Cryptanalysis of Two Dynamic ID-based Remote User Authentication Schemes for Multi-Server Architecture

Ding Wang^{1,2*}, Chun-guang Ma^{1,**}, De-li Gu¹, and Zhen-shan Cui¹

 ¹ Harbin Engineering University, Harbin City 150001, China
 ² Automobile Management Institute of PLA, Bengbu City 233011, China wangdingg@mail.nankai.edu.cn; machunguang@hrbeu.edu.cn

Abstract. Understanding security failures of cryptographic protocols is the key to both patching existing protocols and designing future schemes. In NSS'10, Shao and Chin showed that Hsiang and Shih's dynamic ID-based remote user authentication scheme for multi-server environment is vulnerable to server spoofing attack and fails to preserve user anonymity, and further proposed an improved version which is claimed to be efficient and secure. In this study, however, we will demonstrate that, although Shao-Chin's scheme possesses many attractive features, it still cannot achieve the claimed security goals, and we report its following flaws: (1) It cannot withstand offline password guessing attack under their non-tamper resistance assumption of the smart card; (2) It fails to provide user anonymity; (3) It is prone to user impersonation attack. More recently, Li et al. found that Sood et al.'s dynamic ID-based authentication protocol for multi-server architecture is still vulnerable to several kinds of attacks and presented a new scheme that attempts to overcome the identified weaknesses. Notwithstanding their intentions, Li et al.'s scheme is still found vulnerable to various known attacks by researchers. In this study, we perform a further cryptanalysis and uncover its two other vulnerabilities: (1) It cannot achieve user anonymity, the essential goal of a dynamic ID-based scheme; (2) It is susceptible to offline password guessing attack. The proposed cryptanalysis discourages any use of the two schemes under investigation in practice and reveals some subtleties and challenges in designing this type of schemes.

Keywords: Cryptanalysis, Authentication protocol, Offline password guessing attack, Smart card, Multi-Server

1 Introduction

With the rapid growth of Internet applications, the number of service providing servers proliferates at an ever-increasing rate [1, 2]. The distributed

^{*} Corresponding author.

^{**} The abridged version of this paper is going to appear in the proceedings of NSS 2012, Lecture Notes in Computer Science, Springer–Verlag.

locations of service servers make it convenient and efficient for subscribers to access resources, and it is of great concern to protect the users and systems' security and privacy from malicious adversaries. Accordingly, user authentication is crucial to assure one communicating party of the legitimacy of the corresponding party by acquisition of corroborative evidence, preventing unauthorized clients from accessing system services for multi-server environment. Among numerous methods for user authentication, password based authentication using smart cards is the most convenient and effective two-factor authentication mechanism and has been widely adopted in many security-critical applications, such as e-banking, e-commerce and e-health [3].

In 1991, Chang and Wu [4] introduced the first password based remote user authentication schemes using smart cards, since then there have been many of this type of schemes proposed [5–12]. Although the issue of password authentication with smart cards for single-server environment recently has already been well studied [9–12], it is extremely difficult for a user to remember these numerous different sets of identities and passwords when he/she employs these single-server authentication schemes to login and access different remote service servers.

To address this issue, a number of smart card based password authentication schemes for multi-server environment has been presented quite recently [13– 16]. A sound and practical remote user authentication protocol for multi-server environment should be of high efficiency and can resist various related attacks, as well as the provision of some desirable features, such as mutual authentication, key agreement, local password update, user anonymity and so on. However, all of these schemes for multi-server environment are found impractical or completely insecure shortly after they were first proposed [17–19], which outlines the need for intensive further research and dynamic ID-based schemes that can preserve user anonymity are of particular interest.

In 2010, Shao and Chin [20] proposed an improved dynamic ID-based authentication scheme for multi-server environment to overcome the weakness of Hsiang-Shin's scheme [16]. The authors claimed that their improvement provides mutual authentication and is free from all related cryptographic attacks, such as replay attack, offline password guessing attack, insider attack, impersonation attack and so on. Although their scheme is efficient and superior to the previous solutions for implementation in resource-constrained applications, e.g. mobile devices, we find their scheme cannot achieve the claimed security: their scheme is vulnerable to offline password attack and user impersonation attack, and fails to preserve user anonymity.

More recently, Li et al. [21] pointed out that, besides a design flaw, Sood et al. scheme [19] is susceptible to leak-of-verifier attack and stolen smart card attack, and further proposed an efficient and secure dynamic ID-based authentication scheme using smart cards for multi-server architecture to cope with these identified problems. Unfortunately, just two months after Li et al.'s scheme was first published online, the replay attack, password guessing attack and masquerade attack are identified in their scheme by Han [22]. Later on, Xue et al. [23] also found Li et al.'s scheme cannot withstand the replay attack, denial of service attack, eavesdropping attack, internal attack and impersonation attack. Surprisingly, our further cryptanalysis demonstrates that Li et al.'s scheme still cannot preserve user anonymity, which is the most essential goal of a dynamic ID-based scheme. Besides, we also observed that Li et al.'s scheme is susceptible to another type of offline password guessing attack, which is more effective than and different from Han's. In addition, we point out that Xue et al.'s improvement over Li et al.'s scheme is still vulnerable to a similar offline password guessing attack.

The remainder of this paper is organized as follows: in Section 2, we review Shao-Chin's scheme. Section 3 describes the weaknesses of Shao-Chin's scheme. Li et al.'s scheme is reviewed in Section 4 and the corresponding cryptanalysis is given is Section 5. Section 6 concludes the paper.

2 Review of Shao-Chin's scheme

In this section, we examine the dynamic ID-based authentication scheme using smart cards proposed by Shao and Chin [20] in NSS 2010. Shao-Chin's scheme consists of five phases: registration phase, login phase, authentication phase, password change phase and track phase. For ease of presentation, we employ some intuitive abbreviations and notations listed in Table 1 and we will follow the notations in Shao-Chin's scheme as closely as possible.

Table 1. Notations

Symbol	Description	
U_i	i^{th} user	
S	remote server	
ID_i	identity of user U_i	
CID_i	dynamic identity of user U_i	
P_i	password of user U_i	
S_j	j^{th} service providing server	
SID_j	identity of service server S_j	
\oplus	the bitwise XOR operation	
	the string concatenation operation	
$h(\cdot)$	collision free one-way hash function	
$A \to B: M$	message M is transferred through a common channel from A to B	
$A \Rightarrow B: M$	message M is transferred through a secure channel from A to B	

Besides the users and service servers, there is another participant, called registration center (RC), involving in the system, and RC is trusted by all the users and service servers. Let x and z be two secret keys of RC.

2.1 Registration phase

The registration phase is divided into two parts, namely, the server registration and user registration.

- (i) Server registration
 - 1) S_j chooses his/her identity SID_j ;
 - 2) $S_j \Rightarrow RC : \{SID_j\};$
 - 3) RC computes $y_j = h(h(x) \parallel SID_j)$ and h(z);
 - 4) $RC \Rightarrow S_j : \{y_j, h(z)\}.$
- (ii) User registration

1) U_i chooses his/her ID_i and P_i ; 2) $U_i \Rightarrow RC : \{ID_i, P_i\}$; 3) RC computes $T_i = h(ID_i \parallel x), R_i = h(x) \oplus h(z) \oplus T_i, V_i = T_i \oplus h(ID_i \parallel P_i)$ and $H_i = h(T_i)$ and stores $\{R_i, V_i, H_i, h(\cdot)\}$ in the smart card; 4) $RC \Rightarrow U_i$: A smart card containing security parameters $\{R_i, V_i, H_i, h(\cdot)\}$.

2.2 Login phase

When U_i wants to login to S_j , the following operations will be performed:

- Step L1. U_i inserts her smart card into card reader, and inputs ID_i and P_i .
- Step L2. Smart card computes $T_i = V_i \oplus h(ID_i || P_i)$, and checks whether H_i equals $h(T_i)$ or not. If they are equal, the user proceeds to the next step. Otherwise, the login request is rejected.
- Step L3. Smart card generates a random number r and computes $B_1 = R_i \oplus T_i \oplus h(r \parallel T_i)$
- Step L4. $U_i \rightarrow S_j : \{B_1\}.$
- Step L5. On receiving B_1 from U_i , S_j computes $B_2 = B_1 \oplus h(z)$;
- Step L6. $S_j \rightarrow U_i : \{B_2\}.$
- Step L7. Smart card chooses a random number N_i and computes $y_j = h(B_2 \oplus h(r||T_i)||SID_j)$, $CID_i = ID_i \oplus h(B_2 \oplus h(r||T_i)||N_i)$, $G_i = CID_i \oplus h(y_j||N_i)$ and $C = h(CID_i||G_i||N_i)$.

Step L8. $U_i \to S_j : \{C, G_i, N_i\}.$

2.3 Authentication phase

After receiving the login request from U_i , S_j performs the following operations:

- Step A1. The server S_j Computes $CID_i = G_i \oplus h(y_j || N_i)$ and, then checks whether the received C is equal to the computed $h(CID_i || G_i || N_i)$. If the equality does not hold, the server S_j rejects the login request.
- Step A2. S_j generates a random number N_j and computes $M_1 = h(CID \parallel SID_j \parallel N_i)$.
- Step A3. $S_j \to U_i : \{M_1, N_j\}.$
- Step A4. Upon receiving the response message from S_j , U_i computes $h(CID_i || SID_j || N_j)$ and compares it with M_1 . The equality indicates the legitimacy of S_j . Otherwise, the login request is interrupted.
- Step A5. U_i computes $M_2 = h(CID_i ||SID_j||N_j)$.

4

- Step A6. $U_i \to S_j : \{M_2\}$. Step A7. On receiving M_2 , S_j checks whether the received M_2 equals the computed $h(CID_i || SID_j || N_j)$. The equality indicates the legitimacy of U_i . Otherwise, the access request is interrupted.
- Step A8. After authenticating each other, U_i and S_j use the same session key $SK = h(CID_i ||SID_j||N_i||N_j)$ to secure subsequent data communications.

Password Change Phase and track phase $\mathbf{2.4}$

Since both the password Change Phase and track phase have little relevance with our discussions, they are omitted here.

User (U_i) in possession of ID_i , P_i a smart card with parameters R_i , V_i , H_i , $h(\cdot)$		Server (S_j) in possession of y_j , $h(z)$	
Login phase: Input ID_i, P_i, SID_j Compute $T_i = V_i \oplus h(ID_i P_i)$ Reject if $H_i \neq h(T_i)$ Generate a random number r Compute Compute $B_1 = R_i \oplus T_i \oplus h(r T_i)$ Generate a random number N_i Compute $D_1 = h(B_2 \oplus h(r T_i)) SID_j)$ $CID_i = ID_i \oplus h(B_2 \oplus h(r T_i)) N_i)$	B_1 B_2	Compute $B_2 = B_1 \oplus h(z)$	
$G_i = CID_i \oplus h(B_2 \oplus h(I_i) N_i)$ $G_i = CID_i \oplus h(y_j N_i)$ $C = h(CID_i G_i N_i)$ Authentication phase:	C, G_i, N_i	<u>→</u>	
·	M_1, N_j	Compute $CID_i = G_i \oplus h(y_j N_i)$ Reject if $C \neq h(CID_i G_i N_i)$ Generate a random number N_j Compute $M_i = h(CID SID_j N_i)$	
Reject if $M_1 \neq h(CID_i SID_j N_i)$ Compute $M_2 = h(CID_i SID_j N_j)$ Compute $SK = h(CID_i SID_j N_i N_j)$	<i>M</i> ₂	$ Reject if \qquad M_2 \neq h(CID_i \parallel SID_j \parallel N_j) Compute \qquad SK = h(CID_i \parallel SID_j \parallel N_i \parallel N_j) $	

Fig. 1. Login and authentication phase of Shao-Chin's scheme

3 Cryptanalysis of Shao-Chin's scheme

There are three assumptions explicitly made in Shao-Chin's scheme [20]:

(i) An adversary \mathcal{A} has total control over the communication channel between the user U and the remote server S. In other words, the attacker can insert, alter, delete or intercept any messages exchanged in the channel.

- (ii) The secret parameters stored in the smart card can be revealed once a legitimate user's smart card is somehow obtained (e.g. picked up or stolen) by \mathcal{A} .
- (iii) The passwords are weak, i.e. of low entropy.

Note that the above three assumptions, which are also made in the latest works [9-12, 17-19], are indeed reasonable: (1) Assumption *i* is accordant with the common Dolev-Yao adversary model for distributed communication; (2) Assumption *ii* is practical when taking the state-of-the-art side-channel attack techniques [24-26] into consideration; and (3) Assumption *iii* reveals the reality that a user is allowed to choose her own password at will during the password change phase and registration phase, usually the user is apt to select a password which is easily remembered for her convenience, e.g. her birthday or home phone number, and the human-memorable password tends to be "weak password" [27].

In the following discussions of the security pitfalls of Shao-Chin's scheme, based on the above three assumptions, we assume that an adversary can extract the secret parameters $\{V_i, R_i, H_i, b\}$ stored in the legitimate user's smart card, and could also intercept or block the exchanged messages $\{B_1, B_2, C, G_i, N_i, M_i, N_j, M_2\}$ during the login and authentication phase.

3.1 No provision of user anonymity

A protocol preserving user anonymity prevents an adversary from acquiring sensitive information about an individual's social circle, preferences, lifestyles, shopping patterns, etc. by analyzing the login history, the services requested, or the communications being accessed [29]. In addition, the leakage of user-specific information may cause an unauthorized entity or malicious attacker to track the user's current location and login history [30]. Hence, assuring anonymity not only does protect user privacy but also makes remote user authentication protocols more secure. In Shao-Chin's scheme, the dynamic-ID technique is employed to provide the feature of user anonymity, however, the following attack demonstrates the failure of their attempt.

Let us see how a dishonest service provider S_k colluding with a malicious privileged user U_m successfully breach the anonymity of any legitimate user, say U_i . U_m having her own smart card can gather information R_m, V_m from her own smart card, with previously intercepted authentication messages $\{B_1, B_2, N_i, G_i, C\}$ exchanged between U_m and any service provider, say S_j , U_m and S_k can collude to compute ID_i corresponding to U_i as follows:

- Step 1. U_m computes $T_m = V_m \oplus h(ID_m || P_m)$, as V_m is revealed from her own smart card, ID_m and P_m is known to herself;
- **Step 2.** U_m computes $h(x) \oplus h(z) = R_m \oplus T_m$, where R_m is revealed;
- **Step 3.** U_m and S_k collude to compute $h(x) = (h(x) \oplus h(z)) \oplus h(z) = (R_m \oplus T_m) \oplus h(z)$, where h(z) is known to all service servers, including S_k .
- **Step 4.** Guesses U_i 's identity to ID_i^* ;

6

Step 5. Computes $CID_i^* = ID_i^* \oplus h(h(x)||N_i)$, as $h(x) = h(x) \oplus (h(r||T_i) \oplus h(r||T_i)) \oplus (h(z) \oplus h(z))$ $= (h(x) \oplus h(z) \oplus h(r||T_i)) \oplus (h(z) \oplus h(r||T_i))$ $= B_1 \oplus (h(z) \oplus h(r||T_i))$ $= B_2 \oplus h(r||T_i).$

Step 6. Computes $C^* = h(CID_i^* || G_i || N_i)$, where G_i and N_i is intercepted.

Step 7. Verifies the correctness of ID_i^* by checking if the computed C^* is equal to the intercepted C;

Step 8. Goes back to Step 4 until the correct value of ID_i is found.

In practice, a user's identity is often drawn from a very limited space, say \mathcal{D}_{id} , the above procedure can be completed in polynomial time.

It is worth noting that, in the above attack, the malicious user U_m only needs to extract the security parameters stored in her own smart card, she does not need to obtain any information about the victim user U_i except the public authentication messages originating from U_i . As a result, the above attack is effective and practical. In conclusion, once an internal user colludes with a dishonest service server, user anonymity will be breached in Shao-Chin's scheme, while user anonymity is the most essential security feature that a dynamic identity-based authentication scheme is designed to provide.

3.2 Offline password guessing attack

As stated in Section 3.1, any legitimate user U_i 's identity can be breached when an internal malicious user U_m colludes with a service server S_k . Once the victim user U_i 's identity ID_i is obtained by U_m and S_k , U_i 's password P_i can also be offline guessed as follows:

- **Step 1.** Guesses the value of P_i to be P_i^* from a dictionary space \mathcal{D}_{pw} .
- Step 2. Computes $T_i^* = h(ID_i || P_i^*) \oplus V_i$, where V_i is extracted from U_i 's smart card.
- **Step 3.** Verifies the correctness of P_i^* by checking if the computed $h(T_i^*)$ is equal to the revealed H_i .
- **Step 4.** Repeats the above steps until the correct value of P_i is found.

Let $|\mathcal{D}_{id}|$ and $|\mathcal{D}_{pw}|$ denote the number of identities in identity space \mathcal{D}_{id} and the number of passwords in password space \mathcal{D}_{pw} , respectively. The running time of the above attack procedure is $\mathcal{O}(|\mathcal{D}_{id}| * (3T_H + 5T_X) + |\mathcal{D}_{pw}| * (2T_H + T_X))$, where T_H is the running time for Hash operation and T_X is the running time for XOR operation. Since both password and identity are human-memorable short strings but not high-entropy keys, in other words, they are often chosen from two corresponding dictionaries of small size, e.g. $|\mathcal{D}_{id}| \leq |\mathcal{D}_{pw}| = 10^6$ [27]. As $|\mathcal{D}_{id}|$ and $|\mathcal{D}_{pw}|$ are very limited in practice, the above attack can be completed in polynomial time.

Note that, in this attack, the malicious user U_m not only needs to extract the security parameters stored in her own smart card, but also needs to obtain the secret information stored in the smart card of victim user U_i . Although this assumption is much constrained, our attack demonstrates the feasibility of offline password guessing attack on Shao-Chin's scheme under their non-tamper resistance assumption of the smart card, thereby contradicting the claim made in [20].

3.3 User impersonation attack

An internal malicious user U_m and a service server S_k can collude to impersonate any legitimate user (even non-existent user), say U_{ran} , to login any service server, say S_j , as follows:

- Step 1. U_m computes $T_m = V_m \oplus h(ID_m || P_m)$, as V_m is revealed from her own smart card, ID_m and P_m is known to herself;
- **Step 2.** U_m computes $h(x) \oplus h(z) = R_m \oplus T_m$, where R_m is revealed;
- **Step 3.** S_k and U_m collude to compute $h(x) = (h(x) \oplus h(z)) \oplus h(z) = (R_m \oplus T_m) \oplus h(z)$, where h(z) is known to all service servers, including S_k .
- **Step 4.** U_m sends a random value X to any service server, say S_j ;
- Step 5. U_m ignores the response $\{B_2\}$ sent back by S_j and computes $y_j = h(h(x) || SID_j)$, where SID_j is S_j 's identity.
- Step 6. U_m computes $CID_{ran} = ID_{ran} \oplus h(h(x) \parallel N_{ran}), G_{ran} = CID_{ran} \oplus h(y_j \parallel N_{ran})$ and $C = h(CID_{ran} \parallel G_{ran} \parallel N_{ran})$, where N_{ran} is a random number chosen by U_m .
- Step 7. U_m sends $\{C, G_{ran}, N_{ran}\}$ to S_j .
- Step 8. On receiving the response $\{M_{ran}, N_j\}$ sent back by S_j , U_m computes $M_2 = h(CID_{ran} \parallel SID_j \parallel N_j)$ and the session key $SK = h(CID_{ran} \parallel SID_j \parallel N_{ran} \parallel N_j)$.
- Step 9. U_m sends $\{M_2\}$ to S_j .

It is easy to see that: 1) On receiving X sent by U_m in Step 4, S_j will send back $B_2 = X \oplus h(z)$ according to the protocol; 2) On receiving $\{C, G_{ran}, N_{ran}\}$ sent by U_m in Step 7, S_j will find no abnormality when checking the validity of C, because U_m indeed has computed the correct $y_j = h(h(x) || SID_j) = h(B_2 \oplus h(r||T_i) || SID_j)$ in Step 5 as

$$\begin{aligned} h(x) &= h(x) \oplus (h(r||T_i) \oplus h(r||T_i)) \oplus (h(z) \oplus h(z)) \\ &= (h(x) \oplus h(z) \oplus h(r||T_i)) \oplus (h(z) \oplus h(r||T_i)) \\ &= B_1 \oplus (h(z) \oplus h(r||T_i)) \\ &= B_2 \oplus h(r||T_i) \end{aligned}$$

3) On receiving M_2 sent by U_m in Step 9, S_j will find no abnormality when checking the validity of M_2 , because U_m has indeed computed the valid $CID_{ran} = ID_{ran} \oplus h(h(x) \parallel N_{ran})$ in Step 5 where $h(x) = B_2 \oplus h(r \parallel T_i)$.

It should be noted that, as with the password guessing attack presented in Section 3.1, in this attack, the malicious user U_m only needs to extract the security parameters stored in her own smart card, she does not need to obtain any information about the victim user U_i except the public authentication messages originating from U_i . As a result, this impersonation attack is effective and practical.

4 Review of Li et al.'s scheme

In this section, we briefly review the dynamic identity based authentication protocol for multi-server architecture using smart cards proposed by Li et al. in 2012. Li et al.'s protocol also involves three participants, i.e., the user (U_i) , the service providing server (S_j) and the control server (CS). It is should be noted that CS, a trusted party, is not only responsible for the registration but also involved in the authentication process of U_i and S_j . CS is in possession of a master secret key x and a secret number y. There are four phases in their protocol: registration, login, authentication and session key agreement, and password change. In the following, we employ the notations listed in Table 1.

4.1 Registration phase

The registration phase can be divided into two parts, namely, the server registration and user registration.

(i) Server registration

1) S_j chooses his/her identity SID_j ;

- 2) $S_j \Rightarrow CS : \{SID_j\};$
- 3) CS computes $h(SID_j \parallel y)$ and $h(x \parallel y)$;
- 4) $CS \Rightarrow S_j : \{h(x \parallel y), h(SID_j \parallel y)\}.$
- (ii) User registration

1) U_i freely chooses his/her ID_i and P_i , and chooses a random number b. Then, U_i computes $A_i = h(b \parallel P_i)$;

2) $U_i \Rightarrow CS : \{ID_i, A_i\};$

3) CS computes $B_i = h(ID_i \parallel x)$, $C_i = h(ID_i \parallel h(y) \parallel A_i)$, $D_i = B_i \oplus h(ID_i \parallel A_i)$, $E_i = B_i \oplus h(y \parallel x)$, and stores $\{C_i, D_i, E_i, h(\cdot), h(y)\}$ in the smart card;

4) $CS \Rightarrow U_i$: A smart card containing parameters $\{C_i, D_i, E_i, h(\cdot), h(y)\}$. 5) Upon receiving the smart card, U_i enters b into it.

4.2 Login phase

When U_i wants to login to S_j , the following operations will be performed:

- Step L1. User U_i inserts her smart card into a card reader and inputs her identity ID_i , password P_i and the service server's identity SID_j .
- Step L2. The smart card computes $A_i = h(b \parallel P_i)$ and $C'_i = h(ID_i \parallel h(y) \parallel A_i)$, and checks whether $C'_i = C_i$. If they are equal, it indicates that U_i is a legal card holder.
- Step L3. The smart card generates a random number N_{i1} , and computes $B_i = D_i \oplus h(ID_i \parallel A_i), F_i = h(y) \oplus N_{i1}, P_{ij} = E_i \oplus h(h(y) \parallel N_{i1} \parallel SID_j), CID_i = A_i \oplus h(B_i \parallel F_i \parallel N_{i1}), G_i = h(B_i \parallel A_i \parallel N_{i1}).$
- Step L4. $U_i \to S_j : \{F_i, G_i, P_{ij}, CID_i\}.$

4.3Authentication and session key agreement phase

- Step A1. On receiving the login request, S_j chooses a random number N_{i2} , and computes $K_i = h(SID_j \parallel y) \oplus N_{i1}$ and $M_i = h(h(x \parallel y) \parallel N_{i2})$. Step A2. $S_j \to CS : \{F_i, G_i, P_{ij}, CID_i, SID_j, K_i, M_i\}$. Step A3. Upon receiving the login request $\{F_i, G_i, P_{ij}, CID_i, SID_j, K_I, M_i\}$, CS computes $N_{i2} = K_i \oplus h(SID_j \parallel y), M'_i = h(h(x \parallel y) \parallel N_{i2})$, and checks whether M'_i equals the received M_i . If they are equal, the validity of the server S_j is verified by the control server CS. Otherwise, the CS terminates the session.
- Step A4. CS computes $N_{i1} = F_i \oplus h(y), B_i = P_{ij} \oplus h(h(y) || N_{i1} || SID_j)$ $\oplus h(y||x)(= E_i \oplus h(y||x)), A_i = CID_i \oplus h(B_i \parallel F_i \parallel N_{i1}),$ $G'_i = h(B_i \parallel A_i \parallel N_{i1})$ and checks $G'_i \stackrel{?}{=} G_i$. If the verification holds, the legitimacy of user U_i is authenticated by CS. Otherwise CS terminates the session.
- Step A5. The control server CS generates a random number N_{i3} , and computes $Q_{i} = N_{i1} \oplus N_{i3} \oplus h(SID_{j} || N_{i2}), R_{i} = h(A_{i} || B_{i}) \oplus h(N_{i1} \oplus N_{i2} \oplus N_{i3}),$ $V_i = h(h(A_i \parallel B_i) \parallel h(N_{i1} \oplus N_{i2} \oplus N_{i3})), T_i = N_{i2} \oplus N_{i3} \oplus h(A_i \parallel B_i)$ $B_i \parallel N_{i1}$).
- Step A6. $CS \rightarrow S_j : \{Q_i, R_i, V_i, T_i\}.$
- Step A7. On receiving the authentication message $\{Q_i, R_i, V_i, T_i\}$ from CS, server S_j computes $N_{i1} \oplus N_{i3} = Q_i \oplus h(SID_j \parallel N_{i2}),$ $h(A_i \parallel B_i) = R_i \oplus h(N_{i1} \oplus N_{i3} \oplus N_{i2}),$ $V'_i = h(h(A_i \parallel B_i) \parallel h(N_{i1} \oplus N_{i2})),$ $N_{i3} \oplus N_{i2}$), and checks $V'_i \stackrel{?}{=} V_i$. If they are not equal, S_i terminates the session. Otherwise, the legitimacy of CS is authenticated by the server S_j .
- Step A8. $S_j \rightarrow U_i: \{V_i, T_i\}.$
- Step A9. Upon receiving $\{V_i, T_i\}$ from S_j , the smart card computes $N_{i2} \oplus N_{i3} =$ $T_i \oplus h(A_i \parallel B_i \parallel N_{i1}), V'_i = h(h(A_i \parallel B_i) \parallel h(N_{i2} \oplus N_{i3} \oplus N_{i1})), \text{ and}$ checks $V'_i \stackrel{?}{=} V_i$. If the verification fails, the user U_i terminates the session. Otherwise, the legitimacy of the control server CS and the server S_j is authenticated by user U_i .

Finally, the user U_i , the server S_j and the control server CS agree on a common session key $SK = h(h(A_i \parallel B_i) \parallel (N_{i1} \oplus N_{i2} \oplus N_{i3})).$

4.4 Password change phase

This phase is performed locally. When the user wants to update her password, this phase is invoked. Since this phase has little relevance with our discussions, it is omitted here.

$\mathbf{5}$ Cryptanalysis of Li et al.'s scheme

The three assumptions presented in Section 3 is also explicitly made in Li et al.'s paper when they analyze the security of Sood et al.'s scheme, and thus our following cryptanalysis is also based on these three assumptions.

Although Li et al.'s scheme has many attractive properties, such as provision of local password change, high efficiency and no time-synchronization problem, it fails to achieved many of the claimed security goals and has been found vulnerable to replay attack, password guessing attack and user impersonation attack by Han [22]. Besides these security pitfalls, later on Xue et al. further found it prone to leak-of-verifier attack, server spoofing attack and denial of service attack,¹ and also presented an improvement.

Surprisingly, our further cryptanalysis demonstrates that Li et al.'s scheme still cannot preserve user anonymity, which is the most crucial goal of a dynamic ID-based scheme. Besides, we also observe that Li et al.'s scheme is susceptible to another type of offline password guessing attack, which is more effective than and different from Han's. Furthermore, we point out that Xue et al.'s improvement over Li et al.'s scheme is still vulnerable to a similar offline password guessing attack.

5.1 No provision of user anonymity

Let us see how a dishonest service provider S_k colluding with a malicious internal user U_m successfully breach the anonymity of any legitimate user, say U_i . U_m having her own smart card can gather information h(y) from her own smart card, with previously intercepted authentication messages $\{P_{ij}, SID_j\}$ exchanged between U_m , CS and any service provider, say S_j , U_m and S_k can collude to compute E_i corresponding to any user U_i as follows:

- **Step 1.** U_m extracts h(y) from her own smart card;
- **Step 2.** U_m and S_k collude to compute $N_{i1} = F_i \oplus h(y)$, where F_i is intercepted from the public channel;
- **Step 3.** U_m and S_k collude to compute $E_i = P_{ij} \oplus h(h(y) \parallel N_{i1} \parallel SID_j)$, where P_{ij} and SID_j are intercepted from the public channel.

As E_i is kept the same for all the login requests of user U_i and is specific to user U_i , this E_i can be seen as user U_i 's identification. And an adversary can, therefore, use this information to identify and trace U_i 's login requests and activities. By generalizing the above attack, any legal user who logins to service servers would be exposed to U_m and S_k , and thus the scheme fails to achieve user anonymity.

It should be noted that, in the above attack, the malicious user U_m only needs to extract the security parameters stored in her own smart card, she does not need to obtain any information about the victim user U_i except the public authentication messages originating from U_i . As a result, the above attack is effective and practical. In conclusion, once an internal user colludes with a dishonest service server, user anonymity will be breached in Li et al.'s scheme, while user anonymity is the most crucial security feature that a dynamic identitybased authentication scheme is designed to provide.

¹ We think Xue et al.'s internal attack and eavesdropping attack only constitute parts of replay attack, server spoofing attack, etc, and they may not be considered as independent kinds of attacks, and thus they are not listed here.

5.2 Offline password guessing attack

Let us consider the following scenarios. In case a legitimate user U_i 's smart card is stolen by a malicious internal user U_m , and the stored secret values h(y), D_i , E_i and b can be extracted. Note that this assumption is reasonable as described in Assumption *iii* and also explicitly made in Li et al.'s scheme. With the previously eavesdropped message $\{F_i, CID_i, G_i\}$, this malicious internal user U_m colluding with a dishonest service provider S_k can successfully guess the password of U_i as follows:

- **Step 1.** U_m extracts h(y) from her own smart card;
- **Step 2.** U_m and S_k collude to compute $N_{i1} = F_i \oplus h(y)$, where F_i is intercepted from the public channel;
- **Step 3.** U_m and S_k collude to compute $E_i = P_{ij} \oplus h(h(y) \parallel N_{i1} \parallel SID_j)$, where P_{ij} and SID_j are intercepted from the public channel.
- Step 4. U_m computes $h(y||x) = E_m \oplus B_m = E_m \oplus D_m \oplus h(ID_m||A_m) = E_m \oplus D_m \oplus h(ID_m||h(b||P_m))$, where E_m, D_m and b are revealed from U_m 's own smart card;
- **Step 5.** Computes $B_i = E_i \oplus h(y||x)$, where E_i is revealed from U_i 's smart card;
- Step 6. Computes $A_i = CID_i \oplus h(B_i ||F_i||N_{i1});$
- **Step 7.** Guesses the value of P_i to be P_i^* from the password space \mathcal{D} .
- **Step 8.** Computes $A_i^* = h(b || P_i^*)$, where b is revealed from U_i 's smart card.
- **Step 9.** Verifies the correctness of P_i^* by checking if A_i^* equals to A_i .
- **Step 10.** Repeats Steps 7, 8 and 9 until the correct value of P_i is found.

Let $|\mathcal{D}|$ denote the number of passwords in the password space \mathcal{D} . Then the running time of the attacker U_m is $\mathcal{O}(|\mathcal{D}| * (5T_H + 6T_X))$, where T_H is the running time for Hash operation and T_X is the running time for XOR operation. So, the time for U_m to recover the password is a linear function of the number of passwords in the password space. When the password space is small, e.g., $|\mathcal{D}| = 10^6$ [27], U_m may recover the password in seconds on a PC.

It should be noted that, in this attack, the malicious user U_m only needs to guess U_i 's password, while in the offline password guessing attack proposed by Han [22], the attacker needs to guess both U_i 's password and identity correctly at the same time. From this point of view, our attack is more effective. But our disadvantage is that, the adversary in our attack should be an internal user, while the adversary in Han's attack is not subject to this restriction.

5.3 Offline password guessing attack on Xue et al.'s improvement

In [23], Xue et al. pointed out that Li et al.'s scheme vulnerable to several attacks and further proposed an improvement that is claimed to be secure.² However, we find Xue et al.'s improvement is still vulnerable to an offline password guessing attack as described in the following.

12

² Xue et al.'s improvement has been submitted to Journal of Network and Computer Applications.

Let us consider the following scenarios. In case a legitimate user U_i 's smart card is stolen by an adversary \mathcal{A} , and the stored secret values such as C_i , D_i and b can be extracted. Note that this assumption is explicitly made in Xue et al.'s improvement. With a previously eavesdropped message $\{F_i, PID_i, TS_i\}, \mathcal{A}$ can acquire U_i 's password PW_i by performing the following attack procedure:

- **Step 1.** Guesses the value of P_i to be P_i^* from the password space \mathcal{D} .
- **Step 2.** Computes $A_i^* = h(b||P_i^*)$, where b is revealed from U_i 's smart card.
- **Step 3.** Computes $B_i^* = D_i \oplus h(PID_i \oplus A_i^*)$, where PID_i is intercepted from the public channel.

- Step 4. Computes $N_{i1}^* = F_i \oplus B_i^*$. Step 5. Computes $G_i^* = b \oplus h(B_i^* || N_{i1}^* || TS_i || "11")$; Step 6. Verifies the correctness of P_i^* by checking if G_i^* equals to the intercepted G_i .
- **Step 7.** Repeats the above steps until the correct value of P_i is found.

Since the size of password dictionary, i.e. $|\mathcal{D}|$, often is very limited in practice, the above attack procedure can be completed in polynomial time.

Notes and Countermeasure. We have analyzed more than sixty recently proposed smart card based password authentication schemes for single-server environment and twelve schemes for multi-server architecture, and find these schemes (no matter for single-server environment or multi-server architecture) that do not employ public-key techniques definitely vulnerable to the offline password guessing attack under the three assumptions (most essentially, the nontamper resistance assumption of the smart card) introduced in Section 3. In other words, all these schemes that do not employ public-key techniques but claim to be secure under these three assumptions are found problematic. A related work done by Halevi and Krawczyk [31] provides very strong evidence (with the probability of $P \neq NP$) that, under the common Dolev-Yao adversary model, no password protocol (the traditional one-factor password authentication) can be free from offline password guessing attack if the public-key techniques are not employed. Here, we conjecture that under the three assumptions introduced in Section 3, no smart card based password protocol (two-factor authentication) can be free from offline password guessing attack if the public-key techniques are not employed. And now the countermeasure is obvious: resorting to public-key techniques like [9–12].

Conclusion 6

In this paper, we have shown that two dynamic ID-based remote user authentication schemes for multi-server environment are completely broken and only radical revisions of the protocols can possibly eliminate the identified defects and thus the two schemes under investigation are not recommended for practical application. Our results once again demonstrate that no more smart card based password authentication protocols should be constructed with such ad-hoc methods, and the provable security approach is indispensable for assuring a sound protocol. Remarkably, our cryptanalysis highlights the difficulties and challenges in designing secure and efficient dynamic ID-based remote user authentication schemes for multi-server architecture and suggests the need for intensive further research.

Acknowledgment. This research was partially supported by the National Natural Science Foundation of China (NSFC) under Grants No. 61170241 and No. 61073042, and the open program of State Key Laboratory of Networking and Switching Technology under Grant No. SKLNST-2009-1-10.

References

- Bouyoucef, K., Khorasani, K.: A robust distributed congestion-control strategy for differentiated-services network. IEEE Transactions on Industrial Electronics 56(3), 608–617 (2009)
- Barolli, L., Xhafa, F.: JXTA-OVERLAY: A P2P platform for distributed, collaborative and ubiquitous computing. IEEE Transactions on Industrial Electronics 58(6), 2163–2172 (2010)
- Lin, S., Hung, M., Tsai, C., Chou, L.: Development of an ease-of-use remote healthcare system architecture using rfid and networking technologies. Journal of Medical Systems pp. 1–15 (2012), doi:10.1007/s10916-012-9836-0
- 4. Chang, C.C., Wu, T.C.: Remote password authentication with smart cards. IEE Proceedings-Computers and Digital Techniques 138(3), 165–168 (1991)
- Yang, G.M., Wong, D.S., Wang, H.X., Deng, X.T.: Formal analysis and systematic construction of two-factor authentication scheme. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006, LNCS, vol. 4307, pp. 82–91. Springer, Heidelberg (2006)
- Xu, J., Zhu, W. T., Feng, D. G.: An improved smart card based password authentication scheme with provable security. Computer Standards & Interfaces 31(4), 723–728 (2009)
- Yeh, K.H., Su, C.H., Lo, N.W.: Two robust remote user authentication protocols using smart cards. Journal of Systems and Software 83(12), 2556–2565 (2010)
- Wang, R.C., Juang, W.S., Lei, C.L.: Robust authentication and key agreement scheme preserving the privacy of secret key. Computer Communications 34(3), 274–280 (2011)
- Ma, C.G., Wang, D., Zhang, Q.M.: Cryptanalysis and improvement of sood et al.s dynamic id-based authentication scheme. In: Ramanujam, R., Ramaswamy, S. (eds.) ICDCIT 2012, LNCS, vol. 7154, pp. 141–152. Springer, Heidelberg (2012)
- 10. Wu, S.H., Zhu, Y.F., Pu, Q.: Robust smart-cards-based user authentication scheme with user anonymity. Security and Communication Networks 5(2), 236–248 (2012)
- Wang, D., Ma C.G., Wu, P.: Secure Password-Based Remote User Authentication Scheme with Non-tamper Resistant Smart Cards. In: N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS, vol. 7371, pp. 114–121, Springer, Heidelberg.
- Wang, Y. G.: Password protected smart card and memory stick authentication against offline dictionary attacks. In: Gritzalis, D., Furnell, S., M., T. (eds.) SEC 2012, IFIP AICT, vol. 376, pp. 489–500. Springer, Boston.
- 13. Lin, I., Hwang, M., Li, L.: A new remote user authentication scheme for multiserver architecture. Future Generation Computer Systems 19(1), 13–22 (2003)
- Tsaur, W., Wu, C., Lee, W.: A smart card-based remote scheme for password authentication in multi-server internet services. Computer Standards & Interfaces 27(1), 39–51 (2004)

- Liao, Y., Wang, S.: A secure dynamic id based remote user authentication scheme for multi-server environment. Computer Standards & Interfaces 31(1), 24–29 (2009)
- Hsiang, H., Shih, W.: Improvement of the secure dynamic id based remote user authentication scheme for multi-server environment. Computer Standards & Interfaces 31(6), 1118–1123 (2009)
- 17. Tan, Z.: Cryptanalysis of two id based password authentication schemes for multiserver environments. International journal of digital content technology and its applications 5(1), 87–94 (2011)
- Yeh, K., Lo, N., Li, Y.: Cryptanalysis of hsiang-shihs authentication scheme for multi-server architecture. International Journal of Communication Systems 24(7), 829–836 (2011)
- Sood, S., Sarje, A., Singh, K.: A secure dynamic identity based authentication protocol for multi-server architecture. Journal of Network and Computer Applications 34(2), 609–618 (2011)
- 20. Shao, M., Chin, Y.: A novel approach to dynamic id-based remote user authentication scheme for multi-server environment. In: 2010 4th International Conference on Network and System Security (NSS'10). pp. 548–553. IEEE Press, New York (2010)
- Li, X., Xiong, Y., Ma, J., Wang, W.: An enhanced and security dynamic identity based authentication protocol for multi-server architecture using smart cards. Journal of Network and Computer Applications 35(2), 763–769 (2012)
- Han, W.: Weaknesses of a dynamic identity based authentication protocol for multiserver architecture. Arxiv preprint arXiv:1201.0883 (2012), http://arxiv.org/ abs/1201.0883
- Xue, K., Hong, P., Ma, C.: A lightweight dynamic pseudonym identity based authentication and key agreement protocol without verification tables for multiserver architecture. Arxiv preprint arXiv:1204.3831 (2012), http://arxiv.org/ abs/1204.3831
- Kocher, P., Jafie, J., Jun, B.: Differential power analysis. In: Advances in Cryptology-CRYPTO'99. LNCS, vol.1666, pp. 789–789. Springer, Heidelberg (1999)
- Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining smart-card security under the threat of power analysis attacks. IEEE Transactions on Computers 51(5), 541– 552 (2002)
- Kasper, T., Oswald, D., Paar, C.: Side-channel analysis of cryptographic rfids with analog demodulation. In: Juels, A., Paar, C. (eds.) RFIDSec, LNCS, vol. 7055, pp. 61–77. Springer, Heidelberg (2012)
- 27. Klein, D.V.: Foiling the cracker: A survey of, and improvements to, password security. In: Proceedings of the 2nd USENIX Security Workshop. pp. 5–14 (1990)
- Campbell, J., Ma, W., Kleeman, D.: Impact of restrictive composition policy on user password choices. Behaviour & Information Technology 30(3), 379–388 (2011)
- Bao, F., Deng, R.: Privacy protection for transactions of digital goods. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001, LNCS, vol. 2229, pp. 202–213. Springer, Heidelberg (2001)
- Tang, C., Wu, D.: Mobile privacy in wireless networks-revisited. IEEE Transactions on Wireless Communications 7(3), 1035–1042 (2008)
- Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM Transactions on Information and System Security 2(3), 230–268 (1999)