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Abstract

Entangled cloud storage enables a set of clients to “entangle” their files into a single clew to
be stored by a (potentially malicious) cloud provider. The entanglement makes it impossible to
modify or delete significant part of the clew without affecting all files encoded in the clew. A
clew keeps the files in it private but still lets each client recover his own data by interacting with
the cloud provider; no cooperation from other clients is needed. At the same time, the cloud
provider is discouraged from altering or overwriting any significant part of the clew as this will
imply that none of the clients can recover their files.

We provide theoretical foundations for entangled cloud storage, introducing the notion of
an entangled encoding scheme that guarantees strong security requirements capturing the prop-
erties above. We also give a concrete construction based on privacy-preserving polynomial
interpolation, along with protocols for using the encoding scheme in practice.

Protocols for cloud storage find application in the cloud setting, where clients store their
files on a remote server and need to be ensured that the cloud provider will not modify or delete
their data illegitimately. Current solutions, e.g., based on Provable Data Possession and Proof of
Retrievability, require the server to be challenged regularly to provide evidence that the clients’
files are stored at a given time. Entangled cloud storage provides an alternative approach where
any single client operates implicitly on behalf of all others, i.e., as long as one client’s files are
intact, the entire remote database continues to be safe and unblemished.
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1 Introduction

The terminology “cloud computing” refers to a paradigm shift in which applications from a server
are executed and managed through a client’s web browser, with no installed client version of an
application required. This paradigm—also known as the software as a service paradigm—has
generated new intriguing challenges for cryptographers. In this paper we deal with the problem of
cloud storage, where clients store their files on remote servers. Outsourcing data storage provides
several benefits, including improved scalability and accessibility, data replication and backup, and
considerable cost saving.

Nevertheless, companies and organizations are still reluctant to outsource their storage needs.
Files may contain sensitive information and cloud providers can misbehave. While encryption can
help in this case, it is utterly powerless to prevent data corruption, whether intentional or caused
by a malfunction. Indeed, it is reasonable to pose the following questions: How can we be certain
the cloud provider is storing the entire file intact? What if rarely-accessed files are altered? What
if the storage service provider experiences Byzantine failures and tries to hide data errors from the
clients? Can we detect these changes and catch a misbehaving provider?

Existing solutions. It turns out that the questions above have been studied extensively in the
last few years. Proof-of-storage schemes allow clients to verify that their remote files are still
pristine even though they do not possess any local copy of these files. Two basic approaches
have emerged: Provable Data Possession (PDP), introduced by Ateniese et al. [2], and Proof of
Retrievability (PoR), independently introduced by Juels and Kaliski [17] (building on a prior work
by Naor and Rothblum [21]). They were later extended in several ways in [24, 11, 3]. In a PDP
scheme, file blocks are signed by the clients via authentication tags. During an audit, the remote
server is challenged and proves possession of randomly picked file blocks by returning a short proof
of possession. The key point is that the response from the server is essentially constant, thanks to
the homomorphic property of authentication tags that makes them compressible to fit into a short
string. Any data alteration or deletion will be detected with high probability. In POR, in addition,
error correction codes are included along with remote file blocks. Now, the server provides a proof
that the entire file could potentially be recovered in case of hitches.

A novel approach. The main drawback of proof-of-storage schemes is that a successful run of an
audit provides evidence about the integrity of a remote file only at a given time. As a consequence,
all users must challenge the storage server regularly to make sure their files are still intact. In this
paper, we propose a novel solution to the problem of cloud storage. The main idea is to make
altering or deleting files extremely inconvenient for the cloud provider. To achieve this feature, we
consider a setting where many clients encode all their files into a single digital clew c, an “entangled
encoding”, that can be used as a representation of all files and be stored on remote and untrusted
servers. The goal is to ensure that any significant change to c is likely to disrupt the content of all
files. Roughly speaking, an entangled encoding should satisfy the following properties: (i) every
client which took part to the entanglement generation process should be able to recover its original
file from c; (ii) if the server alters c in any way, no clients will be able to retrieve its original file (this
requirement is called all-or-nothing-integrity). The entanglement procedure is distributed across
the clients and a single client can retrieve its own file by interacting with the server alone, without
the need of any trusted entity. We refer to our framework as entangled storage.
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We believe that our approach is useful for a number of reasons:

1. As in PDP/POR, the cloud provider is strongly discouraged from misbehaving. In addition,
any single client implicitly operates on behalf of all clients in the sense that the client, while
inspecting the soundness of his own files, implicitly checks for the integrity of the files of
all other users. Thus, the disincentive to misbehave in entangled storage is stronger than in
PDP/POR since a dishonest cloud provider will likely be prosecuted by all users rather than
only by the affected ones.

2. From a practical perspective, users within our framework do not have to keep constantly
querying the cloud provider with proof-of-storage challenges as in PDP/POR schemes. No
user has to explicitly request a file to check for its integrity. As long as other clients are able
to retrieve their own files, everybody else in the system will be ensured that their files are
intact.

3. Whenever a client fails to recover a file, it could be because the server deleted or modified it
or is simply refusing to hand it over. A dishonest client could in principle frame the cloud
provider by falsely claiming his files are unrecoverable. Fortunately, though, any other client
can establish the truth and expose the villain by successfully retrieving any of his own files.
This property cannot be realized within existing PDP/POR schemes where the cloud provider
is always susceptible to blackmail.

The advantages described above come at a price: Users must coordinate and run an expensive
procedure to build the entanglement. That said, the entangled storage framework can also be used
by a single user to entangle his own files and then outsource the related clew to the cloud. This way,
no coordination step is required, leading to a significantly more efficient scheme. Quite remarkably,
this allows the user to verify that all files are still in place by recovering just one of them. For
instance, as long as the user downloads regularly accessed files (e.g., family pictures), he can be
sure any other files are still intact, even those rarely retrieved (e.g., tax returns).

A note on the terminology. Entanglement usually refers to a physical interaction between two
particles at the quantum level. Even if separated, the particles are in a quantum superposition
until a measurement is made, in which case both particles assume definitive and correlated states.
Analogously, in our more modest context, two entangled files are somehow linked together: A file
that is intact implies the other must also be intact. Any single change to one file, destroys the
other.

1.1 Our Contributions

The main contribution of this paper is to provide rigorous foundations for data entanglement. More
in detail, our results and techniques are outlined below.

Entangled encodings. As a stepping stone towards the construction of entangled storage, we
introduce the notion of an entangled encoding scheme, which we believe it is of independent interest.
Informally, such an encoding consists of an algorithm Encode that takes as input n strings f1, . . . , fn
(together with a certain amount of randomness r1, . . . , rn), and outputs a single codeword c which
“entangles” all the input strings. The encoding is efficiently decodable, i.e., there exists an efficient
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algorithm Decode that takes as input (c, ri, i) and outputs the file fi together with a verification
value ξ. Since only ri is required to retrieve fi (we don’t need rj , j 6= i), we refer to this as “local
decodability”. The verification value is a fixed function of the encoded string and the randomness.

In addition, the encoding satisfies two main security properties. First off, it is private in the
sense that even if an adversary already knows a subset of the input strings and randomness used
to encode them, the resulting encoding reveals no additional information about any of the other
input strings other than what can be derived from the knowledge of this subset. Second, it is all-
or-nothing in the sense that whenever an adversary has “large” uncertainty about c (i.e., a number
of bits linear in the security parameter), he cannot design a function that will answer any decoding
query correctly. See Section 3 for a precise definition.

We provide a concrete instantiation of an entangled encoding scheme based on polynomials over
a finite field F. Here, the encoding of a string fi is generated by choosing a random pair of elements
(si, xi) ∈ F2 and defining a point (xi, yi = fi + si). The entanglement of (f1, . . . , fn) consists of
the unique polynomial c(·) of degree n− 1 interpolating all of (xi, yi). In Section 3 we show that,
if the field F is large enough, this encoding satisfies the all-or-nothing integrity property for a
proper choice of the parameters. The latter holds even in case the adversary is computationally
unbounded.

Simulation-based security. Next, we propose a simulation-based definition of security for en-
tangled storage in the cloud setting, in the model of universal composability [8] (UC). In the UC
paradigm, security of a cryptographic protocol is defined by comparing an execution in the real
world, where the scheme is deployed, with an execution in an ideal world, where all the clients give
their inputs to a trusted party which then computes the output for them.

Roughly, the ideal functionality IESS that we introduce captures the following security require-
ments (see also the discussion in Section 4). (1) Privacy of entanglement: The entanglement
process does not leak information on the file fi of client Pi, neither to other (possibly malicious)
clients nor to the (possibly malicious) server; (2) Privacy of recovery: At the end of each recovery
procedure, the confidentiality of all files is still preserved; (3) All-or-nothing integrity: A malicious
server overwriting a significant part of the entanglement is not able to answer recovery queries from
any of the clients. Intuitively, the latter property says that the probability that a cloud provider
answers correctly a recovery query for some file is roughly the same for all files which are part of
the entanglement: such probability is either one (in case the server did not modify the clew), or
negligibly close to zero (in case the entanglement was modified).

We choose to prove security in the UC model as this gives strong composition guarantees.
However, some technical difficulties arise as a result. First, we face the problem that if the server
is corrupt it may choose to overwrite the encoding we give it with something else, and so we may
enter a state where the server’s uncertainty about the encoding is so large that no request can
be answered. Now, in any simulation based definition, the simulator must clearly know whether
we are in a such a state. But since the server is corrupt we do not know how it stores data and
therefore it is not clear how the simulator could efficiently compute the server’s uncertainty about
the encoding. In the UC model it is even impossible because the data could be stored in the state
of the environment which is not accessible to the simulator.

We solve this problem by introducing a “memory module” in the form of an ideal functionality,
and we store the encoded data only inside this functionality. This means that the encoding can only
be accessed via commands we define. In particular, data cannot be taken out of the functionality
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and can only be overwritten by issuing an explicit command. This solves the simulator’s problem
we just mentioned. A corrupt server is allowed, however, to specify how it wants to handle retrieval
requests by giving a (possibly adversarial) machine to the functionality, who then will let it execute
the retrieval on behalf of the server.

We emphasise that this memory functionality is not something we hope to implement using
simpler tools, it should be thought of as a model of an adversary that stores the encoded data
only in one particular location and will explicitly overwrite that location if it wants to use it for
something else.

A protocol realizing IESS. Finally we design a protocol implementing our ideal functionality
for entangled storage. The scheme relies on the entangled encoding scheme based on polynomials in
a finite field F described above, and on a somewhat homomorphic encryption scheme with message
space equal to F. Each client has a file fi (represented as a field element in F), samples (si, xi)← F2,
defines (xi, yi = fi + si), and keeps a hash θi of the original file. During the “entanglement phase”,
the clients run a secure protocol for computing the coefficients of the polynomial c(·) of minimum
degree interpolating all of (xi, yi). This can be done by using standard techniques relying on linear
secret sharing (see Appendix A). The polynomial c(·) is stored in the ideal functionality for the
memory module, which can be accessed by the server.

Whenever a client wants to recover its own file, it forwards to the server a ciphertext e cor-
responding to an encryption of xi. The server returns an encryption of c(xi), computed trough
the ciphertext e and using the homomorphic properties of the encryption scheme, together with a
proof that the computation was performed correctly.1 The client can verify the proof, decrypt the
received ciphertext in order to obtain yi and thus fi = yi − si, and check that the hash value θi
matches.

Our final protocol is a bit more involved than the above, as clients are not allowed to store the
entire (xi, si) (otherwise they could just store the file fi in the first place); however this can be
easily solved by having the client store only the seed σi of a pseudo-random generator G(·), and
recover (xi, si) as the output of G(σi). We refer to Section 5 for the details.

1.2 Efficiency Trade-off

In this work, we do not focus on performance optimization and the proposed scheme should be
interpreted more as a feasibility result and as the first practical implementation of an entangled
storage scheme. In order to improve the performance of our construction, one must make sure that
the polynomial, which represents the entanglement, has a low degree. One natural way to achieve
this is by limiting the number of users who take part to the entanglement and create several smaller
clews. This would offer a clear tradeoff between security and efficiency.

1.3 Alternative Solutions

Entangled storage was implemented through our notion of entangled encoding but, of course, it
should be considered whether it can be realized in other ways.

A first natural idea is to upload each file in encrypted form to the server. Whenever a file
is retrieved, a proof of retrievability (PoR) for the entire set of (encrypted) files is also executed

1Note that the latter requires some interaction between the server and the memory functionality, as the polynomial
is needed in order to compute the answer.
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between the client and the server. We believe such a solution would satisfy our definition of
entangled storage. However, there are two impeding drawbacks to consider. First, a PoR scheme
requires a redundant encoding of the data, hence the server needs more storage than strictly
necessary. Second, the local computation performed by the client in a PoR scheme typically depends
on the total size of the remote data. In our scenario, this is not acceptable since it makes the work
of the client depend on the total number of clients. In contrast, our entangled encoding has size
exactly equal to the encoded data (when files are large enough) and the work performed by a client
is independent of the number of clients.

A different idea would be to encrypt each file and then upload them to the server in a randomly
permuted order, such that each client knows the position of his own file. A client may use private
information retrieval (PIR) to retrieve files. This way the server remains oblivious of the relative
position of any file, even after several retrievals. At first, this solution may seem good enough to
deter the server from erasing files. But note that the server could correctly estimate any file positions
with non-negligible probability, possibly with the help of malicious clients. Most importantly, this
proposal based on PIR does not actually satisfy our definition. Indeed, the server may end up
excluding some clients while allowing others to still retrieve their files. Entangled storage mandates
that no client can retrieve data whenever a significant part of it is erased.

1.4 Other Related Work

The approach of data entanglement was originally proposed by Aspnes et al. [1]. Unfortunately,
in the original model of Aspnes et al. [1], the entanglement is created by a trusted authority. In
addition, files can only be retrieved through the trusted authority. Thus, schemes within their
framework are not suitable for cloud computing.2 Data entanglement also appears in the context
of censorship-resistant publishing systems; see, e.g., Dagster [26] and Tangler [27].

The notion of all-or-nothing integrity is inspired by the all-or-nothing transform introduced by
Rivest et al. [23], and later generalized in [10]. The standard definition of all-or-nothing transform
requires that it should be hard to reconstruct a message if not all the bits of its encoding are known.

2 Preliminaries

2.1 Notation

Given an integer n, we denote [n] = {1, . . . , n}. If n ∈ R, we write dne for the smallest integer
greater than n. If x is a string, we denote its length by |x|; if X is a set, |X | represents the number

of elements in X . When x is chosen randomly in X , we write x
$← X . When A is an algorithm,

we write y ← A(x) to denote a run of A on input x and output y; if A is randomized, then y is a
random variable and A(x;ω) denotes a run of A on input x and random coins ω.

Throughout the paper, we denote the security parameter by k. A function negl(k) is negligible
in k (or just negligible) if it decreases faster than the inverse of every polynomial in k. A machine
is said to be probabilistic polynomial time (PPT) if it is randomized, and its number of steps is
polynomial in the security parameter.

Let X = {Xk}k∈N and Y = {Yk}k∈N be two distribution ensembles. We say X and Y are
ε-computationally indistinguishable if for every polynomial time distinguisher A there exists a

2Essentially, with regard to privacy, the model of [1] can be viewed as the ideal world in our security definitions.
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function ε such that |P (A(X) = 1)− P (A(Y ) = 1)| ≤ ε(k). If ε(k) is negligible, we simply say X
and Y are (computationally) indistinguishable (and we write X ≈ Y ).

The statistical distance of two distributions X,Y is defined as SD(X,Y ) =
∑

a |P (X = a) −
P (Y = a) |. The min-entropy of a random variable X is H∞(X) = − log maxx P (X = x).

2.2 The UC Framework

We briefly review the framework of universal composability (UC) [8]. Let φ : ({0, 1}∗)n → ({0, 1}∗)n
be a functionality, where φi(x1, . . . , xn) denotes the i-th element of φ(x1, . . . , xn) for i ∈ [n]. The
input-output behavior of φ is denoted (x1, . . . , xn) 7→ (y1, . . . , yn).

Consider a protocol Π run by a set of parties P1, . . . , Pn (where each party Pi holds input xi), for
computing φ(x1, . . . , xn). In order to define security of Π, we introduce an ideal process involving
an incorruptible “trusted party” that is programmed to capture the desired requirements from the
task at hand. Roughly, we say that a protocol for φ is secure if it “emulates” the ideal process.
Details follow.

The real execution. We represent a protocol as a system of interactive Turing machines (ITMs),
where each ITM represents the program to be run within a different party. Adversarial entities are
also modeled as ITMs; we concentrate on a non-uniform complexity model where the adversaries
have an arbitrary additional input, or an “advice”. We consider the computational environment
where a protocol is run as asynchronous, without guaranteed delivery of messages. The commu-
nication is public (i.e., all messages can be seen by the adversary) but ideally authenticated (i.e.,
messages sent by honest parties cannot be modified by the adversary).

The process of executing protocol Π (run by parties P1, . . . , Pn) with some adversary A and an
environment machine Z with input z is defined as follows. All parties have a security parameter
k ∈ N and are polynomial in k. The execution consists of a sequence of activations, where in each
activation a single participant (either Z, A or Pi) is activated. The activated participant reads in-
formation from its input and incoming communication tapes, executes its code, and possibly writes
information on its outgoing communication tapes and output tapes. In addition, the environment
can write information on the input tapes of the parties, and read their output tapes. The adversary
can read messages on the outgoing message tapes of the parties and deliver them by copying them
to the incoming message tapes of the recipient parties. The adversary can also corrupt parties,
with the usual consequences that it learns the internal information known to the corrupt party and
that, from now on, it controls that party.

Let REALΠ,A(z),Z(k, (x1, . . . , xn)) denote the random variable corresponding to the output of
environment Z when interacting with adversary A and parties running protocol Π (holding inputs
x1, . . . , xn), on input security parameter k, advice z and uniformly chosen random coins for all
entities.

The ideal execution. The ideal process for the computation of φ involves a set of dummy parties
P1, . . . , Pn, an ideal adversary SIM (a.k.a. the simulator), an environment machine Z with input
z, and an ideal functionality I (also modeled as an ITM). The ideal functionality simply receives
all inputs by P1, . . . , Pn and returns to the parties their respective outputs φi(x1, . . . , xn). The
ideal adversary SIM proceeds as in the real execution, except that it has no access to the contents
of the messages sent between I and the parties. In particular, SIM is responsible for delivering
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messages from I to the parties. It can also corrupt parties, learn the information they know, and
control their future activities.

Let IDEALI,SIM(z),Z(k, (x1, . . . , xn)) denote the random variable corresponding to the output
of environment Z when interacting with adversary SIM, dummy parties P1, . . . , Pn (holding inputs
x1, . . . , xn), and ideal functionality I, on input security parameter k, advice z and uniformly chosen
random coins for all entities.

Securely realizing an ideal functionality. We can now define universally composable (UC)
security, following [8].

Definition 1 Let n ∈ N. Let I be an ideal functionality for φ : ({0, 1}∗)n → ({0, 1}∗)n and let Π
be an n-party protocol. We say that Π securely realizes I if for any adversary A there exists an
ideal adversary SIM such that for any environment Z, any tuple of inputs (x1, . . . , xn), we have{

IDEALI,SIM(z),Z(k, (x1, . . . , xn))
}
k∈N,z∈{0,1}∗ ≈

{
REALΠ,A(z),Z(k, (x1, . . . , xn))

}
k∈N,z∈{0,1}∗ .

In this paper we only allow static corruptions, that is, adversaries determine the parties to corrupt
at the beginning of the protocol execution. The adversary is called passive if it follows faithfully
the protocol specifications but can save intermediate computations; on the other hand an active
adversary can behave arbitrarily during a protocol execution. Security of a protocol is sometimes
defined with respect to an adversary structure ∆, i.e., a monotone3 set of subsets of the players,
where the adversary may corrupt the players of one set in ∆. When this is the case, we say that Π
∆-securely realizes a given functionality.

The composition theorem. The above notion of security allows a modular design of protocols,
where security of each protocol is preserved regardless of the environment where that protocol is
executed. In order to state the composition theorem, we sketch the so-called I-hybrid model, where
a real-life protocol is augmented with an ideal functionality. This model is identical to the above
real execution, with the following additions. On top of sending messages to each other, the parties
may send messages to and receive messages from an unbounded number of copies of I. (Each copy
is identified via a unique session identifier, chosen by the protocol run by the parties.)

The communication between the parties and each one of the copies of I mimics the ideal process.
That is, once a party sends a message to some copy of I, that copy is immediately activated and
reads that message of the party’s tape. Furthermore, although the adversary in the hybrid model
is responsible for delivering the messages from the copies of I to the parties, it does not have access
to the contents of these messages. It is stressed that the environment does not have direct access
to the copies of I.

Let Π be a protocol in the I ′-hybrid model and let Π′ be a protocol UC-realizing I ′. Consider the
composed protocol ΠΠ′ , where each call to the ideal functionality I ′ is replaced with an execution
of protocol Π′.

Theorem 1 ([8]) Let I, I ′ be ideal functionalities. Let Π be an n-party protocol that securely
realizes I in the I ′-hybrid model and let Π′ be an n-party protocol that securely realizes I ′. Then
protocol ΠΠ′ securely realizes I.

3An adversary structure is monotone in the sense of being closed with respect to taking subsets.
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2.3 Succinct argument systems

LetR ⊂ {0, 1}∗×{0, 1}∗ be a polynomial-time relation with language LR = {x : ∃w s.t. (x,w) ∈ R}.
A succinct argument system (P,V) for L ∈ NP is a pair of probabilistic polynomial-time machines
such that the following properties are satisfied: (i) (succinctness) the total length of all messages
exchanged during an execution of (P,V) is only polylogarithmic in the instance and witness sizes;
(ii) (completeness) for any x ∈ L we have that (P(w),V)(x) outputs 1 with overwhelming probabil-
ity; (iii) (argument of knowledge) for any x 6∈ L and any computationally bounded prover P∗ such
that (P∗,V)(x) outputs 1 there exists a polynomial time extractor EXT P∗ outputting a witness w
that satisfies (x,w) ∈ R with overwhelming probability. See for instance [28, 5].

Succinct interactive argument systems for NP exists in 4 rounds based on the PCP theo-
rem, under the assumption that collision-resistant function ensembles exists [18, 28]. Succinct
non-interactive argument systems, also called SNARGs, are impossible under any falsifiable cryp-
tographic assumption [15] but are known to exists in the random-oracle model [19] or under non-
falsifiable cryptographic assumptions [5].

2.4 Somewhat Homomorphic Encryption

A homomorphic (public key) encryption scheme is a collection of the following algorithms HE =
(Gen,Enc,Dec,Eval), defined below.

Key Generation. Upon input a security parameter 1k, algorithm Gen outputs a secret and public
key (sk , pk) and an evaluation key evk.

Encryption. Upon input a public key pk and a message µ, algorithm Enc outputs a ciphertext e.

Decryption. Upon input a secret key sk and a ciphertext e, algorithm Dec outputs a message µ.

Evaluation. Upon input an evaluation key evk, a function c : {0, 1}∗ → {0, 1}∗ and a set of n
ciphertexts e1, . . . , en, algorithm Eval outputs a ciphertext ec.

Definition 2 (CPA security) A homomorphic scheme HE is CPA-secure if for any probabilistic
polynomial time algorithm A it holds that

|Pr(A(pk , evk,Encpk (µ0)) = 1)− Pr(A(pk , evk,Encpk (µ1)) = 1)| ≤ negl(k),

where (pk , evk, sk)← Gen(1k), and (µ0, µ1)← A(1k, pk) is such that |µ0| = |µ1|.

Sometimes we also refer to the “real” or “random” variant of CPA-security, where A has to distin-
guish the encryption of a known message µ from the encryption of a random unrelated message µ′.
The two notions are equivalent up-to a constant factor in security.

Definition 3 (C-homomorphism) Let C = {Ck}k∈N be a class of functions (together with their
respective representations). A scheme HE is C-homomorphic if for any sequence of functions ck ∈ Ck
and respective inputs µ1, . . . , µn, where n = n(k), it holds that

Pr(Decsk (Evalevk(c, e1, . . . , en)) 6= c(µ1, . . . , µn)) = negl(k),

where the probability is taken over the random choice of (pk , evk, sk)← Gen(1k) and ei ← Encpk (µi).
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Note that the standard properties of additive or multiplicative homomorphism, satisfied for
instance by RSA, Paillier, or ElGamal, are captured when the class C contains only addition or
multiplication, respectively.

An homomorphic encryption scheme is said to be compact if the output length of Evalevk(·)
is bounded by a polynomial in k (regardless of the function c and of the number of inputs). An
encryption scheme is fully-homomorphic when it is both compact and homomorphic with respect
to the class C of all arithmetic circuits over a finite field F (thus both addition and multiplication
over F).

A somewhat homomorphic encryption (SHE) scheme allows to compute functions c(·) of “low
degree” and it is used as a subroutine of fully homomorphic encryption [14] (applying a “boot-
strapping” or re-linearization technique of [7, 6] to perform an unbounded number of operations).
We use SHE in our schemes since it is significantly faster than FHE.

2.5 Collision Resistant Hashing

We recall what it means for a family of hash functions to be collision resistant. Let `, `′ : N→ N be
such that `(k) > `′(k), and let I ⊆ {0, 1}∗. A function family {Hι}ι∈I is called a collision-resistant
hash family if the following holds.

• There exists a probabilistic polynomial time algorithm IGen that on input 1k outputs ι ∈ I,
indexing a function Hι mapping from `(k) bits to `′(k) bits.

• There exists a deterministic polynomial time algorithm that on input x ∈ {0, 1}` and ι ∈ I,
outputs Hι(x).

• For all probabilistic polynomial time adversaries B we have that

P
(
Hι(x) = Hι(x

′) : (x, x′)← B(1k, ι); ι← IGen(1k)
)
≤ negl(k),

where the probability is taken over the coin tosses of IGen and of B.

2.6 Pseudorandom Generators

We recall the definition of a pseudorandom generator. Let G : {0, 1}k → {0, 1}`(k) be a deterministic
function, where `(k) > k. We say that G is a secure PRG if there exists a polynomial time algorithm
that given σ ∈ {0, 1}k outputs G(σ), and moreover for all probabilistic polynomial time adversaries
B we have:

P
(
B(G(σ)) = 1 : σ ← {0, 1}k

)
− P

(
B(U`(k)) = 1

)
≤ negl(k),

where U`(k) is uniform over {0, 1}`(k).

3 Entangled Encoding Schemes

In this section, we introduce the notion of an entangled encoding scheme and show a construction
based on polynomial interpolation. Intuitively, an entangled encoding scheme encodes an arbitrary
number of input strings f1, . . . , fn into a single output string using random strings r1, . . . , rn (one
for each input string). We assume that all input strings have the same length `.4 The following

4In case files have different lengths, they can be simply padded to some pre-fixed value ` (which is a parameter of
the scheme).
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definition captures an entangled encoding scheme formally.

Definition 4 (Entangled Encoding Scheme) An entangled encoding scheme is a triplet of al-
gorithms (Setup,Encode,Decode) defined as follows.

Setup. Setup is a probabilistic algorithm which, on input a security parameter k, the number of
strings to encode n, and the length parameter `, outputs public parameters (F ,R, C). We call
F the input space, R the randomness space and C the entanglement space.

Encoding. Encode is a deterministic algorithm which, on input strings f1, . . . , fn ∈ F and
auxiliary inputs r1, . . . , rn ∈ R, outputs an encoding c ∈ C.

(Local) Decoding. Decode is a deterministic algorithm which, on input an encoding c ∈ C and
input ri ∈ R together with index i, outputs string fi ∈ F and a verification value ξ. This
value must be a fixed function ξ(fi, ri) of the file and the randomness.

Correctness of decoding requires that for all security parameter k and length `, public parameters
(F ,R, C) ← Setup(1k, n, `), input strings f1, . . . , fn ∈ F and auxiliary inputs r1, . . . , rn ∈ R, we
have (fi, ξ(fi, ri)) = Decode(Encode(f1, . . . , fn, r1, . . . , rn), ri, i) for all i ∈ [n].

3.1 Security Properties

We let Fi and Ri for i = 1, . . . , n be random variables representing the choice of fi and ri, re-
spectively. We make no assumption on the distributions of Fi and Ri, but note that of course the
distribution of Ri will be fixed by the encoding scheme. We let F−i (f−i) denote the set of all
variables (values) except Fi (fi). Similar notation is used for Ri and ri. An entangled encoding
scheme satisfies two main security properties.

Privacy: Even if an adversary already knows a subset of the input strings and randomness used
to encode them, the resulting encoding reveals no additional information about any of the
other input strings other than what can be derived by the knowledge of this subset. More
precisely, let U denote some arbitrary subset of the pairs (Fj , Rj)j=1...n, and let C be the
encoding corresponding to all elements, i.e., C = Encode(F1, . . . , Fn, R1, . . . , Rn). Let V be
the set of (Fi, Ri) not included in U , i.e., V = (F−U , R−U ). An entangled encoding scheme is
private if, for all u ∈ U and all c ∈ C, the distribution DV |U of the random variable V when
given U = u is statistically close to the distribution DV |UC of the random variable V when
given (U = u,C = c), i.e., SD(DV |U ,D′V |UC) ≤ negl(k).

All-Or-Nothing Integrity: Roughly speaking, if an adversary has a large amount of uncertainty
about the encoding C = Encode(F1, . . . , Fn, R1, . . . , Rn), he cannot design a function that
will answer decoding queries correctly. More precisely, let U be defined as under privacy, and
define a random variable C ′U that is obtained by applying an arbitrary (possibly probabilistic)
function g(·) to U and C. Now the adversary plays the following game: he is given that
C ′U = c′ for any value c′ and then specifies a function DecodeAdv. We say that the adversary
wins at position i if Fi is not included in U and DecodeAdv(Ri, i) = Decode(C,Ri, i). The
encoding has (α, β) all-or-nothing integrity if H∞(C|C ′U = c′) ≥ α implies that for each i, the
adversary wins at position i with probability at most β. In particular, in order to win, the
adversary’s function must output both the correct file and verification value.
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Definition 5 ((α, β) All-or-Nothing Integrity) We say that an entangled encoding scheme
(Setup,Encode,Decode) has (α, β) all-or-nothing integrity if for all (possibly unbounded) adver-
saries A, for all subsets U ⊂ {(Fj , Rj)}j=1...n, for all (possibly unbounded) functions g(·) and for
all i ∈ [n] \ {j : (Fj , Rj) ∈ U}, we have that

P

DecodeAdv(Ri, i) = Decode(C,Ri, i) :
(F ,R, C)← Setup(1k, n, `),
C = Encode(F1, . . . , Fn;R1, . . . , Rn),
C ′U = g(C,U),DecodeAdv ← A(C ′U )

 ≤ β,
whenever H∞(C|C ′U = c′) ≥ α (where the probability is taken over the choices of the random
variables Fi, Ri and the coin tosses of A).

Note that β in the definition of all-or-nothing integrity will typically depend on both α and the
security parameter k, and we would like that β is negligible in k, if α is large enough. We cannot
ask for more than this, since if α is small, the adversary can guess the correct encoding and win
with large probability.

3.2 A Code based on Polynomials

We now design an encoding scheme that has the properties we are after. As a first attempt, we
consider the following. We choose a finite field F, say of characteristic 2, large enough that we can
represent values of Fi as field elements. We then choose x1, . . . , xn uniformly in F and define the
encoding to be c, where c is the polynomial of degree at most n − 1 such that c(xi) = fi for all
i. Decoding is simply evaluating c. Furthermore, the all-or-nothing property is at least intuitively
satisfied: c has degree at most n and we may think of n as being much smaller than the size of F.
Now, if an adversary has many candidates for what c might be, and wants to win the above game,
he has to design a single function that agrees with many of these candidates in many input points.
This seems difficult since candidates can only agree pairwise in at most n points. We give a more
precise analysis later.

Privacy, however, is not quite satisfied: we are given the polynomial c and we want to know
how much this tells us about c(xi) where xi is uniformly chosen. Note that it does not matter if
we are given xj for j 6= i, since all xj are independent. We answer this question by the following
lemma:

Lemma 1 Given a non-constant polynomial c of degree at most n, the distribution of c(R), where
R is uniform in F, has min-entropy at least log |F| − log(n).

Proof. The most likely value of c(R) is the value y for which c−1(y) is of maximal size. This is
equivalent to asking for the number of roots in c(X)− y which is at most n, since c(X)− y is not
0 and has degree at most n. Hence P(c(R) = y) ≤ n/|F|, and the lemma follows by definition of
min-entropy. �

It is reasonable to assume that c will not be constant, but even so, we see that the distribution of
c(R) is not uniform as we would like, but only close (if n� |F|). In some applications, a loss of log n
bits in entropy may be acceptable, but it is also easy to fix this by simply one-time pad encrypting
the actual data before they are encoded. This leads to the final definition of our encoding scheme:
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Setup: Given as input the length ` of the n data items to be encoded and the security parameter
k, define F = F = GF (2max(`,3k+logn+log logn)), R = F2 and C = Fn.

Encoding: Given f1, . . . , fn to encode, choose xi, si ∈ F uniformly (and independently) at random,
and set ri = (xi, si); in case xi = xj for some index i 6= j output a special symbol ⊥ and
abort. Otherwise, define Encode(f1, . . . , fn, r1, . . . , rn) = c to be the polynomial of degree at
most n− 1 such that c(xi) = fi + si for i = 1, . . . , n.

Decoding: We define Decode(c, ri, i) = Decode(c, (xi, si), i) = (c(xi)− si, c(xi)).

It is trivial to see that Decoding outputs the correct file. The verification value is c(xi) = fi+si thus
it is indeed a function of the file and the randomness, as required by the definition. The encoding
is also easily seen to be private: In fact, by the uniformly random choice of si, given any subset U
of (Fj , Rj)j=1...n the encoding C does not reveal any additional information on V = (F−U , R−U ).
For all-or-nothing integrity, we have the theorem below. Its conclusion may seem a bit complicated
at first, but in fact, reflects in a natural way that the adversary has two obvious strategies when
playing the game from the definition: he can try to guess the correct encoding, which succeeds
with probability exponentially small in α, or he can try to guess the correct field element that is
computed at the end of the game (by making his function constant). However, the latter strategy
succeeds with probability exponentially small in |F|. The theorem says that, up to constant factor
losses in the exponent, these are the only options open to the adversary.

Theorem 2 The above encoding scheme has (α,max(2−k+2, 2−(α−3)/2)) all-or-nothing integrity.

3.3 Proof of Theorem 2

Before coming to the theorem, we need the following lemma.

Lemma 2 Let U , C ′U be as in the definition of all-or-nothing integrity and suppose the pair
(Fi, Ri) = (Fi, (Xi, Si)) is not included in U . Then for the encoding scheme defined above, and
for any c′, we have H∞(Xi| C ′U = c′) ≥ log |F| − log n.

Proof. Suppose first that we are given values for all Fj , Rj where j 6= i and also for C and Fi, i.e.,
we are given the polynomial c, all fj and all (xj , sj), except (xi, si). Let V be a variable representing
all this. Before a value of V is given, xi, si are uniformly random and independent of the fj ’s and
of the (xj , sj) where j 6= i. It follows that when we are given a value of V , the only new constraint
this introduces is that c(xi) = si + fi must hold. Now, if c is constant, this gives no information at
all about xi, so assume c is not constant. Then for each value si, it must be the case that xi is in a
set consisting of at most n elements, since c has degree at most n−1. Therefore we can specify the
distribution of xi induced by this as follows. The set of all xi is split into at least |F|/n subsets.
Each subset is equally likely (since si is uniform a priori), and the elements inside each subset are
equally likely (since xi is uniform a priori). Each subset is, therefore, assigned probability at most
n/|F|, and thus, also the largest probability we can assign to an xi value (if the subset has size 1).
Therefore, the conditional min-entropy of Xi is at least log |F| − log n.

Now observe that the variable C ′U can be obtained by processing V using a (possibly randomized)
function. If we assume that a value of C ′U is given, the conditional min-entropy of Xi is at least
as large as when V is given. This actually requires an argument, since it is not the case in general
that the min-entropy does not decrease if we are given less information. In our case, however, if
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we are given U = u, the resulting distribution of Xi will be a weighted average computed over
the distributions of Xi given values of V that map to U = u. But all these distributions have
min-entropy at least log |F| − log n and hence so does any weighted average. �

We assume that the distribution D of the polynomial c in the view of the adversary has min-
entropy at least α, so that the maximal probability occurring in the distribution is at most 2−α.
The adversary now submits his function DecodeAdv, and he wins if (fi, c(xi)) = DecodeAdv(xi, si)
for an arbitrary but fixed i ∈ [n]. We want to bound the adversary’s advantage.

In particular, the adversary’s function must output the correct value of c(xi), so we may as
well bound the probability ε that g(xi) = c(xi) for a function g chosen by the adversary, where c is
chosen according to D and xi has large min-entropy as shown in Lemma 2 above.

Let εc be the probability that g(xi) = c(xi) for a fixed c, then ε =
∑

c qcεc where qc is the
probability assigned to c by D. A standard argument shows that P(εc ≥ ε/2) ≥ ε/2 since otherwise
the average

∑
c qcεc would be smaller than ε.

Consider now the distribution D′ which is D restricted to the c’s for which εc ≥ ε/2. The
maximal probability in this new distribution is clearly at most 2−α+1/ε. It follows that D′ assigns
non-zero probability to at least ε2α−1 polynomials. We now define C′ be a subset of these polyno-
mials. There are two cases: 1) if ε2α−1 ≤ 3

√
|F|/n, we set C′ to be all the ε2α−1 polynomials in

question; 2) otherwise, we set C′ to be an arbitrary subset of 3
√
|F|/n polynomials.

We now define a modified game, which is the same as the original, except that the polynomial c
is chosen uniformly from C′. By construction, we know that the adversary can win with probability
ε/2 by submitting the function g.

Now define, for ci, cj ∈ C′, the set Xij = {x ∈ F | ci(x) = cj(x)}. And let X = ∪i,jXij . Since
all polynomials in C′ have degree at most n − 1, it follows that |X | ≤ n|C′|2. Note that if x 6∈ X ,
then c(x) is different for every c ∈ C′ and one needs to guess c to guess c(x). We can now directly
bound the probability we are interested in:

P (g(x) = c(x)) = P (g(x) = c(x) | x ∈ X ) · P (x ∈ X ) + P (g(x) = c(x) | x 6∈ X ) · P (x 6∈ X )

≤ P (x ∈ X ) + P (g(x) = c(x) | x 6∈ X ) ≤ |C
′|2n log n

|F|
+

1

|C′|
,

where the last inequality follows from Lemma 2. Since we already know that there is a way for

the adversary to win with probability ε/2, we have ε/2 ≤ |C
′|2n logn
|F| + 1

|C′| . In case 1), this implies

ε ≤ 2−(α−3)/2, in case 2) we get ε ≤ 2−k+3. The theorem follows.

4 Entangled Storage of Data

In this section we present our model for entangled storage in the cloud setting. At a very intuitive
level consider the following natural way to specify an ideal functionality IESS capturing the security
properties we want: it will receive data from all players, and will return data to honest players on
request. If the server is corrupt it will ask the adversary (the simulator in the ideal process) if a
request should be answered (since in real life a corrupt server could just refuse to play). However, if
IESS ever gets an “overwrite” command it will refuse to answer any requests. The hope would then
be to implement such a functionality using an entangled encoding scheme, as the AONI property
ensures that whenever there is enough uncertainty (in the information theoretic sense) about the
encoding, a corrupt server cannot design a function that will answer decoding queries correctly.
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Functionality Imem:
The functionality Imem is parameterized by the security parameter k, entanglement size n
and a sharing scheme (Share,Reconstruct). The interaction with an ordered set of (possibly
corrupt) clients P1, . . . , Pn, a (possibly corrupt) server S, an (incorruptible) Observer OBS,
and ideal adversary SIM is enabled via the following queries:

• On input (Store, i, si) from Pi (where si ∈ {0, 1}∗), record (i, si). Ignore any subsequent
query (Store, i, ∗, ∗) from Pi. If there are already n recorded tuples, send Done to all
clients, to S and to SIM. Mark session as Active; define c = Reconstruct(s1, . . . , sn),
and K = ∅.

• On input (Overwrite, {ij}j∈[t]) from SIM (where t ≤ log |C|), check that the session is
Active (if not ignore the input). Set c[ij ] = 0 for all j ∈ [t] and K ← K ∪ {ij}j∈[t]. If
|K| ≥ k, send (Overwrite) to OBS.

• On input (Read,M, i) from S or SIM (where M is a read-only Turing machine and
i ∈ [n]), check that the session is Active and either Pi or S are honest (if not ignore the
input). Send M(c) to Pi.

Figure 1: The basic memory functionality Imem

However, technical difficulties arise due to the fact that the simulator should know when the
uncertainty about the encoding is high enough. This requires the simulator to estimate the adver-
sary’s uncertainty about the encoding, which is not necessarily easy to compute (e.g., the adversary
could store the encoding in some unintelligible format). To deal with this problem, we introduce
another functionality (which we call the memory functionality, see Section 4.1) modeling how data
is stored in the cloud, and how the server can access the stored data.

A second difficulty is that simply specifying the functionality IESS as sketched above is not
sufficient to capture the security we want. The problem is that even a “bad” protocol where data
from different players are stored separately (no entanglement) can be shown to implement IESS.
The issue is that if the adversary overwrites data from just one player, say P1, the simulator can
“cheat” and not send an overwrite command to IESS. Later, if P1 requests data, the simulator can
instruct IESS to not answer the request. Now the request it fails in both the real and in the ideal
process, and everything seems fine to the environment.

We therefore need to add something that will force a simulator to send overwrite as soon as
too much data is overwritten. We do this by introducing an additional incorruptible player called
the Observer. In the real process, when the memory functionality has been asked to overwrite too
much data, it will send “overwrite” to the Observer, who outputs this (to the environment). We
also augment IESS such that when it receives an overwrite command, it will send “overwrite” to the
Observer. Now note that in the real process, when too much data is overwritten, the environment
will always receive “overwrite” from the Observer. Hence whenever the ideal process gets into a
similar state, the simulator must send an overwrite command to IESS: this is the only way to make
the Observer output “overwrite” and if he does not, the environment can trivially distinguish.

The functionality for data entanglement in the cloud is presented in Section 4.2. We emphasize
that a real application of our protocol does not need to include an Observer (as he takes no active
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Functionality I∗mem:
The functionality Imem is parameterized by the security parameter k, entanglement size n
and an entangled encoding scheme (Encode,Decode) with file space F , randomness space R,
and entanglement space C. The interaction with an ordered set of (possibly corrupt) clients
P1, . . . , Pn, a (possibly corrupt) server S, an (incorruptible) ObserverOBS, and ideal adversary
SIM is enabled via the following queries:

• On input (Store, i, fi, ri) from Pi (where fi ∈ F and ri ∈ R), record (i, fi, ri). Ig-
nore any subsequent query (Store, i, ∗, ∗) from Pi. If there are already n recorded
tuples, send Done to all clients, to S and to SIM. Mark session as Active; define
c← Encode(f1, . . . , fn, r1, . . . , rn), and K = ∅.

• On input (Overwrite, {ij}j∈[t]) from SIM (where t ≤ log |C|), check that the session is
Active (if not ignore the input). Set c[ij ] = 0 for all j ∈ [t] and K ← K ∪ {ij}j∈[t]. If
|K| ≥ k, send (Overwrite) to OBS.

• On input (Read,M, i) from S or SIM (where M is a read-only Turing machine and
i ∈ [n]), check that the session is Active and either Pi or S are honest (if not ignore the
input). Send M(c) to Pi.

Figure 2: The augmented memory functionality I∗mem

part in the protocol). He is only there to make our security definition capture exactly what we
want.

4.1 The Memory Functionality

The memory functionality Imem is given in Figure 1 and specifies how data is stored in the cloud
and how a (possibly corrupt) server can access this data. As explained above, we cannot give the
server direct access to the data since then he might store it elsewhere encoded in some form we
cannot recognize, and then he may have full information on the data even if he overwrites the
original memory.

Roughly Imem allows a set of parties to store a piece of information in the cloud. For technical
reasons this information is interpreted in the form of “shares” that are then combined inside the
functionality to define the actual storage c ∈ C.5 We use the term “share” informally here, and
refer the reader to Appendix A for a formal definition.

The simulator can access the data stored inside the memory functionality in two ways: (i) by
computing any function of the data and forwarding the output to some party; (ii) by explicitly
forgetting (part of) the data stored inside the functionality. Looking ahead, the first type of
interaction will allow the server to answer recovery queries from the clients.6 The second type of
interaction corresponds to the fact that overwriting data is an explicit action by the server. This

5This is because the real protocol allows clients to securely compute “shares” of the entanglement, but they are
not allowed to recover the entanglement itself from the shares as otherwise malicious clients would learn the encoding
(and so would do a colluding malicious server, making the memory functionality useless).

6The function above is specified via a Turing machine; this Turing machine has to be read-only, as otherwise the
server could overwrite data without explicitly calling “overwrite”.
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way, the adversarial behavior in the retrieval protocol is decided based only on what Imem stores,
and data can only be forgotten by explicit command from the adversary.

As explained at the beginning of this section, we also need to introduce an additional incorrupt-
ible player called the Observer. He takes no input and does not take part in the real protocol. But
when Imem overwrites the data, it sends “overwrite” to the Observer, who then outputs “overwrite”
to the environment.

The augmented memory functionality. We also define an “augmented” memory functionality
I∗mem, which will allow for a more modular description of our main construction (see Section 5).
The functionality I∗mem is conceptually very similar to Imem, but instead of being parametrized by
a sharing scheme is parametrized by an entangled encoding scheme. The main difference is that
now clients are allowed to send the actual files and the randomness, and the functionality defines
c ∈ C to be an encoding of all files using the given randomness.

The augmented memory functionality is presented in Figure 2. In Appendix A, we show that
I∗mem can be securely realized (for the entangled encoding based on polynomials, see Section 3)
from the more basic functionality Imem, and a suitable sharing scheme over a finite field.

4.2 Ideal Implementation of Data Entanglement

For reasons of clarity, we define data entanglement for clients each holding only a single file fi of
length `. However, all our definitions and constructions can be easily extended to cover an arbitrary
number of files (of arbitrary length) for each party by either encoding multiple files into a single
one or by allowing to put in as many files as desired.

The functionality IESS is shown in Figure 3. Below, we give a high level overview of the security
properties captured by IESS.

The functionality runs with a set of clients {P1, . . . , Pn} (willing to entangle their files), a
server S, ideal adversary SIM and Observer OBS. The entanglement process consists simply in
the clients handling their file fi to the functionality: at the end of this process the server learns
nothing, and each of the clients does not learn anything about the other clients’ files. In other
words, each party only learns that the session is “entangled”, but nothing beyond that (in this
sense the entanglement process is private).

At any point in time the adversary can decide to cheat and “forget” or alter part of the clients’
data; this is captured by the (Overwrite) command. Whenever this happens, the functionality
outputs (Overwrite) to the Observer that then writes it on its own output tape.

Furthermore, client Pi can ask the functionality to recover fi. In case the adversary allows
this, the functionality first checks whether the (Overwrite) command was never issued: If this is
the case, it gives file f ′i (where f ′i = fi if the server is not corrupt) to Pi and outputs nothing to
S (in this sense the recovery process is private); otherwise it outputs ⊥ to Pi (this captures the
all-or-nothing integrity property).

5 A Protocol for Data Entanglement

Next, we present our main protocol securely realizing the ideal functionality IESS in the Imem-
hybrid model. We do this in two steps. In the first step, we show a protocol Π securely realizing
IESS in the I∗mem-hybrid model. Then, in Appendix A, we build a protocol Π′ securely realizing
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Functionality IESS:
The functionality IESS is parameterized by the security parameter k, entanglement size n and
file space F . Initialize boolean bad as false. The interaction with an ordered set of (possibly
corrupt) clients P1, . . . , Pn, a (possibly corrupt) server S, an (incorruptible) Observer OBS,
and ideal adversary SIM is enabled via the following queries:

• On input (Entangle, i, fi) from Pi (where fi ∈ F), record (Pi, fi). Ignore any subsequent
query (Entangle, i, ∗) from Pi. If there are already n recorded tuples, send Entangled

to all clients, to S, and to SIM. Mark session as Entangled.

• On input (Overwrite) from SIM, set bad to true and forward (Overwrite) to OBS.

• On input (Recover, i) from Pi, check if session is Entangled. If not ignore the input.
Otherwise, record (Pending, i) and send (Recover, i) to S and SIM.

On input (Recover, S, i) from S or SIM, check if session is Entangled and record
(Pending, i) exists. If not, ignore the input. Otherwise:

– If S and Pi are both corrupt ignore the input.

– If Pi is corrupt and S is honest, hand (Cheat, i) to SIM. Upon input (Cheat, i, f ′i)
from SIM, output f ′i to Pi.

– If S is corrupt and Pi is honest, in case bad is true output ⊥ to Pi. Otherwise
hand (Cheat, S) to SIM. Upon input (Cheat, S, deliver ∈ {yes, no}) from SIM, if
deliver = yes output fi to Pi and if deliver = no output ⊥ to Pi.

– If S and Pi are both honest, output fi to Pi.

Delete record (Pending, i).

Figure 3: Ideal functionality IESS for entangled storage

I∗mem in the Imem-hybrid model. It follows by the composition theorem (cf. Theorem 1) that ΠΠ′

securely realizes IESS in the Imem-hybrid model.

The main protocol. Our protocol for entangled storage relies on the following building blocks:

• The entangled encoding scheme (Setup,Encode,Decode) based on polynomials over a fi-
nite field F = GF (2max(`,3k+logn+log logn)) (see Section 3). The functionality I∗mem will be
parametrized by this encoding.

• A somewhat homomorphic encryption HE = (Gen,Enc,Dec,Eval) scheme with message space
F, that is able to perform up to n multiplications and an arbitrarily large number of additions.

• An interactive argument of knowledge (P,V) for the following NP -language:

L = {(evk, e, e∗) : ∃c∗(·) s.t. e∗ = Evalevk(c
∗(·), e)} , (1)

where the function c(·) is a polynomial of degree n ∈ N with coefficients in F.
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We implicitly assume that there exists an efficient mapping to encode binary strings of length ` as
elements in F.

We start with an informal description of the protocol. In the first step each client stores in I∗mem

its own file fi together with the randomness ri = (si, xi) needed to generate the entanglement. To
recover fi, each client sends an encryption of xi to the server using a somewhat homomorphic
encryption scheme (see Section 2.4); the server can thus compute an encryption of c(xi) homo-
morphically and forward it to the client, together with the a proof that the computation was done
correctly.7 The client verifies the proof and, after decryption, recovers fi = c(xi)− si.

The actual protocol is slightly different than this, in that, in order to have each client only keep
a short state, the randomness ri is computed using a PRG such that each client can just store the
seed and recover ri at any time. Moreover each client has to also store a hash value of the file, in
order to verify that the retrieved file is the correct one. (Note that a successful verification of the
proof is not sufficient for this, as it only ensures that the answer from the server was computed
correctly with respect to some polynomial.) A detailed description of protocol Π follows:

Parameters Generation. Let F be a finite field. Upon input a security parameter k ∈ N, the
number of clients n and the length parameter `, output the description of a collision resistant
hash function H(·) with input space {0, 1}` and (F = F,R = F2, C = Fn)← Setup(1k, n, `).
Furthermore, provide each client Pi with secret parameters (σi, sk i). Here, σi is the seed for a
(publicly available) pseudo-random generator G : {0, 1}k → {0, 1}2max(`,3k+logn+log logn) and
(pk i, sk i, evki) ← Gen(1k) are the public/secret/evaluation key of a somewhat homomorphic
encryption scheme HE = (Enc,Dec,Eval) with message space F.

Entanglement. Each client Pi defines G(σi) := (si, xi) ∈ F2 and sends (Store, i, fi, (si, xi)) to
I∗mem. Note that, as a consequence, I∗mem now holds c = Encode(f1, . . . , fn, r1, . . . , rn) where
ri = (si, xi). Recall that the entanglement corresponds to the coefficients c = (c0, . . . , cn−1)
of the polynomial c(X) (of minimum degree) interpolating all points (xi, fi + si). The clients
store the seed σi, and a hash value θi = H(fi).

Recovery. To retrieve fi, client Pi first computes (si, xi) = G(σi) and then interacts with the
server S as follows:

1. Pi computes e← Encpk i
(xi) and sends it to S.

2. S sends (Read,M, i) to I∗mem, where the Turing machine M runs e∗ = Evalevki(c(·), e).
3. Let (P,V) be an interactive argument of knowledge for the language of Eq. (1). The

server S plays the role of the prover and client Pi the role of the verifier; in case
(P(c(·)),V)(evki, e, e

∗) = 0 the client outputs ⊥.8

4. Pi computes c(xi) = Decsk i
(e∗) and outputs fi = c(xi)− si if and only if H(fi) = θi.

In Appendix B we discuss several variant of the above protocol Π, leading to different efficiency
trade-offs. We prove the following result.

Theorem 3 Assuming the PRG is secure, the hash function is collision resistant, and HE is CPA-
secure, the above protocol Π securely realizes IESS in the I∗mem-hybrid model.

7Recall that the server does not have direct access to the data, so the above computation is performed by issuing
commands to I∗mem.

8Note that the above requires one suitable (Read,M, i) command from S to I∗mem for each message from the prover
to the verifier in (P(c(·)),V)(evki, e, e

∗) (this is because the witness c(·) is stored inside I∗mem).
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Proof. Since the adversary is static, the set of corrupt parties is fixed once and for all at the
beginning of the execution; we denote this set by ∆. Our goal is to show that for all adversaries
A corrupting parties in a real execution of Π, there exists a simulator SIM interacting with the
ideal functionality IESS, such that for all environments Z and all inputs f1, . . . , fn ∈ F,

{IDEALIESS,SIM(z),Z(k, (f1, . . . , fn))}k∈N,z∈{0,1}∗ ≈ {REALΠ,A(z),Z(k, (f1, . . . , fn)}k∈N,z∈{0,1}∗ .

The simulator SIM, with access to A, is described below.

1. Upon input security parameter k, secret values (fi, σi, sk i) (for all i ∈ [n] such that Pi ∈ ∆),
public values (pk i, evki)i∈[n], and auxiliary input z, the simulator invokes A on these inputs.

2. Every input value that SIM receives from Z externally is written into the adversary A’s
input tape (as if coming from A’s environment). Every output value written by SIM on its
output tape is copied to A’s own output tape (to be read by the external Z).

3. Upon receiving (Store, i, f ′i , r
′
i) from Pi ∈ ∆ (where r′i is a pair (s′i, x

′
i) ∈ F2), issue (Entangle, i,

f ′i). After receiving message Entangled from IESS, return Done to Pi.

4. Sample (f ′i , s
′
i, x
′
i) ← F3 and define y′i = f ′i + s′i for all i ∈ [n] such that Pi 6∈ ∆. Emu-

late the ideal functionality I∗mem by computing the polynomial c ∈ F[X] of minimal degree
interpolating (x′i, y

′
i)i∈[n]; let K = ∅.

5. Upon receiving (Overwrite, {ij}j∈[t]) from A, set c[ij ] = 0 and update K ← K ∪ {ij}j∈[t]. In
case |K| ≥ k, send (Overwrite) to IESS.

6. Whenever the adversary forwards a ciphertext e on behalf of a corrupt player Pi ∈ ∆, send
(Recover, i) to IESS and receive back (Recover, i). Then, in case S 6∈ ∆, act as follows:

(a) Send (Recover, S, i) to IESS and receive back message (Cheat, i). Run x′i = Decsk i
(e),

define f ′i = c(x′i)− s′i and send (Cheat, i, f ′i) to IESS.

(b) Simulate the ciphertext e∗ = Evalevki(c(·), e) and play the role of the prover in (P(c(·)),
V)(evki, e, e

∗) (with Pi being the verifier).

7. Upon receiving (Recover, i) from IESS (for i ∈ [n] such that Pi 6∈ ∆), in case S ∈ ∆ act as
follows:

(a) Simulate the ciphertext e← Encpk i
(x′i) for the previously chosen value x′i.

(b) Wait for the next (Read,M∗, i) command from A (if any) and forward (Recover, S, i) to
IESS. Upon input (Cheat, S) from IESS, play the role of the verifier in (P(c(·)),V)(evki, e,
M∗(c)) (with S being the prover).

(c) In case the above check passes and the proof is verified correctly, issue (Cheat, S, yes),
and otherwise issue (Cheat, S, no).

8. Upon receiving (Read,M, i) from the adversary, in case Pi ∈ ∆ forward M(c) to Pi.

9. Output whatever A does.

We consider a series of intermediate hybrid experiments, to show that the ideal output and the real
output are computationally close. A description of the hybrids follow.
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Hybrid HYB1(k, (f1, . . . , fn)). We replace SIM by SIM1 which knows the real inputs fi of the
honest clients and uses these values to define the polynomial c in step 4. From the privacy
property of the entangled encoding scheme, we get that IDEALIESS,SIM(z),Z(k, (f1, . . . , fn))

and HYB1(k, (f1, . . . , fn)) are statistically close.

Hybrid HYB2(k, (f1, . . . , fn)). We replace SIM1 by SIM2 which instead of sending an encryp-
tion of x′i in step 7a, defines e← Encpk i

(x′′i ) for a random x′′i ← F.

We argue that if one could distinguish between the distribution of HYB1(k, (f1, . . . , fn)) and
HYB2(k, (f1, . . . , fn)), then we could define an adversary B breaking semantic security of
HE . Adversary B receives the target public key (pk∗, evk∗) for HE and behaves exactly as
SIM1 with the difference that it sets (pk i, evki) = (pk∗, evk∗). The challenge is set to the
value x′i chosen by SIM in step 4; denote with e the corresponding ciphertext, which is either
an encryption of x′i or an encryption of a randomly chosen x′′i . Then B uses e in step 7a to
simulate the ciphertext sent from Pi to S.

Now, if the distinguisher guesses to be in HYB1(k, (f1, . . . , fn)), the adversary guesses that e
must be an encryption of x′i (i.e., output “real”), and otherwise if the distinguisher guesses to
be in HYB2(k, (f1, . . . , fn)), the adversary guesses that the challenge ciphertext must encrypt
an independent value (i.e., output “random”). Thus, semantic security of HE implies that
the two hybrids are computationally indistinguishable.

Hybrid HYB3(k, (f1, . . . , fn)). We replace SIM2 by SIM3 which on step 5 does not send
(Overwrite) to IESS, but instead continues to answer recovery queries from Pi ∈ ∆ as done
by SIM in step 7. Notice that in HYB2, once the flag bad is set, the ideal functionality
would answer all such queries with ⊥.

Let Bad be the following event: Bad becomes true whenever an honest client Pi accepts the
output of a recovery query (produced via Turing machine M) as valid, and |K| ≥ k (i.e.,

the flag bad was already set in the previous hybrid). Denote with H̃YB3(k, (f1, . . . , fn)) the
distribution of HYB3 conditioned on Bad not happening. Clearly HYB2(k, (f1, . . . , fn))

and H̃YB3(k, (f1, . . . , fn)) are identically distributed; next we argue that Bad happens
with probability exponentially small in k, which implies that HYB2(k, (f1, . . . , fn)) and
HYB3(k, (f1, . . . , fn)) are close.

We rely here on the fact that, for F = GF (2max(`,3k+logn+log logn)), our entangled encoding
scheme of Section 3 has (k,

√
8 · 2−k/2) all-or-nothing integrity. In particular, any adversarial

strategy provoking event Bad with probability ≥
√

8 ·2−k/2 starting from a polynomial where
at least k bits have been overwritten, can be used to break the all-or-nothing integrity property
of the encoding scheme. In the reduction, an adversary attacking the all-or-nothing integrity
property of (Setup,Encode,Decode) would simply behave as SIM3 and, after Pi is done with
verifying the proof and recovering its file, run the extractor EXT P to obtain a witness c∗(·).
Then SIM3 sets DecodeAdv := (c∗(·)− s′i, c∗(·)).
Clearly, in case Bad happens, we obtain that the reduction above breaks the all-or-nothing
integrity of the encoding scheme provided that the extractor does not fail to extract a valid
witness (which will happen with negligible probability by simulation extractability). Thus,
by Theorem 2, we get that P (Bad) ≤

√
8 · 2−k/2.9

9Note that in order to apply Theorem 2, we need the property that the view in the reduction is independent of x′i;
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Hybrid HYB4(k, (f1, . . . , fn)). We replace SIM3 by SIM4, which answers recovery queries dif-
ferently in case S is corrupt. Namely, on step 7 SIM4 does not send (Cheat, S, deliver)
to IESS, but instead computes the answer to a recovery query from honest Pi as f ′i =
c(x′i)− s′i where c(·) is the emulated polynomial used by SIM. The only difference between
HYB3(k, (f1, . . . , fn)) and HYB4(k, (f1, . . . , fn)) is that in the former the ideal functionality
would always answer queries where (Cheat, S, yes) was sent with the correct value fi.

Let Bad′ be the event that Pi accepts the output of a recovery query in HYB4(k, (f1, . . . , fn))
and f ′i 6= fi; clearly the distribution of HYB3(k, (f1, . . . , fn)) and the distribution of HYB4(k,
(f1, . . . , fn)) conditioned on Bad′ not happening are identical. It is easy to verify that the
probability of Bad′ is negligible, otherwise one could break collision resistance of H(·). The
reduction is straightforward and is therefore omitted.

Hybrid HYB5(k, (f1, . . . , fn)). We replace SIM4 with SIM5, that computes again the cipher-
text in step 7a by encrypting the right value x′i. Semantic security of HE implies that
HYB4(k, (f1, . . . , fn)) and HYB5(k, (f1, . . . , fn)) are computationally close. The proof is
analogous to an above argument, and is therefore omitted.

Hybrid HYB6(k, (f1, . . . , fn)). We replace SIM5 by SIM6 which chooses the points (xi, yi) of
the honest players as in the real protocol, i.e. it defines yi = fi + si for G(σi) = (si, xi). We
claim that any probabilistic polynomial-time distinguisher between the two hybrids can be
turned into another distinguisher breaking pseudo-randomness of G(·).
The distinguisher is given access to an oracle returning strings v ∈ {0, 1}2max(`,3k+logn+log logn),
with the promise that they are either uniformly distributed or computed through G(·). Hence,
the distinguisher interprets vi as an element in F2, parses vi as vi = (si, xi) and uses these
values together with files fi to define the emulated polynomial c in step 4. Now, when the
vi’s are uniform, the distribution is the same as in HYB5(k, (f1, . . . , fn)), whereas when
vi = G(σi) the distribution is the same as in hybrid HYB6(k, (f1, . . . , fn)). Thus, given a
distinguisher between the two hybrids we can break the pseudo-randomness of G(·).

It is easy to see that the output distribution of the last hybrid experiment is identical to the distribu-
tion resulting from a real execution of the protocol. We have thus showed that IDEALIESS,SIM(z)(k,
(f1, . . . , fn)) and REALESS,A(z)(k, (f1, . . . , fn)) are computationally close, as desired.
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A A Protocol for Realizing I∗mem

We describe a protocol Π′ that securely realizes I∗mem in the Imem-hybrid model (see Section 4.1),
whenever I∗mem is parametrized by our encoding scheme based on polynomials (see Section 3.2).
Recall that Imem is parametrized by a sharing scheme (Share,Reconstruct). We propose two concrete
instantiations below:

- Threshold additively homomorphic encryption (e.g., Paillier’s cryptosystem [22, 12]). Such
a scheme has the following properties: (i) To share a value a party can encrypt it using
the public key of the cryptosystem and broadcast the ciphertext; (ii) An encrypted value
can be opened using threshold decryption; (iii) Given ciphertexts Encpk (µ1), Encpk (µ2) and
plaintext µ3, parties can compute Encpk (µ1 + µ2) and Encpk (µ3 · µ1) non-interactively; (iv)
Given ciphertexts Encpk (µ1) and Encpk (µ2), parties can compute Encpk (µ1 · µ2) in a constant
number of rounds.

- Linear secret sharing (eg., [25, 13]). Such a scheme has the following properties: (i) Parties
can share a value in a constant number of rounds; (ii) Parties can open a value in a constant
number of rounds; (iii) Given shares of values µ1, µ2 and value µ3, parties can compute shares
of µ1 + µ2 and µ3 · µ1 non-interactively; (iv) Given shares of values µ1 and µ2, parties can
compute shares of µ1 · µ2 in a constant number of rounds.
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In what follows we say that a value is shared if it is distributed according to one of the above two
methods; similarly a matrix or a polynomial are shared if all the elements of the matrix or the
coefficients of the polynomial are shared.

Let F be a finite field. Consider the following linear system A · c = b, where

A =

1 x1 x2
1 . . . xn−1

1
...

1 xn x2
n . . . xn−1

n

 c =

 c0
...

cn−1

 b =

y1
...
yn

 , (2)

and A is a Vandermonde matrix. Note that if the xi’s are distinct, A is non-singular and can thus
be inverted yielding the vector c = A−1 · b containing the coefficients of the polynomial c(X) of
minimal degree interpolating all (xi, yi).

Denote with A = (A[1], . . . ,A[n]) the rows of A and with b = (b[1], . . . ,b[n]) the elements of
b. The following protocol Π′ runs with clients Pi holding an input (xi, yi) ∈ F2, and is based on [4].

1. Each client Pi shares A[i] and b[i].

2. Clients share a random non-zero invertible matrix R (this can be done in constant rounds [4]),
compute the shares of R ·A, and reveal the result.

3. Each client computes the shares of (R ·A)−1 = A−1 ·R−1 and thus A−1 ·R−1 ·R = A−1

non-interactively.

4. Each client computes the shares of A−1 · b non-interactively.

5. For all j ∈ [0, n− 1], let si,j be the share of c[j] held by Pi. Client Pi issues (Store, i, si,j).

The above protocol requires a constant number of rounds and O(n3) multiplications of shared
values. (Recall that in turn each multiplication of shared values requires interaction.) An im-
provement can be found in [20] with only O(n2) multiplications. The parties share polynomials
ξ(X) =

∏n
i=1(X − xi) and ξi(X) = ξ(X)/(X − xi) (for all i = 1, . . . , n) and values ξi(xi), ξ

−1
i (xi)

(for all i = 1, . . . , n). Hence, parties can compute the shares of ξ′i(X) = ξi(X) · ξi(xi)−1 (for all
i = 1, . . . , n) and obtain the shares of c(X) =

∑n
i=1 ξ

′
i(X) · b[i].

The type of security we achieve depends on the particular sharing scheme we employ. In case
of passive adversaries, the protocols above are secure for adversary structure ∆ = Q2 (i.e., no two
sets in ∆ cover the entire set of clients). In case of active adversaries, we can tolerate ∆ = Q3 by
using verifiable secret sharing or zero-knowledge proofs (∆ = Q2 assuming a broadcast channel).
In case protocol Π′ above is instantiated using verifiable secret sharing (with no broadcast channel
available), and setting yi = fi + si for (si, xi) = G(σi), we obtain, e.g., the following statement:

Theorem 4 Protocol Π′ above Q3-securely realizes I∗mem in the Imem-hybrid model, with active
corruptions.

The proof follows directly by the result in [4]. The intuition is that the simulator can extract,
by relying on the properties of the verifiable secret sharing scheme, input and randomness for the
corrupt players to be forwarded to the ideal functionality I∗mem.

24



B Secure Polynomial Evaluation

In this appendix we discuss a few variants of our main protocol Π (see Section 5). Recall that
in protocol Π, whenever a client Pi wants to retrieve its own file it runs a sub-protocol Π′′ for
evaluating the polynomial c(·) at point xi ∈ F. Intuitively Π′′ guarantees that Pi learns nothing
more than c(xi), whereas the server does not learn anything on the client’s input. A related problem
is the one of oblivious polynomial evaluation (OPE) [16] (see also [9]), where the server holds the
actual polynomial and we want that additionally the client does not learn anything about c(·),
apart from the value c(x) itself. Note that any protocol for OPE could be used as a sub-protocol
for file recovery in Π, but given the efficiency of OPE our solution is more efficient.

An alternative approach is to replace the somewhat homomorphic encryption scheme with an
additively homomorphic encryption scheme, e.g. Paillier [22]. In this case the client would send the
powers {xi}n−1

i=1 encrypted, and the server would evaluate c(x) homomorphically in encrypted form
(under Pi’s public key). Communication complexity is similar as in the näıve approach but now
Pi does not have to compute c(x). This solution requires the transmission of n field elements from
the client to the server and one field element from the server to the client.

Efficiency considerations. We observe that the efficiency of sub-protocol Π′′, in reality, depends
on the SHE scheme that is employed. For instance, if we consider the schemes in [7, 6], we observe
that the ciphertext e∗ will be larger as we increase the number of multiplications allowed. Thus,
given the current state of efficiency of SHE schemes, this sub-protocol is less efficient than the
solution based on additively homomorphic encryption. (Indeed, with [22], the server would return
always an element of Z∗N2 , independently of the number of homomorphic operations performed.)

The following simple observation about the homomorphic encryption approach allows us to
reduce the communication complexity, while keeping the same computational complexity for Pi.
Let n = (n1, . . . , n`)2 be the binary representation of the exponent n, for ` = dlog2 ne, so that
n =

∑`
i=0 2ini. It is easy to verify that it is sufficient for the client to transmit {Encpk (x2i)}`i=0

to allow S to compute (homomorphically) {Encpk (xj)}nj=1 and thus Encpk (c(x)). This reduces the
communication from O(n) to O(log n).

If we allow the client to work a bit more, we can reduce communication further. In Appendix B
we present a method to encode a polynomial c(X), which allows the client to evaluate Encpk (c(x))
by uploading/downloading only d

√
n e ciphertexts. When combined with the previous trick, this

drops the communication complexity from O(n) down to O(log
√
n).

Yet another trade-off is possible if we assume that Pi and S share a factorization of the polyno-
mial c(X), say c(X) =

∏
j γj(X) for polynomials γj(·) of degree δj such that

∑
j δj = n − 1.10 In

this case, the client works more since it has to: (i) compute and send the ciphertexts {Encpk (xi)}δi=1,
for δ = max(δj); (ii) download {Encpk (γj(x))}j ; (iii) decrypt and multiply the resulting plaintexts.

Communication-Efficient Encoding of Polynomials. Let c(X) = cn−1X
n−1 + . . .+c1X+c0

be a polynomial of degree n− 1 with coefficients c0, . . . , cn−1 from a field F. For simplicity, assume
there exists an element m ∈ N such that m2 = n − 1 (i.e., m =

√
n− 1). Then, the algorithm

described in Figure 4, upon input coefficients c0, . . . , cn−1, outputs polynomials ζ0(·), . . . , ζm(·) each

10It is well-known that a random polynomial of degree n over a field of prime order is irreducible with probability
close to 1/n. Clients must agree on the factorization of c(·) at the end of the entanglement phase.
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of maximum degreem such that c(X) = ζm(X)·Xm·m+ζm−1(X)·Xm(m−1)+. . .+ζ1(X)·Xm+ζ0(X).

Input: Coefficients cn−1, . . . , c0

1. Compute m =
√
n− 1

2. For i = 0 to m− 1 define

ζi(X) := cim + cim+1 ·X + . . .+ c(i+1)m−1 ·Xm−1

3. Define ζm(X) := cn−1

Output: Polynomials ζm(X), . . . , ζ0(X)

Figure 4: Advantageous encoding of polynomial c(X). The encoding algorithm can be easily
modified to handle values n− 1 which do not have a root in N.

The correctness of the encoding algorithm of Figure 4 can be easily verified. We need to show
cn−1X

n−1 + . . .+ c1X + c0 = ζm(X) ·Xm·m + . . .+ ζ1(X) ·Xm + ζ0(X). We see that ζi(X) ·Xim =
cimX

im + . . .+ c(i+1)m−1X
(i+1)m−1 for all i = 1, . . . ,m− 1. That is,

ζi(X) ·Xim = (cim + cim+1 ·X + . . .+ c(i+1)m−1 ·Xm−1) ·Xim

= cimX
im + cim+1 ·Xim+1 + . . .+ c(i+1)m−1 ·X(i+1)m−1.

Now, by adding all (sub)terms we have c(X) =
∑m

i=0 ζi(X)Xim. Thus, correctness is provided.
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