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Abstract. Electronic archives are increasingly being used to store in-
formation that needs to be available for a long time such as land register
information and medical records. In order for the data in such archives
to remain useful, their integrity and authenticity must be protected over
their entire life span. Also, in many cases it must be possible to prove
that the data existed at a certain point in time. In this paper we sur-
vey solutions that provide long-term integrity, authenticity, and proof
of existence of archived data. We analyze which trust assumptions they
require and compare their efficiency. Based on our analysis, we discuss
open problems and promising research directions.
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1 Introduction

Electronic archives are increasingly being used to store information that needs
to be available for a long time. Recently, some land registers have migrated their
data to digital media in order to reduce physical space and allow public access.
Examples of such a service are the French land register of Alsace-Moselle [1] and
the Estonian Land Register [2]. Electronic invoices can be used for tax purposes
in the European Union according to Directive 2001/115/EC [3]. Therefore, the
storage of invoices is necessary. For instance, Slovenia provides a web tool [4]
for tax declaration that requires companies and individuals to store invoices
regarding immovable property for at least 20 years [5]. In several countries, the
health sector has to store patients’ medical records for years. Digital media is
the preferred storage means. The retention time for medical records varies. For
instance, in Germany they are retained for 10 years after the end of a treatment
[6], or 30 years if x-ray was used [7]. In the United Kingdom (UK), retention
is mandatory until 10 years after the patient’s death [8]. Patents are commonly
preserved for several years. For instance, in the UK preserved periods can last
up to 27 years [9].



In order for the data in such archives to remain useful, their integrity (“data
have not been altered since their creation”) and authenticity (“the origin of the
data can be identified”) must be protected over their entire life span. Also, in
many cases proof of existence or witnessed existence (“a time reference when
the data was witnessed can be identified”)3 is required. Achieving these goals is
very challenging. Several protection solutions rely on cryptographic techniques.
However, such techniques are not guaranteed to be secure in the future. For
example, currently RSA signatures are being used in many solutions which are
known to be vulnerable by quantum computer attacks. One approach to main-
taining long-term protection is to regularly update digital signatures. However,
this is an endless and complex process that requires keeping track of informa-
tion concerning all the signatures generated in the past. Another approach is
to avoid cryptography as much as possible by making use of the physical evi-
dence of print media or by relying on trusted third parties. Given these different
approaches, the question arises whether they are able to provide the expected
long-term protection and how they compare.

The goal of this paper is to answer this question. We present, analyze, and
compare the existing solutions. Our comparison refers to the trust assumptions
required for long-term protection. This comparison allows us to assess the se-
curity level of the different solutions. For example, almost all solutions assume
that digital signatures are updated before they become insecure. As cryptan-
alytic progress is hard to predict, it is unclear whether such an assumption is
justified. We also compare the efficiency of the solutions, for example, their stor-
age and computing time requirements as they are an indication for practical
applicability. The existing solutions turn out not to be perfect. So our analysis
naturally leads to open research questions.

In addition to integrity, authenticity, and witnessed existence, long-term con-
fidentiality is another important protection goal. We do not discuss this problem
here but refer the reader to [10].

This paper is organized as follows. Section 2 presents security components
commonly used to protect digital data. Section 3 describes in detail existing
solutions for long-term protection. Their security is compared in Section 4, and
their efficiency in Section 5. Section 6 briefly discusses a number of solutions that
fail to provide long-term protection. Finally, Section 7 provides a conclusion and
proposes possible future work.

2 Background

In this section we introduce basic security components that are used as building
blocks to protect data objects in digital archives.

3 We use the term witnessed existence instead of proof of existence to indicate that
such a proof is out of reach with current technology.



2.1 Notation

The literature covered by this survey uses inconsistent terminology. In order to
be able to compare the different approaches, this paper uses the following termi-
nology mostly taken from RFC 4810 [11], and augmented with a few additional
terms:

– long-term: an unbounded period.
– data object: a unit of digital data. For example, a document or a photo-

graph recorded as a digital file.
– archive: an infrastructure of equipment and policies to preserve trustworthy

data objects.
– archivist: a trusted entity that is committed to preserve trustworthy data

objects in an archive [12].
– submitter: an entity that submits data objects to an archive.
– retriever: an entity that retrieves data objects from an archive.
– validation evidence: the evidence necessary to demonstrate that a data

object is trustworthy.
– trust assumption: reliance on something or someone that is taken for

granted.

2.2 Cryptographic Hash Function

A cryptographic hash function or hash function is a mathematical function h that
maps bit strings of arbitrary length to strings of fixed length [13] and satisfies the
following properties: a) given an output y = h(x), finding x is computationally
infeasible (“pre-image resistance”); b) given an input x and the output y = h(x),
finding an input x′, such that x′ 6= x and h(x′) = y is computationally infeasible
(“second pre-image resistance”); and c) finding any different inputs x and x′, such
that h(x) = h(x′), is computationally infeasible (“collision resistant”). We refer
to a hash function’s output as digest, hash value or simply hash. An important
application of hash functions is verifying the integrity of a data object.

The security of a hash function relies on the hardness of defeating one of the
hash function’s properties. Therefore, security fades out as computer power and
cryptanalysis evolve. For example, the hash function MD5, which was considered
secure, is no longer secure [14]. In addition, a brute force attack is always possible,
thus, in the long term, no single hash function can be secure.

2.3 Merkle Trees

A Merkle tree [15] is an ordered binary tree that is constructed from a sequence
of data objects (d1, . . . , dn) using a hash function h. The leaves of the tree are
the hash values h(di) for 1 ≤ i ≤ n (in that order). A node that is not a leaf is
h(l‖r), where the left (l) and the right (r) children are concatenated (‖). Figure
1 shows an example of a Merkle tree.

Merkle trees can be used to verify whether a data object is an uncorrupted
member of a sequence in the right position. The root of the tree serves as a
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Fig. 1. A Merkle tree whose leaves y1, . . . , y4 are digests of data objects d1, . . . , d4, and
nodes y5, . . . , y7 are digests of the concatenation of their respective child nodes.

digest for the entire tree. A data object is verified with respect to the root. The
verification is done by reconstructing the path from the leaf to the root using
the so-called authentication path, which consists of the siblings of the nodes in
the path. The verification effort grows logarithmically in the number of elements
in the sequence [15].

2.4 Write-Once Media

A write-once medium, or write-once-read-many (WORM) memory, is a medium
on which a data object can be written only a single time. Therefore, afterwards
it is not possible to change the data object’s copy on the medium. For example,
optical disks. By writing a data object on write-once media, we can produce
evidence of integrity for the data object.

A wide-visible medium is a write-once medium that ensures not only in-
tegrity, but also authenticity and witnessed existence. It is a trusted and public
record whose long-term preservation at many locations makes tampering very
difficult [16]. Therefore, we can produce evidence of authenticity for a data ob-
ject by writing an authentic copy of it on wide-visible media. Examples of such
media are broadcast protocols to spread data [17] and newspapers. Wide-visible
media are extensively witnessed, thereby ensuring witnessed existence for data
objects. This is because witnesses associate a data object on wide-visible media
to the date when they came into contact with the data object. In addition, a
wide-visible medium associates the witnessed existence of a data object with
other objects written on the same medium. In the long term, it is not clear
whether write-once and wide-visible media will be available in the future or how
they will be accessed. For example, these media can disappear, due to physical
deterioration, and witnesses can die.



2.5 Digital Signature

A digital signature scheme consists of three algorithms. The key generation al-
gorithm generates a secret signing key and a public verification key. Given a
data object and a secret signing key, the signing algorithm computes a digital
signature on the data object. Correspondingly, given a data object, a signature
on the data object, and a public verification key, the verification algorithm de-
cides if the signature is valid or not valid. Examples of digital signature schemes
currently used in practice are RSA [18] and variants of ElGamal [19,20].

There is no digital signature scheme that provides long-term security. The
reason is that the security of the known digital signature schemes rely on the
hardness of certain algorithmic problems. As computer power and cryptanalytic
techniques evolve, this hardness fades out.

2.6 Public Key Infrastructure

The use of digital signatures relies on the availability of trustworthy public keys.
Public key infrastructures (PKI) provide such keys by issuing and disseminat-
ing certificates [21]. Certificates are data objects that are digitally signed by
some Certification Authority (CA), which asserts that a public key belongs to a
certain subject. A CA can sign certificates for itself and other entities, such as
subordinate CAs or final users. The sequence of certificates between the CA and
a descendant certificate is called certificate chain. A common used standard for
certificates is X.509 [22].

Certificates usually have an explicit expiration date. However, various cir-
cumstances may cause a certificate to become invalid before its expiration date.
For instance, if the corresponding private key is compromised. In such case, the
issuing CA revokes the certificate. A CA is responsible for disseminating the re-
vocation status of unexpired certificates that the CA issued. Revocation status
is often published using Certificate Revocation List [22] and Online Certificate
Status Protocol [23].

The trustworthiness of a certificate fades in the long term. A reason is the
reliance on the certificate’s signature, whose security weakens over time. Another
reason is that there may be insufficient revocation information. After the cer-
tificate expires, its revocation status might be no longer updated by the issuing
CA. Consequently, the certificate’s trustworthiness may not be guaranteed after
expiration.

2.7 Timestamp

A trusted entity named Timestamp Authority (TSA) asserts the witnessed ex-
istence of a given data object by issuing a timestamp. A very common standard
for timestamps is the PKIX timestamp [24]. It consists of a digital signature on
the data object’s digest together with the current date and time. Another type
of timestamp consists of the digest of a data object published on a wide-visible
medium (see Section 2.4).



A TSA can link a timestamp to a previous timestamp, thereby establishing
an order of creation between them. To do so, the TSA creates a timestamp for
the hash of the concatenation between a data object and an existing timestamp.
This technique is called hash linking and is detailed in [25]. Also, a TSA can
efficiently timestamp several data objects using a Merkle tree (see Section 2.3).
The TSA calculates a Merkle tree, whose leaves are the digests of each data
object, and timestamps the tree’s root. This procedure is described in [16].

A single timestamp does not provide long-term security because it relies on
a cryptographic hash function (see Section 2.2), a digital signature scheme (see
Section 2.5) or wide-visible media (see Section 2.4), which all are subject to
security deterioration over time.

2.8 The Lifetime of Cryptographic Algorithms

The security of cryptographic algorithms such as hash functions and digital
signature algorithms is not everlasting (see Sections 2.2 and 2.5). Researchers and
government agencies estimate for how long such algorithms will remain secure
based on the best known cryptanalytic techniques, e.g. [26,27,28]. Estimates are
to be revised whenever more efficient cryptanalytic techniques are discovered or
computer power increases.

3 Solutions for Long-Term Protection

In this section we describe a number of solutions that provide long-term authen-
ticity, integrity and/or witnessed existence for data objects in digital archives.
To the best of our knowledge, only these solutions successfully address these
protection goals in the long term.

3.1 ETSI Standards

In [29,30] the European Telecommunications Standards Institute (ETSI) pro-
poses a solution that provides long-term evidence of integrity and witnessed
existence for signed data objects. This evidence extends the trustworthiness of a
data object’s signature beyond the lifetimes of certificates, timestamps and cryp-
tographic algorithms, thereby ensuring long-term authenticity. The solution is
based on digital signatures (see Section 2.5) and PKIX timestamps (see Section
2.7).

There are three players in this solution: an archivist, who preserves a set of
data objects in the archive; a retriever, who can verify integrity, authenticity and
witnessed existence of data objects from the archive; and Timestamp Authorities
(TSA) that issue timestamps on the archivist’s request.

A data object is encapsulated in a data structure that we refer to as archival
package. The standard requires that the data object is signed by its originator
and the signature is included in the archival package.



For each data object, the archivist maintains a sequence of timestamps that
is used as evidence for the data object’s integrity and witnessed existence (this
technique was originally proposed by Bayer et al. in [31]). Before requesting the
first timestamp, the archivist collects the data object signer’s certificate chain
and revocation status and includes this data in the archival package. A first
timestamp is issued on the archival package and is included in the archival pack-
age. The next timestamps are constructed as follows. Before the most recent
timestamp’s security is over (see Section 2.7), the archivist collects the corre-
sponding TSA’s certificate chain and revocation status, includes this data in the
archival package, requests a new timestamp on the archival package, and includes
the new timestamp in the archival package.

In order to verify integrity, witnessed existence and authenticity of a data
object, a retriever verifies the signature on the data object, each timestamp,
each certificate chain and each validation status included in the archival package.
The verification of a timestamp consists of verifying the timestamp’s signature
using the corresponding TSA’s public key. Note that the certificate chain and
revocation status of the TSA that issued the most recent timestamp is not
available in the archival package. The retriever collects this data by himself.

Indeed, this procedure proves integrity, witnessed existence and authenticity
of the data object at any verification time. Suppose the first timestamp is issued
at time t1 on an archival package a1 which consists of: the data object, its
signature, and evidence that shows that the key used to verify the signature is
trusted at time t1. Given that the first timestamp is valid, it proves that a1 was
not modified between t1 and time t2, when a second timestamp is issued. Lets
refer to the archival package at time t2 as a2. The second timestamp is issued
on a2 which consists of: a1, the first timestamp, and evidence that shows that
the TSA’s key used to verify the first timestamp is trusted at time t2. These
three pieces of information constitute a proof that a1 existed at time t1 and that
it has not changed since then. As long as the second timestamp is trusted, it
proves that at time t2 there was a proof that a1 existed at time t1. Therefore
the second timestamp extends the proof that a1 existed beyond t2, even if the
first timestamp is no longer trusted after t2. In general, if for every i = 1, . . . , n,
the ith timestamp is issued at time ti and it is trusted between ti and ti+1, then,
as long as the nth timestamp is trusted, it proves at time tn+1 that there was a
proof that a1 existed at time t1. Since a1 contains the data object, integrity and
witnessed existence follow. Moreover, since a1 constitutes a proof that the data
object was authentic at time t1, authenticity follows.

There are two assumptions for the ETSI solution to guarantee long-term
integrity, witnessed existence and authenticity of a data object: that the under-
lying PKIs and TSAs are reliable, and that the cryptographic algorithms are not
unexpectedly broken.

3.2 Evidence Record Syntax

Evidence Record Syntax (ERS) is a solution for long-term protection of digi-
tal data proposed by Gondrom et al. in RFC 4998 [32]. The solution provides



long-term evidence of integrity and witnessed existence for data objects. If data
objects have been previously signed, long-term authenticity is guaranteed. The
solution is based on Merkle trees (see Section 2.3) and PKIX timestamps (see
Section 2.7).

There are three players in this solution: an archivist, who preserves a set
of data objects in the archive; a retriever, who can verify integrity, authentic-
ity and witnessed existence for data objects from the archive; and Timestamp
Authorities (TSAs) that issue timestamps on the archivist’s request.

In a nutshell, ERS works as follows. For each data object, the archivist main-
tains a structure called Evidence Record, which is used as evidence for the in-
tegrity and witnessed existence of the data object. An Evidence Record contains
a set of timestamps4. A single timestamp can cover a group of data objects by
using a Merkle tree, however, a copy of the timestamp is included in each ob-
ject’s Evidence Record. The archivist performs three different tasks to maintain
Evidence Records:

– in an initialization phase, the archivist creates a Merkle tree from a group
of data objects and includes a first timestamp to each of them;

– regularly, the archivist executes a timestamp renewal, in order to address the
fading of the security of timestamps;

– and also on a regular basis, the archivist executes a Merkle tree renewal, in
order to address the fading of the security of hash functions.

We now describe each task in detail. In the initialization phase, the archivist
selects a group of data objects and a hash function, constructs a Merkle tree
whose leaves are the hash values of the data objects, and requests a timestamp
on the tree’s root. The archivist includes in each data objects’ Evidence Record
the following:

– the identifier of the hash function used to construct the Merkle tree;
– the authentication path for the corresponding leaf of the Merkle tree;
– and the timestamp issued on the Merkle tree’s root.

Timestamp renewal of a previously issued timestamp works as follows. The
archivist requests a new timestamp on the hash of the old timestamp. The
archivist includes the new timestamp in each Evidence Record that contains
the old timestamp.

ERS does not specify how the archivist manages validation evidence for
timestamps’ signatures, namely certificates and revocation status. It is a common
practice to store validation evidence for the previous timestamp’s signature be-
fore requesting the new timestamp. Not doing so adds an extra trust assumption
on the system. Namely, that the archivist is trusted to check this evidence before
requesting a new timestamp. We assume that the archivist collects and stores
validation evidence for the previous timestamp’s signature before requesting the
new timestamp.

4 Actually, each timestamp is encapsulated in a structure called Archive Timestamp.
We omit this detail to avoid confusion with PKIX timestamps.



Merkle tree renewal of a previously constructed Merkle tree works as follows.
The archivist identifies the data objects d0, . . . , dn−1 that originated this Merkle
tree. The archivist constructs a new Merkle tree whose leaves y0, . . . , yn−1 are
given by

yi = h′(h′(di)||h′(Ri)) , (1)

where h′ is a new hash function and Ri is the Evidence Record5 of the ith

data object in its current state. As in the initialization phase, the archivist
requests a timestamp on the Merkle tree’s root, and includes in each data object’s
Evidence Record : the new hash function identifier, the authentication path for
the corresponding leaf of the new Merkle tree, and the new root’s timestamp.

It is the responsibility of the archivist to perform the corresponding renewals
in a timely manner. That is, the archivist should execute a timestamp renewal
before any timestamp becomes insecure, and a Merkle tree renewal before the
hash function used to construct a Merkle tree becomes insecure.

In order to verify integrity and witnessed existence of a data object, a re-
triever verifies each of the timestamps in the object’s Evidence Record. Times-
tamps created in the initialization phase or by Merkle tree renewal refer to
the Merkle tree’s root. Thus, in order to verify such a timestamp, the retriever
reconstructs the root using the authentication path, which is stored in the Evi-
dence Record. Timestamps created by timestamp renewal, refer to the previous
timestamp.

This procedure indeed proves integrity and witnessed existence of the data
object at any verification time. The first timestamp proves that the root of
the Merkle tree existed since a time t1. The witnessed existence of the root at
time t1, proves that the whole Merkle tree was constructed at that time. The
authentication path proves that the data object was part of the Merkle tree.
Suppose that the second timestamp is issued by timestamp renewal at time t2.
In this case, the second timestamp is issued on the hash of the first timestamp.
We are assuming that the timestamp contains evidence that shows that the
TSA’s key used to verify the first timestamp was trusted at t2. This two pieces
of information constitute a proof that the root of the Merkle tree existed at time
t1. Therefore the second timestamp extends the proof of witnessed existence
of the data object beyond t2, even if the first timestamp is no longer trusted
after t2. In general, the nth timestamp, issued by timestamp renewal at time tn,
extends the proof of witnessed existence of the data object beyond tn, under the
assumption that for every i = 1, . . . , n− 1, the ith timestamp was issued at time
ti and it was trusted between ti and ti+1.

Now suppose that at time tn+1 the archivist runs a Merkle tree renewal. In
this case, the n + 1th timestamp proves that the root of the new Merkle tree
existed since time tn+1. The witnessed existence of the root at time tn+1 proves
that the whole Merkle tree existed at that time. The authentication path proves
that the leaf was part of the Merkle tree. Recall that the leaf is given by Equation
1. Hence, it proves the witnessed existence of the data object and its Evidence

5 More precisely, only the sequence of all timestamps need to be hashed. The Evidence
Record contains some extra information.



Record at time tn+1. This constitutes a proof of the witnessed existence of the
data object at time t1 provided that the hash function used to construct the first
Merkle Tree was trusted between t1 and tn+1 and that for every i = 1, . . . , n,
the ith timestamp was issued at time ti and it was trusted between ti and ti+1.
Figure 2 illustrates the proof.

In general, let 0 = n1 < n2 < · · · < nm < nm+1 = N be positive integers and
t1 < · · · < tN+1 be time references. Suppose that an initialization step is run on
a data object at time t1 using hash function h1. Suppose Merkle tree renewals
are run at times tn2 + 1, tn3 + 1, . . . , tnm + 1, using hash functions h2, . . . , hm

respectively. Suppose that timestamp renewal is run at time ti for

i = n1 + 2, . . . , n2, n2 + 2, . . . , n3, n3 + 2, . . . . . . , nm, nm + 2, . . . , N.

Suppose that for j = 1, . . . ,m, the hash function hj was trusted between tnj+1

and tnj+1+1. Suppose that for i = 1, . . . , N , the ith timestamp was trusted be-
tween ti and ti+1. Then, verification of ERS evidence at time tN+1 proves in-
tegrity and witnessed existence of the data object. See Figure 2 for an illustration.

time
h
1

h
2

h
3

ts
1

ts
2

ts
3

ts
4

ts
5

ts
6

Fig. 2. Evidence of witnessed existence in ERS, where ts1 to ts6 are timestamps and
h1 to h3 are hash functions. The solid color means that a timestamp or hash function
is trusted; the gradient color means that trust is uncertain. Timestamps ts2, ts4 and
ts6 are created by timestamp renewal. Timestamps ts2 and ts3 are created by Merkle
tree renewal.

The procedure also guarantees long-term authenticity, provided that the data
object was signed. In this case, before the archivist requests the first timestamp,



he collects validation evidence (namely certificates and revocation status) for
the data object’s signature and includes this evidence in the signed data object.

There are two assumptions for ERS to guarantee long-term integrity, wit-
nessed existence and authenticity of a data object: a) that the underlying PKIs
and TSAs are reliable; and b) that the cryptographic algorithms are not unex-
pectedly broken.

3.3 Auditing Control Environment

Auditing Control Environment (ACE) is a solution for long-term protection of
digital data proposed by Song and JaJa in [33]. It provides long-term evidence
of integrity and witnessed existence for data objects. The solution produces two
tiers of integrity evidence, allowing different levels of audits. The solution is
based on Merkle trees (see Section 2.3) and wide-visible media (see Section 2.4).

We identify three players in this solution: an archivist, who preserves a set
of data objects in the archive; an auditor who can verify integrity and witnessed
existence for data objects from the archive; and the so-called Integrity Man-
agement System (IMS), which is a third-party service provider that generates
integrity evidence on the archivist’s request.

The IMS and the archivist agree on a hash function. The archivist registers
a data object in ACE by submitting the data object’s digest to the IMS. The
IMS collects a number of registration requests and creates an integrity token
(IT) for each data object as follows. The number of requests can be determined
dynamically and it constitutes an aggregation round. The IMS creates a Merkle
tree with the objects’ digests of a round as its leaves. Each IT contains the
object’s digest, the time of registration and the corresponding authentication
path in the Merkle tree. The IT is returned to the archivist, who stores it. The
IMS stores the root of the Merkle tree. An IT and the root of the Merkle tree
constitute the first tier of integrity evidence.

After a fixed time period, the IMS generates the second tier of integrity
evidence. The IMS creates a Merkle tree whose leaves are digests of the first
tier tree roots created during the time period. Figure 3 illustrates the two tier
construction. Then, the IMS stores the root of this tree on a wide-visible medium.
This root is the witness value of the state of the archive.

Before the hash function becomes insecure, the IMS and the archivist agree
on a new hash function. The archivist reregisters in ACE each object that was
registered with the previous hash function. To do so, the hash over the concate-
nation of the data object with the corresponding IT is calculated and submitted
to the IMS. ACE considers two kinds of audits, a first tier audit and a second
tier audit. As a maintenance policy, the archivist carries out first tier audits on
a regular basis. An audit can also be requested by a retriever of a data object
to verify its integrity. Second tier audits can be triggered by a disagreement in
a first tier audit or also carried out as a maintenance policy.

A first tier audit works as follows. The auditor requests the data object and
corresponding IT from the archive. The auditor then computes a digest of the
object and compares it with the digest stored in the IT. If the values are equal,
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Fig. 3. Integrity Evidence in ACE, where di is a data object with digest yi, Bj is a
first tier Merkle tree with root λj , uj is the digest of λj and Ck is a second tier Merkle
tree with root Λk.

the auditor requests from the IMS the first tier tree root corresponding to the
time specified in the IT. Then, the auditor computes the root of the Merkle
tree using the digest and authentication path stored in the IT and compares it
to the value provided by the IMS. If the values are equal, the auditor accepts,
otherwise, rejects the object. If an object has been registered multiple times, the
procedure is repeated for each IT.

Under the assumption that the IMS is reliable, it is easy to see that this proce-
dure indeed proves integrity and witnessed existence of a data object. Moreover,
if the object is appropriately reregistered before the hash function becomes in-
secure, the first tier audit proves integrity and witnessed existence of the data
object at any verification time. The first IT proves the witnessed existence and
integrity of the data object from the time it is issued t0 until the time t1 when a
second IT is issued. Because the first IT is attached to the object before reregis-
tering it, the second IT extends the proof of witnessed existence beyond t1, even
if the first IT is no longer trusted after t1.

As we will see next, the second tier audit provides a proof of integrity that
is independent of the IMS reliability. Moreover, it exposes any wrong doing of
the IMS, thus providing an incentive for the IMS to act correctly.

In the second tier audit, we assume that the auditor has carried out the first
tier audit. Then, the auditor requests from the IMS the second tier authentica-
tion path corresponding to the first tier root. Using this path and the first tier
root, the auditor computes the second tier Merkle tree root and compares it to
the corresponding value stored on a wide-visible medium. If the values are equal,
the auditor accepts, otherwise, rejects the object.



Under the assumption that a wide-visible medium is trustworthy, it is easy
to see that this procedure indeed proves integrity and witnessed existence of a
data object. Moreover, if the IMS fails to provide a second tier authentication
path that yields the value stored on a wide-visible medium, then the auditor can
conclude that the IMS provided incorrect values.

There are two assumptions for ACE to guarantee long-term integrity and wit-
nessed existence of a data object: a) that the wide-visible media are trustworthy;
and b) that the cryptographic algorithms are not unexpectedly broken.

3.4 Content Integrity Service

Content Integrity Service (CIS) is a solution for long-term protection of digital
data proposed by Haber et al. in [34,35]. It provides long-term evidence of in-
tegrity and witnessed existence for data objects. The solution allows objects to
be transformed and produces an auditable record of every transformation. The
solution is based on timestamps (see Section 2.7)

There are four main players in this solution: an archivist, who preserves a set
of data objects in the archive; a retriever, who can verify integrity and witnessed
existence for data objects from the archive; Timestamp Authorities (TSAs) that
issue timestamps on the archivist’s request; and a submitter, who submits data
objects to be archived and can request changes on them.

Much as in the ETSI standards described in Section 3.1, in CIS, the archivist
maintains a sequence of timestamps for each data object that is used as evidence
for its integrity and witnessed existence. The first timestamp is issued on the
data object and when the most recent timestamp is about to expire, the archivist
requests a new timestamp on the hash calculated over the data object together
with all its previous timestamps.

The most important difference to the ETSI standards is that CIS allows
data objects to be transformed. Typical transformations that may occur are
format conversions, annotations, additions of metadata, and later modifications
of the data object. When a submitter requests to change a data object, the
archivist stores the modified data object, together with a description of the
transformation. Then, the archivist requests a new timestamp on the hash of the
concatenation of the old object, the new object, the transformation description
and previous timestamps. The goal is to memorize – and enable later verification
of – the transformations, while preserving the assurance of integrity all the way
back to that of the original form of the data object.

The authors of CIS argue that PKIX timestamps are not suitable for long-
term archiving. The reason is that the trustworthiness of these timestamps relies
on digital signatures, whose signing keys are hard to protect over time. Alterna-
tively, they propose that TSAs issue timestamps using hash linking and commit
them to wide-visible media (see Section 2.7). They defend that this technique is
more reliable because the trustworthiness of timestamps depends solely on the
wide-visible media and the collision resistance of hash functions.



The verification algorithm is analogous to that of ETSI. Following the anal-
ysis described in Section 3.1, it is easy to see that the procedure proves integrity
and witnessed existence of a data object at any verification time.

The authors of CIS implemented a prototype of CIS within HP’s Digital Me-
dia Platform (DMP). This is an architecture for content storage and processing
operations [34]. The solution presents an XML-based interface for service inter-
action, and a graph data model for storing documents. The authors of CIS claim
that the DMP Repository Abstraction is convenient for handling the integrity
metadata used by the CIS.

There are two assumptions for CIS to guarantee long-term integrity and wit-
nessed existence of a data object: a) that the wide-visible media are trustworthy;
and b) that the cryptographic algorithms are not unexpectedly broken.

3.5 Lots of Copies Keep Stuff Safe

Lots of Copies Keep Stuff Safe (LOCKSS) is a solution for protection of digital
data described in [36]. It guarantees integrity for archived data objects. The so-
lution consists of establishing a peer-to-peer network of archives with replicated
content. On a regular basis, archives communicate with each other to compare
their copies. They use a voting protocol to identify corrupted copies.

LOCKSS was developed for libraries to preserve access to journals and other
archival information published on the Web. In this context, it is assumed that
retrievers of a particular library trust their library. LOCKSS does not provide
any evidence of integrity for data objects to retrievers. Instead, it is used by
legitimate libraries to maintain reliable copies of their digital content.

The overall goal of LOCKSS design is that with high probability legitimate
archivists have a correct version of their content despite failures and attacks, and
with low probability a powerful adversary can damage a significant proportion
of the legitimate archives without detection.

LOCKSS works as follows. Archivists establish a peer-to-peer network with
other archives. On a regular basis, peers vote on large archival units (AUs),
normally a year’s run of a journal. A LOCKSS peer invites into its poll a number
of peers, hoping they will offer votes on their version of the AU. An invited peer
computes a fresh digest of its own version of the AU, which it returns in a
vote. If the caller of the poll receives votes that overwhelmingly agree with its
own version of the AU (a landslide win), it is satisfied. If it receives votes that
overwhelmingly disagree with its own version of the AU (a landslide loss), it
repairs its AU by fetching the copy of a voter who disagreed, and invites peers
to vote on the new AU. This process is repeated until landslide wins. If the result
of the poll justifies neither a landslide win nor a landslide loss (an inconclusive
poll), then the caller raises an alarm to attract human attention to the situation.

We present here a simplified version of LOCKSS opinion poll protocol for
illustration. Archivist A wants to verify the integrity of its copy of an object
di, where i is the unique identification for d in LOCKSS. Archivist A chooses a
hash function h, generates a nounce NA and sends a poll request (i, h,NA) to a
number of archives that have copies of the object. When an archive B receives



the request, it generates a nounce NB , computes yB = h(NA‖NB‖d′i), where
d′i is its copy of the object, and sends the response rB = (NB , yB) to A. Then
A evaluates y′B = h(NA‖NB‖di) and compares yB with y′B . Archivist A does
the same for each response and if the majority of comparisons succeed, then A
considers its local copy di uncorrupted. Otherwise, A replaces his local copy di
by a copy d′i from a peer that answered the poll, and starts the protocol again
using d′i as its local copy.

The detailed version of the protocol (see [36]) includes some additional fea-
tures:

– The poller chooses two sets of poll participants, an inner circle of trusted
peers and a outer circle of new peers. Only the inner circle is used for deciding
on the AU. By polling the outer circle, the poller tests the reliability of
newcomers for expanding its set of trusted peers.

– A confidential channel between archivists is established using a key exchange
protocol before starting the protocol.

– LOCKSS requires that pollers as well as voters expend provable computa-
tional effort [37], that is, they are required to prove that they spent compu-
tational effort proportional to the underlying protocol operation (hashing of
an AU).

The protocol indeed protects the integrity of the archive. The simplified pro-
tocol allows legitimate archivists to detect the damage of a data object, and to
repair it. This is true only if there are enough trusted peers with healthy copies
of the data object. In order to defend the system from an attack, LOCKSS makes
it costly for an adversary to sway an opinion poll in his favor or to waste peers’
resources by requiring provable computational effort. Archivists also defend from
malicious peers by only considering previously tested peers. Finally, by raising
an alarm when a peer determines that a poll is inconclusive, LOCKSS makes it
likely that an attack is detected before it progresses.

There are three assumptions for LOCKSS to guarantee long-term integrity
of a data object: a) that the archivist that serves the retriever is reliable; b) that
the majority of peers are run by reliable archivists; and c) that an archivist can
find enough reliable peers with copies of its content.

LOCKSS is not vulnerable to the unexpected break of a cryptographic algo-
rithm because no evidence of integrity is built. Moreover, the absence of integrity
evidence allows LOCKSS to easily address format obsolescence of archived data
objects by just updating them.

3.6 Optimized Certificates

Optimized Certificates (OCs) is a solution proposed by Custódio et al. in [38]
that provides long-term evidence of authenticity and witnessed existence for
signed data objects. This evidence extends the trustworthiness of a data object’s
signature beyond the lifetimes of the corresponding certificates, timestamps and
cryptographic algorithms, thereby ensuring long-term authenticity.



In this solution, the original validation evidence for a data object’s signature
(namely certificates, their revocations status, and PKIX timestamps) is summa-
rized within a single attestation. A reliable party called notary produces such an
attestation, therewith asserting that: a) the signer’s certificate is valid to verify
the data object’s signature, b) the signed data object is uncorrupted, and c) the
existence of the data object’s signature was witnessed. The attestation is called
Optimized Certificate (OC) and is almost a copy of the data object signer’s cer-
tificate. The OC has the structure of an X.509 certificate to keep compatibility
with existing Public Key Infrastructures. The OC contains the signer’s public
key and name. Its validity period is only the moment the reliable party issued
the OC. Therefore it is not revocable. The OC includes the data object’s sig-
nature and digest and a date on which these data were witnessed. These data
are structured as an X.509 Extension. Thus, the OC works as a timestamp for
the signed data object. The notaries that issue the OCs have traditional X.509
certificates, which are issued by a Root CA. These certificates can be revoked.

There are three players in this solution: the archivist, who preserves a set of
data objects in the archive; the notaries that issue OCs on the archivist’s request,
and a retriever, who can verify integrity, witnessed existence and authenticity
for data objects from the archive using OCs.

Initially, the archivist replaces the validation evidence for a data object’
signature by an OC. For each signed data object, the archivist requests an OC
from a notary by submitting the signed data object’s digest and signature, the
signer’s certificate chain and revocation status of the certificates in this chain. If
there are timestamps, they are also submitted to the notary together with the
TSAs’ certificate chains and revocation status of the included certificates. The
notary returns an OC. The archivist replaces the validation evidence available
in the signed data object by the OC and the notary’s certificate.

On a regular basis, the archivist monitors the OC’s trustworthiness for each
signed data object. An OC becomes untrustworthy if the cryptographic algo-
rithms become insecure or the notary’s certificate expires. Before an OC becomes
untrustworthy, the archivist renews it. The archivist submits the existing OC,
the corresponding issuer certificate, and the signed data object’s digest, which
is calculated with a secure hash function, to a notary. In turn, the notary is-
sues a new OC. The archivist replaces the old OC and the corresponding issuer
certificate with the new OC and the notary’s certificate.

A notary receives OC requests, which comprise the signed data object’s digest
and either a) certificate chains, revocation statuses, PKIX timestamps, and the
data object’s signature or b) an OC and its issuer’s certificate. The notary verifies
whether certificates are valid and the cryptographic algorithms are still secure. If
the verification succeeds, the notary creates an OC. He sets the OC’s public key
to be the data object signer’s public key. He defines the OC’s validity period to
be the current time. He inserts into the OC a witnessed existence evidence that
comprises: a) the data object’s signature, which was either directly submitted
by the archivist or is taken from the submitted OC; b) the signed data object’s
digest; and c) a date, which is taken either from a submitted timestamp (the



older timestamp, if more than one were submitted), from the submitted OC, or
is the current time. The notary signs the OC and returns it.

Given a signed data object, the OC and the notary’s certificate, the retriever
checks authenticity by verifying if: a) the signature is valid under the public key
in the OC, b) the OC’s signature is valid under the public key in the notary’s
certificate, c) the OC’s validity period is within the validity period of the notary’s
certificate, d) the signature on the notary’s certificate is valid under the public
key in Root CA’s certificate, and e) the notary’s certificate is neither expired
nor revoked. The retriever checks integrity and witnessed existence by verifying
if the signed data object’s digest and signature equal the digest and signature
included in the OC.

Note that updating OCs does not add further data. Rather validation ev-
idence is replaced by new objects created with up to date cryptographic al-
gorithms and certificates. Therefore, the number of objects in the validation
evidence is constant.

This solution indeed ensures authenticity, integrity and witnessed existence
of a signed data object if a retriever trusts all involved notaries. Trust is required
because the archivist discards the original validation evidence, which therefore
cannot be verified in the future. Thus, given an OC issued at t1, i.e. the first OC
that is directly replacing the original signer’s certificate, a retriever infers that
the signer’s certificate was valid at t1, since a trusted notary properly verified it
at t1. Like the signer’s certificate, the retriever infers the validity for the OCs.
That is, for every i = 2, . . . , n, given the ith OC issued at ti, the retriever infers
that the i− 1th OC was valid at ti. Thus, if the retriever can verify the validity
of the current OC, i.e. the nth at tn, then he infers that the 1st OC issued at
t1 was valid. Consequently, the retriever infers that the signer’s certificate was
valid at t1.

There are three assumptions for the OC solution to guarantee long-term
integrity, witnessed existence and authenticity of a data object: a) that the un-
derlying PKIs and TSAs are reliable, b) all notaries are reliable, and c) that the
cryptographic algorithms are not unexpectedly broken.

4 Capabilities and Requirements

In this section we compare the surveyed solutions in regard to three aspects: a)
the security goals that they achieve, b) the assumptions that need to be made
in order to achieve such goals, and c) their support for format migration. Table
1 summarizes the security goals and assumptions.

The security goals assessed in this survey are long-term integrity, authenticity
and witnessed existence where integrity is the minimum goal. The two other goals
include integrity.

Long-term evidence of witnessed existence is achieved by all solutions ex-
cept LOCKSS. Three of the solutions surveyed (ETSI, ERS and OC) provide
long-term authenticity. In all three cases authenticity is achieved in the same
way. Data objects are stored together with a digital signature so an evidence



Table 1. The classification of surveyed solutions in regard to achieved security goals
and required trust assumptions

Solutions
ETSI ERS ACE CIS LOCKSS OC

Security
Goals

Integrity X X X X X X
Witnessed Existence X X X X X

Authenticity X X X

Trust
Assumptions

PKI X X X
TSA X X X

No unexpected break X X X X X
Wide-visible media X X

Reliable actors X X
External copies X

of witnessed existence of the signed data objects proves authenticity. ACE and
CIS provide evidence of witnessed existence. They do not provide authentic-
ity proofs under the given trust assumptions. However, evidence of authenticity
could easily be provided, by signing data-objects and a PKI that certifies public
keys.

The different solutions require a number of assumptions in order to guarantee
long-term protection. We identified them as follows.

– PKI: There are reliable Public Key Infrastructures.
– TSA: There are reliable Timestamp Authorities.
– No unexpected break: Cryptographic algorithms are not unexpectedly

broken.
– Wide-visible media: There exist trustworthy media, that make data widely

observable.
– Reliable actors: There are reliable actors other than trusted PKIs and

TSAs.
– External copies: There exist a number of reliable copies of relevant data

objects. The number is a parameter.

In order to analyze the solutions we group them according to their assump-
tions. ETSI and ERS form one group, ACE and CIS form a second group, while
OC and LOCKSS are analyzed separately.

The ETSI and ERS solutions use the same assumptions. They rely heavily
on digital signatures, thus, on PKIs. Also, they rely on TSAs and do not tolerate
unexpected breaks.

ACE and CIS rely mainly on wide-visible media for long-term protection.
They regularly publish a commitment on wide-visible media that allows making
the current state of the archive verifiable. They use hash functions in order to
make the commitment small and do not tolerate an unexpected break of this
hash function. The wide-visible media only allow dating the witnessed existence
to a precision of a few weeks. In order to make this more precise, ACE proposes
to use TSAs.



OC requires similar assumptions as ETSI and ERS, and, in addition, notaries
as additional reliable actors. This leads to efficiency improvements by avoid-
ing the storage of many signatures. LOCKSS relies heavily on the archivists
themselves as reliable actors. Also, LOCKS assumes the archivists to be able to
compare with reliable copies.

Format obsolescence is not in the focus of this survey. However, it is important
for long-term archives. Format migration requires to alter content, thus it may
compromise integrity. From the solutions surveyed, only ACE, CIS and LOCKSS
provide support for format migration.

5 Efficiency Comparison

In this section we compare the different solutions with respect to their efficiency.
In fact, we mainly concentrate on the storage overhead. Additionally, we briefly
analyze the archivist’s effort to maintain evidence in each solution. This compar-
ison is not conclusive because the surveyed sources not always provide enough
details about efficiency.

The ETSI standards produces a significant storage overhead. For each data
object, the system stores a chain of timestamps that grows over time. In addition,
the system stores validation evidence for each timestamp signature. Troncoso
et al. argue in [39] that this overhead is affordable, based on Moore’s [40] and
Kryder’s [41] laws. The archivist has to maintain a separate timestamp chain
for each data object, adding new timestamps whenever necessary. According to
[42], the ETSI standards “do not provide scalable and cost efficient solutions
for long-term archiving, because the timestamp renewal would require a new
qualified timestamp for each archive object”.

ERS requires roughly the same storage overhead as ETSI. The Merkle tree
construction allows for a single timestamp to protect several data objects. How-
ever, the same timestamp is replicated in each data object. Compared to ETSI,
the archivist needs to request fewer timestamps. On the other hand, the archivist
needs to maintain the Merkle trees. New data objects cannot be inserted as leaves
into an existing and timestamped Merkle tree. Therefore, a new Merkle tree has
to be created and timestamped whenever new data objects are to be archived.
As a consequence, in a long-term scenario there would be several Merkle trees
that will require regular and individual renewals of timestamps and Merkle trees.

CIS offers some advantages in storage overhead over ETSI and ERS. Despite
similarities with ETSI, the use of timestamps based on wide-visible media has
the advantage that there is no need to store validation evidence. For a single
data object, CIS potentially requires fewer timestamps than the ETSI and ERS
solutions. The reason is that timestamps in CIS rely only on the security of
hash functions only and no PKIX timestamps are needed. However, in terms
of management, both the CIS and ETSI solutions require similar effort by the
archivist who needs to maintain a chain of timestamps for each data object.

ACE produces less storage overhead than ETSI and ERS. The evidence of
integrity stored in a single IT is presumably smaller than a PKIX timestamp



because there is no need to store validation evidence for signatures (namely
certificates and revocation status). Moreover, one would expect fewer ITs for a
single object than PKIX timestamps in ETSI and ERS. This is because IT relies
only on hash functions. The witness values that are stored on wide-visible media
are also relatively small. The authors of ACE estimate that, if IMS produces
one witness value per day, the total size of all the witness values over a year is
around 100 KB. The archivist’s effort to maintain the ITs for each data object
is similar to ERS and CIS. There is, however, an extra burden for IMS, which
stores Merkle tree roots for each round. The authors implemented a prototype
and show the results in [33].

For LOCKSS to work, the archived data objects must be replicated across
archives. Therefore, LOCKSS has a huge storage overhead. Also, archives must
invest considerable computational resources to run polls on a regular basis. The
authors of LOCKSS claim that acceptable performance can be achieved at a low
cost and they give explicit values in [36].

OC has very moderate storage requirements that, in contrast to the other
surveyed solutions, does not depend on the number of updates on the validation
evidence. This is because there is no accumulation of evidence, rather old valida-
tion evidence is replaced by new one using up to date cryptographic algorithms
and certificates. In terms of management, OC is equal to ETSI, CIS and ACE.
That is, the archivist needs to monitor each data object’s OC and request a new
one from a notary in a timely manner.

6 Solutions that Fail to Provide Long-Term Protection

For completeness, we present a number of solutions that fail to provide long-term
authenticity, integrity and witnessed existence and we briefly explain why they
fail to be secure in the long term. They are interesting because they introduce
extra protection goals and use different approaches. For further examples we
refer the reader to [43].

Authentic Timestamps [44] is a solution for archival storage. Besides integrity
and witnessed existence it also produces evidence of non existence for data ob-
jects. The authors introduce a data structure that implements an append-only,
persistent, authenticated dictionary by combining ideas from Merkle and Patri-
cia trees. The solution uses PKIX timestamps (see Section 2.7) for witnessed
existence. The scheme does not address the weakening of hash algorithms or
timestamp signatures hence it does not provide long-term protection.

Key Archive Service and Timestamp (KASTS) is an archiving system pro-
posed by Maniatis and Baker in [45]. The system aims at extending the validity of
digital signatures beyond the expiration dates of the corresponding certificates.
It does so by timestamping a signature at the time it is produced and archiving
old signature verification keys. Verification keys are stored by a trusted third
party named Key Archive Service. Validation evidence is structured in authenti-
cated search trees [46] and only the roots of the trees are timestamped. KASTS
keeps only the most recent timestamp, thus a retriever lacks evidence to evaluate



the chronological order of authenticated search trees. KASTS does not address
the weakening of the hash algorithms used to construct the authenticated search
trees. Therefore, KASTS does not provide long-term protection.

Certified Accountable Tamper-Evident Storage (CATS) is a network storage
system proposed by Yumerefendi and Chase in [47]. It provides evidence of wit-
nessed existence, non existence, integrity and authenticity for data objects. The
evidence is based on authenticated search trees, digital signatures (see Section
2.5) and wide-visible media (see Section 2.4). The focus of CATS is on providing
means of accountability for the players of an archival solution. A CATS server
maintains a shared directory of data objects where users can read and write.
Clients can verify that the server is faithful and cannot deny their operations.
CATS does not address the obsolescence of cryptographic algorithms, hence it
does not provide long-term protection.

Maniatis et al. propose in [48] to build a network of Timestamp Authorities
called Prokopius. They use a peer-to-peer archival storage network as their wide-
visible medium to commit timestamps. This allows clients to verify timestamps
issued by formerly trusted TSAs, even if they are no longer in service. Such TSA
can be used by an archivist to provide protection for data objects. The solution is
based on timestamps, Merkle trees and Byzantine Fault Tolerant protocols6. Al-
though Prokopius increases the reliability of traditional timestamps, it does not
address long-term protection as defined in this survey. In particular it does not
deal with the obsolescence of cryptographic algorithms, which will compromise
the evidences of authenticity and witnessed existence.

Victorian Electronic Record Strategy (VERS) is a solution for long-term
protection of digital data developed by a team commissioned by the Australian
government [50,51]. VERS is a prototype intended to test archiving techniques
to maintain government records. The solution provides evidence of integrity and
authenticity for data objects. The solution is based on digital signatures (see
Section 2.5). An important design decision of VERS is not to use Public Key
Infrastructures (see Section 2.6). The authors argue that CAs are likely to dis-
appear during the archival period of data objects and, therefore, it is better not
rely on certificates. Without certificates and revocation data, there is no proof
that binds the signer’s identification and public key. Alternatively, the authors
suggest to confirm the binding between the signer’s identification and public
key by: a) comparing the public key with other records signed by the same
signer, and b) the archivist maintaining a signed certification record that binds
the identification of an authorized user in VERS and the corresponding public
key. VERS allows authorized users to resign an archived data object, but not
its signatures. Without resigning signatures, the obsolescence of cryptographic
algorithms is not addressed. As a consequence, VERS fails to provide long-term
protection.

6 The Byzantine failure assumption [49] models systems whose components may be-
have in unexpected ways due to hardware failures, network congestion or malicious
attacks. Byzantine failure-tolerant algorithms must cope with such failures.



7 Conclusion and Future Work

We surveyed solutions for long-term protection of digital data, describing and
comparing them in regard to their protection goals and trust assumptions. A
brief comparative analysis of the solutions’ efficiency was also provided. Addi-
tionally, we identified a number of archival solutions that fail to provide long-
term protection, and showed why they fail.

A number of open problems arise from our analysis. First, there are desirable
properties that are not covered by the long-term protection solutions. One exam-
ple is evidence of non-existence of a document at a certain point in time. Next,
it would be desirable to know how trust assumptions can be reduced or adjusted
to meet the requirements of a particular archive. Also, it would be interesting to
perform a rigorous analysis of the long-term protection solutions using the re-
cently developed security models [52,53]. In addition, a comprehensive efficiency
analysis would allow comparing the surveyed solutions. This analysis should in
particular include scalability issues.

Given the information presented in this survey we come to the preliminary
conclusion that CIS and ACE appear to be the best solutions. Both can address
all protection goals that we discussed in this paper, require fewer trust assump-
tions than other solutions, and support format migration. However, there is a
caveat: it is unclear whether the wide-visible media assumption is plausible in
the long term. In terms of efficiency, the storage overhead in CIS and ACE seems
lower than ETSI, ERS and LOCKSS. Nevertheless, OC excels in this measure,
at the cost of the stronger trust assumption of a notary.

Cryptographers would argue that replacing trust in actors with mathematical
assumptions would make the overall security much more convincing. More gener-
ally, finding solutions that also address long-term confidentiality, other possible
protection goals, and the balance between cryptographic protection and reliance
on trusted parties appears to be an interesting and important research direction.
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