
Designated Verifier Threshold Proxy Signature
Scheme without Random Oracles

M.Beheshti-Atashgah1, M.Bayat2, M.Gardeshi3, and M.R.Aref4

1 Research Center of Intelligent Signal Processing, Tehran, Iran
2 Department of Mathematics & Computer Sciences, Tarbiat Moallem University,

Tehran, Iran
3 Department of Communication & Information Technology, Imam Hossein

University, Tehran, Iran
4 Information Systems and Security Lab(ISSL),EE Department, Sharif University of

Technology, Tehran, Iran

Abstract. In a (t, n) designated verifier threshold proxy signature
scheme, an original signer can delegate his/her signing power to n proxy
signers such that any t or more out of n proxy signers can sign messages
on behalf of the original signer but t− 1 or less of the proxy signers can-
not generate a valid proxy signature. Of course, the signature is issued
for a designated receiver and therefore only the designated receiver can
validate the proxy signature. In this paper, we propose a new designated
verifier threshold proxy signature scheme and also show that the pro-
posed scheme has provable security in the standard model. The security
of proposed scheme is based on the GBDH assumption and the pro-
posed scheme satisfies all the security requirements of threshold proxy
signature schemes.

Keywords: Proxy signature scheme, Threshold proxy signature scheme,
Provable security, Standard model, Bilinear pairing.

1 Introduction

A The concept of proxy signature scheme was first introduced by Mambo et al.’s
in 1996 [1]. In a proxy signature scheme, an original signer can delegate his/her
signing capability to a proxy signer and then the proxy signer can sign messages
on behalf of the original signer. So far, many proxy signature schemes have been
proposed; such as [2], [3] .

K.Zhang [4] and Kim et al. [5] independently proposed the first threshold
proxy signature scheme by using the ideas of proxy signature scheme and secret
sharing. In a (t, n) threshold proxy signature scheme, the original signer delegates
his/her signing power to a proxy group of n member such that any t or more than
t proxy signers can cooperatively sign messages on behalf of the original signer.
Until now, many threshold proxy signature schemes have been proposed such as
[6], [7]. A (t, n) threshold proxy signature scheme should satisfy the following
security requirements [8], [9]:



2

verifiability, unforgeability, undeniability, identifiability and prevention of mis-
use.

Although many of proposed schemes were claiming that satisfy the above
requirements, but their precise security meaning was unclear. First, Bellare &
Rogaway [10] used the concept of provable security in the random oracle model
for the key-agreement protocols. Then Boldyreva et al. [11] provide method to
prove the security of the proxy signature scheme in the random oracle model and
so far, many proxy signature schemes such as [12] and [13] have been proposed
that have provable security in this model.
The concept of standard model and provable security in this model was first
introduced by Boneh & Boyen [14] for an ID-based encryption scheme without
random oracles. Of course, their scheme proposed in a weaker model of security
known as Selective-ID model. Then Waters [15] in 2005 proposed an ID-based
encryption scheme and proved that his proposed scheme has provable security
in the standard model. In fact, the standard model described by Waters is more
complete and more efficient from the last model.

In 2006, Huang et al. [16] proposed the first proxy signature scheme in the
standard model and following them, other schemes such the Yu et al.’s [17]
designated verifier proxy signature scheme were proposed. As far as we know,
any threshold proxy signature scheme has been proposed in the standard model
till now and so in this paper, we want to propose the first designated verifier
threshold proxy signature scheme in the standard model based on the Yu et al.’s
scheme. Additionally, we’ll show that our scheme is based on the Gap Bilinear
Diffie-Hellman (GBDH) intractability assumption without relying on the random
oracle and satisfies all the security requirements for a secure threshold proxy
signature scheme.
Roadmap. The reminder of this paper is organized as follows. In the next
Section, some preliminary concepts are given. In Section 3, the formal model of
designated verifier threshold proxy signature scheme is described. In Section 4,
we will propose our new scheme. In Section 5, we analyze the proposed scheme
and finally, the conclusions are given in Section 6.

2 Preliminaries

In this Section, we review fundamental backgrounds including bilinear pairings
and complexity assumptions used in this paper.

2.1 Bilinear pairing

Let G, GT be two cyclic multiplicative groups of prime order p and g be a
generator of G. The map e : G × G → GT is said to be an admissible bilinear
pairing if the following conditions hold true:

(1) bilinearity : For all a, b ∈ Zp, e
(
ga, gb

)
= e(g, g)

ab

(2) non− degeneracy : e (P, P ) 6= lGT



3

(3) computability : There is an efficient algorithm to compute e (g, h) for all
g, h ∈ G.

2.2 Complexity assumption

Definition 1. (CBDH problem). Given
(
g, ga, gb, gc ∈ G

)
for some unknown

a, b, c ∈ Zp, compute e (g, g)
abc

.

Definition 2. (DBDH problem). Given
(
g, ga, gb, gc ∈ G

)
for some unknown

a, b, c ∈ Zp and w ∈ GT , decide whether w = e (g, g)
abc

.

Definition 3. (GBDH problem). Given
(
g, ga, gb, gc ∈ G

)
for some unknown

a, b, c ∈ Zp, compute w = e (g, g)
abc

with the help of DBDH oracle ODBDH .

The probability that an adversary A can solve the GBDH problem is defined
as:

SuccGBDHA = Pr
[
e (g, g)

abc ← A
(
G,GT , g, g

a, gb, gc,ODBDH
)]

(1)

3 Formal models of DVTPSS

3.1 Outline of DVTPSS

In a designated verifier threshold proxy signature scheme, there exist three par-
ticipants namely Alice (original signer), proxy signers groupA = {P1, P2, · · · , Pn}
and Cindy (designated verifier). A DVTPSS1 consists of the following algorithms.

1. Setup: Given a security parameter k, this algorithm outputs the system
parameters.

2. KeyGen: This algorithm takes as input the security parameter k and out-
puts the secret/public key pair (ski, pki) for i ∈ {a, {1, 2, · · · , n} , c} denotes
Alice, proxy signers group and Cindy.

3. DelegationGen: This algorithm takes as input the warrant ω and the orig-
inal signer’s private key, then outputs the delegation σωPi

, i = 1, 2, · · · , n for
proxy signers.

4. DelegationVerify: After receiving (ω,Rai , σωPi
), each proxy signer in the

group A confirms its validity. Note that Rai is a public value that is computed
and published by the original signer.

5. ProxySignGen: this algorithm takes as input the proxy signers’ private
key ski (i = 1, 2, · · · , t), the delegation shares σωPi

(i = 1, 2, · · · , t), the des-
ignated verifier’s public key pkc and a message M to produce a proxy sig-
nature σP .

6. ProxySignVerify: A deterministic algorithm that accepts a messageM , the
warrant ω , the proxy signature σP , the original signer and the proxy signers’
public key

(
pka, pkPi

)
, i = 1, 2, · · · , t, the designated verifier’s private key

skc and returns ω if the signature is valid, otherwise returns ⊥ indicating
the proxy signature is invalid.

1 Designated Verifier Threshold Proxy Signature Scheme



4

7. Transcript simulation: This algorithm takes as input a message M , the
warrant ω and the designated verifier’s private key skc to generate an iden-
tically distributed transcript σ∗ that is indistinguishable from the original
DVTPS σ.

3.2 Security notions

There are four types adversary in the system as follows.
Type I: adversary AI only has the public keys of the original signer and proxy
signers.
Type II: adversary AII has the public keys of the original signer and proxy
signers, he/she additionally has the secret key of the original signer Alice.
Type III: adversary AIII has the public keys of the original signer and proxy
signers, he/she additionally has the secret key of one of the proxy signers (like
Bob).
Type IV: adversary AIV has the public keys of the original signer and proxy
signers, he/she additionally corrupts t− 1 proxy signers.
Note that if DVTPSS is unforgeable against type II and III adversary, it is also
unforgeable against type I adversary. On the other hand, type IV adversary is
more powerful than type III adversary. Hence, if the scheme is secure against
type IV adversary, then it is secure against type III.

Unforgeability against AII

The existential unforgeability of a DVTPS under AII adversary requires that it
is difficult for the original signer to generate a valid threshold proxy signature
of a message M∗ under the warrant ω∗ that has not been signed by the proxy
signers group. It is defined using the following game between the challenger C
and AII adversary:

1. Setup: The challenger C runs the Setup algorithm to obtain system pa-
rameters, and runs KeyGen algorithm to obtain the secret/public key pairs
(ska, pka), (ski, pki) i = 1, · · · , n , (skc, pkc) of the original signer Alice,
proxy signers and the designated verifier Cindy. Then C sends ska, pka, pki, pkc
(where i is one of the proxy signers) to the adversary AII.

2. ProxySign queries: The adversary AII can request a proxy signature on
the message M under the warrant ω. C runs the ProxySign algorithm to
obtain the proxy signature σP and then sends it to AII.

3. Verify queries: The adversary AII can request a proxy signature verification
on a (M,ω, σP ). If σP is a valid DVTPS, C outputs > and ⊥ otherwise.

4. Output: Finally, AII outputs a new DVTPS σ∗P on the message M∗ under
the warrant ω∗, such that

(a) (M∗, ω∗) has never been queried during the ProxySign queries.
(b) σ∗P is a valid DVTPS of message M∗ under warrant ω∗.

The advantage of AII in the above game is defined as AdvAII= Pr[AII succeeds].



5

Definition 4. An adversary AII is said to be an (ε, t, qPS , qv)−forger of a DVTPS
if AII in the above game: has advantage of at least ε, runs in time at most t,
makes at most qPS ProxySign queries and qv Verify queries.

Unforgeability against AIV

Similar to the last game, the following game is defined between the challenger C
and AIV adversary, but note that in this game, the adversary AIV corrupts t− 1
proxy signers:

1. Setup: The challenger C runs the Setup algorithm to obtain system pa-
rameters, and runs KeyGen algorithm to obtain the secret/public key pairs
(ska, pka), (ski, pki) i = 1, · · · , n , (skc, pkc) of the original signer Alice,
proxy signers and the designated verifier Cindy. Then C sends ski, pka, pki, pkc
to the adversary AIV where i = 1, 2, · · · , t. Note that the challenger C should
guess right the proxy signers corrupted by adversary AIV, otherwise the
game is failed and C will stop the simulation.

2. Delegation queries: AIV can request t−1 proxy shares of the proxy signers
(like Bob) under the warrant ω. C runs the DelegationGen algorithm to
obtain the proxy shares σωPi

, i = 1, · · · , t− 1 and then returns it to AIV.
3. ProxySign queries: The adversary AIV can request individual proxy sig-

natures (issued by corrupted proxy signers) and final proxy signature on the
message M under the warrant ω. C runs the ProxySign algorithm to obtain
the proxy signature σP and then sends it to AIV.

4. Verify queries: The adversary AIV can request a proxy signature verifica-
tion on a (M,ω, σP ). If σP is a valid DVTPS, C outputs > and ⊥ otherwise.

5. Output: Finally, AIV outputs a new DVTPS σ∗P on the message M∗ under
the warrant ω∗, such that
(a) ω∗ has never been queried during the Delegation queries.
(b) (M∗, ω∗) has never been queried during the ProxySign queries.
(c) σ∗P is a valid DVTPS of message M∗ under warrant ω∗.

The advantage of AIV in the above game is defined as AdvAIV
= Pr[AIV succeeds].

Definition 5. An adversary AIV is said to be an (ε, t, qω, qPS , qv)−forger of a
DVTPS if AIV in the above game: has advantage of at least ε, runs in time
at most t, makes at most qω Delegation queries, qPS ProxySign queries and qv
Verify queries.

3.3 Security requirements

Verifiability: The designated verifier should be convinced of the original signer’s
agreement on the signed message.
Identifiability: Anyone should determine the identities of the corresponding
proxy signers from a proxy signature.
Undeniability: The proxy signers group should not be able to create the signa-
ture against anyone. This security requirement is also called “non-repudiation”.
Prevention of misuse: A proxy signing key should not be used for purpose
other than generating valid proxy signature. In case of misuse, the responsibility
of the proxy signature should be determined explicitly.



6

4 Proposed DVTPSS in the standard model

In this Section, we describe the proposed DVPSS. As we assumed earlier, there
are three participants in the system: original signer Alice, proxy signers group
A = {P1, P2, · · · , Pn} and designated verifier Cindy. In continue, all the messages
to be signed will be showed as bit string of length n.

It is possible to be quest that if the bit length of input messages is more than n,
what we can do? Thus for more flexibility of the scheme, we can use a collision-
resistant hash function H : {0, 1}∗ → {0, 1}n in the first and last of the proposed
scheme.

Our scheme includes the following algorithms:

1. Setup: Let (G,GT ) is bilinear groups from prime order p. e denotes an
admissible pairing and g ∈ G is the generator of G. u′,m′ ∈ G are two
random integers and u = (uj) , m = (mj) are vectors of length n that is
choosen at random from group G. The system parameters are

σ = (G,GT , p, e, g, u
′,m′, u,m).

2. KeyGen: Alice sets her secret key ska = (xa, ya) ∈ Z2
p and computes her

corresponding public key pka = (gxa , gya). Similarly, each proxy signer Pi ∈
A, i = 1, 2, · · · , n sets his/her secret-public keys ski = (xi, yi) ∈ Z2

p, pki =
(gxi , gyi). The secret-public keys of the designated verifier (Cindy) are skc =
(xc, yc) ∈ Z2

p, pkc = (gxc , gyc).

3. DelegationGen: Let ωj be the j-th bit of ω that ω is the warrant issued by
the original signer and W ⊆ {1, 2, · · · , n} be the set of all j for which ωj = 1.
The original signer Alice randomly chooses rai∈RZp , i = 1, · · · , n and then
computes the proxy share of proxy signer Pi as follows. Alice also publishes
the value Rai and σωPi1

.

σωPi
= e

(
σωPi1

, σωPi2

)
= e

(
gxaya

(
u′
∏
j∈W

uj

)rai

, pkix

)
,

Rai = grai

(2)

Then, Alice sends (ω,Rai , σωPi
) to each proxy signer like Pi where i =

1, 2, · · · , n.

4. DelegationVerify: To validate the correctness of (ω,Rai , σωPi
), each proxy

signer Pi checks whether the following equation is satisfy?

σωPi
= e (gxa , gya)

xi · e

u′ ∏
j∈W

uj , Rai

xi

(3)



7

Correctness

σωPi
= e (gxaya , gxi) · e

((
u′
∏
j∈W

uj

)rai

, gxi

)

= e (gxaya , gxi) · e

(
u′
∏
j∈W

uj , (gxi)
rai

)

= e (gxa , gya)
xi · e

(
u′
∏
j∈W

uj , g
rai

)xi

= e
(
pkax, pkay

)xi · e

(
u′
∏
j∈W

uj , Rai

)xi

5. ProxySignGen: Let M be a n-bit message and Mj be the j-th bit of
M .Assume that M ⊆ {1, 2, · · · , n} be the set of all j for which Mj = 1.
(a) Issuing individual signature: Each proxy signer Pi picks r′ai , rbi∈R Zp at

random and computes and publishes R′ai = gr
′
ai , Rbi = grbi . Finally,

each proxy signer Pi produces his/her individual signature as follows.

σi1 =

σωPi1

(
u′
∏
j∈W

uj

)r′ai

gxiyi

(
m′

∏
j∈M

mj

)rbi ,

σi2 = Raig
r′ai = RaiR

′
ai , σi3 = grbi = Rbi

(4)

Then, each Pi sends his/her partial proxy signature σi = (σi1 , σi2 , σi3)
to a clerk (The clerk is one of the proxy signers). The clerk validates
individual signatures by checking whether the equality holds.

e (σi1 , g) = e
(
pkax, pkay

)
e

(
u′
∏
j∈W

uj , RaiR
′
ai

)

e
(
pkix, pkiy

)
e

(
m′

∏
j∈M

mj , Rbi

) (5)

Correctness

e (σi1 , g) =

= e

gxaya

(
u′
∏
j∈W

uj

)rai
+r′ai

gxiyi

(
m′

∏
j∈M

mj

)rbi
, g


= e (gxaya , g) · e

(
u′
∏
j∈W

uj , g
rai

+r′ai

)
· e (gxiyi , g) ·

e

(
m′

∏
j∈M

mj , g
bi

)

= e
(
pkax, pkay

)
· e

(
u′
∏
j∈W

uj , RaiR
′
ai

)
· e
(
pkix, pkiy

)
·

e

(
m′

∏
j∈M

mj , Rbi

)



8

(b) Issuing proxy signature: If all the individual signatures are valid, the
clerk calculates final proxy signature as follows.

σP1 =
t∏
i=1

e (σi1 , pkcx), σP2 =
t∑
i=1

RaiR
′
ai = Ra,

σP3
=

t∑
i=1

Rbi = Rb

(6)

Finally, σP = (σP1
, σP 2 , σP 3) is the proxy signature and is send to the

designated verifier Cindy.

6. ProxySignVerify: The designated verifier can check the validity of the
proxy signature through the equation.

σP1 = e
(
pkax, pkay

)xc
e
(
pktxy, g

)xc ·

e

(
u′
∏
j∈W

uj , σP 2

)xc

e

(
m′

∏
j∈M

mj , σP 3

)xc

(7)

Correctness

σP1
=

t∏
i=1

e (σi1 , pkcx)

=
t∏
i=1

e (gxaya , gxc) e

(u′ ∏
j∈W

uj

)rai
+r′aj

, gxc


e (gxiyi , gxc) e

((
m′

∏
j∈M

mj

)rbi
, gxc

)

= e
(
pkax, pkay

)xc
t∏
i=1

e

(
u′
∏
j∈W

uj , RaiR
′
ai

)xc

e
(
pkixy, g

)xc
e

(
m′

∏
j∈M

mj , Rbi

)xc

= e
(
pkax, pkay

)xc
e

(
t∑
i=1

pkixy, g

)xc

e

(
u′
∏
j∈W uj ,

t∑
i=1

RaiR
′
ai

)xc

e

(
m′

∏
j∈M

mj ,
t∑
i=1

Rbi

)xc

= e
(
pkax, pkay

)xc
e
(
pktxy, g

)xc

e

(
u′
∏
j∈W

uj ,
t∑
i=1

Ra

)xc

e

(
m′

∏
j∈M

mj ,
t∑
i=1

Rb

)xc

σP1

= e
(
pkax, pkay

)xc
e
(
pktxy, g

)xc

e

(
u′
∏
j∈W

uj , σP 2

)xc

e

(
m′

∏
j∈M

mj , σP 3

)xc

Note that in the above equalities, we used from the following bilinear pairing
property.



9

t∏
i=1

e (Pi, Q) = e

(
t∏
i=1

Pi, Q

)
(8)

Additionally, in the above equalities, the group public key is pktxy =
t∏
i=1

gxiyi .

7. Transcript simulation: Cindy can use her private key to compute a proxy
signature on a message M∗ under the warrant ω∗. She denotes two random
integers r1, r2 ∈ Z∗p and computes σ∗P =

(
σ∗P1

, σ∗P2
, σ∗P3

)
where σ∗P2

= gr1 ,
σ∗P3

= gr2 .

σ∗P1
= e

(
pkax, pkay

)xc
e
(
pktxy, g

)xc

e

(
u′
∏
j∈W

uj , σ
∗
P2

)xc

e

(
m′

∏
j∈M

mj , σ
∗
P3

)xc

(9)



10

5 Analysis of the scheme

5.1 Unforgeability

Unforgeability against adversary AII

Theorem 1. If there exists an adversary AII who can (ε, t, qPS , qv) breaks our
scheme, then there exists another algorithm B who can use AII to solve an in-
stance of the GBDH problem with probability

SuccGBDHB ≥ ε
8(n+1)qPS

In time

t′ ≤ ((2n+ 6) qPS + nqv + 2) t1 + (5qv) t2 + (3n+ 12qPS + qv + 5)T1 +
(3qv)T2 + (qPS + 4qv) te

where t1, t2 are the time for a multiplication in G and GT respectively, T1, T2
are the time of an exponentiation in G and GT respectively, and te is the time
for a pairing computation in (G,GT ).

Proof. For the proof of this theorem, please refer to [17]. tu

Unforgeability against adversary AIV

Theorem 2. If there exists an adversary AIV who can (ε, t, qω, qPS , qv) breaks
our scheme, then there exists another algorithm B who can use AIV to solve an
instance of the GBDH problem with probability

SuccGBDHB ≥ (t−1)! (n−t+1)!ε

3(n+1)3n!(3(qω+qps))
qv+2

In time

t′ ≤ ((2n+ 6) qPS + (n+ 4) qv + (n+ 4) qω) t1 + (3qv) t2 +
(8qω + 12qPS + 4qv)T1 + (4qv)T2 + (qPS + 6qv) te

where t1, t2 are the time for a multiplication in G and GT respectively, T1, T2
are the time of an exponentiation in G and GT respectively, and te is the time
for a pairing computation in (G,GT ).

Proof. Assume that B receives a GBDH problem instance
(
g, ga, gb, gc

)
of a

bilinear group (G,GT ) whose orders are both a prime number p. His/Her goal is

to output e (g, g)
abc

with the help of the DBDH oracle ODBDH . B runs AIV as
a subroutine and act as AIV’s challenger. B will answer AIV’s queries as follows:
Setup: B chooses two random integers la, lb and other two random integers ka, kb
uniformly between 0 and n. Then, B picks two values x′a, x

′
b at random and two

random n-vectors
⇀
xa = (xai) ,

⇀
x b = (xbi) where x′a, xai ∈ Zla , x′b, xbi ∈ Zlb .



11

Additionally, B chooses two values y′a, y
′
b at random and two random n-vectors

ya = (yai),
⇀
y b = (ybi) where y′a, y

′
b, yai, ybi ∈ Zp. All of these values are kept

secret by B.
For a messageM and a warrant ω, we let M ⊂ {1, 2, · · · , n} and W ⊂ {1, 2, · · · , n}
be the set of all i for which Mi = 1 and ωi = 1. For simplicity of analysis, we
defines functions Fa(ω), Ja(ω), Ka(ω), Fb(M), Jb(M) and Kb(M) as in [15].

(1) Fa (ω) = (p− laka) + x′a +
∑
i∈W

xai, Ja (ω) = y′a +
∑
i∈W

yai,

Ka(ω) =

{
0, if x′a +

∑
i∈W

xai = 0 (mod la)

1, Otherwise.

(2) Fb (M) = (p− lbkb) + x′b +
∑
i∈M

xbi, Jb (M) = y′b +
∑
i∈W

ybi,

Kb(M) =

{
0, if x′b +

∑
i∈M

xbi = 0 (mod lb)

1, Otherwise.

(10)

In the next step, B generates the follow common parameters:

(1) B assigns the public keys of the original signer and the designated verifier,
respectively as

(
pkax, pkay

)
=
(
ga, gb

)
, pkcx = gc where ga, gb, gc are the input

of the GBDH problem.
(2) B chooses random integers xi, yi ∈ Z∗p, i = 1, 2, · · · , t− 1 and sets the t− 1

proxy signers’ public key as
(
pkix, pkiy

)
= (gxi , gyi).

We note that the simulator B should correctly guess t − 1 signers corrupted
by AIV from the signer group A. If the guess is right, the game continues and
otherwise the game fails. The probability of right guess is

1(
n

t− 1

) =
(t− 1)! (n− t+ 1)!

n!
(11)

(3) B assigns u′ = pkp−laka+x
′
a

ay gy
′
a , ui = pkxai

ay g
yai and

⇀
u = (u1, u2, · · · , u).

(4) B assigns m′ = pkp−lbkb+x
′
b

ay gy
′
b , mi = pkxbi

ay g
ybi and

⇀
m = (m1,m2, · · · ,mn).

Note that, we have

m′
∏
i∈M

mi = pkFb(M)
ay gJb(M) , u′

∏
i∈W

ui = pkFa(ω)
ay gJa(ω)

Finally, B returns
(
G,GT , e, p, g, u

′,
⇀
u,m′,

⇀
m
)

as the system parameters and(
pkax, pkay, pkix, pkiy, pkcx, xi, yi

)
to adversary AIV.

Here, we note that without loss of generality, we suppose that the all of t − 1
proxy signers controlled by AIV identically participate in signature generating
stage.



12

gxiyi = pkixy, pktxy =
t∑
i=1

pkixy

pktxy =
t−1∑
i=1

pkixy + pk(t−th) xy → pk(t−th) xy = pktxy −
t−1∑
i=1

pkixy

Delegation queries: Includes the following stages.

1. If Ka (ω) = 0, B terminates the simulation and report failure.
2. If Ka (ω) 6= 0, this implies Fa (ω) 6= 0 (mod p) [15]. In this case, for gener-

ating the delegation of each proxy signer, B chooses rai ∈ Z∗p randomly and
computes the proxy share of the i-th proxy signer as follows

σωPi
=
(
σωPi 1

, σωPi 2

)
= e

(
pk
− Ja(ω)

Fa(ω)
ax

(
u′
∏
j∈W

uj

)rai

, pkix

)
,

Rai = grai

(12)

Correctness

σωPi
= e

(
pk
− Ja(ω)

Fa(ω)
ax

(
u′
∏
j∈W

uj

)rai

, pkix

)
= e

(
g−

aJa(ω)
Fa(ω) · gabg−ab

(
gbFa(ω) · gJa(ω)

)rai , pkix

)
= e

(
gab ·

(
gbFa(ω) · gJa(ω)

)− a
Fa(ω) ·

(
gbFa(ω) · gJa(ω)

)rai , pkix

)
= e

(
gab ·

(
gbFa(ω) · gJa(ω)

)rai
− a

Fa(ω) , pkix

)
⇒ e

pkaay
(
u′
∏
j∈W

uj

)r̂ai

, pkix

Rai = grai
− a

Fa(ω) = gr̂ai

In the above equality r̂ai = rai − a
Fa(ω)

. B also publishes the σωPi 1
.

ProxySign queries: During this stage, AIV can request the individual signa-
tures of t − 1 proxy signers corrupted by him/her. Additionally, the adversary
AIV can request the final proxy signature.

1. If Ka (ω) = 0 , Kb (M) = 0, B terminates the simulation and report failure.
2. If Ka (ω) = 0 , Kb (M) 6= 0, B picks the random integers rai , rbi ∈ Z∗p and

computes individual signature of the i-th proxy signer as follows

σi1 = pk
− Jb(M)

Fb(M)

ax

(
u′
∏
j∈W

uj

)rai

gxiyi

(
m′

∏
j∈M

mj

)rbi
,

σi2 = grai = Rai , σi3 = g
rbi−

a
Fb(M) = gr̂bi

(13)

where r̂bi = rbi − a
Fb(M) .



13

Correctness

σi1 = pk
− Jb(M)

Fb(M)

ax

(
u′
∏
j∈W

uj

)rai

gxiyi

(
m′

∏
j∈M

mj

)rbi
= gab · g−ab · g−

aJb(M)

Fb(M)

(
pkFb(M)
ay gJb(M)

)rbi
gxiyi

(
u′
∏
j∈W

uj

)rai

= gab ·
(
gbFb(M)gJb(M)

)− a
F (M)

(
pkFb(M)
ay gJb(M)

)rbi
gxiyi

(
u′
∏
j∈W

uj

)rai

= gab ·
(
pkFb(M)
ay gJb(M)

)rbi− a
F (M)

gxiyi

(
u′
∏
j∈W

uj

)rai

= gxaya ·

(
m′

∏
j∈M

mj

)r̂bi
gxiyi

(
u′
∏
j∈W

uj

)rai

3. Note that during the simulation of signature, Ka (ω) = 0 should satisfy. If
Ka (ω) 6= 0, B should return to the Delegating simulation and computes the
proxy signature again, such that Ka (ω) = 0.

ProxySign Verify queries: Assume that AIV issues a verify query for the
message/signature pair (M,ω, σP1 , σP 2 , σP 3 ).

1. If Fa(ω) 6= 0 and Fb(M) 6= 0, B terminates the simulation and report failure.
2. If Fa (ω) = 0, Fb (M) = 0, B submits

g, ga, gb, gc, σP1

e
(∑t

i=1 g
xiyi , g

)c
e (gc, σP 2)

Ja(ω)e (gc, σP 3)
Jb(M)

 (14)

to the DBDH oracle ODBDH . If ODBDH returns 1, B outputs “valid” and
otherwise, B outputs “invalid”.

Correctness

σP 1 = e
(
pkax, pkay

)xc
e
(
pkix, pkiy

)xc

.e

(
u′
∏
j∈W

uj , σP 2

)xc

e

(
m′

∏
j∈M

mj , σP 3

)xc

= e
(
ga, gb

)c
e

(
t∑
i=1

gxiyi , g

)c
.e
(
gJa(ω), σP 2

)c
e
(
gJb(M), σP 3

)c
= e (g, g)

abc
e

(
t∑
i=1

gxiyi , g

)c
.e (gc, σP 2)

Ja(ω)e (gc, σP 3)
Jb(M)

which indicates that(
g, ga, gb, gc,

σP1

e(
∑t

i=1 g
xiyi ,g)

c
e(gc,σP 2)

Ja(ω)e(gc,σP 3)
Jb(M)

)



14

is a valid BDH tuple.
3. If Fa (ω) = 0, Fb (M) 6= 0 , B can compute a valid signature on the message
M under the same warrant ω just as the second case that he/she responses to
proxy signature queries. Let

(
M,ω, σ′P1

, σ′P2
, σ′P3

)
be the signature computed

by B. The simulator B submits((
gb
)Fb(M)

gJb(M),
σP3

σ′P3

, gc,

(
σP1

σ′P1

)
e

(
gc,

σ′P2

σP2

)Jb(M)
)

(15)

to the DBDH oracle ODBDH . If ODBDH returns 1, B outputs “valid” and
otherwise, B outputs “invalid”.
Correctness
If (M,ω, σP1 , σP 2 , σP 3 ) is a valid DVTPS, then

σP 1 = e
(
pkax, pkay

)xc
e
(
pkix, pkiy

)xc

e

(
u′
∏
j∈W

uj , σP 2

)xc

e

(
m′

∏
j∈M

mj , σP 3

)xc

Similarly, since
(
M,ω, σ′P1

, σ′P2
, σ′P3

)
is another valid DVTPS computed by

B, then

σ′P1
= e

(
pkax, pkay

)xc
e
(
pkix, pkiy

)xc

e

(
u′
∏
j∈W

uj , σ
′
P2

)xc

e

(
m′

∏
j∈M

mj , σ
′
P3

)xc

we can write

σP1

σ′P1

=

(
e(u′

∏
j∈W uj ,σP 2)

e
(
u′
∏

j∈W uj ,σ′P2

))xc
(
e(m′

∏
j∈Mmj ,σP 3)

e
(
m′
∏

j∈Mmj ,σ′P3

))xc

= e

(
u′
∏
j∈W

uj ,
σP2

σ′P2

)xc

e

(
m′

∏
j∈M

mj ,
σP3

σ′P3

)xc

= e
(
gc,

σP2

σ′P2

)Ja(ω)
e
(
pkFb(M)
ay gJb(M),

σP3

σ′P3

)c
therefore ((

gb
)Fb(M)

gJb(M),
σP3

σ′P3

, gc,
(
σP1

σ′P1

)
e
(
gc,

σ′P2

σP2

)Jb(M)
)

is a valid BDH tuple.
4. If Fa (ω) 6= 0, Fb (M) = 0, B can compute a valid signature on the message
M under the same warrant ω just as the second case that he/she responses to
proxy signature queries. Suppose that

(
M,ω, σ′P1

, σ′P2
, σ′P3

)
be the signature

computed by B. The simulator B submits((
gb
)Fa(ω)

gJa(ω),
σP2

σ′P2

, gc,

(
σP1

σ′P1

)
e

(
gc,

σ′P3

σP3

)Jb(M)
)

(16)



15

to the DBDH oracle ODBDH . If ODBDH returns 1, B outputs “valid” and
otherwise, B outputs “invalid”.
Correctness
It is similar to the previous case.

If B does not abort during the simulation, the adversary AIV will output a valid
DVTPS σ∗P =

(
σ∗P1

, σ∗P2
, σ∗P3

)
on the message M∗ under the warrant ω∗ with

success probability ε.

1. If Fa(ω∗) 6= 0, Fb (M∗) 6= 0; B will abort.
2. Otherwise, Fa (ω∗) = 0, Fb (M∗) = 0 and B computes

σ∗P1

e
(∑t

i=1 g
xiyi , g

)c
e
(
gc, σ∗P2

)Ja(ω∗)
e
(
gc, σ∗P3

)Jb(M∗) (17)

and outputs it as the value of e (g, g)
abc

.

This completes the description of the simulation. Now we have to compute B’s
probability of success. B will not abort if the following conditions hold.

G: The simulator B guesses t− 1 proxy signers corrupted by AIV, correctly.
A: Ka (ω) 6= 0 (mod la) during delegation queries.
B: Ka (ω) 6= 0 (mod la) or Kb (M) 6= 0 (mod lb) during ProxySign queries.
C: Fa (ω) = 0 (mod p) or Fb (M) = 0 (mod p) during Verify queries.
D: Fa (ω∗) = 0 (mod p) and Fb (M∗) = 0 (mod p) in output phase.

Finally, the probability of success is SuccGBDHB = Pr [G ∧A ∧B ∧ C ∧D] ε.
Now, we compute this probability using Waters’ technique [15]. Note that the
guess probability Pr [G] is independent of other probabilities.

Pr [G ∧A ∧B ∧ C ∧D]
= Pr [G] · Pr [A ∧B ∧ C ∧D]

= (t−1)! (n−t+1)!
n!

· Pr [A ∧B ∧ C ∧D] But Pr [A ∧B ∧ C ∧D]

= Pr

[
qω⋂
i=1

Ka (ωi) 6= 0
qps⋂
i=1

(Ka (ωi) 6= 0
⋃

Kb (Mi) 6= 0)

qv⋂
i=1

(Fa (ωi) = 0 (mod p)
⋃

Fb (M) = 0 (mod p))⋂
(Fa (ω∗) = 0 (mod p)

⋂
Fb (M∗) = 0 (mod p))]

≥ Pr

[
qω+qps⋂

i=1

Ka (ωi) 6= 0
qv⋂
i=1

Fa (ωi) = 0 (mod p)⋂
Fa (ω∗) = 0 (mod p)

⋂
Fb (M∗) = 0 (mod p)]

= Pr

[
qω+qps⋂

i=1

Ka (ωi) 6= 0

]
Pr

[
qv⋂
i=1

Fa (ωi) = 0 (mod p)⋂
Fa (ω∗) = 0 (mod p)

⋂
Fb (M∗) = 0 (mod p)

|
qω+qps⋂

i=1

Ka (ωi) 6= 0

]
≥ 1

(n+1)3

(
1− qω+qps

la

)
Pr

[
qv⋂
i=1

Ka (ωi) = 0
⋂

Ka (ω∗) = 0



16

⋂
Kb (M∗) = 0 |

qω+qps⋂
i=1

Ka (ωi) 6= 0

]

= 1
(n+1)3

(
1− qω+qps

la

) Pr

[
qv⋂
i=1

Ka(ωi)=0
⋂

Ka(ω∗)=0
⋂

Kb(M∗)=0

]

Pr

[
qω+qps⋂

i=1
Ka(ωi)6=0

]

Pr

[
qω+qps⋂

i=1

Ka (ωi) 6= 0 |
qv⋂
i=1

Ka (ωi) = 0
⋂

Ka (ω∗) = 0
⋂

Kb (M∗) = 0

]
≥ 1

(n+1)3l
qv+1
a lb

(
1− qω+qps

la

)
×

(
1− Pr

[
qω+qps⋃

i=1

Ka (ωi) 6= 0 |
qv⋂
i=1

Ka (ωi) = 0
⋂

Ka (ω∗) = 0
⋂

Kb (M∗) = 0

])

≥ 1

(n+1)3l
qv+1
a lb

(
1− qω+qps

la

)2
≥ 1

(n+1)3l
qv+1
a lb

(
1− 2(qω+qps)

la

)

Therefore SuccGBDHB ≤ (t−1)! (n−t+1)!

(n+1)3n! lqv+1
a lb

(
1− 2(qω+qps)

la

)
ε.

We can get a simplified result by setting la = la = 3 (qω + qps). Then

SuccGBDHB ≤ (t−1)! (n−t+1)!ε

3(n+1)3n!(3(qω+qps))
qv+2 . tu

5.2 Security requirements

1. Verifiability. In the proposed scheme, since the original signer’s public key is
indeed to verify the proxy signature, the designated verifier can be convinced of
the original signer’s agreement on the signed message.

2. Undeniability. Anyone cannot find the proxy signers’ private key due to the
difficulty of discrete logarithm problem (DLP) and thus each proxy signer know
his/her private key. Therefore, when the proxy signers create a valid proxy sig-
nature, they can repudiate it because the signature is created by using their
private key (xi, yi).

3. Identifiability. In the proposed scheme, identities information of proxy signers
is included explicitly in a valid proxy signature and ω as a form of public key.
So, anyone can determine the identities of the proxy signers from the signature
created by them and confirm the identities of the proxy signers from the ω.

4. Prevention of misuse. Only the actual proxy signers group can issue a valid
signature because only they know their private key (xi, yi). So, if the proxy
signers uses the proxy shares for other purposes, it is their responsibility because
only they can generate it. Moreover, the original signer’s misuse is also prevented
because she cannot compute the valid individual proxy signatures.



17

6 Conclusions

In recent years, proxy signature schemes in the standard model or in other words,
proxy signature schemes without random oracles have attracted the interest of
many researchers. In this paper, we proposed the first designated threshold proxy
signature scheme and showed that the proposed scheme has provable security
based on GBDH assumption in the standard model.
Additionally, the proposed scheme provides all the other security requirements
for a threshold proxy signature scheme. The proposed scheme is proven to be
existentially unforgeable against four types of adversaries.

References

1. Mambo, M., Usuda, K., Okamoto, E.: proxy signature: delegation of the power to
sign messages. IEICE Transactions on Fundamentals. 76 (1996) 1338–1353

2. Lee, J.Y., Cheon, J.H., Kim, S.: An analysis of proxy signatures: Is a secure channel
necessary?. In: CT-RSA 2003, in: LNCS, vol. 2612, Springer-Verlag, Berlin. (2003)
68–79

3. Lee, B., Kim, H., Kim, K.: Secure mobile agent using strong nondesignated proxy
signature. In: ACISP01, in: LNCS, vol. 2119, Springer-Verlag, Berlin. (2001) 474–
486

4. Kim, S.J., Park, S.J., Won, D.H.: Proxy Signatures, revisited. ICICS’97, LNCS 1334,
Springer-Verlag, Berlin. (1997) 223–232

5. Zhang, K.: Threshold proxy signature schemes. Information Security Workshop,
Japan. (1997) 191–197

6. Hu, J., Zhang, J.: Cryptanalysis & improvement of a threshold proxy signature
scheme. Computer Standards & Interfaces. (2009) 169–173

7. Tan, Z.: Improvement on C.-L Hsu et al’s threshold proxy signature scheme with
known signers. International Conference on Convergence Information Technology.
(2007) 1463–1467

8. Kong, F., Yu, J., Qin, B., Li, M., Li, D.: Security Analysis and Improvement of
a (t, n) Threshold Proxy Signature Scheme. 8th ACIS International Conference on
Engineering, Artificial Intelligent, Networking and Parallel/Distributed Computing.
(2007) 923–926

9. Seo, S.H., Shim, K.A., Lee, S.H.: A mediated proxy signature scheme with fast revo-
cation for electronic transactions. Proceedings of the 2nd International Conference
on Trust, Privacy and Security in Digital Business, Aug 22-26, 2005, Copenhagen,
Denmark. LNCS 3592, Berlin, German: Springer-Verlag. (2005) 22–26

10. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. Proceeding of the First ACM Conference on Computer and
Communications Security. (1993) 62–73

11. Boldyreva, A., Palacio, A., Warinschi, B.: Secure Proxy Signature Schemes for
Delegation of Signing Rights. http://eprint.iacr.org/2003/096.

12. Gu, C., Zhu, Y.: Provable Security of ID-Based Proxy Signature Schemes. ICC-
NMC 2005, LNCS 3619, Springer-Verlag Heidelberg. (2005) 1277–1286

13. Ji, H., Han, W., Zhao, L., Wang, Y.: An Identity-Based Proxy Signature from Bi-
linear Pairings. WASE International Conference on Information Engineering. (2009)
14–17



18

14. Boneh, D., Boyen, X.: Efficient selective-id secure identity based encryption with-
out random oracles. In Proceeding of the International Conference on Advances
in Cryptology (EUROCRYPT’04), Lecture Notes in Computer Science. Springer-
Verlag. (2004)

15. Waters, B.: Efficient identity based encryption without random oracles. Proceed-
ings of Advances in Cryptology-Eurocrypt 2005, May 22 26, 2005, Aarhus, Denmark.
LNCS 3494, Berlin, German: Springer-Verlag. (2005) 114–127

16. Huang, X., Susilo, W., Mu, Y., Wu, W.: Proxy Signature Without Random Oracles.
In: MSN 2006, in: LNCS, vol. 4325, Springer-Verlag, Berlin (2006) 473–484

17. Yu, Y., Xu, C., Zhang, X., Liao, Y.: Designated verifier proxy signature scheme
without random oracles. Computers and Mathematics with Applications. 57(2009)
1352–1364


