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Abstract. In the last decade, algebraic and fast algebraic attacks are regarded as the most successful attacks
on LFSR-based stream ciphers. Since the notion of algebraic immunity was introduced, the properties and
constructions of Boolean functions with maximum algebraic immunity have been researched in a large number
of papers. However, it is unclear whether these functions behave well against fast algebraic attacks. In this
paper, we study the immunity of Boolean functions against fast algebraic attacks using bivariate polynomial
representation. Based on bivariate polynomial representation, we present a sufficient and necessary condition
for a Boolean function to achieve good immunity against fast algebraic attacks, propose an efficient method
for estimating the immunity of a large class of Boolean functions, including the functions of Q. Jin et al., and
prove that the functions of D. Tang et al. achieve (almost) optimal immunity against fast algebraic attacks.

Keywords: Boolean functions, Algebraic immunity, Fast algebraic attacks

1 Introduction

Boolean functions are frequently used in the design of stream ciphers, block ciphers and hash functions.
One of the most vital roles in cryptography of Boolean functions is to be used as filter and combination
generators of stream ciphers based on linear feedback shift registers (LFSR). The study of the crypto-
graphic criteria of Boolean functions is important because of the connections between known cryptanalytic
attacks and these criteria.

In recent years, algebraic and fast algebraic attacks [1,6,7] have been regarded as the most successful
attacks on LFSR-based stream ciphers. These attacks cleverly use over-defined systems of multi-variable
nonlinear equations to recover the secret key. Algebraic attacks lower the degree of the equations by mul-
tiplying a nonzero function; fast algebraic attacks obtain equations of small degree by linear combination.

Thus the algebraic immunity (AI), the minimum algebraic degree of annihilators of f or f + 1, was
introduced by W. Meier et al. [18] to measure the ability of Boolean functions to resist algebraic attacks.
It was shown by N. Courtois and W. Meier [6] that maximum AI of n-variable Boolean functions is dn2 e.
Constructions of Boolean functions with maximum AI were researched in a large number of papers, e.g.,
[9,14,15,4,22,23]. However, there are few results referring to constructions of Boolean functions with good
immunity against fast algebraic attacks.

A preprocessing of fast algebraic attacks on LFSR-based stream ciphers, which use a Boolean function
f : GF (2)n → GF (2) as the filter or combination generator, is to find a function g of small degree such
that the multiple gf has degree not too large. The resistance against fast algebraic attacks is not covered
by algebraic immunity [8,2,16]. At Eurocrypt 2006, F. Armknecht et al. [2] introduced an effective algo-
rithm for determining the immunity against fast algebraic attacks, and showed that a class of symmetric
Boolean functions (the majority functions) have poor resistance against fast algebraic attacks despite
their resistance against algebraic attacks. Later M. Liu et al. [16] stated that almost all the symmetric
functions including these functions with good algebraic immunity behave badly against fast algebraic
attacks. In [19] P. Rizomiliotis introduced three matrices to evaluate the behavior of Boolean functions
against fast algebraic attacks using univariate polynomial representation while in [17] the authors used
one matrix to evaluate the immunity for fast algebraic attacks.

In [7] N. Courtois proved that for any pair of positive integers (e, d) such that e + d ≥ n, there
is a nonzero function g of degree at most e such that gf has degree at most d. This result reveals an
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upper bound on maximum immunity to fast algebraic attacks. It implies that the function f has maximum
possible resistance against fast algebraic attacks, if for any pair of positive integers (e, d) such that e+d < n
and e < n/2, there is no nonzero function g of degree at most e such that gf has degree at most d. Such
functions are said to be perfect algebraic immune (PAI) [17]. Note that one can use the fast general
attack by splitting the function into two f = h + l with l being the linear part of f [7]. In this case, e
equals 1 and d equals the degree of the function f , where g can be considered as the nonzero constant.
Thus PAI functions have algebraic degree at least n − 1. A PAI function also achieves maximum AI.
As a consequence, a PAI function has perfect immunity against classical and fast algebraic attacks.
Besides, it is shown that a perfect algebraic immune function behaves good against probabilistic algebraic
attacks as well [17]. Although preventing classical and fast algebraic attacks is not sufficient for resisting
algebraic attacks on the augmented function [11], the resistance against these attacks depends on the
update function and tap positions used in a stream cipher and in actual fact it is not a property of the
Boolean function. In [17] the authors proved that there are n-variable PAI functions if and only if n = 2s

or 2s + 1. More precisely, there exist n-variable PAI functions with degree n− 1 (balanced functions) if
and only if n = 2s + 1; there exist n-variable PAI functions with degree n (unbalanced functions) if and
only if n = 2s.

Several classes of Boolean functions, e.g., [4,23,21], are observed through computer experiments by
Armknecht’s algorithm [2] to have good behavior against fast algebraic attacks, but in previous literature
only Carlet-Feng functions are proven to be optimal against fast algebraic attacks as well as classical
algebraic attacks [17].

In this paper, we study the immunity of Boolean functions against fast algebraic attacks using bivariate
polynomial representation. Based on this representation, we prove that a Boolean function f(x, y) admits
no nonzero function g(x, y) of degree at most e such that the product g(x, y)f(x, y) has degree at most
d if and only if the matrix B(f ; e, d), whose elements are represented by the coefficients of the bivariate
polynomial representation of the function f , has full column rank.

Further, we investigate the immunity against fast algebraic attacks for a large family of functions
which has a form as

τ(x, y) = φ(xyr) + (x2
k−1 + 1)ψ(y) + (y2

k−1 + 1)ϕ(x).

We first present several properties of the matrix B(τ ; e, d). Two observations on this matrix are that after
appropriate row transformations it can be represented by(

∗
B∗(φ(xyr); e, d)

)
, (1)

and that after appropriate column transformations it can be represented by(
∗, B∗(φ(xyr); e, d)

)
, (2)

where B∗(φ(xyr); e, d) and B∗(φ(xyr); e, d) are submatrices of B(φ(xyr); e, d). Our observation on the
matrix B(φ(xyr); e, d) is that after appropriate matrix transformations it is a quasidiagonal matrix. Then,
based on these properties, we propose an efficient method to determine the immunity of τ(x, y) against
fast algebraic attacks through computations of submatrices of B(φ(xyr); e, d).

Also we apply the technique to the family of functions which has a form as

τCF (x, y) = φCF (xyr) + (x2
k−1 + 1)ψ(y) + (y2

k−1 + 1)ϕ(x),

where φCF is a Carlet-Feng function. Quite a number of functions are contained in this family, e.g., the
functions of Z. Tu and Y. Deng [22], the functions of D. Tang et al. [21], and the functions of Q. Jin et
al. [13]. Using the method treating Carlet-Feng functions in [17], we show that to ensure that the matrix
B∗(φ(xyr); e, d) has full column rank one only need to ensure the number of rows is greater than or equal
to the number of columns of the submatrices. In particular, we prove that the family of the functions τCF
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with r = 1, including the functions of D. Tang et al. [21], achieve (almost) optimal immunity against fast
algebraic attacks.

The remainder of this paper is organized as follows. In Section 2 some basic concepts are provided.
Section 3 generally studies the immunity of Boolean functions against fast algebraic attacks using bivariate
polynomial representation. Section 4 studies the immunity of the function τ(x, y) against fast algebraic
attacks while Section 5 treats the function τCF (x, y). Section 6 concludes the paper.

2 Preliminary

Let F2 denote the binary field GF (2) and Fn2 the n-dimensional vector space over F2. An n-variable
Boolean function is a mapping from Fn2 into F2. Denote by Bn the set of all n-variable Boolean functions.
An n-variable Boolean function f can be uniquely represented as its truth table, i.e., a binary string of
length 2n,

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)].

The support of f is given by supp(f) = {x ∈ Fn2 | f(x) = 1}. The Hamming weight of f , denoted by
wt(f), is the number of ones in the truth table of f . An n-variable function f is said to be balanced if its
truth table contains equal number of zeros and ones, that is, wt(f) = 2n−1.

An n-variable Boolean function f can also be uniquely represented as a multivariate polynomial over
F2,

f(x1, · · · , xn) =
∑
c∈Fn

2

λc

n∏
i=1

xcii , λc ∈ F2, c = (c1, · · · , cn),

called the algebraic normal form (ANF). The algebraic degree of f , denoted by deg(f), is defined as
max{wt(c) | ac 6= 0}.

Let F2n denote the finite field GF (2n). The Boolean function f considered as a mapping from F2n into
F2 can be uniquely represented as

f(x) =
2n−1∑
i=0

aix
i, ai ∈ F2n , (3)

where f2(x) ≡ f(x)(modx2
n−x). Expression (3) is called the univariate polynomial representation of the

function f . It is well known that f2(x) ≡ f(x)(modx2
n − x) if and only if a0, a2n−1 ∈ F2 and for 1 ≤ i ≤

2n−2, a2imod(2n−1) = a2i . The algebraic degree of the function f equals max
ai 6=0

wt(i), where i =
∑n

k=1 ik2
k−1

is considered as (i1, i2, · · · , in) ∈ Fn2 .
Let α be a primitive element of F2n . The ai’s of Expression (3) are given by a0 = f(0), a2n−1 =

f(0) +
∑2n−2

j=0 f(αj) and

ai =
2n−2∑
j=0

f(αj)α−ij , for 1 ≤ i ≤ 2n − 2. (4)

Let n = n1 + n2 (n1 ≤ n2) and denote by lcm(n1, n2) the least common multiple of positive integers
n1 and n2. The Boolean function f considered as a mapping from F2n1 × F2n2 into F2 can be uniquely
represented as

f(x, y) =

2n1−1∑
i=0

2n2−1∑
j=0

aijx
iyj , aij ∈ F2lcm(n1,n2) , (5)

where f2(x, y) ≡ f(x, y)(mod(x2
n1 − x, y2

n2 − y)). Expression (5) is called the bivariate polynomial
representation of the function f . We can see that f2(x, y) ≡ f(x, y)(mod(x2

n1 − x, y2n2 − y)) if and only
if a2n1−1,2n2−1 ∈ F2 and for 0 ≤ i ≤ 2n1 − 2 and 0 ≤ j ≤ 2n2 − 2,

a2i,2j = a2ij ,
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a2n1−1,2j = a22n1−1,j , (6)

a2i,2n2−1 = a2i,2n2−1,

where 2i and 2j are considered as 2imod(2n1 − 1) and 2jmod(2n2 − 1) respectively, which implies
a0,0, a0,2n2−1, a2n1−1,0 ∈ F2. The algebraic degree of the function f equals max

aij 6=0
{wt(i) + wt(j)}.

An example of the bivariate polynomial representation is listed in Appendix A.

In particular, for n = 2k, the Boolean function f considered as a mapping from F2k × F2k into F2 can
be uniquely represented as

f(x, y) =

2k−1∑
i=0

2k−1∑
i=0

aijx
iyj , aij ∈ F2k , (7)

where f2(x, y) ≡ f(x, y)(mod(x2
k − x, y2k − y)).

For more details with regard to the representation of Boolean functions, we refer to [3].

The algebraic immunity of Boolean functions is defined as follows. Maximum algebraic immunity of
n-variable Boolean functions is dn2 e [6].

Definition 1 [18] The algebraic immunity of a function f ∈ Bn, denoted by AI(f), is defined as

AI(f) = min{deg(g) | gf = 0 or g(f + 1) = 0, 0 6= g ∈ Bn}.

If there is a nonzero Boolean function g with degree at most e such that the product gf has degree at
most d, with e small and d not too large, then the Boolean function f is considered to be weak against
fast algebraic attacks. The exact values of e and d for which a fast algebraic attack is feasible depends on
several parameters, like the size of the memory and the key size of the stream cipher [12].

Theorem 1 [17] Let f ∈ Bn.

If deg(f) < n, then for e < n/2 such that
(
n−1
e

)
≡ 1(mod 2), there exists a nonzero function g with

degree at most e such that the product gf has degree at most n − e − 1. Further, if n 6= 2s + 1 and
deg(f) < n, then there exist an integer e < n/2 and a nonzero function g with degree at most e such that
the product gf has degree at most n− e− 1.

If deg(f) = n, then for e < n/2 such that
(
n−1
e

)
≡ 0(mod 2), there exists a nonzero function g with

degree at most e such that the product gf has degree at most n− e−1. Further, if n 6= 2s and deg(f) = n,
then there exist an integer e < n/2 and a nonzero function g with degree at most e such that the product
gf has degree at most n− e− 1.

3 The immunity of Boolean functions against fast algebraic attacks using bivariate
polynomial representation

In this section we focus on the immunity of Boolean functions against fast algebraic attacks using bivariate
polynomial representation.

We define the operation “◦k” by a ◦k u = c ∈ {0, 1, · · · , 2k − 1} for a, u ∈ {0, 1, · · · , 2k − 1} with c

such that xa◦u mod(x2
k − x) = xc, where “◦” denotes algebraic operations, “+”, “−”, “×”, “÷”. Here we

suppose that x−l mod(x2
k − x) = x2

k−1−l for 1 ≤ l ≤ 2k − 1 and x1/r mod(x2
k − x) = xr

−1 mod(2k−1) for
gcd(r, 2k − 1) = 1. More precisely, for 0 ≤ a, u ≤ 2k − 1, we define

a±k u =

{
2k − 1, if a± u = 2k − 1,
(a± u) mod(2k − 1), otherwise,

a×k u =

{
2k − 1, if 2k − 1 | au 6= 0,
aumod(2k − 1), otherwise,
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and for gcd(u, 2k − 1) = 1,

a÷k u =

{
2k − 1, if a = 2k − 1,
au−1 mod(2k − 1), otherwise.

Let

We = {(u, v)|wt(u) + wt(v) ≤ e, 0 ≤ u ≤ 2n1 − 1, 0 ≤ v ≤ 2n2 − 1},

Wd = {(a, b)|wt(a) + wt(b) ≥ d+ 1, 0 ≤ a ≤ 2n1 − 1, 0 ≤ b ≤ 2n2 − 1}.

For (a, b) ∈ Wn1+n2 and (u, v) ∈ Wn1+n2 , a ◦n1 u and b ◦n2 v will be simply denoted by a ◦ u and b ◦ v
respectively if there is no ambiguity; that is, the monomial xa◦t and the monomial yb◦v are considered as
xa◦u mod(x2

n1 − x) and yb◦v mod(y2
n2 − y) respectively.

Let f, g, h be (n1 + n2)-variable functions and g be a function of algebraic degree at most e satisfying
that h = gf has algebraic degree at most d, where n1 ≤ n2, e < n1+n2

2 and e ≤ d. Let

f(x, y) =

2n1−1∑
i=0

2n2−1∑
j=0

fijx
iyj , fij ∈ F2lcm(n1,n2) ,

g(x, y) =
∑

(i,j)∈We

gijx
iyj , gij ∈ F2lcm(n1,n2) ,

and

h(x, y) =
∑

(i,j)∈Wd

hijx
iyj , hij ∈ F2lcm(n1,n2)

be the bivariate polynomial representations of f , g and h respectively. For (a, b) ∈ Wd, we have ha,b = 0
and thus

0 = ha,b =
∑

(u,v)∈We

λf(a,b),(u,v)gu,v, (8)

where (a, b) 6= (u, v) (since We ∩Wd = ∅ for e ≤ d) and

λf(a,b),(u,v) =


0, if a = 0, u 6= 0 or b = 0, v 6= 0,
f0,b−v + f2n1−1,b−v, if a = u 6= 0, b 6= 0, b 6= v,
fa−u,0 + fa−u,2n2−1, if a 6= 0, a 6= u, b = v 6= 0,
fa−u,b−v, otherwise.

(9)

The system of Equations (8) on gu,v’s is homogeneous linear. Denote by B(f ; e, d) the coefficient matrix
of the equations, that is,

B(f ; e, d) =
(
λf(a,b),(u,v)

)
(a,b)∈Wd

(u,v)∈We

.

The size of the matrix is
∑n1+n2

i=d+1

(
n1+n2

i

)
×
∑e

i=0

(
n1+n2

i

)
.

An example of the matrix B(f ; e, d) is listed in Appendix A.

Theorem 2 Let f ∈ Bn1+n2, n1 ≤ n2, e < n1+n2
2 and e ≤ d. Then there exists no nonzero function g of

degree at most e such that the product gf has degree at most d if and only if the matrix B(f ; e, d) has full
column rank.

Proof. If the matrix B(f ; e, d) has full column rank, i.e., the rank of B(f ; e, d) equals the number of gu,v’s,
then Equations (8) has no nonzero solution and thus f admits no nonzero function g of algebraic degree
at most e such that h = gf has algebraic degree at most d.
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To prove the “only if” direction of the theorem, we need to show that if the matrix B(f ; e, d) has
not full column rank, then there always exists a nonzero Boolean function satisfying Equations (8). If
g(x, y) =

∑
(u,v)∈We

gu,vx
uyv (gu,v ∈ F2lcm(n1,n2)) satisfies (8), then

0 = h2a,b =
∑
z∈We

(λf(a,b),(u,v))
2g2u,v =

∑
(u,v)∈We

λf(2a,2b),(2u,2v)g
2
u,v, (a, b) ∈ Wd, (10)

showing that g2(x, y) =
∑

(u,v)∈We
g2u,vx

2uy2v satisfies (10) (noting that f2i,2j = f2ij and wt(2u) = wt(u)
and wt(2v) = wt(v)). Since (8) and (10) are actually the same equations, we can see that if g(x, y) satisfies
Equations (8) then Tr(g(x, y)) satisfies Equations (8), where Tr(x) = x+ x2 + · · ·+ x2

n−1
. Also it follows

that if g(x, y) satisfies Equations (8) then βg(x, y) and Tr(βg(x, y)) satisfy Equations (8) for any β ∈ F2k .
If g(x, y) 6= 0, then there is cx, cy ∈ F2k such that g(cx, cy) = c 6= 0, and there is β ∈ F2k such that
Tr(βc) 6= 0 and thus Tr(βg(x, y)) 6= 0. Now we can see that Tr(βg(x)) is a nonzero Boolean function and
satisfies (8). Hence, if B(f ; e, d) has not full column rank, then there exists a nonzero solution for (8) and
therefore there exists a nonzero Boolean function satisfying (8).

Thus the theorem is obtained. ut

Remark 1. The theorem shows that AI(f) > e if and only if the matrix B(f ; e, e) has full column rank
(since AI(f) > e if and only if there exists no nonzero function g of degree at most e such that h = gf
has degree at most e). Then AI(f) = dn1+n2

2 e if and only if the matrix B(f ; dn1+n2
2 e − 1, dn1+n2

2 e − 1)
has full column rank.

4 A special class of Boolean functions using bivariate polynomial representation

In this section we study the immunity against fast algebraic attacks of the 2k-variable Boolean function

τ(x, y) = φ(xyr) + (x2
k−1 + 1)ψ(y) + (y2

k−1 + 1)ϕ(x), (11)

where φ, ψ and ϕ are k-variable Boolean functions from F2k into F2, 1 ≤ r ≤ 2k−2 and gcd(r, 2k−1) = 1.
In Section 4.1 we present the bivariate polynomial representation of the function τ . Then, in Section 4.2,
we propose several useful properties of the matrix B(τ ; e, d). In Section 4.3 and Section 4.4 we discuss the
immunity of the function τ against fast algebraic attacks.

4.1 The bivariate polynomial representation

Hereinafter, let
∑2k−1

i=0 φix
i, φi ∈ F2k , be the univariate polynomial representation of φ(x), and let∑2k−1

i=0

∑2k−1
i=0 Φijx

iyj , Φij ∈ F2k , be the bivariate polynomial representation of φ(xyr). For gcd(r, 2k−1) =
1, it holds that

Φij =


φ0, if i = j = 0,
φi, if 1 ≤ i, j ≤ 2k − 2 and j ≡ ri(mod 2k − 1),
φ2k−1, if i = j = 2k − 1,
0, otherwise.

(12)

That is, Φij = φi when j = ri and Φij = 0 when j 6= ri, where ri is considered as r ×k i. Then the
algebraic degree of φ(xyr) is equal to max{wt(i) + wt(ri)|φi 6= 0, 0 ≤ i ≤ 2k − 1} and is thus at least
2k − 1−min{wt(r),wt(r−1)} when φ2k−2 6= 0 and φ(2k−2)/r 6= 0.

Let
∑2k−1

j=0 ψjy
j and

∑2k−1
i=0 ϕix

i be the univariate polynomial representations of ψ(y) and ϕ(x) re-

spectively, ψj , ϕi ∈ F2k . Let
∑2k−1

i=0

∑2k−1
i=0 τijx

iyj be the bivariate polynomial representation of τ(x, y).
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Then for gcd(r, 2k − 1) = 1, we have

τij =



φ0 + ψ0 + ϕ0, if i = j = 0,
φ2k−1 + ψ2k−1 + ϕ2k−1, if i = j = 2k − 1,
ψ2k−1 + ϕ0, if i = 0 and j = 2k − 1,
ψ0 + ϕ2k−1, if i = 2k − 1 and j = 0,
ψj , if i ∈ {0, 2k − 1} and 1 ≤ j ≤ 2k − 2,
ϕi, if 1 ≤ i ≤ 2k − 2 and j ∈ {0, 2k − 1},
φi, if 1 ≤ i, j ≤ 2k − 2 and j ≡ ri(mod 2k − 1),
0, otherwise.

(13)

We assume without loss of generality that ψ2k−1 = ϕ2k−1 = 0 (since the other cases are included into
this case). Note that the constant term τ00 does not affect the immunity against fast algebraic attacks.
Assume without loss of generality that φ0 + ψ0 + ϕ0 = 0. Then for the function τ , we have

τij =



ϕ0, if i = 0 and j = 2k − 1,
ψ0, if i = 2k − 1 and j = 0,
ψj , if i ∈ {0, 2k − 1} and 1 ≤ j ≤ 2k − 2,
ϕi, if 1 ≤ i ≤ 2k − 2 and j ∈ {0, 2k − 1},
φi, if 1 ≤ i, j ≤ 2k − 1 and j ≡ ri(mod 2k − 1),
0, otherwise.

(14)

In this case, we can see that the algebraic degree of τ is equal to max{deg(φ(xyr)),deg(ψ)+k, deg(ϕ)+k}
and is thus equal to 2k − 1 when deg(φ) < k and max{deg(ψ), deg(ϕ)} = k − 1.

4.2 Properties of B(τ ; e, d)

In this section we study the properties of the matrix B(τ ; e, d). The results of this section will be useful
in Section 4.3 and Section 5.

Hereinafter we consider n1 = n2 = k and denote

We = {(u, v)|wt(u) + wt(v) ≤ e, 0 ≤ u, v ≤ 2k − 1},

Wd = {(a, b)|wt(a) + wt(b) ≥ d+ 1, 0 ≤ a, b ≤ 2k − 1},

W∗e = {(u, v) ∈ We|1 ≤ u, v ≤ 2k − 2},

W∗d = {(a, b) ∈ Wd|1 ≤ a, b ≤ 2k − 2}.

For 0 ≤ t ≤ 2k − 2, let
We,r,t = {(u, v) ∈ We|v − ru ≡ t(mod 2k − 1)}, (15)

Wd,r,t = {(a, b) ∈ Wd|b− ra ≡ t(mod 2k − 1)}. (16)

Let
W∗e,r,0 =We,r,0 \ {(0, 0)}, (17)

W∗d,r,0 =Wd,r,0 \ {(2k − 1, 0), (0, 2k − 1), (2k − 1, 2k − 1)}, (18)

and for 1 ≤ t ≤ 2k − 2, let
W∗e,r,t =We,r,t \ {(0, t), (−r−1t, 0)}, (19)

W∗d,r,t =Wd,r,t \ {(0, t), (−r−1t, 0), (2k − 1, t), (−r−1t, 2k − 1)}. (20)

By (15), (17) and (19), it holds for e ≤ k − 1 that

W∗e,r,t =We,r,t \ {(u, v)|u ∈ {0, 2k − 1} or v ∈ {0, 2k − 1}}
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and thus W∗e,r,t ⊂ W∗e . By (16), (18) and (20), it holds that

W∗d,r,t =Wd,r,t \ {(a, b)|a ∈ {0, 2k − 1} or b ∈ {0, 2k − 1}}

and thus W∗d,r,t ⊂ W
∗
d. In particular, if d ≥ k − 1, then W∗d,r,t =Wd,r,t \ {(2k − 1, t), (−r−1t, 2k − 1)} for

t 6= 0; if d ≥ k, then W∗d,r,0 =Wd,r,0 \ {(2k − 1, 2k − 1)}.
Denote by B∗(f ; e, d) the matrix formed by selecting columns (u, v) with (u, v) ∈ W∗e from B(f ; e, d),

that is,

B∗(f ; e, d) =
(
λf(a,b),(u,v)

)
(a,b)∈Wd

(u,v)∈W∗
e

.

Denote by B∗(f ; e, d) the matrix obtained by selecting rows (a, b) with (a, b) ∈ W∗d from B(f ; e, d),
that is,

B∗(f ; e, d) =
(
λf(a,b),(u,v)

)
(a,b)∈W∗

d
(u,v)∈We

.

It is clear that B∗(f ; e, d) and B∗(f ; e, d) are submatrices of B(f ; e, d).
Let B(f ; e, d; r, t) be the submatrix of B(f ; e, d) formed by selecting rows (a, b) and columns (u, v)

with (a, b) ∈ Wd,r,t and (u, v) ∈ We,r,t, that is,

B(f ; e, d; r, t) =
(
λf(a,b),(u,v)

)
(a,b)∈Wd,r,t

(u,v)∈We,r,t

.

We can see that B(f ; e, d; r, t) is a #Wd,r,t×#We,r,t matrix, where # denotes the number of elements in a
set. The matrix B(f ; e, d; r, t) is conventionally considered as a full column rank matrix when #We,r,t = 0.

Let B∗(f ; e, d; r, t) be the matrix formed by removing columns (0, t) and (−r−1t, 0), if any, from
B(f ; e, d; r, t), that is,

B∗(f ; e, d; r, t) =
(
λf(a,b),(u,v)

)
(a,b)∈Wd,r,t

(u,v)∈W∗
e,r,t

.

Let B∗(f ; e, d; r, t) be the matrix formed by removing rows (0, t), (−r−1t, 0), (2k−1, t), (−r−1t, 2k−1)
and (2k − 1, 2k − 1), if any, from B(f ; e, d; r, t), that is,

B∗(f ; e, d; r, t) =
(
λf(a,b),(u,v)

)
(a,b)∈W∗

d,r,t

(u,v)∈We,r,t

.

It is clear that B∗(f ; e, d; r, t) and B∗(f ; e, d; r, t) are submatrices of B(f ; e, d; r, t). Since W∗e,r,t ⊂ W∗e ,

B∗(f ; e, d; r, t) is a submatrix of B∗(f ; e, d); sinceW∗d,r,t ⊂ W
∗
d, B

∗(f ; e, d; r, t) is a submatrix of B∗(f ; e, d).
Next we discuss the matrix B∗(τ ; e, d).

Proposition 3 B∗(τ ; e, d) = B∗(φ(xyr); e, d) and B∗(τ ; e, d; r, t) = B∗(φ(xyr); e, d; r, t).

Proof. We just prove B∗(τ ; e, d) = B∗(φ(xyr); e, d). For (u, v) ∈ W∗e and (a, b) ∈ Wd with a = u, we
have v 6= 0, b − v 6= 2k − 1, and thus λτ(a,b),(u,v) = ψb−v + ψb−v = 0 by (9) and (14); by (9) and

(12) we also have λ
φ(xyr)
(a,b),(u,v) = 0. For (u, v) ∈ W∗e and (a, b) ∈ Wd with b = v, we similarly have

λτ(a,b),(u,v) = λ
φ(xyr)
(a,b),(u,v) = 0. For (u, v) ∈ W∗e and (a, b) ∈ Wd with a 6= u and b 6= v, we have u 6= 0 and

v 6= 0, and thus λτ(a,b),(u,v) = λ
φ(xyr)
(a,b),(u,v) = φa−u by (9), (14) and (12). Then λτ(a,b),(u,v) = λ

φ(xyr)
(a,b),(u,v) for

(u, v) ∈ W∗e and (a, b) ∈ Wd. Thus B∗(τ ; e, d) = B∗(φ(xyr); e, d). ut

Next we discuss the matrix B∗(τ ; e, d).

Proposition 4 B∗(τ ; e, d) = B∗(φ(xyr); e, d) and B∗(τ ; e, d; r, t) = B∗(φ(xyr); e, d; r, t).
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Proof. We just prove B∗(τ ; e, d) = B∗(φ(xyr); e, d). For (u, v) ∈ We and (a, b) ∈ W∗d with a = u, we
have b 6= 2k − 1, b − v 6= 2k − 1 and thus λτ(a,b),(u,v) = ψb−v + ψb−v = 0 by (9) and (14); by (9)

and (12) we also have λ
φ(xyr)
(a,b),(u,v) = 0. For (u, v) ∈ We and (a, b) ∈ W∗d with b = v, we similarly have

λτ(a,b),(u,v) = λ
φ(xyr)
(a,b),(u,v) = 0. For (u, v) ∈ We and (a, b) ∈ W∗d, we have a 6= 0, a 6= 2k−1, b 6= 0 and b 6= 2k−1,

and thus λτ(a,b),(u,v) = λ
φ(xyr)
(a,b),(u,v) = φa−u by (9), (14) and (12). Thus B∗(τ ; e, d) = B∗(φ(xyr); e, d). ut

From the above results, the matrix B(τ ; e, d) is very close to the matrix B(φ(xyr); e, d). The question
whether the matrix B(τ ; e, d) has full column rank is highly depended on whether B∗(φ(xyr); e, d) and
B∗(φ(xyr); e, d) have full column rank. Since B∗(φ(xyr); e, d) is a collect of column vectors of B(τ ; e, d),
as described in (2), if B∗(φ(xyr); e, d) has not full column rank, then B(τ ; e, d) also has not full column
rank; while B∗(φ(xyr); e, d) is a collect of row vectors of B(τ ; e, d), as described in (1), if B∗(φ(xyr); e, d)
has full column rank, then B(τ ; e, d) also has full column rank.

SinceB(φ(xyr); e, d) is a quasidiagonal matrix (see Proposition 8),B∗(φ(xyr); e, d) andB∗(φ(xyr); e, d)
are also quasidiagonal matrices. Then the question whether the matrix B(τ ; e, d) has full column rank
might be simplified to the questions whether all the matrices B∗(φ(xyr); e, d; r, t) have full column rank
and whether all the matrices B∗(φ(xyr); e, d; r, t) have full column rank. Further, by Proposition 5 it only
needs to consider one matrix among the matrices B(φ(xyr); e, d; r, 2st) with 0 ≤ s ≤ k − 1.

Next we discuss the matrix B(τ ; e, d; r, t). The following result applies to any 2k-variable function
f(x, y).

Proposition 5 For 0 ≤ t ≤ 2k − 2, #Wd,r,2t = #Wd,r,t and #We,r,2t = #We,r,t; B(f ; e, d; r, 2t) has full
column rank if and only if B(f ; e, d; r, t) has full column rank.

Proof. Since wt(2a) = wt(a), wt(2b) = wt(b), and b − ra ≡ t(mod 2k − 1) if and only if 2b − 2ra ≡
2t(mod 2k − 1), we have #Wd,r,2t = #Wd,r,t and #We,r,2t = #We,r,t for 0 ≤ t ≤ 2k − 2. From (6) and
(9) we know that the element at row (2a, 2b) and column (2u, 2v) of B(f ; e, d; r, 2t) is the square of the
element at row (a, b) and column (u, v) of B(f ; e, d; r, t). Since the elements of the two matrices are in
fields with characteristic 2, they have the same rank. Thus, B(f ; e, d; r, 2t) has full column rank if and
only if B(f ; e, d; r, t) has full column rank. ut

Proposition 6 Let (r, 2k − 1) = 1, e ≤ k − 1 and e ≤ d. Then the rank of B(τ ; e, d; r, 0) is greater than
or equal to the rank of B(φ(xyr); e, d; r, 0). Further, if k ≤ d, then

B(τ ; e, d; r, 0) = B(φ(xyr); e, d; r, 0) = (φa−u)a∈A
u∈U

,

where
A = {a|wt(a) + wt(ra) ≥ d+ 1, 1 ≤ a ≤ 2k − 1},

U = {u|wt(u) + wt(ru) ≤ e, 0 ≤ u ≤ 2k − 2}.

Proof. By (15) and (16) we have

We,r,0 = {(u, v)|wt(u) + wt(v) ≤ e, v ≡ ru(mod 2k − 1), 0 ≤ u, v ≤ 2k − 2},
Wd,r,0 = {(a, b)|wt(a) + wt(b) ≥ d+ 1, b ≡ ra(mod 2k − 1), 0 ≤ a, b ≤ 2k − 1}.

and We,r,0 and Wd,r,0 are disjoint for e ≤ d. Let (a, b) ∈ Wd,r,t and (u, v) ∈ We,r,t. When a 6= 0, we have
a 6= u (if a = u then b = 2k − 1 and v = 0, and thus a = u ≡ 0(mod 2k − 1), which is impossible); when
a = u = 0, we have b = 2k − 1 and v = 0. Similarly, when b 6= 0, we have b 6= v; when b = v = 0, we
have a = 2k − 1 and u = 0. Therefore, when (a, b) 6= (0, 2k − 1) and (a, b) 6= (2k − 1, 0), by (9) we have

λτ(a,b),(u,v) = λ
φ(xyr)
(a,b),(u,v) = 0 or λτ(a,b),(u,v) = τa−u,b−v and λ

φ(xyr)
(a,b),(u,v) = Φa−u,b−v, where a 6= u, b 6= v and

b − v ≡ r(a − u)(mod 2k − 1). Then we obtain τa−u,b−v = φa−u by (14) and Φa−u,b−v = φa−u by (12).
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We can see that λτ(a,b),(u,v) = λ
φ(xyr)
(a,b),(u,v) = φa−u when (a, b) 6= (0, 2k − 1) and (a, b) 6= (2k − 1, 0). For

(a, b) = (0, 2k−1) or (2k−1, 0), we have λ
φ(xyr)
(a,b),(u,v) = 0 by (9) and by (12). Thus the rank of B(τ ; e, d; r, 0)

is greater than or equal to the rank of B(φ(xyr); e, d; r, 0).
For d ≥ k, we have (a, b) 6= (0, 2k− 1) and (a, b) 6= (2k− 1, 0) for (a, b) ∈ Wd,r,0. Thus B(τ ; e, d; r, 0) =

B(φ(xyr); e, d; r, 0). From the above proof, we can obtain that

A = {a|wt(a) + wt(ra) ≥ d+ 1, 1 ≤ a ≤ 2k − 1},

U = {u|wt(u) + wt(ru) ≤ e, 0 ≤ u ≤ 2k − 2}.

Hence we have proven the proposition. ut

Proposition 7 Let (r, 2k − 1) = 1. Then #W2k−e−1,r,0 = #We,r,0 and #Wd,r,0 ≥ #We,r,0 for d ≤
2k − e− 1.

Proof. Since #Wd,r,0 increases as d decreases, it just needs to prove #W2k−e−1,r,0 = #We,r,0. Let 0 ≤
a ≤ 2k − 1 and u = 2k − 1− a. Since

wt(u) + wt(ur) = wt(2k − 1− a) + wt(2k − 1− ar) = 2k − (wt(a) + wt(ar)),

we know that wt(a) + wt(ar) ≥ 2k − e if and only if wt(u) + wt(ur) ≤ e. Then by (15) and (16) we have
#W2k−e−1,r,0 = #We,r,0. ut

Taking e = d = k − 1, the result shows that #Wk−1,r,0 ≤ 2k−1.
Then we discuss the matrix B(φ(xyr); e, d) and B(φ(xyr); e, d; r, t).

Proposition 8 The rank of B(φ(xyr); e, d) equals the sum of ranks of B(φ(xyr); e, d; r, t) over all t with
0 ≤ t ≤ 2k − 2.

Proof. From (12) we know Φij 6= 0 only when j ≡ ri(mod 2k − 1). Then from (9) we know λ
φ(xyr)
(a,b),(u,v) 6= 0

only when b − v ≡ r(a − u)(mod 2k − 1). In other words, λ
φ(xyr)
(a,b),(u,v) 6= 0 only when b − ra ≡ v − ru ≡

t(mod 2k − 1), 0 ≤ t ≤ 2k − 2. Therefore, the matrix B(φ(xyr); e, d) is a quasidiagonal matrix as
B(φ(xyr); e, d; r, 0) 0 · · · 0

0 B(φ(xyr); e, d; r, 1) · · · 0
...

...
. . .

...
0 0 · · · B(φ(xyr); e, d; r, 2k − 2)

 .

Then the rank of B(φ(xyr); e, d) equals the sum of ranks of B(φ(xyr); e, d; r, t) over all t with 0 ≤ t ≤ 2k−2.
ut

Now we discuss the matrix B(φ(xyr); e, d; r, t).
For (a, b) ∈ Wd,r,t and (u, v) ∈ We,r,t, when a = u, by (15) and (16) we have b = 2k−1 and v = 0 (since

(a, b) 6= (u, v)), and thus a = u = −r−1tmod(2k − 1), which shows that for d + 1 − k ≤ wt(−r−1t) ≤ e,
a = u if and only if (a, b) = (−r−1t, 2k − 1) and (u, v) = (−r−1t, 0); for the other cases, there exist no
(a, b) ∈ Wd,r,t and (u, v) ∈ We,r,t such that a = u. Similarly, for d+ 1− k ≤ wt(t) ≤ e, b = v if and only if
(a, b) = (2k − 1, t) and (u, v) = (0, t); for the other cases, there exist no (a, b) ∈ Wd,r,t and (u, v) ∈ We,r,t

such that b = v.
Therefore, for (a, b) ∈ Wd,r,t and (u, v) ∈ We,r,t, where e ≤ d and 0 ≤ t ≤ 2k − 2, from (9) we have

λ
φ(xyr)
(a,b),(u,v) =


0, if a = 0, u 6= 0 or b = 0, v 6= 0,
Φ0,2k−1 + Φ2k−1,2k−1, if (a, b) = (−r−1t, 2k − 1), (u, v) = (−r−1t, 0),

Φ2k−1,0 + Φ2k−1,2k−1, if (a, b) = (2k − 1, t), (u, v) = (0, t),

Φa−u,b−v, if a 6= 0, a 6= u, b 6= 0, b 6= v,

(21)
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where b− v ≡ r(a− u)(mod 2k − 1), and by (12) we then have

λ
φ(xyr)
(a,b),(u,v) =


0, if a = 0, u 6= 0 or b = 0, v 6= 0,
φ2k−1, if (a, b) = (−r−1t, 2k − 1), (u, v) = (−r−1t, 0),
φ2k−1, if (a, b) = (2k − 1, t), (u, v) = (0, t),
φ2k−1, if (a, b) = (2k − 1, 2k − 1), (u, v) = (0, 0),
φa−u, if a 6= 0, b 6= 0, a− u 6∈ {0, 2k − 1},

(22)

As mentioned above, if k + e ≤ d, then we have a 6= 0, b 6= 0 and a − u 6∈ {0, 2k − 1} for (a, b) ∈ Wd,r,t

and (u, v) ∈ We,r,t with 1 ≤ t ≤ 2k − 2 (since (2k − 1, 2k − 1) ∈ Wd,r,0).

Proposition 9 Let k+e ≤ d and 1 ≤ t ≤ 2k−2. Then for (a, b) ∈ Wd,r,t and (u, v) ∈ We,r,t, λ
φ(xyr)
(a,b),(u,v) =

φa−u and a− u 6∈ {0, 2k − 1}.

Form (22) we can see that λ
φ(xyr)
(a,b),(u,v) = φa−u and a−u 6∈ {0, 2k−1} for (a, b) ∈ W∗d,r,t and (u, v) ∈ We,r,t.

Proposition 10 For (a, b) ∈ W∗d,r,t and (u, v) ∈ We,r,t, λ
φ(xyr)
(a,b),(u,v) = φa−u and a− u 6∈ {0, 2k − 1}.

4.3 The immunity against fast algebraic attacks

First we study the immunity of the 2k-variable Boolean functions φ(xyr) against fast algebraic attacks.

Theorem 11 Let φ ∈ Bk and (r, 2k − 1) = 1. Then there exists no nonzero function g ∈ B2k of de-
gree at most e such that the product g(x, y)φ(xyr) has degree at most d if and only if all the matrices
B(φ(xyr); e, d; r, t), 0 ≤ t ≤ 2k − 2, have full column rank.

Proof. Proposition 8 shows that B(φ(xyr); e, d) has full column rank if and only if all the matrices
B(φ(xyr); e, d; r, t), 0 ≤ t ≤ 2k − 2, have full column rank. Then the theorem is derived from Theo-
rem 2. ut

Remark 2. Theorem 11 shows that AI(φ(xyr)) > e if and only if all the matrices B(φ(xyr); e, e; r, t),
0 ≤ t ≤ 2k − 2, have full column rank; in particular, AI(φ(xyr)) = k if and only if all the matrices
B(φ(xyr); k − 1, k − 1; r, t), 0 ≤ t ≤ 2k − 2, have full column rank.

Corollary 12 Let φ ∈ Bk and (r, 2k−1) = 1. If there is t with 0 ≤ t ≤ 2k−2 such that #Wd,r,t < #We,r,t,
then there exists a nonzero function g ∈ B2k with degree at most e such that the product g(x, y)φ(xyr)
has degree at most d.

Proof. It is derived from Theorem 11 since B(φ(xyr); e, d; r, t) is a #Wd,r,t ×#We,r,t matrix. ut

Remark 3. Proposition 7 has shown that #Wd,r,0 ≥ #We,r,0 for d ≤ 2k− e− 1, so we can ignore the case
t = 0. Corollary 12 shows that if AI(f) > e then #We,r,t ≤ 2k−1 for 1 ≤ t ≤ 2k − 2; in particular, if
AI(f) = k then #Wk−1,r,t ≤ 2k−1 for 1 ≤ t ≤ 2k − 2. This implies that Tu-Deng function, which belongs

to the family of φ(xy2
k−2), has maximum AI if and only if Tu-Deng conjecture is correct (since it was

proven in [22] that if Tu-Deng conjecture is correct then Tu-Deng function has maximum AI). A similar
result also applies to the relationship between Jin et al.’s functions and the related conjectures [13].

Then we study the immunity against fast algebraic attacks of the 2k-variable Boolean functions τ(x, y)
described in (11).

A trivial observation is that there always exists a nonzero quadratic function g such that the product
gτ has algebraic degree at most deg(φ(xyr))+2, e.g., g(x, y) = xy. Also there always exists a nonzero affine

function g such that the product g(x, y)(φ(xyr) + (x2
k−1 + 1)ψ(y)) has degree at most deg(φ(xyr)) + 1,

e.g., g(x, y) = x; a similar result applies to φ(xyr) + (y2
k−1 + 1)ϕ(x). The family of the functions τ with

deg(φ) < k and r = 2k−2, including the family of Tu-Deng functions [22], are weak against fast algebraic

attacks, since the algebraic degree of φ(xy2
k−2) is less than or equal to k when deg(φ) < k.
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Theorem 13 If there is t, 0 ≤ t ≤ 2k − 2, such that B∗(φ(xyr); e, d; r, t) has not full column rank, then
there exists a nonzero function g with degree at most e such that the product gτ has degree at most d.

Proof. The same proof of Proposition 8 shows that B∗(φ(xyr); e, d) has not full column rank if
B∗(φ(xyr); e, d; r, t) has not full column rank. Then, by Proposition 3, B∗(τ ; e, d) and B(τ ; e, d) have
not full column rank. The theorem is therefore derived from Theorem 2. ut

Corollary 14 If there is t, 0 ≤ t ≤ 2k − 2, such that #Wd,r,t < #W∗e,r,t, then there exists a nonzero
function g with degree at most e such that the product gτ has degree at most d.

Proof. It is derived from Theorem 13 since B∗(τ ; e, d; r, t) is a #Wd,r,t ×#W∗e,r,t matrix. ut

Similar results of Theorem 13 and Corollary 14 apply to the functions φ(xyr) + (x2
k−1 + 1)ψ(y) and

φ(xyr) + (y2
k−1 + 1)ϕ(x) when the set W∗e,r,t is replaced with We,r,t \ {(0, t)} and We,r,t \ {(−r−1t, 0)}

respectively.
For 0 ≤ t ≤ 2k − 2, denote

W+
d,r,t =Wd,r,t ∪ {(a, b) ∈ Wd|a ∈ {0, 2k − 1} or b ∈ {0, 2k − 1}} =Wd \ (

⋃
t∗ 6=t
W∗d,r,t∗)

and
B+(f ; e, d; r, t) =

(
λf(a,b),(u,v)

)
(a,b)∈W+

d,r,t

(u,v)∈We,r,t

.

Theorem 15 Let e ≤ d and 0 ≤ t ≤ 2k − 2. If B+(τ ; e, d; r, t) and all the matrices B∗(φ(xyr); e, d; r, t∗),
0 ≤ t∗ ≤ 2k − 2 and t∗ 6= t, have full column rank, then there exists no nonzero function g of degree at
most e such that the product gτ has degree at most d.

Proof. Proposition 8 and Proposition 4 state that after appropriate matrix transformations the matrix
B(τ ; e, d) can be represented as

∗ ∗ · · · ∗
B∗(φ(xyr); e, d; r, 0) 0 · · · 0

0 B∗(φ(xyr); e, d; r, 1) · · · 0
...

...
. . .

...
0 0 · · · B∗(φ(xyr); e, d; r, 2k − 2)

 .

Assume without loss of generality that t = 0. If all the matrices B∗(φ(xyr); e, d; r, t∗), 1 ≤ t∗ ≤ 2k − 2,
have full column rank, then B(τ ; e, d) has full column rank if and only if B+(τ ; e, d; r, 0) has full column
rank. The theorem is thus derived from Theorem 2. ut

Corollary 16 Let e ≤ d. If B(φ(xyr); e, d; r, 0) and all the matrices B∗(φ(xyr); e, d; r, t), 1 ≤ t ≤ 2k − 2,
have full column rank, then there exists no nonzero function g of degree at most e such that the product
gτ has degree at most d.

Proof. By Proposition 6 we know B(τ ; e, d; r, 0) = B(φ(xyr); e, d; r, 0). Then the result is derived from
Theorem 15. ut

Corollary 17 Let e ≤ d. If all the matrices B∗(φ(xyr); e, d; r, t), 0 ≤ t ≤ 2k − 2, have full column rank,
then there exists no nonzero function g of degree at most e such that the product gτ has degree at most d.

Proof. It is derived from Theorem 15. ut

From the results presented in this section, we obtain an efficient method for computing the immunity
of the function τ against fast algebraic attacks (see Appendix D). The sizes of the matrices we need
to compute in this section are much smaller than that of B(τ ; e, d). When φ is a special function, e.g.,
Carlet-Feng function [4], our method could become more powerful (see Appendix E).
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4.4 The immunity against fast algebraic attacks for the case r = 1

Next we study the immunity against fast algebraic attacks of the 2k-variable Boolean functions τ for
r = 1, that is,

τ(x, y) = φ(xy) + (x2
k−1 + 1)ψ(y) + (y2

k−1 + 1)ϕ(x), (23)

where φ, ψ and ϕ are k-variable Boolean functions from F2k into F2. It is clear that the algebraic degree
of φ(xy) is 2 deg(φ).

Theorem 18 Let r = 1 and d = max{2k − 2e− 2, k + deg(ψ), k + deg(ϕ)}.
If deg(φ) < k, then for e < k/2 such that

(
k−1
e

)
≡ 1(mod 2), there exists a nonzero function g with

degree at most 2e such that the product gτ has degree at most d. Further, if k 6= 2s + 1 and deg(φ) < k,
then there exist a positive integer e < k/2 and a nonzero function g with degree at most 2e such that the
product gτ has degree at most d.

If deg(φ) = k, then for e < k/2 such that
(
k−1
e

)
≡ 0(mod 2), there exists a nonzero function g with

degree at most 2e such that the product gτ has degree at most d. Further, if k 6= 2s and deg(φ) = k,
then there exist a positive integer e < k/2 and a nonzero function g with degree at most 2e such that the
product gτ has degree at most d.

Proof. We just prove the first half part of the theorem (the second half part can be similarly obtained).
By Theorem 1 we know that if deg(φ) < k, then for e < k/2 such that

(
k−1
e

)
≡ 1(mod 2), there exists a

nonzero function g∗ ∈ Bk with degree at most e such that the product g∗(xy)φ(xy) has degree at most
2(k − e− 1). Let g(x, y) = g∗(xy) then g has degree at most 2e and

g(x, y)τ(x, y) =g∗(xy)φ(xy) + g∗(xy)(x2
k−1 + 1)ψ(y) + g∗(xy)(y2

k−1 + 1)ϕ(x)

=g∗(xy)φ(xy) + g∗(0)(x2
k−1 + 1)ψ(y) + g∗(0)(y2

k−1 + 1)ϕ(x).

Thus gτ has degree at most d. Further, if k 6= 2s + 1, then, by Lucas’ theorem, there always exists a
positive integer e < k/2 such that

(
k−1
e

)
≡ 1(mod 2). Hence the first half part of the theorem has been

proven. ut

The theorem shows that for k 6= 2s and k 6= 2s+1 and r = 1, if both deg(ψ) and deg(ϕ) are reasonable
small, then there exists a nonzero function g with degree at most 2e (e < k/2) such that the product gτ
has degree at most 2k − 2e− 2.

Corollary 19 Let k be an even integer and r = 1. If deg(φ) < k, then there exists a nonzero function g
with degree at most 2 such that the product gτ has degree at most max{2k − 4, k + deg(ψ), k + deg(ϕ)}.

Proof. Taking e = 1 in the first half part of Theorem 18 gives this corollary. ut

The above result shows that for even k and r = 1, if deg(φ) < k, deg(ψ) ≤ k − 4 and deg(ϕ) ≤ k − 4,
then there exists a nonzero function g with degree at most 2 such that the product gτ has degree at most
2k − 4.

5 The Immunity of the functions based on Carlet-Feng function against fast
algebraic attacks

In recent years, several constructions of Boolean functions with maximum algebraic immunity and good
nonlinearity are proposed based on bivariate polynomial representation and Carlet-Feng function φCF .
The functions constructed by Z. Tu and Y. Deng [22] have the form φCF (xy2

k−2) + (x2
k−1 + 1)ψ(y), the

functions constructed by D. Tang et al. [21] have the form φCF (xy) + (x2
k−1 + 1)ψ(y), and the functions

constructed by Q. Jin et al. [13] have the form φCF (xyr) + (x2
k−1 + 1)ψ(y). Such functions have good
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nonlinearity and might have maximum algebraic immunity (depending on whether a binary conjecture is
correct1).

Some of these functions are observed through computer experiments to have good behavior against
fast algebraic attacks, but no mathematical results are found in previous literatures. In this section, we
further study these functions in terms of the immunity against fast algebraic attacks.

5.1 Carlet-Feng functions

Let α be a primitive element of F2k . Let φCF ∈ Bk and

supp(φCF ) = {αl, αl+1, αl+2, · · · , αl+2k−1−1}, 0 ≤ l ≤ 2k − 2. (24)

The function φCF , called Carlet-Feng function, was first presented in [10] and further studied by C. Carlet
and K. Feng [4]. Carlet-Feng function was proved in [17] to be optimal against fast algebraic attacks among
all the functions with degree less than n.

Proposition 20 [4] Let
∑2k−1

i=0 φix
i(φi ∈ F2k) be the univariate representation of the function φCF . Then

φ0 = 0, φ2k−1 = 0, and for 1 ≤ i ≤ 2k − 2,

φi =
α−il

1 + α−i/2
.

Hence the algebraic degree of φCF is equal to k − 1.

The following result is useful in the proof of Proposition 22 which leads to the main results of this
section.

Lemma 21 [17] Let

A =

(
bicj

1 + βiγj

)
m×m

be an m×m matrix with bi, cj , βi, γj ∈ F∗
2k

, βiγj 6= 1, 1 ≤ i, j ≤ m. If βi 6= βj and γi 6= γj for i 6= j, then
det(A) 6= 0.

Hereinafter we denote A× U = {(a, u)|a ∈ A, u ∈ U}. A similar proof of [17, Proposition 12] applies
to the following theorem.

Proposition 22 Let
∑2k−1

i=0 φix
i(φi ∈ F2k) be the univariate representation of the function φCF . Let

A ⊂ {1, 2, · · · , 2k − 1} and U ⊂ {0, 1, · · · , 2k − 2}. Let A be a #A×#U matrix and

A = (φa−u)a∈A
u∈U

where a− u is considered as a−k u. If one of the following conditions holds:

1. #A = #U ≡ 0(mod 2), A = {2k − 1− u|u ∈ U}, A ∩ U = ∅, (2k − 1, 0) ∈ A× U ,
2. #A ≥ #U + #(A ∩ U), (2k − 1, 0) 6∈ A × U ,

then the matrix A has full column rank.

Proof. Case 1 has been proven in [17, Proposition 12].
For Case 2, let A∗ be an arbitrary subset of A\U such that #A∗ = #U . Let A∗ be the matrix formed

by selecting rows A∗ from A, that is,
A∗ = (φa−u)a∈A∗

u∈U
.

For a ∈ A∗ and u ∈ U , we have 1 ≤ a−k u ≤ 2k − 2, and thus by Proposition 20,

φa−u =
α−alαul

1 + α−a/2αu/2
.

It is derived from Lemma 21 that det(A∗) 6= 0. Hence the matrix A has full column rank. ut
1 The conjecture for D. Tang et al.’s functions was proven in [5].
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5.2 Jin et al.’s functions

Now we study the immunity against fast algebraic attacks of the function

τCF (x, y) = φCF (xyr) + (x2
k−1 + 1)ψ(y) + (y2

k−1 + 1)ϕ(x), (25)

where φCF is the function defined by (24) and ψ and ϕ are k-variable Boolean functions from F2k into
F2, deg(ψ) < k, deg(ϕ) < k. The functions of Q. Jin et al. [13] are contained in the family of τCF .

Lemma 23 Let 1 ≤ e ≤ k − 1 ≤ d ≤ 2k − e− 1 and 0 ≤ t ≤ 2k − 2.

1. If #We,r,0 is even, then B(φCF (xyr); e, d; r, 0) has full column rank.

2. If #Wd,r,t ≥ #We,r,t, t 6= 0 and k + e ≤ d, then B(φCF (xyr); e, d; r, t) has full column rank.

3. If #W∗d,r,t ≥ #We,r,t, then B∗(φCF (xyr); e, d; r, t) has full column rank.

Proof. 1) By Proposition 6 and Proposition 7, when #We,r,0 is even, the matrix B(φCF (xyr); e, 2k − e−
1; r, 0) falls into Case 1 of Proposition 22 and thus has full column rank. Therefore B(φCF (xyr); e, d; r, 0)
has full column rank for d ≤ 2k − e− 1.

2) By Proposition 9, when k + e ≤ d and #Wd,r,t ≥ #We,r,t, the matrix B(φCF (xyr); e, d; r, t) with
t 6= 0 falls into Case 2 of Proposition 22 and thus has full column rank.

3) By Proposition 10, when #W∗d,r,t ≥ #We,r,t, the matrix B∗(φCF (xyr); e, d; r, t) falls into Case 2 of
Proposition 22 and thus has full column rank. ut

Theorem 24 Let 1 ≤ e ≤ k− 1 and e+ k ≤ d ≤ 2k− e− 1. If #Wd,r,t ≥ #We,r,t for 1 ≤ t ≤ 2k − 2 and
one of the following two conditions is satisfied:

1. #We,r,0 is even,

2. #W∗d,r,0 ≥ #We,r,0,

then there exists no nonzero function g ∈ B2k with degree at most e such that the product g(x, y)φCF (xyr)
has degree at most d.

Proof. It is obtained by Theorem 11 and Lemma 23. ut

Theorem 25 Let 1 ≤ e ≤ k − 1 ≤ d ≤ 2k − e − 1. If #W∗d,r,t ≥ #We,r,t for 1 ≤ t ≤ 2k − 2 and one of
the following two conditions is satisfied:

1. #We,r,0 is even,

2. #W∗d,r,0 ≥ #We,r,0,

then there exists no nonzero function g ∈ B2k with degree at most e such that the product gτCF has degree
at most d.

Proof. It is obtained by Corollary 16 and Corollary 17 and Lemma 23. ut

Based on the above results, we propose an extremely efficient algorithm to determine the immunity
of the function τCF described in (25) against fast algebraic attacks, see Algorithm 2 of Appendix E.

5.3 Tang et al.’s functions

In this section, we study the immunity against fast algebraic attacks of the function

τCF (x, y) = φCF (xy) + (x2
k−1 + 1)ψ(y) + (y2

k−1 + 1)ϕ(x), (26)
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where φCF is the function defined by (24) and ψ and ϕ are k-variable Boolean functions from F2k into F2,
deg(ψ) < k, deg(ϕ) < k. The functions of D. Tang et al. [13] are contained in the family of the functions
described in (26).

It was observed through computer experiments that some of D. Tang et al.’s functions have good
behavior against fast algebraic attacks. Theorem 18 and Corollary 19 have shown the upper bounds on
the immunity of these functions against fast algebraic attacks, while the following results show their lower
bounds.

Theorem 26 Let k ≥ 3, r = 1 and 1 ≤ e < k. If e is even and
(
k−1
e
2

)
≡ 1(mod 2), the 2k-variable function

τCF admits no nonzero function g ∈ B2k with algebraic degree at most e such that gτCF has degree at
most 2k− e− 3; otherwise, the function τCF admits no nonzero function g ∈ B2k with algebraic degree at
most e such that gτCF has degree at most 2k − e− 2.

Proof. By Lemma 32 and Lemma 33, it holds for 0 ≤ t ≤ 2k − 2 that #W∗2k−e−3,1,t ≥ #We,1,t when e is
even, and the first half part of the theorem is derived by Theorem 25.

By Lemma 32, we have #W∗2k−e−2,1,t ≥ #We,1,t for 1 ≤ t ≤ 2k − 2. By Lemma 33 we have

#W∗2k−e−2,1,0 ≥ #We,1,0 when e is odd. The same proof of Lemma 33 shows that #We,1,0 =
∑ e

2
i=0

(
k
i

)
when e is even. Since

∑ e
2
i=0

(
k
i

)
≡
(
k−1
e
2

)
(mod 2), #We,1,0 is even when

(
k−1
e
2

)
≡ 0(mod 2). Hence the second

half part of the theorem is obtained by Theorem 25. ut

For the case that e is even and
(
k−1
e
2

)
≡ 1(mod 2), there is only one nonzero function g with degree at

most e such that gτCF has degree at most 2k − e − 3, where the function g has the form of g∗(xy) with
g∗ ∈ Bk and g∗(0) = 1.

Corollary 27 Let k ≥ 3 and r = 1. Then AI(τCF ) = k.

Proof. If k is odd, then
(k−1

k−1
2

)
= 2

(k−2
k−3
2

)
≡ 0(mod 2); if k is even, then k − 1 is odd. Taking e = k − 1 in

Theorem 26 gives this corollary. ut

In [21], two special cases of Corollary 27 was proved: the function φCF (xy) and the function φCF (xy)+

(x2
k−1 + 1)ψ(y) with deg(ψ) = k − 1 have maximum AI.

Theorem 28 Let k ≥ 3 and r = 1. If the univariate polynomial representation of ψ or ϕ has a monomial
with algebraic degree equal to k − 1, k − 2 (when k ≥ 4), or k − 3 (when k ≥ 6), then for any positive
integer e with e < k, the 2k-variable function τCF admits no nonzero function g ∈ B2k with algebraic
degree at most e such that gτCF has degree at most 2k − e− 2.

Proof. By Theorem 26 it is sufficient to prove the theorem for e ≥ 2. Let d = 2k− e−2. Lemma 32 states
that #W∗d,1,t ≥ #We,1,t for 1 ≤ t ≤ 2k − 2. By Lemma 23, B∗(φCF (xy); e, d; 1, t) has full column rank

for 1 ≤ t ≤ 2k − 2. Then from Theorem 15 we just need to prove the matrix B+(τCF ; e, d; 1, 0) has full
column rank.

Assume that the univariate polynomial representation of ψ has a monomial yb with algebraic degree
equal to k − 1, that is, wt(b) = k − 1. Let ψb 6= 0 be the coefficient of yb in the univariate polynomial

representation of ψ, let
∑2k−1

i=0 φix
i, φi ∈ F2k , be the univariate polynomial representation of φCF , and let∑2k−1

i=0

∑2k−1
i=0 τijx

iyj , τij ∈ F2k , be the bivariate polynomial representation of τCF (x, y). Since φCF (xy) =∑2k−1
i=0 φix

iyi and

τCF (x, y) = φCF (xy) + (x2
k−1 + 1)ψ(y) + (y2

k−1 + 1)ϕ(x),

we have τ2k−1,b = ψb and τ2k−1−j,b−j = 0 for 1 ≤ j ≤ 2k − 2 and j 6= b (since 2k − 1 − j 6= b −k j,
2k − 1 − j 6∈ {2k − 1, 0} and b −k j 6∈ {2k − 1, 0}). By (15) we have We,1,0 = {(u, u)|wt(u) ≤ e

2}.
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Thus for (u, v) ∈ We,1,0, where e < k, we know u = v and wt(v) < k/2 ≤ k − 1 = wt(b), where
k ≥ 3, and thus u = v 6= 2k − 1 and u = v 6= b. Therefore, for (u, v) ∈ We,1,0, it follows from (9) that
λτCF

(2k−1,b),(u,v) = τ2k−1−u,b−u and thus, as mentioned above,

λτCF

(2k−1,b),(u,v) =

{
ψb, if (u, v) = (0, 0),
0, otherwise.

Since wt(b) = k − 1, we know (2k − 1, b) ∈ W2k−2 ⊂ Wd and thus (2k − 1, b) ∈ W+
d,1,0, for d = 2k − e− 2

with e ≥ 2. Since ψb 6= 0, from the definition of B+(f ; e, d; 1, 0) it is sufficient to prove the matrix

B∗∗(f ; e, d; 1, 0) =
(
λτCF

(a,b),(u,v)

)
(a,b)∈W∗

d,1,0

(u,v)∈W∗
e,1,0

has full column rank. By Lemma 29 we have #W2k−e−1,1,0 = #We,1,0 and thus #W∗d,1,0 ≥ #W∗2k−e−1,1,0 =
#W∗e,1,0. The same proof of Lemma 23 shows that B∗∗(f ; e, d; 1, 0) has full column rank. Hence we have
proven that the matrix B+(τCF ; e, d; 1, 0) has full column rank.

For the case wt(b) = k − 2 with k ≥ 4 or wt(b) = k − 3 with k ≥ 6, we have wt(b) ≥ k/2 and

(2k − 1, b) ∈ W+
d,1,0 for d = 2k− e− 2 with e ≥ 2, and thus we can obtain the result using the same proof

method.

The same proof shows that the theorem is true when the univariate polynomial representation of ϕ
has a monomial with algebraic degree equal to k − 1, k − 2 (when k ≥ 4), or k − 3 (when k ≥ 6). ut

Theorem 26 and Theorem 28 state that the function

φCF (xy) + (x2
k−1 + 1)ψ(y) + (y2

k−1 + 1)ϕ(x)

achieves (almost) optimal immunity against fast algebraic attacks.

The same proof of Theorem 28 shows that for k = 2mt + 1 with t > 1 odd, if k − 2m − 1 ≤
max{deg(ψ),deg(ϕ)} ≤ k − 1, then for any positive integer e with e < k, the 2k-variable function
τCF admits no nonzero function g ∈ B2k with algebraic degree at most e such that gτCF has degree at
most 2k − e− 2.

6 Conclusion

In this paper, we assess the immunity of Boolean functions against fast algebraic attacks using bivariate
polynomial representation by checking whether the matrix B(f ; e, d) has full column rank. In particular,
we establish a method for efficiently evaluating the immunity against fast algebraic attacks of the family
of 2k-variable Boolean functions

τ(x, y) = φ(xyr) + (x2
k−1 + 1)ψ(y) + (y2

k−1 + 1)ϕ(x).

For these functions, submatrices of B(f ; e, d) are used to estimate the immunity against fast algebraic
attacks. When φ is a Carlet-Feng function, the estimation becomes more efficient: we only need to compare
cardinalities of (2k−1)/k pairs of sets. Based on the results comparing cardinalities of such sets for r = 1,
we prove that the functions of D. Tang et al. are (almost) optimal against fast algebraic attacks.
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A Example of bivariate polynomial representation

Example 1 Let n = 5, n1 = 2, n2 = 3. A 5-variable Boolean function f considered as a mapping from
F22 × F23 into F2 can be uniquely represented as

f(x, y) =a00 + a01y + a201y
2 + a401y

4 + a03y
3 + a203y

6 + a403y
5 + a07y

7
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+ a10x+ a210x
2 + a11xy + a211x

2y2 + a411xy
4 + a811x

2y + a1611xy
2 + a3211x

2y4

+ a13xy
3 + a213x

2y6 + a413xy
5 + a813x

2y3 + a1613xy
6 + a3213x

2y5 + a17xy
7 + a227x

2y7

+ a30x
3 + a31x

3y + a231x
3y2 + a431x

3y4 + a33x
3y3 + a233x

3y6 + a433x
3y5 + a37x

3y7,

where a00, a07, a30, a37 ∈ F2, a10, a17 ∈ F22, a01, a03, a31, a33 ∈ F23 and a11, a13 ∈ F26. The number of such
polynomials is exactly 24 · (22)2 · (23)4 · (26)2 = 22

5
.

B Example of matrix B(f ; e, d)

Example 2 Let n = 5, n1 = 2, n2 = 3, e = 1, d = 3. Then

We = {(0, 0), (0, 1), (0, 2), (0, 4), (1, 0), (2, 0)}

and

Wd = {(3, 7), (3, 6), (3, 5), (3, 3), (2, 7), (1, 7)}.

Let f(x, y) =
∑3

i=0

∑7
j=0 fijx

iyj and g(x, y) = g00 + g01y + g02y
2 + g04y

4 + g10x + g20x
2, fij , gij ∈ F26.

Then

h(x, y) =g(x, y)f(x, y)

=(g00 + g01y + g02y
2 + g04y

4 + g10x+ g20x
2)

3∑
i=0

7∑
j=0

fijx
iyj

=(g00 + g01y + g02y
2 + g04y

4 + g10x+ g20x
2)f00

+
3∑
i=1

(g00fi0 + g01fi7y + g02fi7y
2 + g04fi7y

4 + g10fi−1,0 + g20fi−2,0)x
i

+
7∑
j=1

(g00f0j + g01f0,j−1 + g02f0,j−2 + g04f0,j−4 + g10f3jx+ g20f3jx
2)yj

+

3∑
i=1

7∑
j=1

(g00fij + g01fi,j−1 + g02fi,j−2 + g04fi,j−4 + g10fi−1,j + g20fi−2,j)x
iyj .

We can see that

h37 =g00f37 + g01f36 + g02f35 + g04f33 + g10f27 + g20f17,

h36 =g00f36 + g01f35 + g02f34 + g04f32 + g10f26 + g20f16,

h35 =g00f35 + g01f34 + g02f33 + g04f31 + g10f25 + g20f15,

h33 =g00f33 + g01f32 + g02f31 + g04f36 + g10f23 + g20f13,

h27 =g00f27 + g01f26 + g02f25 + g04f23 + g10f17 + g20(f07 + f37),

h17 =g00f17 + g01f16 + g02f15 + g04f13 + g10(f07 + f37) + g20f27,

and thus

B(f ; 1, 3) =



f37 f36 f35 f33 f27 f17
f36 f35 f34 f32 f26 f16
f35 f34 f33 f31 f25 f15
f33 f32 f31 f36 f23 f13
f27 f26 f25 f23 f17 f07 + f37
f17 f16 f15 f13 f07 + f37 f27

 .
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C Lemmas for proving Theorem 26 and Theorem 28

Lemma 29, Lemma 30 and Lemma 31 are used to prove Lemma 32 and Lemma 33. Lemma 32 and Lemma
33 are used to prove Theorem 26 and Theorem 28.

Lemma 29 #W2k−e−1,1,t = #We,1,t for 0 ≤ t ≤ 2k − 2.

Proof. Since (a, b) ∈ W2k−e−1,1,t if and only if wt(a) + wt(b) ≥ 2k − e and b − a ≡ t(mod 2k − 1), that
is, wt(2k − 1 − a) + wt(2k − 1 − b) ≤ e and (2k − 1 − a) − (2k − 1 − b) ≡ t(mod 2k − 1), it follows that
(a, b) ∈ W2k−e−1,1,t if and only if (2k − 1− b, 2k − 1− a) ∈ We,1,t. Therefore #W2k−e−1,1,t = #We,1,t. ut

Remark 4. In [5], G. Cohen and J. P. Flori proved #Wk−1,1,t ≤ 2k−1 for 1 ≤ t ≤ 2k − 2. The same
approach of [5] applies to Lemma 29.

Lemma 30 Let k ≤ d ≤ 2k − 1, d − k + 1 ≤ wt(t) and 1 ≤ t ≤ 2k − 2. If wt(t) ≥ d − k + 2, then
#W∗d−1,1,t −#W∗d,1,t ≥ 2; if wt(t) = d− k + 1, then #W∗d−1,1,t −#W∗d,1,t ≥ 1.

Proof. If wt(t) + k− d is even, then there are
( wt(t)
(wt(t)+k−d)/2

)
pairs of integers (ta, tb) such that ta + tb = t,

supp(ta) ⊂ supp(t), supp(tb) ⊂ supp(t), wt(ta) = (wt(t) + k − d)/2 and wt(tb) = (wt(t) + d − k)/2.
Let (a, b) = (2k − 1 − ta, tb). Since wt(t) ≥ d − k + 1 ≥ 1, we know wt(ta) 6= 0 and a 6= 2k − 1; since
wt(b) = wt(tb) < k, we have b 6= 2k−1. Then (a, b) 6∈ {(2k−1, t), (2k−1−t, 2k−1)}. Since b−a ≡ ta+tb =
t(mod 2k−1) and wt(a)+wt(b) = k−wt(ta)+wt(tb) = k−(wt(t)+k−d)/2+(wt(t)+d−k)/2 = d, we know

(a, b) ∈ W∗d−1,1,t \W
∗
d,1,t and therefore #W∗d−1,1,t−#W∗d,1,t ≥

( wt(t)
(wt(t)+k−d)/2

)
≥ 2 when wt(t) ≥ d− k+ 2.

If wt(t) + k − d is odd, then wt(t) + k − d − 1 is even and thus there are at least
( wt(t)−1
(wt(t)+k−d−1)/2

)
pairs of nonnegative integers (ta, tb) such that ta + tb = t, supp(ta) ⊂ supp(t), supp(tb) ⊂ supp(t),
wt(ta) = (wt(t) + k − d − 1)/2, wt(tb) = (wt(t) + d + 1 − k)/2 and s + 1 ∈ supp(tb), where s satisfies
that (s + 1) mod k ∈ supp(t) and s 6∈ supp(t) (since t 6= 2k − 1 we can always find such s). Let (a, b) =
(2k − 1 − ta − 2s, tb − 2s). Since supp(tb) ⊂ supp(t), we know s 6∈ supp(ta) and s 6∈ supp(tb), and
therefore wt(ta + 2s) = wt(ta) + 1 and wt(tb − 2s) = wt(tb) (noting that s + 1 ∈ supp(tb)), which
also shows that a 6= 2k − 1 and b 6= 2k − 1 and then (a, b) 6∈ {(2k − 1, t), (2k − 1 − t, 2k − 1)}. Since
b−a ≡ ta+tb = t(mod 2k−1) and wt(a)+wt(b) = k−wt(ta+2s)+wt(tb−2s) = k−wt(ta)−1+wt(tb) = d,

we know (a, b) ∈ W∗d−1,1,t \W
∗
d,1,t and then #W∗d−1,1,t−#W∗d,1,t ≥

( wt(t)−1
(wt(t)+k−d−1)/2

)
, which is greater than

or equal to 2 when wt(t) ≥ d− k + 3 and equal to 1 when wt(t) = d− k + 1. ut

Lemma 31 Let k ≤ d ≤ 2k − 1, wt(t) ≤ 2k − d − 1 and 1 ≤ t ≤ 2k − 2. If wt(t) ≤ 2k − d − 2, then
#W∗d−1,1,t −#W∗d,1,t ≥ 2; if wt(t) = 2k − d− 1, then #W∗d−1,1,t −#W∗d,1,t ≥ 1.

Proof. Since (a, b) ∈ Wd,1,t if and only if (b, a) ∈ Wd,1,2k−1−t, we have #Wd,1,t = #Wd,1,2k−1−t, then the

lemma is derived from Lemma 30 by replacing t with 2k − 1− t. ut

Lemma 32 Let k ≥ 3, 1 ≤ e ≤ k − 1 and 1 ≤ t ≤ 2k − 2. Then #W∗2k−e−2,1,t ≥ #We,1,t.

Proof. By Lemma 29 we know #W2k−e−1,1,t = #We,1,t, then taking d = 2k − e − 1 in Lemma 30
gives #W∗2k−e−2,1,t ≥ #W∗2k−e−1,1,t + 2 ≥ #We,1,t for wt(t) ≥ k − e + 1; similarly, Lemma 31 shows

#W∗2k−e−2,1,t ≥ #We,1,t for wt(t) ≤ e−1. Therefore we just need to prove the lemma for e ≤ wt(t) ≤ k−e
with e ≤ k/2.

Denote vt = (2k−1, t), v−t = (2k−1−t, 2k−1) and wt((a, b)) = wt(a)+wt(b). Then wt(vt) = k+wt(t)
and wt(v−t) = 2k − wt(t).

For e < k/2, if e < wt(t) < k−e, then wt(vt) < 2k−e and wt(v−t) < 2k−e, and thus vt 6∈ W2k−e−1,1,t
and v−t 6∈ W2k−e−1,1,t, showing that #W∗2k−e−2,1,t ≥ #W∗2k−e−1,1,t = #W2k−e−1,1,t = #We,1,t; if wt(t) =

e, then wt(vt) = k + e < 2k − e and thus vt 6∈ W2k−e−1,1,t, and taking d = 2k − e− 1 in Lemma 31 gives
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#W∗2k−e−2,1,t ≥ #W∗2k−e−1,1,t + 1 ≥ #(W2k−e−1,1,t \ {vt}) = #W2k−e−1,1,t = #We,1,t; if wt(t) = k − e,
then wt(v−t) = k + e < 2k − e and thus v−t 6∈ W2k−e−1,1,t, and taking d = 2k − e− 1 in Lemma 30 gives
#W∗2k−e−2,1,t ≥ #W∗2k−e−1,1,t + 1 ≥ #(W2k−e−1,1,t \ {v−t}) = #W2k−e−1,1,t = #We,1,t.

For e = k/2 and e ≤ wt(t) ≤ k − e with k even, we have wt(t) = k/2. Then there is s with
0 ≤ s ≤ k − 1 such that wt(t − 2s) = wt(t) = k/2 and there is s∗ with 0 ≤ s∗ ≤ k − 1 such that
wt(2k − 1− t− 2s

∗
) = wt(2k − 1− t) = k/2. We can check for k ≥ 4 that 2k − 1− 2s 6= 2k − 1− t− 2s

∗
,

(2k−1−2s, t−2s) ∈ W∗3k/2−2,1,t \W
∗
3k/2−1,1,t and (2k−1− t−2s

∗
, 2k−1−2s

∗
) ∈ W∗3k/2−2,1,t \W

∗
3k/2−1,1,t,

and therefore W∗3k/2−2,1,t ≥ W
∗
3k/2−1,1,t + 2 ≥ W3k/2−1,1,t =Wk/2,1,t. ut

Lemma 33 Let k ≥ 3 and 1 ≤ e ≤ k − 1.

If e is odd, then #W∗2k−e−2,1,0 ≥ #We,1,0.

If e is even, then #W∗2k−e−3,1,0 ≥ #We,1,0.

Proof. If e is odd, then by (16) we know

#(W∗2k−e−2,1,0 \W2k−e−1,1,0)

=#{(a, a)|2 wt(a) = 2k − e− 1, 1 ≤ a ≤ 2k − 2}

=

(
k
e+1
2

)
≥ 3.

and hence #W∗2k−e−2,1,0 ≥ W∗2k−e−1,1,0 + 3 ≥ W2k−e−1,1,0 =We,1,0.

If e is even, then by (16) we know

#(W∗2k−e−3,1,0 \W2k−e−1,1,0)

=#{(a, a)|2k − e− 2 ≤ 2 wt(a) ≤ 2k − e− 1, 1 ≤ a ≤ 2k − 2}
=#{a|2 wt(a) = 2k − e− 2, 1 ≤ a ≤ 2k − 2}

=

(
k
e+2
2

)
≥ 3,

and hence #W∗2k−e−3,1,0 ≥ W∗2k−e−1,1,0 + 3 ≥ W2k−e−1,1,0 =We,1,0. ut

D Efficient computation of the immunity of the function τ against fast algebraic
attacks

We propose an efficient algorithm to determine the immunity of the function τ described in (11) against
fast algebraic attacks, see Algorithm 1. The algorithm is based on Theorem 2, Theorem 13 and Corollary
17. The outputs d∗, d∗, g∗ satisfy that: (1) there is no nonzero function g with algebraic degree at most
e such that deg(gτ) < d∗; (2) there is nonzero function g with algebraic degree at most e such that
deg(gτ) ≤ d∗; (3) deg(g∗) ≤ e and deg(g∗τ) ≤ d∗. The first two statements are derived from Corollary 17
and Theorem 13 respectively. The proof of Theorem 2 shows that g∗ is a nonzero Boolean function and
satisfies the third statement.

The algorithm requires that gcd(r, 2k − 1) = 1, 1 ≤ e ≤ k − 1, φ2k−1 ∈ F2 and φ2imod(2n−1) = φ2i for
1 ≤ i ≤ 2n − 2. We need to check this before running the algorithm.

The algorithm can be improved based on Corollary 16: when computing d∗, we can add 2k − 1 to the
set A for t = 0. The improved algorithm could produce d∗ greater than that of the original algorithm.
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Data: k, r, e, φ1, φ2, · · · , φ2k−1
Result: maximize d∗ such that there is no nonzero g such that deg(g) ≤ e and deg(gτ) < d∗;

minimize d∗ and find nonzero g∗ such that deg(g∗) ≤ e and deg(g∗τ) ≤ d∗

T ← {min{t, 2t, · · · , 2k−1t}mod(2k−1)|1 ≤ t ≤ 2k − 2}, d∗ ← 2k − e, d∗ ← 2k − e− 1, t∗ ← −1;

for t ∈ {0} ∪ T do

A ← {a|(a, b) ∈ Wd∗,r,t}, U ← {u|(u, v) ∈ W∗e,r,t};
M ← (φa−u)a∈A

u∈U
;

while M has not full column rank and d∗ ≥ e do
d∗ ← d∗ − 1, t∗ ← t;

A ← {a|(a, b) ∈ Wd∗,r,t};
M ← (φa−u)a∈A

u∈U
;

end
d∗ ← min{d∗, d∗};
A ← {a|(a, b) ∈ W∗d∗,r,t}, U ← {u|(u, v) ∈ We,r,t};
M ← (φa−u)a∈A

u∈U
;

while M has not full column rank and d∗ ≥ e do
d∗ ← d∗ − 1;

A ← {a|(a, b) ∈ W∗d∗,r,t};
M ← (φa−u)a∈A

u∈U
;

end

end
d∗ ← d∗ + 1, d∗ ← d∗ + 1;

A ← {a|(a, b) ∈ Wd∗,r,t∗}, U ← {u|(u, v) ∈ W∗e,r,t∗};
M ← (φa−u)a∈A

u∈U
;

find a nonzero solution to MgT = 0 with g = (gu)u∈U ;
g∗ ←

∑
u∈U gux

uyru+t∗ , α← a primitive element of F2k ;
while Tr(g∗) = 0 do

g∗ ← αg∗;
end
return d∗, d∗, g∗;

Algorithm 1: Determine the immunity of the function τ against fast algebraic attacks

Next we discuss the complexity of Algorithm 1. The complexity depends on the outputs d∗ and d∗, and
heavily depends on the distribution of the sizes of the matrix M , i.e., the cardinalities ofWd,r,t andWe,r,t.

The best case is that d∗ = d∗ = 2k − e− ε ≈ 2k − e and the distribution is uniform. Let E =
∑e

i=0

(
2k
i

)
and D =

∑2k
i=2k−e−ε

(
2k
i

)
. The average size of these matrices is Davg × Eavg with Eavg = 2−kE and

Davg = 2−kD. Then Algorithm 1 takes O(DavgEavg) = O(DE/22k) memory. Determining whether M
has not full column rank runs in O(DavgE

2
avg) operations, and solving the equations MgT = 0 runs in

O(D2
avgEavg) operations. Time complexity of Algorithm 1 is O(#T ·DavgE

2
avg+D2

avgEavg) = O((2kE/k+

D)DE/23k). Compared to the space complexity O(E2) and the time complexity O(DE2) of Algorithm 2
in [2], Algorithm 1 is very efficient. Moveover, Algorithm 1 automatically searches for d and optimizes d,
while the value of d of Algorithm 2 in [2] is given.
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E Efficient computation of the immunity of the function τCF against fast algebraic
attacks

In this section, we propose an extremely efficient algorithm to determine the immunity of the function
τCF described in (25) against fast algebraic attacks, see Algorithm 2. The algorithm takes at most O(2k)
memory and runs in at most O(22k/k) operations.

Data: k, r, e
Result: maximize d∗ such that there is no nonzero g such that deg(g) ≤ e and deg(gτCF ) < d∗;

minimize d∗ such that there is nonzero g such that deg(g) ≤ e and deg(gτCF ) ≤ d∗

T ← {min{t, 2t, · · · , 2k−1t}mod(2k−1)|1 ≤ t ≤ 2k − 2};
if
(
2k−1
e

)
≡ 1(mod 2) then

d← 2k − e− 2;
else

d← 2k − e− 1;
end
for t ∈ T do

while #Wd,r,t < #W∗e,r,t and d ≥ k − 1 do

d← d− 1;
end

end
d∗ ← d+ 1;
for t ∈ T do

while #W∗d,r,t < #We,r,t and d ≥ k − 1 do

d← d− 1;
end

end

while #We,r,0 is odd and #W∗d,r,0 < #We,r,0 and d ≥ k − 1 do

d← d− 1;
end
d∗ ← d+ 1;
return d∗, d∗;

Algorithm 2: Determine the immunity of the function τCF against fast algebraic attacks

The algorithm is an application of Theorem 1, Theorem 25 and Corollary 14. The outputs d∗ and d∗
satisfy that: (1) there is no nonzero function g with algebraic degree at most e such that deg(gτCF ) < d∗;
(2) there is nonzero function g with algebraic degree at most e such that deg(gτCF ) ≤ d∗.

The second statement above is derived from Corollary 14, and thus also applies to the function τ .
Then the output d∗ of Algorithm 2 is more than or equal to the counterpart of Algorithm 1. This shows
that if d∗ is small, then the function τ described in (11), whatever the functions φ, ψ and ϕ are, is weak
against against fast algebraic attacks.

As a matter of fact, Algorithm 2 searches for d∗ and d∗ through comparing the numbers of rows and
columns of the matrices M in Algorithm 1. Then the output d∗ of Algorithm 2 is also more than or equal
to the counterpart of Algorithm 1. This shows that taking φ being a Carlet-Feng function to construct
the function τ is an optimal choice in term of the immunity against fast algebraic attacks.

Note that #Wd,r,t = #Wd,2sr−1,−2st and #We,r,t = #We,2sr−1,−2st. When we replace r with 2sr−1 in
Algorithm 2, it outputs the same results.

A similar algorithm also applies to the function τ with φ(x) = φCF (x) + x2
k−1.

To conclude, we compare the algorithms proposed in this paper and Algorithm 2 in [2], see Table 1.
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Table 1. Algorithms for computing the immunity against fast algebraic immunity

Functions Space Comp. Time Comp. d output g

Alg.2 in [2] all E2 DE2 given yes

Alg.1 τ DE/22k (2kE/k +D)DE/23k possible optimal yes

Alg.2 τCF 2k 22k/k almost optimal no

E.1 Experimental Results

Application of Algorithm 2 reveals that the probability that ∆d = 0 is very high and almost all the
cases satisfy ∆d ≤ 1, where ∆d = d∗ − d∗. The experimental results for k = 5, 6, 7 are listed in Table
2, 3, 4 respectively. Here, we only consider r such that gcd(r, 2k − 1) = 1 and 2 ≤ wt(r) ≤ k − 2, and
r, 2r, · · · , 2k−1r are considered as one case. Counting all the functions with 5 ≤ k ≤ 16 and all e with
1 ≤ e ≤ k − 1 gives Pr(∆d = 0) ≈ 0.8 and Pr(∆d ≤ 1) ≈ 0.9. This result shows that Algorithm 2
and Theorem 25 are almost optimal for the function τCF . Moreover, it implies that the immunity of the
function τCF against fast algebraic attacks appears to be less affected by the functions ψ and ϕ.

Also application of Algorithm 2 reveals that d∗ is greater than or equal to k for any k and any r such
that 5 ≤ k ≤ 16, gcd(r, 2k − 1) = 1 and 1 ≤ wt(r) ≤ k − 2, e.g., see Table 2, 3, 4. Taking e = k − 1 gives
AI(τCF ) = k. Thus the function τCF described in (25) with 5 ≤ k ≤ 16, whatever the functions ψ and ϕ
are, has maximum AI. Based on this observation, we propose a new conjecture as follows.

Conjecture 1. Let k ≥ 3, 1 ≤ r, t ≤ 2k − 2, gcd(r, 2k − 1) = 1 and 1 ≤ wt(r) ≤ k − 2. Let

Wk−1,r,t = {(u, v)|wt(u) + wt(v) ≤ k − 1, v ≡ ru+ t(mod 2k − 1), 0 ≤ u, v ≤ 2k − 2}.

Then #Wk−1,r,t ≤ 2k−1 − 1.

If the conjecture is correct, then the function τCF described in (25), whatever the functions ψ and ϕ
are, has maximum AI. The case wt(r) = 1 has been proven in Section 5.3 (Corollary 27).

Further, application of Algorithm 2 reveals that for 5 ≤ k ≤ 16 and gcd(r, 2k − 1) = 1: (1) e + d∗ ≥
2k−min{wt(r),wt(r−1)} when 4 ≤ min{wt(r),wt(r−1)} ≤ k−2; (2) e+d∗ ≥ 2k−min{wt(r),wt(r−1)}−2
when min{wt(r),wt(r−1)} = 2, 3; (3) e+ d∗ ≤ 2k− 2 for almost all r. The experimental results show that
the behavior of the function τCF against fast algebraic attacks is not too bad, and that the functions τCF
with wt(r) = 1 have the best behavior against fast algebraic attacks among such functions.

Table 2. The immunity of 10-variable function τCF against fast algebraic immunity (k = 5)

r 3 5 7 11

e d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d

1 7 8 1 7 8 1 7 8 1 7 8 1
2 7 8 1 7 8 1 7 8 1 7 8 1
3 6 6 0 6 7 1 6 7 1 6 6 0
4 5 6 1 5 6 1 5 6 1 5 6 1
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Table 3. The immunity of 12-variable function τCF against fast algebraic immunity (k = 6)

r 5 11 13 23

e d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d

1 9 10 1 8 10 2 9 10 1 8 10 2
2 8 9 1 8 9 1 8 9 1 8 9 1
3 8 8 0 8 8 0 8 8 0 8 8 0
4 7 7 0 7 7 0 7 7 0 7 7 0
5 6 6 0 6 6 0 6 6 0 6 6 0

Table 4. The immunity of 14-variable function τCF against fast algebraic immunity (k = 7)

r 3 5 7 9 11 13

e d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d

1 11 12 1 11 12 1 10 12 2 11 12 1 10 12 2 10 12 2
2 11 11 0 11 11 0 10 11 1 10 11 1 10 12 2 10 12 2
3 10 10 0 10 10 0 10 10 0 10 10 0 10 10 0 10 10 0
4 9 9 0 9 9 0 9 9 0 9 9 0 9 9 0 9 9 0
5 8 8 0 8 8 0 8 8 0 8 8 0 8 8 0 8 8 0
6 7 8 1 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0

r 15 19 21 23 27 29

e d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d

1 11 12 1 10 12 2 10 12 2 10 12 2 11 12 1 10 12 2
2 10 11 1 10 11 1 10 11 1 10 11 1 11 11 0 10 11 1
3 10 10 0 10 10 0 10 10 0 10 10 0 10 10 0 10 10 0
4 9 9 0 9 9 0 9 9 0 9 9 0 9 9 0 9 9 0
5 8 8 0 8 8 0 8 8 0 8 8 0 8 8 0 8 8 0
6 7 7 0 7 7 0 7 7 0 7 8 1 7 7 0 7 8 1

r 31 43 47 55

e d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d d∗ d∗ ∆d
1 10 12 2 11 12 1 10 12 2 10 12 2
2 10 11 1 11 11 0 10 11 1 10 11 1
3 10 10 0 10 10 0 10 10 0 10 10 0
4 9 9 0 9 9 0 9 9 0 9 9 0
5 8 8 0 8 8 0 8 8 0 8 8 0
6 7 7 0 7 8 1 7 7 0 7 7 0
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