
Entangled Cloud Storage

Giuseppe Ateniese1, Özgür Dagdelen2, Ivan Damg̊ard3, and Daniele Venturi3

1Sapienza University of Rome
2Technische Universität Darmstadt

3Aarhus University

June 24, 2013

Abstract. Entangled cloud storage enables a set of clients to “entangle” their files into a
single clew to be stored by a (potentially malicious) cloud provider. The entanglement makes
it impossible to modify or delete significant part of the clew without affecting all files encoded
in the clew. A clew keeps the files in it private but still lets each client recover his own data by
interacting with the cloud provider; no cooperation from other clients is needed. At the same
time, the cloud provider is discouraged from altering or overwriting any significant part of the
clew as this will imply that none of the clients can recover their files.

We provide theoretical foundations for entangled cloud storage, introducing the notion of an en-
tangled encoding scheme that guarantees strong security requirements capturing the properties
above. We also give a concrete construction based on privacy-preserving polynomial interpola-
tion, along with protocols for using the encoding scheme in practice.

Protocols for cloud storage find application in the cloud setting, where clients store their files
on a remote server and need to be ensured that the cloud provider will not delete their data
illegitimately. Current solutions, e.g., based on Provable Data Possession and Proof of Retriev-
ability, catch a malicious server “after-the-fact”, meaning that the server needs to be challenged
regularly to provide evidence that the clients’ files are stored at a given time.

Entangled storage makes all clients equal and with the same rights: It makes it financially
inconvenient for a cloud provider to alter specific files and exclude certain “average” customers,
since doing so would undermine all customers in the system, even those considered “important”
and, thus, profitable. Hence, entangled storage schemes offer security “before-the-fact”.

Keywords. outsourcing, cloud storage, simulation-based security

Contents

1 Introduction 1
1.1 Our Contributions . 2
1.2 Alternative Solutions . 3
1.3 Other Related Work . 4

2 Preliminaries 4

3 Entangled Encoding Schemes 6

4 Entangled Storage of Data 9
4.1 Ideal Implementation of Data Entanglement . 9
4.2 Entangled Storage Scheme . 10
4.3 The Security Definition . 11

5 Construction 12
5.1 Privacy-Preserving Polynomial Interpolation . 12
5.2 Secure Polynomial Evaluation . 13
5.3 Final Protocol . 13

A Possible Solutions to 3PI 19
A.1 Solutions via Linear Secret Sharing or Homomorphic Encryption 19
A.2 A Solution based on OT . 20

B Possible Solutions to SPE 26
B.1 Communication-Efficient Encoding of Polynomials 30

C Extension to the UC-Model 31

2

1 Introduction

The terminology “cloud computing” refers to a paradigm shift in which applications from a server
are executed and managed through a client’s web browser, with no installed client version of an
application required. This new paradigm—also known as the software as a service paradigm—has
generated new intriguing challenges for cryptographers. In this paper we deal with the problem of
cloud storage, where clients store their files on remote servers. Outsourcing data storage provides
several benefits, including improved scalability and accessibility, data replication and backup, and
considerable cost saving.

Nevertheless, companies and organizations are still reluctant to outsource their storage needs.
Files may contain sensitive information and cloud providers can misbehave. While encryption can
help in this case, it is utterly powerless to prevent data corruption, whether intentional or caused
by a malfunction. Indeed, it is reasonable to pose the following questions: How can we be certain
the cloud provider is storing the entire file intact? What if files that are rarely accessed are altered?
Can we detect these changes and possibly recover the original content?

Possible solutions. It turns out that the questions above have been studied extensively in the
last few years. Proof-of-storage schemes allow clients to verify that their remote files are still
pristine even though they do not possess any local copy of these files. Two basic approaches
have emerged: Provable Data Possession (PDP), introduced by Ateniese et al. [2], and Proof of
Retrievability (PoR), independently introduced by Juels and Kaliski [25] (building on a prior work
by Naor and Rothblum [34]). They were later extended in several ways in [39, 15, 3]. In a PDP
scheme, file blocks are signed by the clients via authentication tags. During an audit, the remote
server is challenged and proves possession of randomly picked file blocks by returning a short proof
of possession. The key point is that the response from the server is essentially constant, thanks to
the homomorphic property of authentication tags that makes them compressible to fit into a short
string. Any data alteration or deletion will be detected with high probability. In POR, in addition,
error correction codes are included along with remote file blocks. Now, the server provides a proof
that the entire file could potentially be recovered in case of hitches.

Motivation. However, proof-of-storage schemes catch a misbehaving cloud provider after the
fact, when targeted files have already been altered. In addition, all users must challenge the
storage server regularly to make sure their files are still intact. In this paper we consider a different
approach that is based on making altering or deleting files extremely inconvenient for the cloud
provider. The idea is to have the clients encode all their files into a single digital clew c, an
“entangled encoding”, that can be used as a representation of all files and be stored on remote and
untrusted servers. The goal is to ensure that any significant change to c is likely to disrupt the
content of all files. This approach of data entanglement was proposed by Aspnes et al. [1]. Roughly
speaking, an entangled encoding should satisfy the following properties: (i) every client which took
part to the entanglement generation process should be able to recover its original file from c; (ii)
if the server alters c in any way, no clients will be able to retrieve its original file (this requirement
is called all-or-nothing-integrity).

Unfortunately, in the original model of Aspnes et al. [1], the entanglement is created by a trusted
authority. In addition, files can only be retrieved through the trusted authority. Thus, schemes
within their framework are not suitable for cloud computing. In this paper we focus on storage

1

schemes where the entanglement is collectively created by all clients and files can also be retrieved
without interacting with any trusted entity. We will refer to our framework as entangled storage.

In a sense, entangled storage makes all users equal and with the same rights: It is financially
inconvenient for a cloud provider to alter specific files or target and exclude certain “average”
customers since doing so would undermine all customers in the system, even those considered
“important” and, thus, profitable. From a practical perspective, users within our framework do
not have to keep constantly querying the cloud provider with proof-of-storage challenges as in
PDP/POR. That said, a storage solution that synergistically combines both approaches should
also be considered, particularly in the case of dynamic files.

A note on the terminology. Entanglement usually refers to a physical interaction between two
particles at the quantum level. Even if separated, the particles are in a quantum superposition
until a measurement is made, in which case both particles assume definitive and correlated states.
Analogously, in our more modest context, two entangled files are somehow linked together: A file
that is intact implies the other must also be intact. Any single change to one file, destroys the
other.

1.1 Our Contributions

The main contribution of this paper is to provide theoretical foundations for data entanglement.
More in detail, our contributions and techniques are outlined below.

Simulation-based security. Our definition of entangled storage uses a strong simulation-based
definition, capturing all possible security concerns. In the simulation-based paradigm, security of
a cryptographic protocol is defined by comparing an execution in the real world, where the scheme
is deployed, with an execution in an ideal world, where all the clients give their inputs to a trusted
party which then computes the output for them.1

Roughly, the ideal functionality IESS that we introduce captures the following security require-
ments (see also the discussion in Section 4): (1) Privacy of entanglement: The entanglement process
does not leak information on the file fi of client Pi, neither to other (possibly malicious) clients nor
to the (possibly malicious) server; (2) Privacy of recovery: At the end of each recovery procedure,
the confidentiality of all files is still preserved; (3) All-or-nothing integrity: A malicious server
overwriting a significant part of the entanglement is not able to answer recovery queries from any
of the clients.

An abstract framework to realize IESS. As a stepping stone towards the construction of
entangled storage, we introduce the notion of an entangled encoding scheme, which we believe it
is of independent interest. Informally, such an encoding Encode takes as input n strings f1, . . . , fn
(together with a certain amount of randomness r1, . . . , rn) and outputs a single codeword c which
“entangles” all the input strings. The encoding is efficiently decodable, i.e., there exists an efficient
algorithm Decode that takes as input (c, ri, i) and outputs the file fi together with a verification
value ξ. Since only ri is required to retrieve fi (we don’t need rj , j 6= i), we refer to this as “local
decodability”. The verification value is a fixed function of the file and the randomness. In addition,
the encoding satisfies two main security properties. First off, it is private in the sense that even

1Essentially, with regard to privacy, the model of [1] can be viewed as the ideal world in our security definitions.

2

if an adversary already knows a subset of the input strings and randomness used to encode them,
the resulting encoding reveals no additional information about any of the other input strings other
than what can be derived from the knowledge of this subset. Second, it is all-or-nothing in the
sense that whenever an adversary has “large” uncertainty about c (i.e., a number of bits linear in
the security parameter), he cannot design a function that will answer any decoding query correctly.
See Section 3 for a precise definition.

Now, given an entangled encoding scheme (Encode,Decode), we describe a general framework
to realize entangled storage in the cloud, with the goal of implementing the ideal functionality
IESS. Consider n (possibly malicious) clients P1, . . . , Pn, each holding a file fi, and a (possibly
malicious) server S. During the so-called “entanglement phase”, the clients interact in a multi-
party computation protocol ΠETG together with the server. Each client is given a file fi and learns
nothing at the end of the execution; on the other hand, the server receives as input nothing and
outputs Encode(f1, . . . , fn). Later on, in the so-called “recovery phase”, a client Pi can run a two-
party protocol ΠRCV together with S. The client receives as input some trapdoor (whose length is
constant and independent of the length of fi) and outputs the file fi; on the other hand, the server
is given as input the entanglement and outputs nothing.

An instantiation based on polynomials. We then provide a concrete instantiation of the
above framework relying on an entangled encoding scheme based on polynomials over a finite field
F. Here, the clients encode file fi by choosing a random pair of elements (si, xi) ∈ F2 and defining
a point (xi, yi = fi + si). The entanglement of (f1, . . . , fn) is now the unique polynomial c(·) of
degree n − 1 interpolating all of (xi, yi). In Section 3 we show that if the field F is large enough,
this encoding has (k,negl(k)) all-or-nothing integrity for security parameter k and a proper choice
of the other parameters.

We finally construct secure protocols (ΠETG,ΠRCV) for the above encoding scheme, using stan-
dard cryptographic building blocks, and we show they securely realize IESS in the model of universal
composability [10]. Protocol ΠETG can be seen as an instantiation of the well-studied problem of
privacy-preserving polynomial interpolation (3PI), where clients are given as input points (xi, yi)
(one for each client) with the intent of computing a polynomial c(·) interpolating these points while
keeping them private. On the other hand, protocol ΠRCV allows a client holding xi to retrieve
c(xi) = yi (and nothing more) together with a proof of correctness about the recovered value. We
call this a protocol for secure polynomial evaluation (SPE). These protocols are described in Sec-
tion 5.1 and 5.2. Our final construction is a bit more involved than the above, since clients cannot
store the entire value xi (otherwise they could just store the file fi in the first place). We refer to
Section 5.3 for the details.

Efficiency Trade-off. In this work, we do not focus on performance optimization and the pro-
posed scheme should be interpreted more as a feasibility result and the first practical implementation
of an entangled storage scheme. One natural way to improve performance is to limit the number
of users taking part to the entanglement and create several smaller clews. This would offer a clear
tradeoff between security and efficiency.

1.2 Alternative Solutions

Entangled storage was implemented through our notion of entangled encoding but, of course, it
should be considered whether it can be realized in other ways.

3

A first natural idea is to upload each file in encrypted form to the server. Whenever a file
is retrieved, a proof of retrievability (PoR) for the entire set of (encrypted) files is also executed
between the client and the server. We believe such a solution would satisfy our definition of
entangled storage. However, there are two impeding drawbacks to consider. First, a PoR scheme
requires a redundant encoding of the data, hence the server needs more storage than strictly
necessary. Second, the local computation performed by the client in a PoR scheme typically depends
on the total size of the remote data. In our scenario, this is not acceptable since it makes the work
of the client depend on the total number of clients. In contrast, our entangled encoding has size
exactly equal to the encoded data (when files are large enough) and the work performed by a client
is independent of the number of clients.

A different idea would be to encrypt each file and then upload them to the server in a randomly
permuted order, such that each client knows the position of his own file. A client may use private
information retrieval (PIR) to retrieve files. This way the server remains oblivious of the relative
position of any file, even after several retrievals. At first, this solution may seem good enough
to deter the server from erasing files. But note that the server could correctly estimate any file
positions with non-negligible probability, even with the help of malicious clients. Most importantly,
this proposal based on PIR does not actually satisfy our definition. Indeed, the server may end up
excluding some clients while allowing others to still retrieve their files. Entangled storage mandates
that no client can retrieve data whenever a significant part of it is erased.

1.3 Other Related Work

Data entanglement also appears in the context of censorship-resistant publishing systems; see, e.g.,
Dagster [42] and Tangler [44]. The notion of SPE is related to oblivious polynomial evaluation
(OPE), introduced by Naor and Pinkas [32, 33] and studied also in [11, 47, 19, 24]. A detailed
comparison of our protocols with existing solutions is given in Section 5.

The notion of all-or-nothing integrity is inspired by the all-or-nothing transform introduced by
Rivest et al. [38], and later generalized in [14]. The standard definition of all-or-nothing transform
requires that it should be hard to reconstruct a message if not all the bits of its encoding are known.

2 Preliminaries

Notation. Given an integer n, we denote [n] = {1, . . . , n}. If n ∈ R, we write dne for the smallest
integer greater than n. If x is a string, we denote its length by |x|; if X is a set, |X | represents

the number of elements in X . When x is chosen randomly in X , we write x
$← X . When A is an

algorithm, we write y ← A(x) to denote a run of A on input x and output y; if A is randomized,
then y is a random variable and A(x;ω) denotes a run of A on input x and random coins ω.

Throughout the paper, we denote the security parameter by k. A function negl(k) is negligible
in k (or just negligible) if it decreases faster than the inverse of every polynomial in k. A machine
is said to be probabilistic polynomial time (PPT) if it is randomized, and its number of steps is
polynomial in the security parameter.

Let X = {Xk}k∈N and Y = {Yk}k∈N be two distribution ensembles. We say X and Y are
ε-computationally indistinguishable if for every polynomial time distinguisher A there exists a
function ε such that |Pr(A(X) = 1)− Pr(A(Y) = 1)| ≤ ε(k). If ε(k) is negligible, we simply say
X and Y are (computationally) indistinguishable (and we write X ≈ Y).

4

The statistical distance of two distributions X,Y is defined as SD(X,Y) =
∑

a |Pr(X = a)−
Pr(Y = a) |. The min-entropy of a random variable X is H∞(X) = − log maxx Pr(X = x).

Secure computation. Let φ : ({0, 1}∗)n → ({0, 1}∗)n be a functionality, where φi(x1, . . . , xn)
denotes the i-th element of φ(x1, . . . , xn) for i ∈ [n]. The input-output behavior of φ is denoted
(x1, . . . , xn) 7→ (y1, . . . , yn). Consider a multi-party protocol Π for computing φ. Roughly, we
say that Π is secure if the view of any adversary A involved in the protocol Π can be simulated
by ideal adversary Z, sometimes called simulator, who interacts only with an ideal functionality
Iφ. More precisely, in the real world, clients P1, . . . , Pn execute protocol Π in order to compute
the functionality φ(x1, . . . , xn) in the presence of an (efficient) adversary A. Whereas in the ideal
world, the computation of φ is performed by an ideal functionality Iφ which receives all inputs by
clients P1, . . . , Pn and returns to the clients their respective outputs φi(x1, . . . , xn). Clearly, the
clients do not learn any information other than their input/output given by Iφ in an execution in
the ideal world.

We only allow static corruptions, that is, adversaries determine the clients to corrupt at the be-
ginning of the protocol execution. The adversary is called passive if it follows faithfully the protocol
specifications but can save intermediate computations; on the other hand an active adversary can
behave arbitrarily during a protocol execution. The security of a multi-party computation protocol
is usually defined with respect to an adversary structure ∆, i.e., a monotone set of subsets of the
players, where the adversary may corrupt the players of one set in ∆. We call such an adversary
a ∆-adversary. An adversary structure is monotone in the sense of being closed with respect to
taking subsets.

Let REALΠ,A(z)(k, (x1, . . . , xn)) denote the joint output of adversaryA (holding auxiliary input
z) and clients P1, . . . , Pn in an execution of protocol Π on inputs (x1, . . . , xn) and security parameter
k. Similarly, let IDEALIφ,Z(z)(k, (x1, . . . , xn)) denote the joint output of ideal-world adversary Z
and clients P1, . . . , Pn in an execution with ideal functionality Iφ and inputs (x1, . . . , xn) with
security parameter k. Then, protocol Π securely realizes Iφ if for every (efficient) active/passive
adversary A, there exists an (efficient) simulator Z such that IDEALIφ,Z(z)(k, (x1, . . . , xn)) ≈
REALΠ,A(z)(k, (x1, . . . , xn)).

Succinct argument systems. Let R ⊂ {0, 1}∗ × {0, 1}∗ be a polynomial-time relation with
language LR = {x : ∃w s.t. (x,w) ∈ R}. A succinct argument system (P,V) for L ∈ NP is a
pair of probabilistic polynomial-time machines such that the following properties are satisfied: (i)
(succinctness) the total length of all messages exchanged during an execution of (P,V) is only
polylogarithmic in the instance and witness sizes; (ii) (completeness) for any x ∈ L we have that
(P(w),V)(x) outputs 1 with overwhelming probability; (iii) (computational soundness) for any
x 6∈ L and any computationally bounded prover P∗ we have that (P∗,V)(x) = 1 only with negligible
probability; (iv) (argument of knowledge) for any x 6∈ L and any computationally bounded prover
P∗ such that (P∗,V)(x) outputs 1 there exists a polynomial time extractor EP∗ outputting a witness
w that satisfies (x,w) ∈ R with overwhelming probability. See for instance [45, 5].

Succinct interactive argument systems for NP exists in 4 rounds based on the PCP theo-
rem, under the assumption that collision-resistant function ensembles exists [28, 45]. Succinct
non-interactive argument systems, also called SNARGs, are impossible under any falsifiable cryp-
tographic assumption [23] but are known to exists in the random-oracle model [29] or under non-
falsifiable cryptographic assumptions [5].

5

3 Entangled Encoding Schemes

In this section, we introduce the notion of an entangled encoding scheme and show a construction
based on polynomial interpolation. Intuitively, an entangled encoding scheme encodes an arbitrary
number of input strings f1, . . . , fn into a single output string using random strings r1, . . . , rn (one
for each input string). We assume that all input strings have the same length `. The following
definition captures an entangled encoding scheme formally.

Definition 3.1 (Entangled Encoding Scheme) An entangled encoding scheme is a triplet of
algorithms (Setup,Encode,Decode) defined as follows.

Setup. Setup is a probabilistic algorithm which, on input a security parameter k, the number of
strings to encode n, and the length parameter `, outputs public parameters (F ,R, C). We call
F the input space, R the randomness space and C the entanglement space.

Encoding. Encode is a deterministic algorithm which, on input strings f1, . . . , fn ∈ F and
auxiliary inputs r1, . . . , rn ∈ R, outputs an encoding c ∈ C.

(Local) Decoding. Decode is a deterministic algorithm which, on input an encoding c ∈ C and
input ri ∈ R together with index i, outputs string fi ∈ F and a verification value ξ. This
value must be a fixed function ξ(fi, ri) of the file and the randomness.

Correctness of decoding requires that for all security parameter k and length `, public parameters
(F ,R, C) ← Setup(1k, n, `), input strings f1, . . . , fn ∈ F and auxiliary inputs r1, . . . , rn ∈ R, we
have (fi, ξ(fi, ri)) = Decode(Encode(f1, . . . , fn, r1, . . . , rn), ri, i) for all i ∈ [n]. We let Fi and Ri for
i = 1, . . . , n be random variables representing the choice of fi and ri, respectively. We make no
assumption on the distributions of Fi and Ri, but note that of course the distribution of Ri will
be fixed by the encoding scheme. We let F−i (f−i) denote the set of all variables (values) except
Fi (fi). Similar notation is used for Ri and ri. An entangled encoding scheme satisfies two main
security properties.

Privacy: Even if an adversary already knows a subset of the input strings and randomness used
to encode them, the resulting encoding reveals no additional information about any of the
other input strings other than what can be derived by the knowledge of this subset. More
precisely, let U denote some arbitrary subset of the pairs (Fj , Rj)j=1...n, and let C be the
encoding corresponding to all elements, i.e., C = Encode(F1, . . . , Fn, R1, . . . , Rn). Let V be
the set of (Fi, Ri) not included in U , i.e., V = (F−U , R−U). An entangled encoding scheme is
private if, for all u ∈ U and all c ∈ C, the distribution DV |U of the random variable V when
given U = u is statistically close to the distribution DV |UC of the random variable V when
given (U = u,C = c), i.e., SD(DV |U ,D′V |UC) ≤ negl(k).

All-Or-Nothing Integrity: Roughly speaking, if an adversary has a large amount of uncertainty
about the encoding C = Encode(F1, . . . , Fn, R1, . . . , Rn), he cannot design a function that
will answer decoding queries correctly. More precisely, let U be defined as under privacy, and
define a random variable C ′U that is obtained by applying an arbitrary (possibly probabilistic)
function g(·) to U and C. Now the adversary plays the following game: he is given that
C ′U = c′ for any value c′ and then specifies a function DecodeAdv. We say that the adversary
wins at position i if Fi is not included in U and DecodeAdv(Ri, i) = Decode(C,Ri, i). The
encoding has (α, β) all-or-nothing integrity if H∞(C|C ′U = c′) ≥ α implies that for each i, the

6

adversary wins at position i with probability at most β. In particular, in order to win, the
adversary’s function must output both the correct file and verification value.

Definition 3.2 ((α, β) All-or-Nothing Integrity) We say that an entangled encoding scheme
(Setup,Encode,Decode) has (α, β) all-or-nothing integrity if for all probabilistic polynomial time
adversaries A, for all subsets U ⊂ {(Fj , Rj)}j=1...n, for all (possibly unbounded) functions g(·) and
for all i ∈ [n] \ {j : (Fj , Rj) ∈ U}, we have that

Pr

DecodeAdv(Ri, i) = Decode(C,Ri, i) :
(F ,R, C)← Setup(1k, n, `),
C = Encode(F1, . . . , Fn;R1, . . . , Rn),
C ′U = g(C,U),DecodeAdv ← A(C ′U)

 ≤ β,
whenever H∞(C|C ′U = c′) ≥ α (where the probability is taken over the choices of the random
variables Fi, Ri and the coin tosses of A).

Note that β in the definition of all-or-nothing integrity will typically depend on both α and the
security parameter k, and we would like that β is negligible in k, if α is large enough. We cannot
ask for more than this, since if α is small, the adversary can guess the correct encoding and win
with large probability.

We now design an encoding scheme that has the properties we are after. As a first attempt,
we consider the following. We choose a finite field F, say of characteristic 2, large enough that we
can represent values of Fi as field elements. We then choose x1, . . . , xn uniformly in F and define
the encoding to be c, where c is the polynomial of degree at most n− 1 such that c(xi) = fi for all
i. Decoding is simply evaluating c. Furthermore, the all-or-nothing property is at least intuitively
satisfied: c has degree at most n and we may think of n as being much smaller than the size of F.
Now, if an adversary has many candidates for what c might be, and wants to win the above game,
he has to design a single function that agrees with many of these candidates in many input points.
This seems difficult since candidates can only agree pairwise in at most n points. We give a more
precise analysis later.

Privacy, however, is not quite satisfied: we are given the polynomial c and we want to know
how much this tells us about c(xi) where xi is uniformly chosen. Note that it does not matter if
we are given xj for j 6= i, since all xj are independent. We answer this question by the following
lemma:

Lemma 3.3 Given a non-constant polynomial c of degree at most n, the distribution of c(R), where
R is uniform in F, has min-entropy at least log |F| − log(n).

Proof. The most likely value of c(R) is the value y for which c−1(y) is of maximal size. This is
equivalent to asking for the number of roots in c(X)− y which is at most n, since c(X)− y is not
0 and has degree at most n. Hence Pr(c(R) = y) ≤ n/|F|, and the lemma follows by definition of
min-entropy. �

It is reasonable to assume that c will not be constant, but even so, we see that the distribution of
c(R) is not uniform as we would like, but only close (if n� |F|). In some applications, a loss of log n
bits in entropy may be acceptable, but it is also easy to fix this by simply one-time pad encrypting
the actual data before they are encoded. This leads to the final definition of our encoding scheme:

7

Setup: Given as input the length ` of the n data items to be encoded and the security parameter
k, define F = F = GF (2max(`,3k+logn+log logn)), R = F2 and C = Fn.

Encoding: Given f1, . . . , fn to encode, choose xi, si ∈ F uniformly (and independently) at random,
and set ri = (xi, si); in case xi = xj for some index i 6= j output a special symbol ⊥ and
abort. Otherwise, define Encode(f1, . . . , fn, r1, . . . , rn) = c to be the polynomial of degree at
most n− 1 such that c(xi) = fi + si for i = 1, . . . , n.

Decoding: We define Decode(c, ri, i) = Decode(c, (xi, si), i) = (c(xi)− si, c(xi)).

It is trivial to see that Decoding outputs the correct file. The verification value is c(xi) = fi+si thus
it is indeed a function of the file and the randomness, as required by the definition. The encoding
is also easily seen to be private: In fact, by the uniformly random choice of si, given any subset U
of (Fj , Rj)j=1...n the encoding C does not reveal any additional information on V = (F−U , R−U).
For all-or-nothing integrity, we have the theorem below. Its conclusion may seem a bit complicated
at first, but in fact, reflects in a natural way that the adversary has two obvious strategies when
playing the game from the definition: he can try to guess the correct encoding, which succeeds
with probability exponentially small in α, or he can try to guess the correct field element that is
computed at the end of the game (by making his function constant). However, the latter strategy
succeeds with probability exponentially small in |F|. The theorem says that, up to constant factor
losses in the exponent, these are the only options open to the adversary.

Theorem 3.4 The above encoding scheme has (α,max(2−k+2, 2−(α−3)/2)) all-or-nothing integrity.

Before coming to the theorem, we need the following lemma:

Lemma 3.5 Let U , C ′U be as in the definition of all-or-nothing integrity and suppose the pair
(Fi, Ri) = (Fi, (Xi, Si)) is not included in U . Then for the encoding scheme defined above, and for
any c′, we have H∞(Xi| C ′U = c′) ≥ log |F| − log n.

Proof. Suppose first that we are given values for all Fj , Rj where j 6= i and also for C and Fi, i.e.,
we are given the polynomial c, all fj and all (xj , sj), except (xi, si). Let V be a variable representing
all this. Before a value of V is given, xi, si are uniformly random and independent of the fj ’s and
of the (xj , sj) where j 6= i. It follows that when we are given a value of V , the only new constraint
this introduces is that c(xi) = si + fi must hold. Now, if c is constant, this gives no information at
all about xi, so assume c is not constant. Then for each value si, it must be the case that xi is in
a set consisting of at most n elements, since c has degree at most n− 1. Therefore we can specify
the distribution of xi induced by this as follows. The set of all xi is split into at least |F|/n subsets.
Each subset is equally likely (since si is uniform a priori), and the elements inside each subset are
equally likely (since xi is uniform a priori). Each subset is, therefore, assigned probability at most
n/|F|, and thus, also the largest probability we can assign to an xi value (if the subset has size 1).
Therefore, the conditional min-entropy of Xi is at least log |F| − log n.

Now observe that the variable C ′U can be obtained by processing V using a (possibly randomized)
function. If we assume that a value of C ′U is given, the conditional min-entropy of Xi is at least
as large as when V is given. This actually requires an argument, since it is not the case in general
that the min-entropy does not decrease if we are given less information. In our case, however, if
we are given U = u, the resulting distribution of Xi will be a weighted average computed over
the distributions of Xi given values of V that map to U = u. But all these distributions have
min-entropy at least log |F| − log n and hence so does any weighted average. �

8

We now turn to the proof of Theorem 3.4.

Proof (of Theorem 3.4). We assume that the distribution D of the polynomial c in the view
of the adversary has min-entropy at least α, so that the maximal probability occurring in the
distribution is at most 2−α. The adversary now submits his function DecodeAdv, and he wins if
(fi, c(xi)) = DecodeAdv(xi, si) for an arbitrary but fixed i ∈ [n]. We want to bound the adversary’s
advantage.

In particular, the adversary’s function must output the correct value of c(xi), so we may as
well bound the probability ε that g(xi) = c(xi) for a function g chosen by the adversary, where c is
chosen according to D and xi has large min-entropy as shown in Lemma 3.5 above.

Let εc be the probability that g(xi) = c(xi) for a fixed c, then ε =
∑

c qcεc where qc is the
probability assigned to c by D. A standard argument shows that Pr(εc ≥ ε/2) ≥ ε/2 since
otherwise the average

∑
c qcεc would be smaller than ε.

Consider now the distribution D′ which is D restricted to the c’s for which εc ≥ ε/2. The
maximal probability in this new distribution is clearly at most 2−α+1/ε. It follows that D′ assigns
non-zero probability to at least ε2α−1 polynomials. We now define C′ be a subset of these poly-
nomials. There are two cases: 1) if ε2α−1 ≤ 3

√
|F|/n, we set C′ to be all the ε2α−1 polynomials in

question; 2) otherwise, we set C′ to be an arbitrary subset of 3
√
|F|/n polynomials.

We now define a modified game, which is the same as the original, except that the polynomial c
is chosen uniformly from C′. By construction, we know that the adversary can win with probability
ε/2 by submitting the function g.

Now define, for ci, cj ∈ C′, the set Xij = {x ∈ F | ci(x) = cj(x)}. And let X = ∪i,jXij . Since
all polynomials in C′ have degree at most n − 1, it follows that |X | ≤ n|C′|2. Note that if x 6∈ X ,
then c(x) is different for every c ∈ C′ and one needs to guess c to guess c(x). We can now directly
bound the probability we are interested in:

Pr(g(x) = c(x)) = Pr(g(x) = c(x) | x ∈ X) · Pr(x ∈ X) + Pr(g(x) = c(x) | x 6∈ X) · Pr(x 6∈ X)

≤ Pr(x ∈ X) + Pr(g(x) = c(x) | x 6∈ X) ≤ |C
′|2n log n

|F|
+

1

|C′|
,

where the last inequality follows from Lemma 3.5. Since we already know that there is a way for

the adversary to win with probability ε/2, we have ε/2 ≤ |C
′|2n logn
|F| + 1

|C′| . In case 1), this implies

ε ≤ 2−(α−3)/2, in case 2) we get ε ≤ 2−k+3. The theorem follows. �

4 Entangled Storage of Data

For reasons of clarity, we define data entanglement for clients each holding only a single file fi of
length `. However, all our definitions and constructions can be easily extended to cover an arbitrary
number of files (of arbitrary length) for each party by either encoding multiple files into a single
one or by allowing to put in as many files as desired.

4.1 Ideal Implementation of Data Entanglement

We now define an ideal implementation/functionality IESS of an entangled storage scheme. The
functionality is shown in Figure 1. The main security requirements captured by IESS are discussed
below.

9

Privacy of entanglement. We argue that the ideal functionality captures privacy of the entan-
glement process. That is, the client’s files are private to both the other clients and the server. This
is represented by the fact that in the ideal execution, at the end of the entanglement process, all
participants receive only a message Entangled as acknowledgement that the input files are indeed
entangled.

Privacy of recovery. The inputs of clients P1, . . . , Pn need to remain private also during the
recovery process run by client Pi together with S. This is satisfied in the ideal implementation
because the server does not get any output when running the recovery process. Furthermore, client
Pi queries (Recover, Pi) to the ideal functionality. If client Pi decides to cheat, the adversary
simply chooses an arbitrary value f ′i as Pi’s output, and thus Pi learns nothing new. Therefore,
clients cannot learn about other client’s files after the entanglement and the recovery process. A
malicious server can merely decide whether a party should obtain his file. This is inevitable as a
corrupted server can always deny to have participated. Hence, also a collusion of clients and the
server cannot infer any information about files of honest clients.

All-or-nothing integrity. The server should be unable to deny a given client (or a subset of the
clients) access to the entanglement without also impairing all other clients. In other words, if the
server modifies the entanglement, nobody should be able to recover its original file anymore. In the
ideal implementation, the server can send a message (Overwrite) to the functionality, indicating
that it wants to “forget” part of the data it was supposed to store (e.g., because S wants to sell
part of its storage to other clients). Whenever this happens, a boolean value bad is set to true and,
from this point on, any honest client wishing to recover its file will receive value ⊥ at the end of the
recovery procedure. Of course, a corrupt server can also decide to answer incorrectly to a recovery
query without necessarily overwriting its memory.

4.2 Entangled Storage Scheme

In a nutshell, an entangled storage scheme ESS = (Gen,ΠETG,ΠRCV) implements an entangled
encoding scheme (cf. Definition 3.1) in the cloud setting. More precisely, ESS enables n clients, in
a set P = {P1, . . . , Pn}, to send their data in a privacy-friendly way to a server S. Assume client
Pi holds a file fi of length `; the server will store a piece of information c which “entangles” all files
fi’s while preserving their confidentiality, and such that: (i) the server is unable to alter fi without
harming all others files and (ii) every client can recover its own file fi (and nothing more).

Definition 4.1 (Entangled Storage Scheme) Let (Setup,Encode,Decode) be an entangled en-
coding scheme. Consider n clients in a set P = {P1, . . . , Pn} and a server S. An entangled storage
scheme is a tuple ESS = (Gen,ΠETG,ΠRCV), defined as follows.

Parameters Generation. Upon input a security parameter k, the length parameter ` and the
number of clients n, the PPT algorithm Gen outputs a pair (ppi, spi) ← Gen(1k, n) for each
client Pi where ppi and spi are the public and secret parameters of client i ∈ [n]. In addition,
Gen runs the Setup algorithm of the underlying encoding scheme, yielding a description of the
input space F , the randomness space R and the entanglement space C.

Entanglement. The (possibly interactive) protocol ΠETG is run by the clients and the server, and
computes a functionality ((f1, r1, pp1, sp1), . . . , (fn, rn, ppn, spn),−) 7→ (−, . . . ,−, c), where

10

Functionality IESS

The functionality IESS is parameterized by the security parameter k, entanglement size n and file space F . Initialize
boolean bad as false. The interaction with an ordered set of (possibly corrupted) clients P = {P1, . . . , Pn}, a (possibly
corrupted) server S, and ideal adversary Z is enabled via the following queries:

• On input (Entangle, Pi, fi) from party Pi, if fi /∈ F , ignore the input; Else, record (Pi, fi). Ignore any subsequent
queries (Entangle, Pi, ∗) from party Pi. If there are already n recorded tuples (Pj , fj), send Entangled to all parties
in P, server S, and adversary Z. Mark session as Entangled.

• On input (Overwrite) from adversary Z, set bad to true.

• On input (Recover, Pi) from Pi, check if session is Entangled. If not ignore the input. Otherwise, record (Pending, Pi)
and send (Recover, Pi) to S and Z.

On input (Recover, S, i) from S or Z, check if session is Entangled and record (Pending, Pi) exists. If not, ignore
the input. Otherwise:

– If S and Pi are both corrupted ignore the input.

– If Pi is corrupted and S is honest, in case bad is true output ⊥ to Pi. Otherwise, hand (Cheat, Pi) to Z. Upon
receiving (Cheat, Pi, f

′
i) from Z, output f ′i to Pi.

– If S is corrupted and Pi is honest, in case bad is true output ⊥ to Pi. Otherwise hand (Cheat, S) to Z. Upon
receiving (Cheat, S, deliver ∈ {yes, no}) from Z, if deliver = yes output fi to Pi and if deliver = no output ⊥ to
Pi.

– If S and Pi are both honest, output fi to Pi.

Delete record (Pending, Pi).

Figure 1: Ideal functionality IESS for an entangled storage scheme

ri ← R and c ∈ C is an entanglement of the files fi ∈ F , i.e. c is such that c = Encode(f1, . . . ,
fn, r1, . . . , rn).

Recovery. The interactive protocol ΠRCV is a two-party protocol between a client Pi and the server
S, computing a functionality ((ppi, spi), c) 7→ (fi,−).

Correctness of ESS demands that for all (ppi, spi)
$← Gen(1k, n), for all (F ,R, C)← Setup(1k, n, `)

and all files f1, . . . , fn ∈ F , it holds that c← ΠETG((f1, r1, pp1, sp1), . . . , (fn, rn, ppn, spn),−) satis-
fies c = Encode(f1, . . . , fn, r1, . . . , rn) and (fi,−)← ΠRCV((ppi, spi), c) satisfies fi = Decode(c, ri, i).

4.3 The Security Definition

The ideal functionality of Figure 1 holds the data and gives it to a client on request, if the adversary
allows this (in real life an adversarial server can always refuse to play even if he has the data). To
capture the AONI property, the functionality has a “overwrite flag” that the adversary can set,
and once this happens, the functionality no longer hands out data to any client.

This last feature, however, introduces a technical difficulty when proving security: the simulator
should know when to set the overwrite flag. This should happen when the adversary’s uncertainty
about the encoding becomes large enough, but this uncertainty is not necessarily easy to compute.
For instance, the adversary could erase the entire encoding from the regular storage but instead
store it in some strange different format that the simulator cannot necessarily make sense of. We
solve this problem by giving the simulator an oracle that on input the server’s view so far will
output the uncertainty of the initial encoding given the adversary’s current state. Note that the
uncertainty can always be computed in principle by running through all possible values of the

11

encoding to test of they are consistent with the current state. We denote such oracle by O∞(·);
upon input a string viewA ∈ {0, 1}∗ the oracle returns the value of H∞(C|stateA) where C is
uniform over the entanglement space C of the encoding scheme and stateA is the state of A having
seen viewA.

It is important to understand that this is only a technicality: a realistic adversary would want
to simply erase its storage to use it for something else, and would not want to store data in
other strange formats. If we restrict the adversary to such a behaviour, the oracle we give the
simulator is trivial to implement: one just needs to count the number of memory cells that have
been overwritten. Thus this issue is not a caveat in our construction but rather comes from the
fact that the standard Turing machine model cannot quite capture the behaviour one would expect
from a cheating server in the real model.

Formally, denote by IDEALIESS,Z(z)(k, (f1, . . . , fn,−)) the output of an ideal adversary Z,
server S and clients P1, . . . , Pn in the above ideal execution of IESS upon inputs (f1, . . . , fn,−)
and auxiliary input z given to Z. The functionality IESS is implemented via an entangled storage
scheme ESS = (Gen,ΠETG,ΠRCV), as defined in Definition 4.1. We denote by REALESS,A(z)(k,
(f1, . . . , fn,−)) the output of adversary A, server S and clients P1, . . . , Pn in a real execution of
ESS upon inputs (f1, . . . , fn,−) and z given to A.

Definition 4.2 (Security of Entangled Storage) We say that ESS securely realizes IESS, if
for any PPT real adversary A there exists a PPT simulator Z, having oracle access to O∞(·), such
that for any tuple of inputs (f1, . . . , fn) and auxiliary input z,

{IDEALIESS,Z(z)(k, (f1, . . . , fn,−))}k∈N ≈ {REALESS,A(z)(k, (f1, . . . , fn,−)}k∈N.

5 Construction

Our construction of ESS is based on two primitives that we use as building blocks: Privacy-
Preserving Polynomial Interpolation (3PI) and Secure Polynomial Evaluation (SPE). For each
primitive, we provide both an abstract definition and concrete instantiations. The schemes in this
sections are analyzed in the case of standalone security. An extension to the UC-setting can be
found in Appendix C.

5.1 Privacy-Preserving Polynomial Interpolation

The problem of privacy-preserving polynomial interpolation (3PI) was introduced in [16] and is
defined as follows. We have n clients in a set P = {P1, . . . , Pn} where each client Pi holds a
point (xi, yi) in some finite field F. All clients want to agree on a polynomial c(X) (of minimum
degree) such that yi = c(xi), for all i = 1, . . . , n, without disclosing the actual points. We are
interested here in a slightly different context where an additional party S is added to the set P,
but it provides no input. Loosely speaking, an ideal implementation for 3PI realizes a functionality
((x1, y1), . . . , (xn, yn),−) 7→ (−, . . . ,−, c(X)); we denote this functionality with I3PI.

We propose several instantiations of 3PI based on linear secret sharing, homomorphic encryption
or oblivious transfer. These solutions are presented in Appendix A.

12

5.2 Secure Polynomial Evaluation

Let F be a finite field and c(X) ∈ F[X] a polynomial stored on a remote server S. Let c = (c1, . . . , cn)
be the coefficients of c(·). A secure polynomial evaluation is an interactive protocol ΠSPE which
allows a client Pi to evaluate c(X) on a chosen input x ∈ F without disclosing to S any information
about x and c(X). More precisely, ΠSPE is a two-party protocol which computes a functionality
(x, c(·)) 7→ ((c(x), ν(c)),−), where ν is some arbitrary function ν : Fn → {0, 1}∗. ISPE denotes the
ideal functionality associated to SPE.

We propose several instantiations securely realizing ISPE based on (somewhat) homomorphic
encryption. We refer the reader to Appendix B for the details.

hybrids are computationally close.

5.3 Final Protocol

We construct an entangled storage scheme using our entangled encoding scheme (Setup,Encode,
Decode) based on polynomials over a finite field F = GF (2max(`,3k+logn+log logn)) (see Section 3);
we do this by combining Π3PI for 3PI (see Section 5.1) and ΠSPE for SPE (see Section 5.2). The
scheme assumes implicitly that there exists an efficient mapping to encode binary string of length
` as elements in a finite field F. Our scheme ESS = (Gen,ΠETG,ΠRCV) is described below.

Parameters Generation. Upon input a security parameter k ∈ N, the number of clients n and
the length parameter `, the Gen algorithm provides each client Pi with secret parameters
spi = σi. The secret σi is the seed for a (publicly available) pseudo-random generator G :
{0, 1}k → {0, 1}2max(`,3k+logn+log logn). In addition, Gen outputs the description of a collision
resistant hash function H(·) and (F = F,R = F2, C = Fn)← Setup(1k, n, `).

Entanglement. Protocol ΠETG is run between clients Pi, holding a point (xi, yi) where yi = fi+si
for G(σi) = (si, xi), and server S (holding no input). The protocol consist of a run of protocol
Π3PI from Section 5.1. Note that c = Encode(f1, . . . , fn, r1, . . . , rn) where ri = (si, xi) = G(σi).
The clients need to store only the seed σi, and a hash value θi = H(yi).

Recovery. Protocol ΠRCV is run by client Pi, holding input (σi, θi), and server S, holding input
c(·). To retrieve fi, client Pi first computes (si, xi) = G(σi) and then runs protocol ΠSPE

from Section 5.2 with the server S. In the end, Pi recovers c(xi) = yi and thus (fi, ξ(fi, ri)) =
Decode(c, (si, xi), i) = (c(xi)− si, c(xi)).
In addition S gives a proof of “correct computation” with respect to the operations involved
in the SPE protocol. Consider the version of ΠSPE based on somewhat homomorphic encryp-
tion. Let (P,V) be an interactive argument of knowledge for the following NP-language:2

LSPE = {(e, e∗) : ∃(evk, c(·)) s.t. e∗ = Evalevk(e, c(·))} . The server S plays the role of the
prover and client Pi the role of the verifier. The client outputs accept iff H(yi) = θi and
P(evk, c(·)),V)(e, e∗) = 1.

Security analysis. To argue about the security of our construction, we will rely on the security
guarantees provided by the underlying building blocks.

2A similar language can be defined for the version of ΠSPE based on homomorphic encryption. On the other
hand, in the näıve solution where the server simply transmits the entire polynomial the argument of knowledge is
not needed.

13

Theorem 5.1 (Security of main construction) Assume protocol Π3PI is secure in the presence
of an active, static ∆3PI-adversary and that ΠSPE is secure in the presence of an active adversary.
Furthermore, assume that G is a secure pseudo-random generator and H is a collision resistant
hash function. Then, the entangled storage scheme ESS from above is secure in the presence of a
static, active ∆∗-adversary, where ∆∗ = {∆ ∪ {S} | ∆ ∈ ∆3PI}.

Proof. Since A is static, the set of corrupted clients in ∆3PI is fixed once and for all; we denote this
set as δ3PI ∈ ∆3PI. We need to show that for any adversary A as in the theorem statement, there
exists a simulator Z (with oracle access to O∞) interacting with the ideal functionality IESS, such
that for all inputs f1, . . . , fn ∈ F and auxiliary input z,

{IDEALIESS,Z(z)(k, (f1, . . . , fn,−))}k∈N ≈ {REALESS,A(z)(k, (f1, . . . , fn,−)}k∈N.

The simulator Z, with access to A, is described below.

1. Upon input security parameter k, values {(fj , σj)} (for all indexes j such that Pj ∈ δ3PI), and
auxiliary input z, the simulator invokes A on these inputs. Initialize and maintain a variable
viewA containing the entire view of A during the simulation.

2. Run the simulator Z3PI underlying protocol Π3PI on input {(fj , σj)} (for all indexes j such
that Pj ∈ δ3PI). The simulator Z3PI invokes A who controls all clients Pj ∈ δ3PI and S and
will choose the values (x′i, y

′
i = f ′i + s′i) at random for all the honest players Pi 6∈ δ3PI. Receive

c = (c0, . . . , cn−1) from Z3PI and forward the result to A. Send (Entangle, Pj , fj) to the ideal
functionality IESS; receive back message Entangled.

3. Upon input (Recover, Pi) for client Pi, invoke oracle O∞ upon input viewA. Let u be the
value returned by the oracle. Then:

(a) In case u ≥ α, send (Overwrite) to IESS.

(b) In case u < α, send (Recover, S, i) to the ideal functionality.

i. If Pi is honest and S is corrupted, receive (Cheat, S) from the functionality, send
back (Cheat, S, flag), where flag := no if the malicious server denies the party Pi to
recover its file; else, flag is set to yes. Run the simulator ZSPE underlying protocol
ΠSPE and play the role of the verifier in (P,V) upon input x′i (for the previously
chosen values (x′i, y

′
i)), with A being the prover.

ii. If Pi is corrupted and S is honest, receive (Cheat, Pi) from the trusted party. Run
the simulator ZSPE underlying protocol ΠSPE and play the role of the prover in
(P,V), with A being the verifier. Let x′′i be the value that ZSPE forwards to its own
ideal functionality; send (Cheat, Pi, c(x

′′
i)− s′i) to IESS.

4. Output whatever A does.

We consider a series of intermediate hybrid experiments to show that the ideal output and the real
output are computationally close. A description of the hybrids follow.

Hybrid H1(k, (f1, . . . , fn,−)). We replace Z by Z1 which runs protocol Π3PI in step 2 instead of
invoking Z3PI. Clearly, security of Π3PI implies

{IDEALIESS,Z(z)(k, (f1, . . . , fn,−))}k∈N ≡ {H1(k, (f1, . . . , fn,−))}k∈N.

14

Hybrid H2(k, (f1, . . . , fn,−)). We replace Z1 by Z2 which knows the real inputs fi of the honest
clients and uses these values while running Π3PI. From the privacy property of the entangled
encoding scheme, we get that H1(k, (f1, . . . , fn,−)) and H2(k, (f1, . . . , fn,−)) are statistically
close.

Hybrid H3(k, (f1, . . . , fn,−)). We replace Z2 by Z3 which on step 3a does not send (Overwrite)
to IESS, but instead answers recovery queries from Pi as in step 3b.

Notice that inH2, once the flag bad is set, the ideal functionality would answer all such queries
with ⊥. Let Bad1 be the following event: Bad1 becomes true whenever a client Pi accepts
the output of a recovery query as valid and the oracle O∞ returned u ≥ α on that query.

Denote with H̃3(k, (f1, . . . , fn,−)) the distribution ofH3 conditioned on Bad1 not happening.

Clearly H2(k, (f1, . . . , fn,−)) and H̃3(k, (f1, . . . , fn,−)) are identically distributed; hence it
suffices to show that the probability of Bad1 is negligible.

Claim 5.2 The probability of Bad1 is exponentially small in k.

Proof (of claim). We rely here on the fact that, when F = GF (2max(`,3k+logn+log logn)), our
entangled encoding scheme of Section 3 has (α, β) all-or-nothing integrity for β = max(2−k+2,
2−(α−3)/2). In particular, any (computationally bounded) adversarial strategy provoking event
Bad1 with probability ≥ β starting from a polynomial where at least α bits have been
overwritten, can be used to break the all-or-nothing integrity property of the encoding scheme.

In the reduction, an adversary attacking the all-or-nothing integrity property of (Setup,Encode,
Decode) would simply simulate the environment for A and choose the function g(·) in such
a way that g(c(·)) = c′(·), so that he will win if c′(xi) = c(xi). Here c′(·) is the polynomial
contained in the view of A when event Bad1 happens. Now, since oracle O∞(·) returned a
value u ≥ α, the min-entropy left in the entanglement given viewA is at least α bits. Thus, by
Theorem 3.4, we can conclude that Pr(Bad1) is exponentially small in k for a proper choice
of α.

There is a small caveat, though. The proof of the all-or-nothing integrity property crucially
relies on the fact that the function g(·) is chosen independently of xi. In the above reduction,
instead, the adversary sees an encryption of xi so that it is not immediately clear if the
argument goes through. However, we will argue that if the choice of the function g(·) could
depend on xi, then one could violate semantic security of the encryption scheme underlying
protocol ΠSPE.

To prove the latter claim, we rely on the extractor EP∗ of the argument of knowledge P.
Consider an adversary B attacking semantic security of (Gen,Enc,Dec,Eval): Given the public
key, B chooses some message xi, receives a ciphertext e and has to decide whether this
corresponds to an encryption of xi or it is an encryption of a random message. At this point,
B can simulate the environment for A by replacing the encryption of xi with the challenge
ciphertext e. Given an accepting answer as output, B runs the extractor EP∗ to obtain a
witness (evk∗, c∗(·)). Hence, if Evalevk∗(e, c

∗(·)) = c′(xi) the adversary can conclude that e
must be an encryption of xi (i.e., output “real”) and otherwise the challenge ciphertext must
be completely independent of xi (i.e., output “random”). We see B breaks semantic security,
and thus the choice of g(·) must be independent of xi as desired. �

15

Hybrid H4(k, (f1, . . . , fn,−)). We replace Z3 by Z4 which answers recovery queries differently
in case S is corrupted. Namely, on step 3b Z4 does not send (Cheat, S, flag) to IESS, but
instead computes the answer to a recovery query from Pi as f ′′i = c′(x′i) − s′i where c′(·) is
the polynomial that ZSPE sends to its own ideal functionality. The only difference between
H3 and H4 is that in H3 the ideal functionality would always answer to such queries with the
correct value fi.

Let Bad2 be the event that Pi accepts the output of a recovery query in H4 and f ′′i 6= fi;

furthermore denote with H̃4(k, (f1, . . . , fn,−)) the distribution of H4 conditioned on Bad2

not happening. Clearly, H3(k, (f1, . . . , fn,−)) and H̃4(k, (f1, . . . , fn,−)) are identically dis-
tributed. Moreover it is easy to verify that the probability of Bad2 is negligible, otherwise
one could break either collision resistance of H(·) or the soundness property of (P,V). The
reduction is straightforward and is therefore omitted.

Hybrid H5(k, (f1, . . . , fn,−)). We replace Z4 by Z5 which chooses the points (xi, yi) of the honest
players as in the real protocol, i.e. it defines yi = fi+si for G(σi) = (si, xi). We claim that any
probabilistic polynomial-time machine distinguishing between the two hybrids can be turned
into a probabilistic polynomial-time distinguisher breaking pseudo-randomness of G(·).
The distinguisher is given access to an oracle returning strings v ∈ {0, 1}2max(`,3k+logn+log logn)

with the promise that they are either uniformly distributed or computed through G(·). Hence,
the distinguisher interprets vi as an element in F2, parses vi as vi = (si, xi) and uses these
values together with files fi to define the input of Π3PI. Now, when the vi’s are uniform,
the distribution is the same as in hybrid H4(k, (f1, . . . , fn,−)), whereas when vi = G(σi)
the distribution is the same as in hybrid H5(k, (f1, . . . , fn,−)). Thus, given a distinguisher
between the two hybrids we can break the pseudo-randomness of G(·).

Hybrid H6(k, (f1, . . . , fn,−)). We replace Z5 by Z6 which executes protocol ΠSPE as it would be
done in a real execution, i.e. it does not rely on the simulator ZSPE. Indistinguishability
of H5(k, (f1, . . . , fn,−)) and H6(k, (f1, . . . , fn,−)) immediately follows from the security of
ΠSPE.

It is easy to see that the output distribution of the last hybrid experiment is identical to the distri-
bution resulting from a real execution of the protocol. We have thus showed that IDEALIESS,Z(z)(k,
(f1, . . . , fn,−)) and REALESS,A(z)(k, (f1, . . . , fn,−) are computationally close. This concludes the
proof. �

References

[1] J. Aspnes, J. Feigenbaum, A. Yampolskiy, and S. Zhong. Towards a theory of data entangle-
ment. Theor. Comput. Sci., 389(1-2):26–43, 2007.

[2] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J. Peterson, and D. X.
Song. Provable data possession at untrusted stores. In ACM CCS, pages 598–609, 2007.

[3] G. Ateniese, S. Kamara, and J. Katz. Proofs of storage from homomorphic identification
protocols. In ASIACRYPT, pages 319–333, 2009.

16

[4] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in constant number of
rounds of interaction. In PODC, pages 201–209, 1989.

[5] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to
succinct non-interactive arguments of knowledge, and back again. In ITCS, pages 326–349,
2012.

[6] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) Fully Homomorphic Encryption
without Bootstrapping. In ITCS, page to appear, 2012.

[7] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
lwe. In FOCS, pages 97–106, 2011.

[8] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security
for key dependent messages. In CRYPTO, pages 505–524, 2011.

[9] G. Brassard, C. Crépeau, and J.-M. Robert. All-or-nothing disclosure of secrets. In CRYPTO,
pages 234–238, 1986.

[10] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, pages 136–145, 2001.

[11] Y.-C. Chang and C.-J. Lu. Oblivious polynomial evaluation and oblivious neural learning.
Theor. Comput. Sci., 341(1-3):39–54, 2005.

[12] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi. Fully homomorphic encryption over
the integers with shorter public keys. In CRYPTO, pages 487–504, 2011.

[13] I. Damgrd, J. B. Nielsen, and C. Orlandi. Essentially optimal universally composable oblivious
transfer. Cryptology ePrint Archive, Report 2008/220, 2008.

[14] F. Dav̀ı, S. Dziembowski, and D. Venturi. Leakage-resilient storage. In SCN, pages 121–137,
2010.

[15] Y. Dodis, S. P. Vadhan, and D. Wichs. Proofs of retrievability via hardness amplification. In
TCC, pages 109–127, 2009.

[16] W. Du and M. J. Atallah. Privacy-preserving cooperative scientific computations. In CSFW,
pages 273–294, 2001.

[17] M. Dubovitskaya, A. Scafuro, and I. Visconti. On efficient non-interactive oblivious transfer
with tamper-proof hardware. Cryptology ePrint Archive, Report 2010/509, 2010.

[18] P.-A. Fouque and D. Pointcheval. Threshold cryptosystems secure against chosen-ciphertext
attacks. In ASIACRYPT, pages 351–368, 2001.

[19] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudo-
random functions. In TCC, pages 303–324, 2005.

[20] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified vss and fact-track multiparty computations
with applications to threshold cryptography. In PODC, pages 101–111, 1998.

17

[21] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[22] C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In
EUROCRYPT, pages 129–148, 2011.

[23] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In STOC, pages 99–108, 2011.

[24] C. Hazay and Y. Lindell. Efficient oblivious polynomial evaluation with simulation-based
security. IACR Cryptology ePrint Archive, 2009:459, 2009.

[25] A. Juels and B. S. K. Jr. PoRs: proofs of retrievability for large files. In ACM CCS, pages
584–597, 2007.

[26] S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party computation. IACR
Cryptology ePrint Archive, 2011:272, 2011.

[27] J.-S. Kang and D. Hong. A practical privacy-preserving cooperative computation protocol
without oblivious transfer for linear systems of equations. JIPS, 3(1):21–25, 2007.

[28] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
STOC, pages 723–732, 1992.

[29] S. Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[30] P. Mohassel and M. K. Franklin. Efficient polynomial operations in the shared-coefficients
setting. In Public Key Cryptography, pages 44–57, 2006.

[31] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be practical?
In CCSW, pages 113–124, 2011.

[32] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In STOC, pages 245–
254, 1999.

[33] M. Naor and B. Pinkas. Oblivious polynomial evaluation. SIAM J. Comput., 35(5):1254–1281,
2006.

[34] M. Naor and G. N. Rothblum. The complexity of online memory checking. In FOCS, pages
573–584, 2005.

[35] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EU-
ROCRYPT, pages 223–238, 1999.

[36] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable
oblivious transfer. In CRYPTO, volume 5157 of LNCS, pages 554–571. 2008.

[37] M. O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint Archive,
Report 2005/187, 2005.

[38] R. L. Rivest. All-or-nothing encryption and the package transform. In FSE, pages 210–218,
1997.

18

[39] H. Shacham and B. Waters. Compact proofs of retrievability. In ASIACRYPT, pages 90–107,
2008.

[40] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[41] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In PKC, pages 420–443, 2010.

[42] A. Stubblefield and D. Wallach. Dagster: Censorship-resistant publishing without replication.
Technical Report TR01-380, Rice University, 2001.

[43] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption
over the integers. In EUROCRYPT, pages 24–43, 2010.

[44] M. Waldman and D. Mazières. Tangler: A censorship-resistant publishing system based on
document entanglements. In ACM CCS, pages 126–135, 2001.

[45] H. Wee. On round-efficient argument systems. In ICALP, pages 140–152, 2005.

[46] X. Yang, Z. Yu, and B. Kang. Privacy-preserving cooperative linear system of equations
protocol and its application. In WiCOM, pages 1–4, 2008.

[47] H. Zhu and F. Bao. Augmented oblivious polynomial evaluation protocol and its applications.
In ESORICS, pages 222–230, 2005.

A Possible Solutions to 3PI

A.1 Solutions via Linear Secret Sharing or Homomorphic Encryption

A natural approach to the problem of privacy-preserving polynomial interpolation, is to interpret
the inputs of each client as one equation in a system of n equations in n unknowns, the unknowns
being the coefficient of the polynomial c(X). In fact, c(X) interpolates all (xi, yi) if and only if
A · c = b for

A =

1 x1 x2
1 . . . xn−1

1
...

1 xn x2
n . . . xn−1

n

 c =

 c0
...

cn−1

 b =

y1
...
yn

 , (1)

where A is a Vandermonde matrix.
We briefly review already known solutions for the above problem. Such solutions can be based

on any instantiation of the following two primitives:

- Threshold additively homomorphic encryption (e.g., Paillier’s cryptosystem [35, 18]). Such
a scheme has the following properties: (i) To share a value a party can encrypt it using
the public key of the cryptosystem and broadcast the ciphertext; (ii) An encrypted value
can be opened using threshold decryption; (iii) Given ciphertexts Encpk (µ1), Encpk (µ2) and
plaintext µ3, parties can compute Encpk (µ1 + µ2) and Encpk (µ3 · µ1) non-interactively; (iv)
Given ciphertexts Encpk (µ1) and Encpk (µ2), parties can compute Encpk (µ1 · µ2) in a constant
number of rounds.

19

- Linear secret sharing (eg., [40, 20]). Such a scheme has the following properties: (i) Parties
can share a value in a constant number of rounds; (ii) Parties can open a value in a constant
number of rounds; (iii) Given shares of values µ1, µ2 and value µ3, parties can compute shares
of µ1 + µ2 and µ3 · µ1 non-interactively; (iv) Given shares of values µ1 and µ2, parties can
compute shares of µ1 · µ2 in a constant number of rounds.

In what follows we say that a value is shared if it is distributed according to one of the above two
methods; similarly a matrix or a polynomial are shared if all the elements of the matrix or the
coefficients of the polynomial are shared.

A solution to 3PI can be obtained using the method of [4] for inverting a matrix in constant
round. Let A · c = b be the above system of equations. Note that if the xi’s are distinct,
A is non-singular and can be inverted yielding the desired vector c = A−1 · b. Denote with
A = (A[1], . . . ,A[n]) the rows of A and with b = (b[1], . . . ,b[n]) the elements of b; party Pi
shares A[i] and b[i]. Then, the parties share a random non-zero invertible matrix R (this can
be done in constant rounds [4]), compute the shares of R · A, and reveal the result. At this
point, parties can compute the shares of (R ·A)−1 = A−1 ·R−1 and thus A−1 ·R−1 ·R = A−1

non-interactively. Finally, the shares of A−1 · b can be computed non-interactively.
The method in [4] requires a constant number of rounds and O(n3) multiplications of shared

values. (Recall that in turn each multiplication of shared values requires interaction.) An im-
provement can be found in [30] with only O(n2) multiplications. The parties share polynomials
ξ(X) =

∏n
i=1(X − xi) and ξi(X) = ξ(X)/(X − xi) (for all i = 1, . . . , n) and values ξi(xi), ξ

−1
i (xi)

(for all i = 1, . . . , n). Hence, parties can compute the shares of ξ′i(X) = ξi(X) · ξi(xi)−1 (for all
i = 1, . . . , n) and obtain the shares of c(X) =

∑n
i=1 ξ

′
i(X) · b[i].

The type of security we achieve depends on the particular sharing scheme we employ. In case of
passive adversaries, the protocols above are secure for adversary structure ∆3PI = Q2 (i.e., no two
sets in ∆3PI cover the entire set of clients). In case of active adversaries, we can tolerate ∆3PI = Q3

by using verifiable secret sharing and zero-knowledge proofs (or Q2 assuming a broadcast channel).

A.2 A Solution based on OT

A different approach to 3PI can be based on a solution to a related problem, called privacy preserving
cooperative linear system of equation (PPC-LSE). Every client Pi holds a matrix Ai ∈ Fn×n and a
vector bi ∈ Fn. The clients execute a protocol to privately compute a solution c ∈ Fn such that
(A1 + · · ·+ An) ·c = (b1 + · · ·+ bn), where, at the end of the protocol, each client learns c[i], i.e. a
single element of c. Notice that a solution to this problem implies a multi-party protocol Π3PI for
3PI, where each client Pi holds

Ai =

 0

1 xi x2
i . . . xn−1

i

0

 bi =

0
yi
0

 , (2)

and the vector c contains the coefficients of the polynomial c(X). Indeed, the sum of Ai results in
a Vandermonde matrix.

A solution to this problem exists in [16, 46] but only for the 2-party scenario (in the semi-
honest model). Next, we extend this solution to the multi-party case, assuming one of the players
is not willing to collude. Before describing the protocol, we sketch how to handle non-colluding
parties in secure computation.

20

Secure computations. In the standard definition of secure computation the adversary A is
considered as monolithic. This automatically models collusion between clients and gives strong
security guarantees. For some protocols one may be able to prove security in a more restricted
setting where some of the parties are not willing to collude. This needs to be defined explicitly;
here we adopt the formalism of [26].

Instead of considering a single adversary which gets to see the state and all the messages
exchanged by the corrupted clients, we consider a set of non-monolithic adversaries, each cor-
rupting at most one (non-colluding) party and having access only to the view of that party. A
different (monolithic) adversary controls the set of colluding clients. Security is defined by re-
quiring that indistinguishability between the real and ideal world distributions hold with respect
to the honest clients’ outputs and a single adversary’s view. In other words, for each indepen-
dent adversary Ai, the joint distribution composed of the honest clients’ outputs and Ai’s view in

the real world—denoted REAL
(i)
Π,A(z)(k, (x1, . . . , xn))—should be indistinguishable from the joint

distribution composed of the honest clients’ outputs and the simulator Zi’s output in the ideal

world—denoted IDEAL
(i)
Iφ,Z(z)(k, (x1, . . . , xn)). We refer the reader to [26, Definition 4.1] for the

details.

Protocol description. The following two sub-protocols Π1 and Π2 will serve as building blocks
for the final construction.

- The first sub-protocol Π1 allows client P1, called initiator, to privately retrieve Â := P(A1 +
. . .+ An)Q where P,Q are randomly chosen matrices.

- The second sub-protocol Π2 allows the initiator P1 to obtain privately b̂ := P(b1 + . . .+ bn).

The initiator P1 solves the linear equation Â · ĉ = b̂ and sends ĉ to client P2 (called the
assembler). P2 derives c = Q · ĉ as the final solution to the equation (A1 + . . . + An) · c =
(b1 + . . .+bn). Recall that privacy and security hold with respect to semi-honest clients P1, . . . , Pn.
In all (sub)protocols, we merely assume client P1 does not collude to ensure privacy of clients’s
inputs. The collusion of any (subset of) client(s) excluding P1 does not harm the privacy.

First sub-protocol. Π1 is described in Figure 2. We prove that protocol Π1 privately computes
ILSE1 in the semi-honest model. The ideal functionality ILSE1 receives as input Ai of client Pi and

outputs to client P1 the value P(A1 + . . .+An)Q, where P,Q
$← Fn×n. All other clients P2, . . . , Pn

receive the empty string.

Theorem A.1 (Privacy of protocol Π1) Assuming the clients P1, . . . , Pn are semi-honest, and
P1 does not collude, the protocol Π1 enables P1, . . . , Pn to privately compute functionality ILSE1.

Proof. Since client P1 is non-colluding, we need to consider a non-monolithic adversary A =
(A1,A2) as described in Section 2. At the beginning of the execution, A1 is given the index corre-
sponding to the non-colluding (corrupted) client P1, whereas A2 is given the indexes corresponding
to the (corrupted) colluding clients. We denote the latter set with J and we let H be the set of
(indexes corresponding to) honest clients; as we only consider static adversaries these sets are fixed
once the protocol starts. Moreover, since P1 and P2 have a special role in the protocol, we will
assume (without loss of generality) that these clients are always corrupted; the case when P1 and
P2 are honest can be easily derived as a special case.

21

Protocol Π1

Steps performed by clients P1, . . . , Pn. Each Pi holds Ai ∈ Fn×n.
Parameters p,m are chosen such that log(p)m = O(k).

1. Clients P1 and P2 decompose A1 (resp. A2) by sampling random matrices X
(1)
1 , . . . ,X

(1)
m

satisfying A1 = X
(1)
1 + . . .+ X

(1)
m (resp. A2 = X

(2)
1 + . . .+ X

(2)
m).

2. For each j = 1, . . . ,m, client P1 and P2 perform the following sub-steps:

(a) P1 sends (H1, . . . ,Hp) to client P2 where Hl = X
(1)
j for a secretly chosen index l ∈ [p]

and Hi (with i 6= l) sampled uniformly.

(b) P2 chooses random matrices P,Q and computes P(Hi+X
(2)
j)Q+Rj for each i = 1, . . . , p,

where Rj is a random matrix.

(c) P1 executes 1-out-of-p OT and learns P(Hl + X
(2)
j)Q + Rj = P(X

(1)
j + X

(2)
j)Q + Rj .

3. Client P2 sends to clients Pi (with i = 3, . . . , n) the matrices P and Q, and
∑m

j=1 Rj to P1.

4. Clients Pi with i = 3, . . . , n send PAiQ to client P1.

5. Client P1, after receiving all values, computes:

Â =

m∑
j=1

(P(X
(1)
j + X

(2)
j)Q + Rj)−

m∑
j=1

Rj + PA3Q + . . .+ PAnQ

= P(A1 + A2)Q + PA3Q + . . .+ PAnQ

= P(A1 + A2 + A3 + . . .+ An)Q.

Figure 2: Description of protocol Π1

In order to prove privacy, we build simulator Z = (Z1,Z2) whose output in a joint execution with
clients P1, . . . , Pn interacting with ideal functionality ILSE1 is computationally indistinguishable
from a real execution with an adversary A. In particular, for each independent adversary Ai, we
need to show that the joint distribution composed of the honest clients’ outputs and Ai’s view
in the real world is indistinguishable from the joint distribution composed of the honest clients’
outputs and the simulator Zi’s output in the ideal world.

We introduce the following notation. The view of client Pi during an execution of Π on
(x1, . . . , xn), denoted by VIEWΠ

i (x1, . . . , xn), is (xi, ωi, µ
i
1, . . . , µ

i
t), where xi is Pi’s input, ωi is

Pi’s internal coin tosses, and µij is the j-th received message by client Pi. The output of client Pi

is denoted by REALΠ
i (x1, . . . , xn) which is included by definition in its view.

As for the non-colluding client, REAL
(1)
Π1,A(z)(k, (x1, . . . , xn)) is defined by

{REALΠ1
i (A1, . . . ,An) : i ∈ H} ∪VIEWΠ1

1 (A1, . . . ,An).

In the ideal world, let REALΠ1
i be the output returned to {Pi}i∈H by the trusted party. Then,

IDEAL
(1)
ILSE1 ,Z(z)(k, (x1, . . . , xn)) is defined by

{REALΠ1
i = − : i ∈ H} ∪ Z1(A1, Â).

22

In a similar fashion, as for the colluding clients, REAL
(2)
Π1,A(z)(k, (x1, . . . , xn)) is defined by

{REALΠ1
i (A1, . . . ,An) : i ∈ H} ∪ {VIEWΠ1

j (A1, . . . ,An)}j∈J

and IDEAL
(2)
ILSE1 ,Z(z)(k, (x1, . . . , xn)) is defined by

{REALΠ1
i = − : i ∈ H} ∪ {Z2(Aj) : j ∈ J}.

Description of Simulator. We start with the description of Z1.

• Upon input (A1, Â), Z1 samples uniformly matrices P′ and Q′ which will simulate the ma-
trices P,Q.

• Afterwards, Z1 samples uniformly A′i ∈R Fn×n for i = 3, . . . , n and computes P′A′iQ
′ which

simulates the matrices PAiQ sent by client Pi. In our case, the matrices Ai have a special
structure (they are sparse and only one row is non-zero). In this case, Z1 picks randomly
xi ∈R F (for i = 3, . . . , n) and generates matrices A′i according to the special structure.

• Z1 finds A′2 (to simulate A2) by solving

P′(A1 + A′2)Q′ = Â− (P′A′3Q
′ + . . .+ P′A′nQ

′).

• Z1 generates m random matrices Y
(2)
1 , . . . ,Y

(2)
m s.t. A′2 = Y

(2)
1 + . . .+ Y

(2)
m .

• Z1 generates random matrices X
(1)
j for j = 1, . . . ,m using the same coin tosses ω that P1

uses in generating these matrices.

• Z1 generates random matrices Rj for j = 1, . . . ,m.

We define Z1(A1, Â) as

{A1, ω,P
′(X

(1)
1 + Y

(2)
1)Q′ + R1, . . . ,P

′(X(1)
m + Y(2)

m)Q′ + Rm,
m∑
j=1

Rj ,P
′A′3Q

′, . . . ,P′A′nQ
′}.

Next, we describe simulator Z2 for simulating {VIEWΠ1
j (A1, . . . ,An)}j∈J . The simulator takes

as input Aj for j ∈ J . Note that protocol Π1 provides no output to client Pj (j ∈ J). Thus, Z2

simply generates m · p uniformly chosen matrices (H′1,1, . . . ,H
′
1,p), . . . , (H

′
m,1, . . . ,H

′
m,p), uses the

randomness ω to sample X
(2)
1 , . . . ,X

(2)
m and defines the view of client P2 as {A2, ω,X

(2)
1 , . . . ,X

(2)
m ,

(H′1,1, . . . ,H
′
1,p), . . . , (H

′
m,1, . . . ,H

′
m,p)}.

For the view of the remaining clients in J , the simulator Z2, upon input {Aj}j∈J of clients Pj ,
samples uniformly matrices P′ and Q′ which will simulate the matrices P,Q. Therefore, we define
the view of Pj as {Aj , ω, (P

′,Q′)} for j ∈ J and j 6= 2.

Analysis. Protocol Π1 privately computes P(A1 + . . .+ An)Q if the following statements hold:

1. REAL
(1)
Π1,A(z)(k, (x1, . . . , xn)) ≡c IDEAL

(1)
ILSE1 ,Z(z)(k, (x1, . . . , xn));

2. REAL
(2)
Π1,A(z)(k, (x1, . . . , xn)) ≡c IDEAL

(2)
ILSE1 ,Z(z)(k, (x1, . . . , xn)).

23

Statement (1). Recall that the view of client P1 in the protocol is defined by

VIEWΠ1
1 (A1, . . . ,An) = {A1, ω,P(X

(1)
1 + X

(2)
1)Q + R1, . . . ,

P(X(1)
m + X(2)

m)Q + Rm,
m∑
j=1

Rj ,PA3Q, . . . ,PAnQ}.

Since P′,Q′ are sampled uniformly from all matrices of size n×n, the simulation of matrices P,Q is

statistically close. The same argument holds for matrices Y
(2)
1 , . . . ,Y

(2)
m simulating X

(2)
1 , . . . ,X

(2)
m

perfectly. All matrices A′i are built according to the predefined structure and thus, are sampled from

the same distribution as Ai. Hence, both random variables Z1(A1, Â) and VIEWΠ1
1 (A1, . . . ,An)

are (computationally) indistinguishable.3

Statement (2). The view of client P2 in the protocol is

VIEWΠ1
2 (A1, . . . ,An) = {A2, ω,X

(2)
1 , . . . ,X(2)

m , (H1,1, . . . ,H1,p), . . . , (Hm,1, . . . ,Hm,p)}.

However, since matrices H′’s are randomly chosen, we cannot conclude immediately that Z2 sim-
ulates VIEWΠ1

2 (A1, . . . ,An) correctly. In fact, the matrices H’s in the real protocol are not all
random, but satisfy the following property: There exists a vector l = (l1, . . . , lm) (with 1 ≤ li ≤ p)
such that

∑m
i=1 Hi,li = A1. However, it is not possible to identify such a vector with probability

better than 1/pm which is negligible since log(p)m = O(k). We can thus conclude that the output
produced by Z2 is computationally indistinguishable from the view of party P2.

Similarly, the view of Pj (for j > 2 and j ∈ J) is defined by VIEWΠ1
j (A1, . . . ,An) =

{Aj , ω, (P,Q)} which is indistinguishable from the output {Aj , ω, (P
′,Q′)} computed by Z2 be-

cause P′,Q′ are sampled uniformly from all matrices of size n× n as matrices P,Q are. Thus, (2)
holds, as well. �

Second sub-protocol. Π2 is quite similar to Π1 and is described in Figure 3. Basically, protocol
Π2 privately computes ILSE2 in the semi-honest model, where ideal functionality ILSE2 , upon input

bi of client Pi, outputs to client P1 the value b̂ := P(b1 + . . . + bn), with P
$← Fn×n. All other

clients P2, . . . , Pn receive the empty string.

Theorem A.2 (Privacy of protocol Π2) Assuming the clients P1, . . . , Pn are semi-honest, and
P1 does not collude, the protocol Π2 enables P1, . . . , Pn to privately compute functionality ILSE2.

The proof goes along the lines of the proof of Theorem A.1 and is therefore omitted.

The final protocol. Given both sub-protocols Π1 and Π2, we build protocol Π3PI for 3PI as
follows.

1. For i ∈ [n], client Pi computes Ai and bi as

Ai =

 0

1 xi x2
i . . . xn−1

i

0

 bi =

0
yi
0

 . (3)

3We are treating here the underlying OT functionality as ideal; more formally one could transform any distinguisher
into an adversary breaking OT.

24

Protocol Π2

Steps performed by clients P1, . . . , Pn. Each Pi holds a vector bi ∈ Fn.
Parameters p,m are chosen such that log(p)m = O(k).

1. Clients P1 and P2 decompose b1 (resp. b2) by sampling random vectors x
(1)
1 , . . . ,x

(1)
m satisfying

b1 = x
(1)
1 + . . .+ x

(1)
m (resp. b2 = x

(2)
1 + . . .+ x

(2)
m).

2. For each j = 1, . . . ,m client P1 and P2 perform the following sub-steps:

(a) P1 sends (h1, . . . ,hp) to client P2 where hl = x
(1)
j for a secretly chosen index l ∈ [p] and

hi (with i 6= l) sampled uniformly.

(b) P2 chooses random matrices P and computes P(hi + x
(2)
j) + rj for each i = 1, . . . , p,

where rj is a random vector.

(c) P1 executes 1-out-of-p OT and learns P(hl + x
(2)
j) + rj = P(x

(1)
j + x

(2)
j) + rj .

3. Client P2 sends to clients Pi (with i = 3, . . . , n) the matrix P, and
∑m

j=1 rj to P1.

4. Clients Pi with i = 3, . . . , n send Pbi to client P1.

5. Client P1, after receiving all values, computes:

b̂ =

m∑
j=1

(P(x
(1)
j + x

(2)
j) + rj)−

m∑
j=1

rj + Pb3 + . . .+ Pbn

= P(b1 + b2) + Pb3 + . . .+ Pbn

= P(b1 + b2 + b3 + . . .+ bn).

Figure 3: Description of protocol Π2

2. Clients P1, . . . , Pn execute protocol Π1 such that only P1 privately computes Â = P(A1 +
. . .+ An)Q. Clients P2, . . . , Pn have no knowledge about Â.

3. Clients P1, . . . , Pn execute protocol Π2 such that only P1 privately computes b̂ = P(b1 + . . .+
bn). Clients P2, . . . , Pn have no knowledge about b̂. Here, P2 chooses the same matrix P as
in the previous step.

4. P1 solves the linear equation Â · ĉ = b̂. If a solution ĉ exists, hands it over to client P2.
Otherwise, the protocol is aborted.

5. P2 computes c = Q · ĉ and broadcast vector c to all clients P1, P3, . . . , Pn.

6. The vector c contains the coefficients of the sought-after polynomial c(·).

Theorem A.3 (Privacy of protocol Π3PI) Assuming clients P1, . . . , Pn are semi-honest, and P1

does not collude, the protocol Π3PI enables P1, . . . , Pn to privately compute functionality I3PI, i.e.,
it allows clients Pi with input (xi, yi) ∈ F to privately compute polynomial c(·) such that c(xi) = yi
for all i ∈ [n].

We need to provide simulators Z1,Z2 whose output is computationally indistinguishable from the
view of clients P1 and P2, . . . , Pn in a real execution of protocol Π3PI. This is straightforward
through the simulators of the sub-protocols Π1 and Π2. Hence, we omit the formal proof here.

25

Clients Download Sending Additions Multiplications

P1 n+ 1 m · p m+ n− 1 0
P2 m · p 1 + 2 (broadcast) (2p+ 1) +m 2m · p

P3, . . . , Pn 2 1 0 2

Table 1: Efficiency estimates for Π1 w.r.t. matrices of size n2

Efficiency. When estimating computational and communication costs, we must take into consid-
eration that some clients assume specific roles (e.g., P1 as initiator and P2 as assembler). Table 1
provides an overview for sub-protocol Π1. Protocol Π2 has similar complexity with the exception
that computations are performed on vectors of size n rather than on matrices of size n2. Regardless,
all operations are performed in the finite field F.

Note also that clients P1 and P2 execute two instances of 1-out-of-p OT [9]. Choosing p = 2
and m = O(k), where k denotes the security parameter, allows to instantiate our protocol with the
usage of the well-investigated 1-out-of-2 OT [37]. Efficient constructions for OT can be found, for
instance, in [13, 36, 17]. Note that our construction’s security holds against semi-honest adversaries.
For this reason we merely need an OT scheme secure against such adversaries.

Client P1 solves also one linear equation, and P2 executes one multiplication before the solution
vector is broadcasted to every client. The overall complexity for P1 is O(n + k), and O(k) for P2

while being constant for clients P3, . . . , Pn. Thus, we have O(n3 + n2k) in terms of computational
complexity since operations are performed on either matrices of size n2 or vectors of size n. Effi-
ciency can be improved by exploiting the fact that matrices Ai’s are sparse. We do not elaborate
on this further.

We compare the efficiency of our protocol with previous solutions for PPC-LSE. Given the
two-party protocols of [16, 46], one can obtain a scheme for the case of n parties by running the
underlying two-party solution

(
n
2

)
times; this approach results in a high communication complexity

due to the high number of OT executions. A related work [27] addresses PPC-LSE in the multi-
party setting in the so-called “commodity-server model”. Here, parties derive the solutions to a
PPC-LSE instance with the help of a (possibly untrusted) commodity-server. The solution of [27]
has a lower communication complexity of O(t · n), where 1 ≤ t ≤ n− 1 is a bound on the number
of parties allowed to collude. (We stress that, in any case, the commodity-server is never allowed
to collude so that there must be at least 2 non-colluding parties.)

In contrast, our scheme yields communication complexity O(n+k) and needs to assume a single
non-colluding party. Moreover, due to the asymmetric structure of our construction, resources-
limited clients may be in favor of playing the roles of P3, . . . , Pn.

B Possible Solutions to SPE

A related notion to SPE is oblivious polynomial evaluation (OPE). The difference is that, in OPE,
the client does not learn anything about c(X), apart from the value c(x) (i.e., ν(c) is the empty
string).

Clearly any protocol for OPE would work also for SPE. The most efficient instantiation of OPE
(due to Hazay and Lindell [24]) is based on Paillier’s encryption and runs in a constant number
of rounds; the computational complexity consists of 1297n+ 4160 exponentiations (where n is the
degree of the polynomial held by the server) and the communication complexity is O(s · n · |N |),

26

Pi(1
λ, x, pk , sk) S(1λ, n, c(·), pk , evk)

e← Encpk (x)
e−→

e∗ = Evalevk(c(·), e)
e∗←−

d∗ = Decsk (e∗)

Figure 4: A construction of SPE based on SHE.

where s is a security parameter (that should be set to 160) and N is the RSA modulus.
Since SPE is easier than OPE, we expect to devise more efficient solutions. We sketch some

options below:

- Näıve approach. The trivial solution is to simply “leak” the entire polynomial c(·) to the
client. This solution requires the transmission of n field elements and the client to evaluate a
polynomial over a large field.

- Homomorphic encryption. If we use an additive homomorphic encryption scheme, e.g. Pail-
lier [35], then the client could send the powers {xi}n−1

i=1 encrypted and the server could evaluate
c(x) in encrypted form (under Pi’s public key). Communication complexity is similar as in
the näıve approach but now Pi does not have to compute c(x).

- Somewhat homomorphic encryption. The most effective approach is to rely on a (somewhat)
homomorphic encryption scheme (Gen,Enc,Dec,Eval) that is able to perform up to n mul-
tiplications and an arbitrarily large number of additions. Here, client Pi sends the point x
encrypted and the server simply evaluates c(x) in encrypted form (under Pi’s public key)
using the Eval procedure. The complete protocol is shown in Figure 4.

We have the following theorem.

Theorem B.1 Assume the somewhat homomorphic encryption scheme (Gen,Enc,Dec,Eval) is CPA-
secure. Then, the protocol ΠSPE of Figure 4 securely realizes ISPE in the presence of a static, active
adversary.

Before proceeding to the proof, we recall the syntax and security definitions for fully-homomorphic
encryption (FHE), pioneered by Gentry [21] and studied intensively in the last few years [22, 31,
43, 41, 8, 12, 7, 6]. Informally, FHE is an additively and multiplicatively homomorphic encryp-
tion scheme that makes it possible to add and multiply encrypted messages without resorting to
decryption.

A homomorphic (public key) encryption scheme is a collection of the following algorithms HE =
(Gen,Enc,Dec,Eval), defined below.

Key Generation. Upon input a security parameter 1k, algorithm Gen outputs a secret and public
key (sk , pk) and an evaluation key evk.

Encryption. Upon input a public key pk and a message µ, algorithm Enc outputs a ciphertext e.

Decryption. Upon input a secret key sk and a ciphertext e, algorithm Dec outputs a message µ.

27

Evaluation. Upon input an evaluation key evk, a function c : {0, 1}∗ → {0, 1}∗ and a set of n
ciphertexts e1, . . . , en, algorithm Eval outputs a ciphertext ec.

Definition B.2 (CPA security) A homomorphic scheme HE is CPA-(t, ε)-secure if for any al-
gorithm A that runs in time t, for t = t(k), it holds that

|Pr(A(pk , evk,Encpk (µ0)) = 1)− Pr(A(pk , evk,Encpk (µ1)) = 1)| ≤ ε,

where (pk , evk, sk)← Gen(1k), and (µ0, µ1)← A(1λ, pk) is such that |µ0| = |µ1|.

Definition B.3 (C-homomorphism) Let C = {Ck}k∈N be a class of functions (together with
their respective representations). A scheme HE is C-homomorphic if for any sequence of functions
ck ∈ Ck and respective inputs µ1, . . . , µn, where n = n(k), it holds that

Pr(Decsk (Evalevk(c, e1, . . . , en)) 6= c(µ1, . . . , µn)) = negl(k),

where the probability is taken over the random choice of (pk , evk, sk)← Gen(1λ) and ei ← Encpk (µi).

Note that the standard properties of additive or multiplicative homomorphism, satisfied for
instance by RSA, Paillier, or ElGamal, are captured when the class C contains only addition or
multiplication, respectively.

An homomorphic encryption scheme is said to be compact if the output length of Evalevk(·)
is bounded by a polynomial in k (regardless of the function c and of the number of inputs). An
encryption scheme is fully-homomorphic when it is both compact and homomorphic with respect
to the class C of all arithmetic circuits over a finite field F (thus both addition and multiplication
over F).

A somewhat homomorphic encryption (SHE) scheme allows to compute functions c(·) of “low
degree” and it is used as a subroutine of FHE (applying a “bootstrapping” or re-linearization
technique of [7, 6] to perform an unbounded number of operations). We use SHE in our schemes
since it is significantly faster than FHE.

Proof (Proof of Theorem B.1). Since we only require security for clients’ input and output, we only
need to deal with corruptions of server S. Intuitively, an adversary A corrupting S does not learn
anything on the value retrieved by Pi because it is encrypted. Consider the following simulator Z,
controlling the server S in the ideal world.

1. Z is given as input c(·), the number of clients n, the security parameter 1λ and a pair (pk , evk)
with (pk , evk, sk)← Gen(1k). Then, Z invokes A on these inputs.

2. Z chooses a random point x′
$← F, computes e′ ← Encpk (x′), and sends the result to A.

3. Z receives e∗ from A. The simulator checks whether e∗ = Evalevk(c(·), e′);4 if this is the case,
it sends ĉ(·) = c(·) as input to the trusted party, otherwise it sends ⊥.

4. Finally, Z outputs whatever A outputs.

4We stress that the simulator can perform this check only because the function c(·) is not randomized. See also
Remark B.4.

28

We now show, via a hybrid argument, that for any c(·) ∈ F[X] and any x ∈ F, and for any auxiliary
input z {

IDEALISPE,Z(z)(k, (c(·), x))
}
k∈N ≡c

{
REALΠSPE,A(z)(k, (c(·), x))

}
k∈N .

Hybrid H1
A(z)(k, (c(·), x)): In the first hybrid experiment, we remove the trusted party and let Z1

interact directly with Pi. Essentially Z1 is identical to Z, but it receives the correct input x
from Pi. Hence, Z1 extracts ĉ as Z would do and uses ĉ(x) as output of the trusted party.
Then Z1 outputs Z’s output together with ĉ(x). Note that this experiment is distributed
exactly as an execution in the ideal world, because Z1 just plays all the roles by itself. Thus,{

IDEALISPE,Z(z)(k, (c(·), x))
}
k∈N ≡

{
H1
A(z)(k, (c(·), x))

}
k∈N

.

Hybrid H2
A(z)(k, (c(·), x)): In the second hybrid experiment, we replace Z1 with Z2 which com-

putes the ciphertext e using the value x ∈ F it receives from Pi rather than a random x′. We
now show that any distinguisher able to tell apart the two experiments can be turned into
an adversary B that breaks the semantic security of the encryption scheme. The adversary B
receives as input a pair (pk , evk) and chooses messages µ0 = x and µ1 = x′; let eb denote the
encryption corresponding to µb. From this point on, B acts exactly like Z2, but it forwards
eb instead of computing the ciphertext e. Clearly, if eb is an encryption of x, the output
generated by B is distributed exactly as in H2

A(z); on the other hand, if eb is an encryption of

x′, the output generated by B is distributed exactly as in H1
A(z). Since the encryption scheme

is semantically secure, we must conclude that the two experiments are computationally close.

Hybrid H3
A(z)(k, (c(·), x)): In the third experiment, we define a simulator Z3 that is identical to

Z2, but computes the output of Pi as Pi would do in a real execution of the protocol. Hence,
instead of computing ĉ(x) (provided that e∗ = Evalevk(c(·), e′)), it decrypts e∗ (obtaining
d∗ = Decsk (e∗)) and outputs d∗.

To conclude the proof, it suffices to observe that the output distribution produced by Z3 is identical
to the one in a real execution of ΠSPE. Hence, REAL and IDEAL must be computationally close.

It is easy to show that ΠSPE hides the polynomial and its input even to a man-in-the-middle
adversary since only encrypted values are transmitted. We omit a formal treatment of this case.

�

Remark B.4 (On Z) In the above proof the simulator is asked to check whether a given pair
of ciphertexts (e′, e∗) satisfies Evalevk(c(·), e′) = e∗. In order to do so, Z needs first to compute
ei = Encpk (ci · xi−1) (for all i = 1, . . . , n) and finally evaluate

∑
i ei = Encpk (c(x)). However, this

strategy will work only provided that the result of the homomorphic computation is deterministic, in
the sense that it should be possible, for any constant ci ∈ F, to compute ciphertext Encpk (ci · xi−1)
from Encpk (x) without encrypting ci. (This is the case for instance in Paillier’s scheme.) When
such a property is not satisfied, the randomness used to encrypt the coefficients needs to be published
as a common reference string.

Efficiency improvements & trade-offs. The efficiency of the protocol of Figure 4, in reality,
depends on the SHE scheme that is employed. For instance, if we consider the schemes in [7, 6], we
observe that the ciphertext e∗ will be larger as we increase the number of multiplications allowed.

29

Thus, given the current state of efficiency of SHE schemes, the protocol of Figure 4 is less efficient
than the solution based on Paillier [35]. (Indeed, with [35], the server would return always an
element of Z∗N2 , independently of the number of homomorphic operations performed.)

The following simple observation about the homomorphic encryption approach allows us to
reduce the communication complexity, while keeping the same computational complexity for Pi.
Let n = (n1, . . . , n`)2 be the binary representation of the exponent n, for ` = dlog2 ne, so that
n =

∑`
i=0 2ini. It is easy to verify that it is sufficient for the client to transmit {Encpk (x2i)}`i=0

to allow S to compute (homomorphically) {Encpk (xj)}nj=1 and thus Encpk (c(x)). This reduces the
communication from O(n) to O(log n).

If we allow the client to work a bit more, we can reduce communication further. In Appendix B.1
we present a method to encode a polynomial c(X), which allows the client to evaluate Encpk (c(x))
by uploading/downloading only d

√
n e ciphertexts. When combined with the previous trick, this

drops the communication complexity from O(n) down to O(log
√
n).

Yet another trade-off is possible if we assume that Pi and S share a factorization of the polyno-
mial c(X), say c(X) =

∏
j γj(X) for polynomials γj(·) of degree δj such that

∑
j δj = n−1.5 In this

case, the client works more since it has to: (i) compute and send the ciphertexts {Encpk (xi)}δi=1,
for δ = max(δj); (ii) download {Encpk (γj(x))}j ; (iii) decrypt and multiply the resulting plaintexts.

B.1 Communication-Efficient Encoding of Polynomials

Let c(X) = cn−1X
n−1 + . . .+ c1X+ c0 be a polynomial of degree n−1 with coefficients c0, . . . , cn−1

from a field F. For simplicity, assume there exists an element m ∈ N such that m2 = n − 1 (i.e.,
m =

√
n− 1). Then, the algorithm described in Figure 5, upon input coefficients c0, . . . , cn−1,

outputs polynomials ζ0(·), . . . , ζm(·) each of maximum degree m such that c(X) = ζm(X) ·Xm·m +
ζm−1(X) ·Xm(m−1) + . . .+ ζ1(X) ·Xm + ζ0(X).

Input: Coefficients cn−1, . . . , c0

1. Compute m =
√
n− 1

2. For i = 0 to m− 1 define

ζi(X) := cim + cim+1 ·X + . . .+ c(i+1)m−1 ·Xm−1

3. Define ζm(X) := cn−1

Output: Polynomials ζm(X), . . . , ζ0(X)

Figure 5: Advantageous encoding of polynomial c(X). The encoding algorithm can be easily
modified to handle values n− 1 which do not have a root in N.

The correctness of the encoding algorithm of Figure 5 can be easily verified. We need to show

5It is well-known that a random polynomial of degree n over a field of prime order is irreducible with probability
close to 1/n. Clients must agree on the factorization of c(·) at the end of the entanglement phase.

30

cn−1X
n−1 + . . .+ c1X + c0 = ζm(X) ·Xm·m + . . .+ ζ1(X) ·Xm + ζ0(X). We see that ζi(X) ·Xim =

cimX
im + . . .+ c(i+1)m−1X

(i+1)m−1 for all i = 1, . . . ,m− 1. That is,

ζi(X) ·Xim = (cim + cim+1 ·X + . . .+ c(i+1)m−1 ·Xm−1) ·Xim

= cimX
im + cim+1 ·Xim+1 + . . .+ c(i+1)m−1 ·X(i+1)m−1.

Now, by adding all (sub)terms we have c(X) =
∑m

i=0 ζi(X)Xim. Thus, correctness is provided.
Back to our construction from Section 5, after handing the clew c (which is a polynomial of

degree n−1) over to the server, the server encodes c as described above to enhance the recovery pro-
cess. Whenever a client ask for its file, say mapped by pre-image x, the server simply evaluates all
polynomials ζm, . . . , ζ0 given the ciphertext of all powers of the input up to degree m = d

√
n− 1 e.

Note that it is not necessary to apply multiplications over encrypted values, so that any additive
homomorphic encryptions scheme will work. All encrypted evaluated polynomials are then trans-
mitted to the client who decrypts m ciphertexts and evaluates c(x) accordingly, given the values
ζ0(x), . . . , ζm(x).

C Extension to the UC-Model

The protocols presented in the previous sections are analyzed in the standalone setting where only
sequential composition is allowed. In the context of universally composable (UC) security, protocols
are analyzed in a more general setting where sub-protocols are run concurrently with other secure
and insecure protocols. The composition theorem of [10] ensures that a protocol which is UC
maintains its security properties even in such a general scenario.

We briefly explain how to analyze our constructions in the UC-model. The definition of universal
composability is formalized by considering an additional adversarial entity called the environment E .
This environment generates the inputs to all parties, reads all outputs, and in addition interacts with
the adversary in an arbitrary way throughout the computation. A protocol Π securely computes
an ideal functionality I in this framework if, for any adversary A that interacts with the parties
running the protocol, there exists an ideal adversary Z that interacts with the trusted party, so
that no environment E can distinguish the case that it is interacting with A and the parties running
Π, or with Z in the ideal world with a trusted party. In this case, we say that Π UC-realizes I. We
remark that secure two-party computation of most interesting functionalities in this model requires
an additional trusted setup assumption such as a common reference string.

We can easily extend Theorem 5.1 to prove that our main construction from Section 5 UC-
realizes IESS in the presence of active, static adversaries. In the proof, the communication with the
environment can be handled as follows: Every input value that Z receives from E is written on A’s
input tape (as if coming from A’s environment). Similarly, every output value written by A on its
output tape is copied to Z’s own output tape (to be read by Z’s environment E). Apart from this,
the same analysis as in the current proof will work, because all the interactions between Z and
Z3PI and ZSPE are straight-line (i.e., Z does not use rewinding). One exception is the rewinding
extractor EP∗ which is invoked in the proof of Claim 5.2. However, the extractor is called only
internally during the reduction to semantic security and is not directly invoked by the simulator Z;
so, this rewinding procedure does not affect the proof in the UC-model. Note also that in protocol
ΠSPE we use a PKI to validate Pi’s public key (see Section 5.2). In case we do not do this, Pi needs
to transmit the value pk and prove in zero-knowledge it knows the corresponding secret key sk .

31

Then, ZSPE needs to use rewinding in order to extract the secret key and maintain the simulation.
In such a case, to prove UC-security, we would need a UC zero-knowledge argument of knowledge
for the key generation procedure in question.

32

	Introduction
	Our Contributions
	Alternative Solutions
	Other Related Work

	Preliminaries
	Entangled Encoding Schemes
	Entangled Storage of Data
	Ideal Implementation of Data Entanglement
	Entangled Storage Scheme
	The Security Definition

	Construction
	Privacy-Preserving Polynomial Interpolation
	Secure Polynomial Evaluation
	Final Protocol

	Possible Solutions to 3PI
	Solutions via Linear Secret Sharing or Homomorphic Encryption
	A Solution based on OT

	Possible Solutions to SPE
	Communication-Efficient Encoding of Polynomials

	Extension to the UC-Model

