ ε2
( |T |
|R|
)2

+
ε2|T |
2|U | .

�
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