
Constant-Overhead Secure Computation
of Boolean Circuits using Preprocessing

Ivan Damg̊ard and Sarah Zakarias?

Dept. of Computer Science, Aarhus University

Abstract. We present a protocol for securely computing a Boolean cir-
cuit C in presence of a dishonest and malicious majority. The protocol
is unconditionally secure, assuming a preprocessing functionality that is
not given the inputs. For a large number of players the work for each
player is the same as computing the circuit in the clear, up to a constant
factor. Our protocol is the first to obtain these properties for Boolean
circuits. On the technical side, we develop new homomorphic authenti-
cation schemes based on asymptotically good codes with an additional
multiplication property. We also show a new algorithm for verifying the
product of Boolean matrices in quadratic time with exponentially small
error probability, where previous methods only achieved constant error.

1 Introduction

In multiparty computation, a set of players each holding a private input wish
to compute an agreed function such that the intended result is the only new
information that is revealed. This must hold also if some subset of the play-
ers are corrupted by an adversary. Even in the most difficult case where all
but one player can be corrupt (aka. dishonest majority), it is known that any
efficiently computable function can be computed securely, under appropriate
complexity assumptions [CLOS02], also when asking for universal composable
security [Can01]. This leads naturally to the question of what the price of se-
curity is, i.e., how much extra resources must we invest to compute the function
securely, as opposed to just computing it?

The case of dishonest majority can be handled by different approaches. It is
well known that using fully homomorphic encryption, the communication com-
plexity can be made very small, and only needs to depend on the number of
inputs and outputs of the function. Although the computational overhead is
usually very large, for some cryptosystems even this can be made small, in
fact poly-logarithmic in the security parameter, see [GHS12]. However, the ex-
ponent hidden in the poly-logarithmic notation is quite large because the ap-
proach requires so-called bootstrapping and currently does not yield practical

? The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for the
Sino-Danish Center for the Theory of Interactive Computation, within which part of
this work was performed; and also from the CFEM research center (supported by the
Danish Strategic Research Council) within which part of this work was performed.

protocols. The overhead can also be made small using “MPC-in-the-head” tech-
niques [IKOS08], at least for a constant number of parties, but still using (some-
what non-standard) computational assumptions. Furthermore in these cases,
only computational security can be obtained.

On the other hand, if we allow a preprocessing phase where the inputs to the
function need not be known, then unconditional, active security can be obtained,
and complexity can be reduced to a point where we get eminently practical pro-
tocols. This was first demonstrated by Bendlin et al. [BDOZ11], who showed that
given a preprocessing functionality, an arithmetic circuit over a large field Fq can
be computed with unconditional security and very efficiently: if the number of
players is constant and log q ∈ Ω(κ), where κ is the security parameter, then the
total computational work invested by each player is a constant times the work
one needs to compute the same circuit in the clear. More recently, Damg̊ard et
al.[DPSZ12] improved this result by showing the same for any number of play-
ers. In both cases, preprocessing works independently of the inputs, and simply
produces ‘raw material’ for the computation phase. The preprocessing can be
implemented by a general MPC protocol which can be run any time prior to
the computation. However, [BDOZ11,DPSZ12] show particularly efficient pre-
processing protocols based on public-key cryptosystems with special properties.

In this paper we are interested in computing Boolean circuits securely given
preprocessing. Here, the techniques from the online phases of [BDOZ11] and
[DPSZ12] also work, in particular Nielsen et al.[NNOB12] use the approach
from [BDOZ11] for Boolean circuits. However, some efficiency is lost: for every
AND-gate in the circuit, each player must do Ω(κ) bit operations, resulting in
a computational overhead that is at least linear in κ. Getting constant overhead
also for small fields was left as an open problem in [DPSZ12].

To be more precise about the cost of these protocols, we define three different
types of overhead: the data-overhead is the total number of bits players must
store from the preprocessing divided by N · |C|, where |C| is the size of the
circuit to compute. The communication-overhead and the computation-overhead
is the communication complexity and the computational complexity respectively
(in bit operations) of the protocol divided by N · |C|. For some protocols, these
overheads turn out to be the same up to constant factors, and in such a case, we
just speak of the overhead of the protocol. In a nutshell, the overhead represents
the amount of resource each player needs to invest per gate in the circuit.

In this terminology, the protocol in [NNOB12] has overhead Ω(κ). It is nev-
ertheless practical and has been implemented with promising results. On the
other hand, Damg̊ard et al. [DIK10] show that based on the “MPC in the head”
technique one can obtain a protocol with overhead essentially log(|C|)polylog(κ).
This is based on preprocessing of a large number of oblivious transfers and us-
ing them to convert a multiparty protocol for honest majority into a two-party
protocol. The constants involved here are very large, however, and the protocol
is in fact not practical. Both these protocols are for the two-party case. The
one from [DIK10] generalizes to several players but then the overhead would be
Ω(N log(|C|)polylog(κ)).

Before presenting our results, we consider how small overheads we can hope
for. Here it is useful to distinguish between two cases: either the preprocessing
is useful for computing any circuit, we call this universal preprocessing – or the
preprocessing knows the circuit (but not the inputs) and only has to generate
data for computing this circuit. We call this dedicated preprocessing.

In [DPSZ12] some lower bounds are shown for universal preprocessing, saying
that data and computational overheads must be at least constant. For dedicated
preprocessing, one can note that preprocessing targeted against a universal cir-
cuit is essentially universal preprocessing. Hence by the known bound, the data
overhead cannot be sub-constant for all circuits even in the dedicated case. More-
over, it would be surprising if the computational overhead could be sub-constant,
even for dedicated preprocessing. In such a case, each player would have to do
substantially less work than it takes to compute the circuit in the clear. Since
a single player has to rely on the work of other (corrupt) players, all players
must prove correctness of their part. This should then be possible in complexity
much smaller than the clear computation and with unconditional privacy and
correctness for all parties. This is not something we know how to do, even with
preprocessing.

Finally, for communication overhead, it follows from results in [IKM+13] that
we only need communication linear in the size of the inputs, but this comes at
the cost that the data overhead is exponential in the input size. Evidence is
given in [IKM+13] that getting small communication and data overhead would
lead to a major breakthrough in private information retrieval.

In conclusion, the results and evidence we know suggest that getting constant
overhead is the goal we can realistically hope to achieve.

1.1 Our Contribution

In this paper we show a multiparty computation protocol in the preprocessing
model, for computing Boolean circuits securely. It is information theoretically
secure against an active adversary corrupting up to N − 1 players. We assume
synchronous communication and secure point-to-point channels.

We focus on circuits that are not too “oddly shaped”. Concretely, we assume
that every layer of the circuit is Ω(κ) gates wide, where κ is the security pa-
rameter (except perhaps for a constant number of layers). Second, we want that
the number of bits that are output from layer i in the circuit and used in layer
j is either 0 or Ω(κ) for all i < j (where again a constant number of exceptions
are allowed). We call such circuits well-formed. In a nutshell, well-formed circuit
are those that allow a modest amount of parallelization, namely a program com-
puting the circuit can always execute Ω(κ) bit operations in parallel and when
storing bits for later use or retrieving, it can always access Ω(κ) bits at a time.

Since our protocol has error probability 2−κ and is unconditionally secure,
the value of κ can be quite small, e.g., 80 and would not be affected by future
advances in cryptanalysis. From a practical point of view one may therefore
think of κ as being very small compared the the circuit size, and hence the
requirement that the circuit be well-formed seems rather modest. We stress that

our protocols work for arbitrary circuits, but the claims we can make on the
overhead will be weaker.

Throughout, we think of the circuit size as being also much larger than the
number of players. Our statements on overheads below therefore ignore additive
terms that are O(κN/|C|).

Our protocols are based on families of codes with some specific nice properties
that we explain in more detail below. The simplest construction follows from
Reed-Solomon codes and from this we get:

Theorem 1. There exists an N -party protocol for computing securely a well-
formed Boolean circuit C in the dedicated preprocessing model, statistically secure
against N − 1 active corruptions. For error probability 2−κ, the overhead is
O(polylog(κ)), where κ is the security parameter.

There also exists an N -party protocol for computing securely a well-formed
Boolean circuit C in the universal preprocessing model, statistically secure against
N − 1 active corruptions. For error probability 2−κ, the overhead is O(log(|C|) ·
polylog(κ)).

The second result applies a technique from [DIK10] to restructure C into
a new circuit that has a more regular structure, but still computes the same
function. The result from [DIK10] leads in general to circuits that have size
O(log(|C|)|C| + d2κ log |C|), where d is the depth of C. However, in case of
well-formed circuits the term depending on d disappears.

In comparison, the protocol one can construct from [DIK10] would have a
larger overhead, namely Ω(log(|C|) · polylog(κ) · N) in both the universal and
dedicated preprocessing model1. In comparison to [NNOB12], we clearly do bet-
ter asymptotically in the dedicated model. But also for concrete efficiency, our
method can offer an improvement, particularly for the case where the circuit does
a computation that is “born” parallel and hence lends itself easily to block-wise
computation. See more details in section B.

Using algebraic geometry codes and results on strongly multiplicative secret
sharing from [CCX11] we obtain a result that is better than Theorem 1 when
the number of players is large.

Theorem 2. There exists an N -party protocol for computing securely a well-
formed Boolean circuit C in the dedicated preprocessing model, statistically secure
against N − 1 active corruptions. For an error probability of 2−κ, the data and
communication overhead are O(1) while the computation-overhead is O(1 + κ

N),
where κ is the security parameter.

There also exists an N -party protocol for computing securely a well-formed
Boolean circuit C in the universal preprocessing model, statistically secure against

1 The reason why that protocol does not benefit from dedicated preprocessing is that
it is based on processing bits in parallel in large blocks, and in between permuting
bits inside these blocks. The efficiency, even in the online phase, crucially depends
on the fact that only a logarithmic number of different permutations are needed.
For this one needs to always transform C to a more regular form, leading to the
log(|C|)-factor.

N − 1 active corruptions. For error probability 2−κ, data and communication
overheads are O(log(|C|)), while computation overhead is O(log(|C|)(1 + κ

N)).

If we are willing to assume that the layers in C are κ2 gates wide, then we can
get computational overhead O(1 + κε

N), Where ε is defined as the smallest value
for which multiplication of n by n matrices can be done in time O(n2+ε). Based
on the best known matrix multiplication algorithms, we can have ε ≈ 0.3727. It
may even be that any ε > 0 suffices, but this is an open problem.

Note that none of the overheads we obtain increase with N and in fact
most of them do not depend on N . In particular our protocols have constant
storage overhead and constant computation overhead for a large enough number
of players. They are the first protocols in the preprocessing model for Boolean
circuits with this property, and in fact, from the discussion in the introduction,
the results seem close to optimal.

Techniques. We use the idea from [DPSZ12] of having the values we compute on
be secret-shared among the players, where also a Message Authentication Code
(MAC) on this value is secret-shared. Using precomputed values for multiplica-
tion, linear operations then suffice for executing the computation.

However, directly usage of the MACs from [DPSZ12] or any other previous
construction would not be efficient enough here, since we would have to use
values from a large field (F2κ) to authenticate single bits. A naive approach
where one groups κ bits together and authenticate them using a single MAC
over F2κ fails: we will need to do bit-wise addition and multiplication on such
κ-bit vectors, and since this does not commute with multiplication in F2κ , we
lose the homomorphic property of the MACs that is crucial for the protocol.

The key to our results consists of two technical contributions. First, we de-
velop a new authentication scheme based on families of linear codes where each
code as well as its so-called Schur-transform have minimum distance and dimen-
sion a constant times their length. This scheme has the homomorphic property
we need, and is able to authenticate κ-bit vectors using MACs and keys of size
O(κ). We note that the idea of using small MACs on entries in an error correct-
ing code appeared in a different context in [IKOS08]. However, that application
did not use any homomorphic properties of the MACs, or the Schur transform.

The second technique is an efficient method for verifying membership in a
linear binary code for a batch of purported codewords. We show how to do this
with constant overhead per data bit. The underlying algorithm is of independent
interest, as it is actually a general method for verifying multiplication of Θ(n) by
Θ(n) binary matrices in time O(n2) with exponentially small error probability.
The best previous methods give only constant error probability in the same time.

2 Linear Codes

In the following, we will consider a [n, k, d] linear code C over a field F = F2u ,
i.e., C has length n, dimension k and minimum distance d. We will assume
throughout that n, k, d are all Θ(κ), where κ is the security parameter. We will
use boldface such as x to denote vectors, and when x, y are vectors of the same
length, we let x ∗ y denote the coordinate-wise product of x and y.

For a vector x ∈ {0, 1}k, we let C(x) be the encoding of x as a codeword
in C. Without loss of generality, we assume throughout that the encoding is
systematic, so that x itself appears as the first k entries in C(x).

For a linear code C with parameters as above, the Schur-transform of C,
written C∗, is a linear [n, k∗, d∗]-code, defined as the span of the set of vectors
{x ∗ y| x,y ∈ C}. It is easy to see that k∗ ≥ k and d∗ ≤ d. However, we will
assume that d∗ is still large, namely d∗ ∈ Θ(κ). This is by no means always the
case, but can be obtained if C is properly constructed.

Let x, y be k-bit strings. We define C∗(x) to the set of codewords in C∗

where x appears in the first k coordinates. This is indeed a set and not a single
codeword: since k∗ can be larger than k, x does not necessarily uniquely deter-
mine a codeword in C∗. Note that since C(x)∗C(y) ∈ C∗, and since furthermore
x ∗ y appears in the first k coordinates of this codeword, we have

C(x) ∗ C(y) ∈ C∗(x ∗ y)

This also shows that C∗(x) is always non-empty, by taking y = (1, 1, ..., 1).

Reed-Solomon Codes As a first example, we give a simple construction showing
that Reed-Solomon type codes have the right properties, if we assume that u is
Θ(log κ). Then we set n = 3k, and we may assume that F has at least n distinct
elements a1, .., an. Now define C to be the code consisting of vectors of form
(f(a1), ..., f(an)) where f is a polynomial over F of degree at most k − 1. Then
C∗ will be a code of the same form, but defined using polynomials of degree at
most 2(k − 1).

It follows immediately from Lagrange interpolation that C and C∗ have min-
imum distances as large as required. Note that we can put C in systematic form
also using interpolation: given k field elements to encode, we interpolate a poly-
nomial f such that f(a1), ..., f(ak) equal these elements and then evaluate f
in the remaining points to complete the codeword. Note also that in this case
encoding and verifying membership in the codes is very efficient because it can
be done by multiplication by Van der Monde matrices or their inverses. Using
well-known algorithms based on the fast Fourier transform, this can be done in
time n · polylog(n). In Section 4.1 we cover the complexity of our protocol when
using Reed-Solomon codes.

Algebraic Geometry Codes Using the work of Cascudo et al. [CCX11], one can
do even better: based on Algebraic Geometry, they construct families of codes
with properties as we require over constant size fields. In Section 4.2 we cover
the complexity of our protocol when using Algebraic Geometry codes.

3 Authentication Schemes based on Linear Codes

In this section we present a new authentication scheme that we will need in the
following. We will assume that we have a code C as described above, of length
n, dimension k and minimum distance d. In its most basic version there is a
receiver who knows a key α ∈ Fn chosen at random. The value to authenticate
is a k-vector x and the message authentication code (MAC) is m = C(x) ∗α.

Note that we use coordinate-wise multiplication by α, and therefore the
scheme is actually doing a standard MAC over the field F for every coordinate
of C(x). Since F has constant size, this would normally not be good enough since
one can forge such a MAC with constant probability 1/|F|, namely by guessing
the corresponding entry in α. But in our case, the coding saves the day: to forge
a MAC, one would need to change to a different codeword and therefore forge
not 1, but d MACs. Of course, if both x and m were known, information on α
would leak and other MACs might be forged. But in the protocol to follow, m
will be unknown to the adversary (since it is secret shared). It therefore turns
out that the following basic result on security for these MACs is what we need:

Lemma 1. Using the above notation, suppose the adversary is given x and then
outputs x′ and a “MAC-error” ∆. We say the adversary wins if C(x′) ∗ α =
m+∆ and x 6= x′. The probability that the adversary wins is at most 2−d.

Proof. Assuming the adversary wins, we know C(x′)∗α = m+∆ holds. Plugging
in m = C(x) ∗α, we obtain α ∗ (C(x)−C(x′)) = ∆. Since the adversary wins,
C(x)−C(x′) is a non-zero codeword, so it is non-zero in at least d coordinates.
The equation therefore determines α in at least d positions so we see that the
adversary must guess at least d coordinates of the key to win.

Next, we consider a different way to use these MACs that turns out to be
more efficient when many messages are authenticated. In this variant the scheme
will use a single global key α that will be secret shared so it is unknown to the
adversary. The MAC on a value x is defined as before as m = α ∗ C(x). In the
protocol we make sure to reveal nothing about α nor about any of the MACs
until the end of the protocol where it will be too late for corrupted players
to forge any values. The way we prove security is thus to design the following
security game modeling the way this scheme is used in the protocol.

1. The challenger generates the secret key α and MACs mi ← α ∗ wi and
sends the messages w1, . . . ,wT to the adversary. Note that here messages
are codewords.

2. The adversary sends back messages w′1, . . . ,w
′
T .

3. The challenger generates random values e1, . . . , eT ← Fn and sends them to
the adversary.

4. The adversary provides an error ∆.
5. Set w ←

∑T
i=1 ei ∗w′i,m←

∑T
i=1 ei ∗mi. Now, the challenger checks that

all w′i’s are valid codewords and that α ∗w = m+∆.

The adversary wins if there is an i for which w′i 6= wi and the final checks pass.

Generating the e’s. We will show below that the adversary can only win this
game with negligible probability if the ej ’s are uniformly random. However im-
plementing such a (trusted) random choice in our protocol turns out to be ex-
pensive, so we consider instead a way to choose them pseudorandomly using
a smaller number of random bits. What we will require is a way to generate
(pseudo) random strings v = (v1, ..., vT) ∈ FT that are linearly ε-biased. By this
we mean that for any fixed non-zero vector u, we have Pr[u · v 6= 0] ≥ ε for
some constant ε.

In [NN93], Naor and Naor present a construction (attributed there to Bruck)
that does exactly this, based on codes with good properties, namely the same
as we use here: both the dimension and the minimum distance of the code are a
constant time the length of the code. Let G be the generator matrix of the code,
where the rows of G form a basis of the code. Say that G has m columns where
m is in Θ(T), and that the minimum distance of the code is εm for a constant ε.

Now the idea is to simply let v be a random column of G. To see why this
works, fix any u and consider two random experiments: 1) compute the codeword
uG and output a random entry from the result. 2) choose a random column v
from G and output u · v.

The first experiment clearly gives a non-zero result with probability ε, but on
the other hand, it is equivalent to the second one since the entries in uG are the
inner products of u with each column in G. We therefore get Pr(u · v 6= 0) ≥ ε
as desired. To connect this to the above security game, let ei = (e1i , ..., e

n
i)

and define ej := (ej1, . . . , e
j
T). We can now choose the ej ’s to be linearly ε-biased

instead of choosing them at random. Note that for this we need a seed consisting
of logm ∈ O(log T) random bits for each ej , i.e, a total of O(n log T) random
bits. We then have the following:

Lemma 2. The adversary wins the above security game with probability at most
2−Θ(n). This holds, even if the ej are not random but only linearly ε-biased.

Proof. Let us start by assuming that the ei’s are completely random and look
at the adversary’s probability of winning. If the checks hold then we have the
following equality α ∗

∑T
i=1 ei ∗vi = ∆ where vi := w′i−wi for i = 1, . . . , T are

codewords and there exists at least one j for which vj 6= 0. Note that since vj
is a codeword it contains at least d entries that are 1.

Consider the sum
∑T
i=1 ei ∗ vi. Let vji be the j’th entry in vi, then we

define vj := (vj1, . . . , v
j
T). Finally we define the function fvj (e

j) :=
∑T
i=1 e

j
iv
j
i

which is a linear mapping, that is not the 0-mapping for at least d number
of j’s since at least one vi 6= 0 and hence has at least d entries which are
nonzero. From linear algebra we then have the rank-nullity theorem telling us
that dim(ker(fvj)) = T − 1. Furthermore, since ej is random and the adversary
does not know ej when choosing the w′i’s, the probability of ej ∈ ker(fvj) is
|FT−1|/|FT | = 1/|F| ≤ 1/2. In the following we assume for simplicity the worst
case |F| = 2. So we expect d/2 of the fvj (e

j)’s in question to be 1. We can use
Hoeffding’s inequality [Hoe63] to bound the probability that we are far from the
expectation: define random variables X1, ..., Xd that take the value of the d non-
trivial instances of fvj (e

j) when ej is chosen at random. We can view the values

as the result of d independent experiments where the expected value E[Xi] is

1/2. Then from Hoeffding’s inequality we get that Pr[|
∑
Xi
d −1/2| ≥ t] ≤ e−2t2d,

for any t > 0. This shows that except with exponentially small probability (as a
function of d) we can guarantee to deviate with at most a small constant fraction,
that is, we can guarantee at least d/2 − td = cd number of nonzero entries in∑T
i=1 ei ∗ vi for any c < 1/2.
Assume we have this many non-zero entries. Then going back to the equality

α ∗
∑T
i=1 ei ∗ vi = ∆, this implies that satisfying it is equivalent to guessing at

least cd entries of α. However, since the adversary has no information about α,
guessing can be done with probability at most 2−cd. It follows that the proba-
bility the adversary wins is at most the probability that

∑T
i=1 ei ∗ vi has less

than cd non-zero entries, plus 2−cd. This is exponentially small in d and hence
also in n since d is assumed to be Θ(n).

If the ei’s are instead chosen such that the ej ’s are pseudorandom but inde-
pendent and linearly ε-biased, then we can show the same result using a similar
argument. The only difference will be that we expect to see at least εd non-zero
entries in

∑T
i=1 ei ∗ vi. By independence we can still use Hoeffding to guarantee

we are close to this number of non-zero entries, and the adversary will now have
to guess εd entries of α.

Note that the above security game and lemma work exactly the same way if
we replace the code C by C∗, since we have assumed that the minimum distance
of C∗ is also Θ(n). We may even have codewords from both C and C∗ in the
game, as long as it is agreed in advance which words are supposed to be in C
and C∗ respectively. This is because the proof only depends on the fact that the
non-zero vector vj we construct has Θ(n) non-zero coordinates.

4 Protocol for Secure Computation

We are now ready to present our protocol. In structure it is much like the online
protocol from [DPSZ12], but with the big difference that we are working with
blocks of bits and doing parallel block-wise operations. Therefore, our protocol
has an extra operation: Between two layers in the circuit we need to be able
to reorganize the output bits so that they match up with the gates where they
should be input. Here we assume a dedicated preprocessing phase where we know
the circuit to be computed so we will know exactly how we need to move the
bits around. However, as mentioned earlier, we will also show a solution which
is general, i.e. it does not depend on a preprocessing where the circuit is known.

We assume synchronous communication and secure point-to-point channels.
We also assume for simplicity that broadcast is available at unit cost. This
assumption can be removed without affecting the complexity using a method
from [DPSZ12] which also works for our protocol since it has a similar structure.
Also for simplicity we assume there is only one input from each player and one
public output. It is straightforward to remove these restrictions without affecting
the complexity.

Representation of values Values in our computation will be bits which are
grouped in vectors of length k, i.e. we have x ∈ Fk so that we will be do-
ing parallel operations on blocks of k bits. Each value will be secret shared
among the players along with a MAC on the value. More concretely, player i
will hold the encoding of a share C(xi), where C is a linear code as described
in the previous sections. There is also a public codeword dx = C(v) such that
x = x1 + · · · + xN + v. Moreover, the MAC m(x) = α ∗ C(x) will also be
additively shared such that player i holds m(x)i. This MAC is based on C and
computed using a global key α. The public codeword dx is necessary to eas-
ily add public values to our representation. Summing up we have the following
representation for a shared value x

〈x〉 := (dx, (C(x1), . . . , C(xN)), (m(x)1, . . . ,m(x)N)).

Note that while the additive shares that represent x are codewords, the shares
of the MAC are taken from the entire space Fn. This is necessary as the MAC
itself is not in general a codeword.

We will also need to work with another kind of representation, denoted 〈·〉∗,
which is exactly like the 〈·〉-representation except that in 〈x〉∗, the additive
shares representing x are taken from C∗ and add up to a codeword in C∗(x).
The MAC is still shared with shares from Fn, but its security is now based on the
minimum distance of C∗. The 〈·〉∗-representation comes up when we multiply a
〈·〉-representation with a public constant.

It is straight forward with 〈·〉 to do linear operations. For adding two rep-
resentations, and multiplying a public constant u encoded in C(u) we simply
compute component-wise. For adding the public constant we modify the first
share and the public codeword. We write as follows:

〈x〉+ 〈y〉 = (dx + dy, (C(x1) + C(y1), . . .), (m(x)1 +m(y)1, . . .))
= 〈x+ y〉 .

C(u) ∗ 〈x〉 = (C(u) ∗ dx, (C(u) ∗ C(x1), . . .), (C(u) ∗m(x)1, . . .))
= 〈u ∗ x〉∗ .

C(u) + 〈x〉 = (dx − C(u), (C(x1) + C(u), . . . C(xN)), (m(x)1, . . . ,m(x)N))
= 〈u+ x〉 .

With 〈·〉∗ we cannot do multiplications since multiplying two codewords in
C∗ is not guaranteed to give a result in C∗. We solve this in the protocol, by
converting 〈·〉∗ back into a 〈·〉-representation immediately after a multiplication.
We convert 〈w〉∗ into 〈w〉 by taking a pair of random values (〈s〉∗ , 〈s〉) and
open 〈w〉∗ − 〈s〉∗ to get σ∗ ∈ C∗(w − s). From σ∗, w − s can be read on the
first k coordinates. A single player, say P1 then computes σ = C(w − s) and
broadcasts σ. The rest of the players check that σ∗ and σ∗ are valid codewords
encoding the same value and compute 〈w〉 = σ + 〈s〉.

To compute the mutiplication 〈x〉∗〈y〉 we need to use the preprocessing which
will output random triples 〈a〉 , 〈b〉 , 〈c〉∗, where c = a∗b. Given such a triple, we
can do multiplication in the following standard way: To compute 〈x ∗ y〉 we first
open 〈x〉−〈a〉 to get ε = C(x−a), and 〈y〉−〈b〉 to get δ = C(y−b). Then, since
x∗y = (a+(x−a))∗(b+(y−b)) = c+(x−a)∗b+(y−b)∗a+(x−a)∗(y−b),
a new representation of x ∗ y can be computed as

〈x〉 ∗ 〈y〉 = 〈c〉∗ + ε ∗ 〈b〉+ δ ∗ 〈a〉 + ε ∗ δ = 〈x ∗ y〉∗ .

A final operation we need is reorganizing of bits between layers s.t. the output
bits become input bits to the intended gates. This may involve permuting bits,
duplicating bits and/or leaving out some bits. Clearly this reorganizing can be
expressed as a linear function F that takes as input all the output bits of a
given layer, which in our representation will be a vector of blocks of bits B =
(b1, . . . , bl). The output of F is a new vector of blocks F (B) = B′ = (b′1, . . . , b

′
l′).

For this purpose we extend our notation of 〈·〉 to also include a vector of blocks
instead of only one single block. We will write this as 〈B〉 := 〈b1〉 , . . . , 〈bl〉.
In general we will have that capital letters in 〈·〉 denotes a vector of blocks.
With this representation we still maintain the linear properties, simply by doing
the operations coordinate-wise, i.e. 〈A〉 + 〈B〉 := 〈a1〉 + 〈b1〉 , . . . , 〈al〉 + 〈bl〉
and so on. This means that we can compute F (〈B〉) and obtain 〈F (B)〉 for
any linear function F . If we assume that we know in advance the circuit to
be computed, then we also know exactly which reorganizing functions we need
between the circuit layers. Thus, for each needed reorganizing function F , we
will preprocess pairs of representations 〈R〉 , 〈F (R)〉, where R is random and of
appropriate length. As shown later, these pairs will then be used in the protocol
to reorganize the actual bits.

An important note is that during our protocol we are actually not guaranteed
that we are working with the correct results, since we do not immediately check
the MACs of the opened values. During the first part of the protocol, parties
only do what we define as a partial opening, meaning that each party Pi sends
his share C(ai) to one chosen party, say P1. Then, P1 computes and broadcasts
C(a) and the other parties verify that C(a) is a valid codeword. We assume here
for simplicity that we always go via P1, whereas in practice, one would balance
the workload over the players.

The checking is postponed to the end of the protocol in the output phase.
To check the MACs the global key α is needed. This key is provided by the
preprocessing but in a slightly different representation:

[[α]] := ((C(α1), . . . , C(αN)), (βi,m(α)i1, . . . ,m(α)iN)i=1,...N
),

where α =
∑N
i=1αi and

∑N
j=1m(α)ji = C(α) ∗ βi. Player Pi holds C(αi),βi,

m(α)i1, . . . ,m(α)iN . The idea is that m(α)i ←
∑N
j=1m(α)ji is the MAC au-

thenticating α under Pi’s private key βi. To open [[α]], each Pj sends to each

Pi his share C(αj) of α and his share m(α)ji of the MAC on α made with Pi’s

private key and then Pi checks that
∑N
j=1m(α)ji = C(α) ∗ βi. (To open the

value to only one party Pi, the other parties will simply send shares only to Pi,
who will do the checking.)

The protocol assumes access to a commitment functionality FCom for com-
mitments. A player commits by calling it with a secret value s as input. The
functionality stores the value until the committer calls open, in which case the
value is revealed to all players. This can be implemented based only on FPrep:
We open a random [[r]] only to the committer, who then broadcasts r+s. When
opening, we open [[r]] to all players so s can be computed.

The Protocol We assume an ideal preprocessing functionality2 FPrep, shown in
Figure 6. Given FPrep and the techniques described earlier we can construct
a protocol that securely implements the ideal functionality in Figure 4. The
protocol is presented in Figure 1 where we for brevity drop explicit mentioning of
variable identifiers. We assume here that the circuit to be computed is structured
such that there is only one type of gate per layer. This can be done without loss of
generality since any function to be computed can be expressed by NAND-gates
only, which then can be expressed by AND and XOR which are the operations
we support. We can now state the theorem on security of the online protocol.

Theorem 3. In the FPrep,FCom-hybrid model, the protocol ΠMPC implements
FMPC with statistical security against any static active adversary corrupting up
to N − 1 parties.

Proof (Theorem 3).
We construct a simulator SMPC such that a poly-time environment Z cannot

distinguish between the real protocol system FPrep,FCom composed with ΠMPC

and FMPC composed with SMPC. We assume static, active corruption. The simu-
lator will internally run a copy of FPrep composed with ΠMPC where it corrupts
the parties specified by Z. The simulator relays messages between parties/FPrep

and Z, such that Z will see the same interface as when interacting with a real
protocol. The specification of the simulator SMPC is presented in Figure 2.

To see that the simulated and real processes cannot be distinguished, we show
that the view of the environment in the ideal process is statistically indistinguish-
able from the view in the real process. This view consists of the corrupt players’
view of the protocol execution as well as inputs/outputs of honest players.

We first argue that the view up to the point where the output value is opened
(step 5 of the ‘output’ stage) has exactly the same distribution in the real and
in the simulated case: First, the value broadcast by honest players in the input
stage are always uniformly random. Second, when a value is partially opened
in a secure multiplication or a reorganize step, fresh shares of a random value

2 Note that we don’t show a specific implementation of FPrep, since that is not the
core of our result. An implementation can always be done by a general MPC proto-
col. However, in [DPSZ12] an efficient preprocessing protocol is shown which works
on vectors of values with coordinate-wise operations just as we need in our case.
Furthermore, since our online protocol in structure resembles theirs, we can use the
same kind of preprocessing.

Protocol ΠMPC

Initialize: The parties first invoke the preprocessing to get the shared secret key
[[α]], a sufficient number of multiplication triples (〈a〉 , 〈b〉 , 〈c〉∗), pairs of ran-
dom values and single values (〈r〉 , [[r]]), (〈s〉 , 〈s〉∗), 〈t〉, [[t′]], and pairs (〈R〉,
〈F (R)〉) of representations for random blocks R and linear function F .

Rand: The parties take an available single 〈t〉.
Input: To share Pi’s input xi, take an available pair 〈r〉 , [[r]] and do the following:

1. [[r]] is opened to Pi.
2. Pi broadcasts ε← C(xi)− C(r).
3. The parties verify that ε is a codeword and if so, compute 〈xi〉 ← 〈r〉+ ε.

Add: To add representations 〈x〉 , 〈y〉, parties locally compute 〈x+ y〉 ← 〈x〉+〈y〉.
Multiply: To multiply 〈x〉 , 〈y〉, parties take a triple (〈a〉 , 〈b〉 , 〈c〉∗) and a pair of

random values 〈s〉 , 〈s〉∗ from the set of the available ones and do:
1. Partially open 〈x〉 − 〈a〉 to get ε and 〈y〉 − 〈b〉 to get δ
2. Compute 〈x ∗ y〉∗ ← 〈c〉∗ + ε ∗ 〈b〉+ δ ∗ 〈a〉+ ε ∗ δ.
3. Partially open 〈x ∗ y〉∗ − 〈s〉∗ to get σ∗ ∈ C∗. P1 extracts x ∗ y − s and

encodes this value into a codeword σ ∈ C which he broadcasts.
4. All players check that σ∗,σ are codewords for the same value and then

compute 〈x ∗ y〉 ← σ + 〈s〉.
Reorganize Let B = (b1, . . . , bl) be the vector of blocks containing the output

bits of a given layer in the circuit. To reorganize these bits as inputs for the
next layer the parties first identify the F matching this reorganizing and take
preprocessed (〈R〉, 〈F (R)〉) for R with same length as B. The parties then do:
1. Partially open 〈B〉−〈R〉, so a set of codewords C(B −R) becomes public.
2. P1 extracts B −R, computes F (B −R) and broadcasts C(F (B −R)).
3. All players verify that C(B −R), C(F (B −R)) are sets of valid code-

words and that the encoded bits are related via F . Then compute
〈F (R)〉 ← C(F (B −R)) + 〈F (R)〉.

Output: This stage is entered when the players have 〈y〉 for (possibly incorrect)
but not opened output value y. They do the following:
1. Let C(aj), . . . , C(aT ′+1), be all partially opened values so far, where
〈aj〉 = (δj , (C(aj,1), . . . , C(aj,N)), (m(aj)1, . . . ,m(aj)N)). Similarly let
C∗(aT ′+1), . . . , C∗(aT) be opened values encoded in C∗. Open dc ·
N log(T)/ke random values [[t]] and use them as seeds to get e1, . . . , eT
as described in Section 3. Compute a←

∑T
j=1 ej ∗ C(a)j +

∑T
j=T ′+1 ej ∗

C∗(a)j .
2. Each Pi calls FCom to commit to mi ←

∑T
j=1 ej ∗m(aj)i. For output value

〈y〉, Pi also commits to his share yi, and his share m(y)i in the MAC.
3. [[α]] is opened.
4. Each Pi asks FCom to open mi, and all check that α ∗ (a +

∑T
j=1 ej ∗

δj) =
∑N

i=1mi. If a check fails, the protocol aborts. Otherwise the players
conclude that the output value is correctly computed.

5. The commitments to yi,m(y)i are opened. Define y as y :=
∑N

i=1 yi and

check that α ∗ (y + δ) =
∑N

i=1m(y)i, if so, y is the output.

Fig. 1. The online protocol.

are subtracted, so the honest players will always send a set of uniformly random
and independent values. Third, the honest players hold shares in MACs on the
opened values, these are random sharings of a correct MAC. Therefore, also the
MAC and shares revealed in step 4 of ‘output’ have the same distribution in the
simulated as in the the real process. Finally note that if the simulated protocol
aborts, the simulator makes the ideal functionality fail, so the environment will
see that honest players generate no output, just as when the real process aborts.

Now, if the real or simulated protocol proceeds to the last step, the only new
data the environment sees is output value y, plus some shares of honest players.
These are random shares that are consistent with y and its MAC in both the
simulated and real case. In other words, the environments’ view of the last step
has the same distribution in real and simulated case as long as y is the same.

In the simulation, y is of course the correct evaluation on the inputs match-
ing the shares that were read from the corrupted parties in the beginning. To
finish the proof, it is therefore sufficient to show that the same happens in the
real process with overwhelming probability. In other words, we show that the
event that the real protocol terminates but the output is not correct occurs with
negligible probability. Incorrect outputs result if corrupted parties during the
protocol successfully cheat with their shares. We have two kinds of checks on
shares corresponding to the two kinds of representations [[·]] and 〈·〉. The checks
related to the openings of [[·]]-values are done during ’Input and in steps 1 and
3 of ’Output’. We get from Lemma 1 that the probability of cheating in each of
these openings is at most 2−d.

For the check in step 5 (which is for all the opened 〈·〉 and 〈·〉∗ values) we
turn to the security game of Lemma 2 in Section 3. It is not difficult to see
this game indeed models ‘Output’(up to step 5): The second step in the game
where the adversary sends the w′i’s models the fact that corrupted players can
choose to lie about their shares of values opened during the protocol execution.
∆ models the fact that the adversary may modify the shares of MACs held by
corrupt players. Finally, since α and mi are secret shared in the protocol, the
adversary has no information on α and m ahead of time in the protocol, just
as in the security game. Therefore, we get from Lemma 2 that the probability
of a party being able to cheat in step 5 is at most 2−Θ(n). Finally, for the check
in step 6, only one MAC is checked for each output, so here the probability of
cheating is 2−d, again by Lemma 1.

Since the protocol aborts as soon as a check fails, the probability that it
terminates with an incorrect output is the maximum probability with which any
single check can be cheated. Since n and d are assumed to be Θ(κ), all these
probabilities are 2−Θ(κ), and hence the maximum is also exponentially small. ut

Having shown the construction of the protocol and proved security, the only
thing left is to argue about the complexities depending on the concrete linear
codes and preprocessing model. In the following two sections we argue the com-
plexities using Reed-Solomon and Algebraic Geometry codes respectively with
both dedicated and universal preprocessing, and thereby completing the proofs
of Theorem 1 and Theorem 2.

Simulator SMPC

Initialize: The simulator runs the ”Initialize” step honestly on the copy. This
involves initializing and creating the desired number of preprocessed values by
doing the steps in FPrep. Note that here the simulator will read all data (shares,
keys, errors) of the corrupted parties specified to the FPrep copy.

Rand: The simulator runs the copy protocol honestly and calls rand on the ideal
functionality FMPC.

Input: If Pi is not corrupted the copy is run honestly with dummy input, for
example 0. If in Step 1 during input, the MACs are not correct, the protocol
is aborted.
If Pi is corrupted the input step is done honestly and then the simulator waits
for Pi to broadcast ε. Given this, the simulator can compute x′i = r + ε since
it knows (all the shares of) r. This is the supposed input of Pi, which the
simulator now gives to the ideal functionality FMPC.

Add: The simulator runs the protocol honestly and calls add on the ideal func-
tionality FMPC.

Multiply: The simulator runs the protocol honestly and, as before, aborts if some
codeword is not valid. Otherwise it calls multiply on the ideal functionality
FMPC.

Reorganize The simulator runs the protocol honestly and, as before, aborts if
some codeword is not valid. Otherwise it calls reorganize on the ideal function-
ality FMPC.

Output: The output step is run and the protocol is aborted if some MAC is not
correct. Otherwise the simulator calls output on FMPC and gets Pi’s output y
back. Now it has to simulate shares yj of honest parties such that they are
consistent with y. Note that the simulator already has shares of an output
value y′ that was computed using the dummy inputs, as well as shares of the
MAC for y′.
The simulator now selects an honest party, say Pk and adds y−y′ to his share
of y and compute its new encoding. Similarly it adds α∗C(y−y′) to his share
of the MAC. Note that the simulator can compute α∗C(y−y′) since it knows
from the beginning (all the shares of) α. Now it simulates the openings of shares
of y towards the environment according to the protocol. If the environment lets
this terminate correctly, send “OK” to FMPC.

Fig. 2. The simulator for FMPC.

4.1 Using the Protocol with Reed-Solomon Codes

Dedicated Preprocessing First, we note that by our assumptions on the code
C, a codeword contains k ∈ Θ(n) data bits. Moreover, in the 〈·〉-representation,
each player stores only two n-bit vectors as his share of each encoded block,
namely a codeword of the additive share of the value itself and a share of the
MAC. It follows that each player storesO(n) field elements per 〈·〉-representation.

We then define a block operation to be an addition, a multiplication, or
an opening of 〈·〉-representations. Since the circuit is well formed and each 〈·〉-

representation “contains” Θ(n) data bits, it is not hard to see that the number
of block operations we need to compute a circuit of size S is O(S/n).

Now, the storage and communication overheads follow because we use at
most a constant number of 〈·〉- representations from the preprocessing for each
block operation, and the communication needed is a most Nn field elements
for each such operation. So O(S/n · Nn) = O(SN) field elements need to be
stored from the preprocessing and this is also the communication complexity.
The field has to have at least n elements for the Reed-Solomon construction
to work, hence each field element has size O(log n) = O(log κ) bits. Putting all
this together, we see that the storage and communication overheads are both
O(SN log κ/(SN)) = O(log κ). It should be noted that we also use some of the
more expensive [[·]]-representations, these cost O(N2n) field elements in storage
and communication when they are opened. However, we only need dc·n log(T)/ke
of these, which is O(log(T)). Since T is linear in the circuit size S, the storage
and communication overhead for this part will be O(N2n log(κ)·log(S)/(SN)) =
O(Nκ log(κ) log(S)/S). As explained in the introduction, we assume S is much
larger than Nκ, so this term can be ignored when we compute the overhead.

As for computation, the most expensive operation done on a block is the
re-encoding and membership verification we need for every layer and every mul-
tiplication. This costs O(n · polylog(n)) bit operations per block, because we are
working with Van der Monde matrices, as explained in Section 2. This means
the total computational complexity is O(S/n ·N ·n ·polylog(n)), so the overhead
is O(polylog(n)) = O(polylog(κ)).

Universal Preprocessing Here we use the restructuring of the circuit as de-
scribed [DIK10]. This makes the circuit somewhat larger, namely by a factor of
O(log(S)) as mentioned in Section 1.1. Now the reorganization of bits between
layers can be done simply by permuting inside one block at a time. Moreover,
the permutations we need are the same, independently of the circuit we want
to compute. Hence a number of random pairs 〈r〉 , 〈π(r)〉 can be prepared in
advance, where π ranges over the permutations needed. This implies the sec-
ond part of Theorem 1 if we again use Reed-Solomon codes. The only change
compared to dedicated preprocessing is that overheads have to be multiplied by
the factor by which the circuit gets larger when we apply the restructuring from
[DIK10].

4.2 Using the Protocol with Algebraic Geometry Codes

Before going into depth with the argument for complexity using Algebraic Ge-
ometry codes, we look at the problem of batch verification of membership in
binary codes.

Verifying Membership in (Binary) Codes with Amortized Efficiency.
We will need a solution to the following problem: Suppose we are given a set of
vectors of length n and it is claimed that they are all in the linear binary code

C, of dimension k and length n. Say there are Θ(n) input vectors. We want to
verify that every vector is indeed in C, possibly with an error probability that
is negligible in n, and without making any assumptions on C.

Let H be the parity check matrix for C, so H has n columns and n−k rows.
We then put the input vectors as columns in a matrix M , where we assume for
simplicity that there are n − k input words so M has n − k columns. Now, an
obvious method is to just compute U = HM and check this result is the all-0
matrix. Using good matrix multiplication algorithms, this does save time over the
naive approach of just multiplying H on every input vector, namely we go from
cubic time to O(n2+v) where v > 0 depends on the matrix algorithm used. We
could also use the algorithm of Freiwalds for verifying a matrix product [Fre77],
but it has constant error probability for a constant-size field and is therefore not
good enough for us even though it runs in time O(n2). We now explain how to
do better.

Let G be a generator matrix for a linear time encodable code, of dimension
n−k and length m. From the results of Spielman [Spi96], it follows that families
of such codes exist, that also have constant information and error rate. We
can therefore assume that m is in Θ(n) and the minimum distance of the code
generated by G is also in Θ(n). Using the standard convention that the rows of
G form a basis of the code, We assume that G has m columns and n− k rows.
Let G† be the transposed of G.

By linear time encodability, we can multiply a row vector with G in lin-
ear time (or multiply G† by a column), and hence compute G†H and MG in
time O(n2). This leads to the algorithm in Figure 3, which is actually a general
method for checking whether the product of two matrices is 0.

Algorithm CheckZeroProduct

1. On input H,M , compute G†H and MG.
2. Select at random n pairs of indices (i`, j`) ∈ {1, . . . ,m}2 for ` = 1, . . . , n.
3. For ` = 1, . . . , n, compute inner product of row i` of G†H and column j` of

MG.
4. If all inner products are 0, output “accept”, else “reject”.

Fig. 3. Algorithm for checking zero product of matrices.

Theorem 4. The algorithm CheckZeroProduct runs in time O(n2). If HM =
0 it always accepts, and if not, it accepts with probability in 2−Θ(n).

Proof. Recall that U = HM and note that

(G†H)(MG) = G†UG = (G†U)G.

Now, if U = 0, then GUG† = 0 and the algorithm accepts. Otherwise, at least
one entry in U is not 0. We can think of the expression (G†U)G as first encoding

each column of U using G† and then encoding each row of the result using G.
Since the code generated by G has minimum weight/distance in Θ(n), it follows
that a constant fraction of the entries in (G†U)G are non-zero. The algorithm
effectively probes n random entries in (G†U)G and will therefore accept in this
case with probability at most 2−Θ(n). We already argued that we can compute
G†H and MG in time O(n2) and the inner products clearly also take time O(n2).

Now we return to our protocol and derive the overheads we get if we use
algebraic geometry codes and exploit the fast verification of codewords. This
will establish the results claimed in Theorem 2.

For the storage and communication overhead, exactly the same arguments
as for Reed-Solomon codes apply, with the only difference that the field size is
now constant, so this immediately gives us that the storage and communica-
tion overheads are constant when we do dedicated preprocessing. For universal
preprocessing we have to multiply by the “expansion factor” from [DIK10].

As for the computation overhead, again the re-encoding done for multipli-
cation and reordering of bits is the bottleneck, in fact the overhead from other
computation is constant. Note that in the protocol only a single player encodes
data, while the other players only verify membership in the codes, and the over-
head from verification can be made constant using the above algorithm. We
therefore just need to compute the overhead coming from a single player doing
O(S/n) encodings, where S is the size of the circuit computed. Doing encoding
by simply multiplying by the generator matrix costs O(n2) operations, so we get
an overhead of O(nS/(NS)) = O(κ/N).

If the circuit is wide enough that encoding can always be done in batches of
size Ω(n), it can be done by matrix multiplication in time O(n2+ε) for a batch,
or O(n1+ε) per encoded word. This gives computation overhead O(κε/N) by the
same argument as for Reed-Solomon.

Acknowledgment We thank Yuval Ishai for inspiring discussions leading to
the CheckZeroProduct algorithm.

References

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Proceedings of
EuroCrypt, pages 169–188, Springer Verlag 2011.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145, 2001.

[CCX11] Ignacio Cascudo, Ronald Cramer, and Chaoping Xing. The torsion-limit
for algebraic function fields and its application to arithmetic secret sharing.
In Proceeedings of Crypto, pages 685–705, Springer Verlag 2011.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In STOC, pages
494–503, 2002.

[DIK10] Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure mul-
tiparty computation and the computational overhead of cryptography. In
Proceedings of EuroCrypt, pages 445–465, Springer Verlag 2010.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Proceedings
of Crypto, pages 643–662, Springer Verlag 2012.

[DZ12] Ivan Damgard and Sarah Zakarias. Constant-overhead secure computation
for boolean circuits in the preprocessing model. Cryptology ePrint Archive,
Report 2012/512, full version, 2012. http://eprint.iacr.org/.

[Fre77] R. Freivalds. Probabilistic machines can use less running time. In IFIP
Congress, pages 839–842, 1977.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryp-
tion with polylog overhead. In Proceedings of EuroCrypt, pages 465–482,
Springer verlag 2012.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–30,
1963.

[IKM+13] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat
Paskin-Cherniavsky. On the power of correlated randomness in secure com-
putation. In Proceedings of TCC, Springer Verlag 2013.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptog-
raphy with constant computational overhead. In Cynthia Dwork, editor,
STOC, pages 433–442. ACM, 2008.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient con-
structions and applications. SIAM J. Comput., 22(4):838–856, 1993.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-party
computation. In Proceedings of Crypto, pages 681–700, Springer Verlag
2012.

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting
codes. IEEE Transactions on Information Theory, 42(6):1723–1731, 1996.

A Functionalities

Functionality FMPC

Initialize: On input (init , k) from all parties, the store the block length k.
Rand: On input (rand , Pi, vid) from all parties Pi, with vid a fresh identifier, the

pick r ← Fk
2 and store (vid , r).

Input: On input (input , Pi, vid ,x) from Pi and (input , Pi, vid , ?) from all other
parties, with vid a fresh identifier, store (vid ,x).

Add: On command (add , vid1, vid2, vid3) from all parties (if vid1, vid2 are present
in memory and vid3 is not), retrieve (vid1,x), (vid2,y) and store (vid3,x+y).

Multiply: On input (mult , vid1, vid2, vid3) from all parties (if vid1, vid2 are
present in memory and vid3 is not), retrieve (vid1,x), (vid2,y) and store
(vid3,x ∗ y).

Reorganize: On input (reorg, F, vid1, . . . , vid l, vid
′
1, . . . , vid

′
l′) from all par-

ties (if vid1, . . . vid l are present in memory and vid ′1, . . . , vid
′
l′ are not),

retrieve (vid1,x1), . . . , (vid l,xl). Apply the function F (if the number
of parameters match) to get F (x1, . . . ,xl) = (x′1, . . . ,x

′
l′) and store

(vid ′1,x
′
1), . . . , (vid ′

′
l,x
′
l′).

Output: On input (output , vid) from all honest parties (if vid is present in mem-
ory), retrieve (vid ,x) and output it to the environment. If the environment
returns “OK”, then output (vid ,x) to all players, else output ⊥ to all players.

Fig. 4. The ideal functionality for MPC.

FPrep Macros

Usage: We describe two macros, one to produce [[v]] representations and one to
produce 〈v〉 representations. We denote by A the set of corrupted players.

Bracket(v1, . . . ,vN ,β1, . . . ,βN), where vi,βi ∈ Fn and vi’s are codewords in C.
1. Let v =

∑N
i=1 vi and then for i = 1, . . . , N :

(a) Compute the MAC m(v)i ← v ∗ βi.
(b) For every corrupt Pj , j ∈ A the environment specifies a share m(v)ji .
(c) Set each share m(v)ji , j /∈ A, uniformly st.

∑N
j=1m(v)ji = m(v)i.

2. Send (vi, (βi,m(v)i1, . . . ,m(v)iN)) to each honest player Pi.
Angle(v1, . . . ,vN ,α), where vi,α ∈ Fn and vi’s are codewords, all in C or C∗.

1. Let v =
∑N

i=1 vi, and compute the MAC m(v)← v ∗α.
2. For every corrupt player Pi, i ∈ A the environment specifies a share m(v)i.
3. The functionality sets each share m(v)i i /∈ A uniformly such that∑N

i=1m(v)i = m(v).
4. It send (0,vi,m(v)i) to each honest player Pi.

Fig. 5. Macros for use in FPrep.

Functionality FPrep

Usage: The functionality uses two macros described in Figure 5, to produce [[v]]
and 〈v〉 representations. We denote by A the set of players controlled by the
adversary. When any of the commands below are called, the environment may
send “stop”, in which case the functionality sends “fail” to all parties and stops.

Initialize: On input (init , n, k, d, u,G) from all players, store integers n, k, d, u and
generator matrix G for a linear [n, k, d]-code C over the field F = F2u .
1. For each corrupt player Pi, i ∈ A, get codeword C(αi) of a share αi from

the environment.
2. Set each share αi, i /∈ A uniformly.
3. For each corrupt player Pi, i ∈ A, the environment specifies a key βi.
4. The functionality sets each key βi i /∈ A uniformly.
5. It runs the macro Bracket(C(α1), . . . C(αn),β1, . . . ,βn).

Pairs(〈r〉 , [[r]]): On input (pair) from all players, do:
1. For each corrupt player Pi, i ∈ A, the environment specifies a codeword

C(ri) of the share ri.
2. Set each share ri, i /∈ A uniformly.
3. Run Bracket(C(r1), . . . , C(rn),β1, . . . ,βn), Angle(C(r1), . . . , C(rn),α).

Pairs(〈r〉 , 〈r〉∗): On input (pair, ∗) from all players
1. For each corrupt player Pi, i ∈ A, the environment specifies codewords

C(ri), C
∗(ri) of the share ri.

2. Set each share ri, i /∈ A uniformly.
3. Run Angle(C(r1), . . . , C(rn),α),Angle(C∗(r1), . . . , C(rn),α).

Pairs(〈R〉 , 〈F (R)〉)): On input (pair, F (X) from all players
1. For each corrupt player Pi, i ∈ A, the environment specifies a vector of

codewords (C(ri1), . . . , C(ril)) representing the vector Ri = (ri1, . . . , ril)
of length l according to F .

2. Set each Ri, i /∈ A uniformly. (Now R :=
∑

iRi = (r1, . . . , rl), where
rj :=

∑
i rij .)

3. To get the shared representation of each entry in R and F (R),
run for j = 1, . . . , l the macros Angle(C(r1j), . . . , C(rnj),α) and
Angle(F (r1j), . . . , F (rnj),α), where we abuse the notation slightly to let
F (rij) denote the jth entry of the vector F (Ri).

Triples: On input (triple) from all players
1. For each corrupt player Pi, i ∈ A, the environment specifies codewords

C(ai), C(bi) of shares ai, bi .
2. Set each share ai, bi, i /∈ A uniformly. Let a :=

∑n
i=1 ai, b :=

∑n
i=1 bi.

3. Set c← a ∗ b.
4. For each corrupt player Pi, i ∈ A, the environment specifies a codeword

C(ci) of the share ci .
5. Set each share ci, i /∈ A uniformly with the constraint

∑n
i=1 ci = c.

6. Run Angle(C(a1), . . . , C(an),α), Angle(C(b1), . . . , C(bn),α), and
Angle(C(c1), . . . , C(cn),α).

Fig. 6. The ideal functionality for preprocessing.

B A Practical Scenario with Concrete Parameters

To demonstrate how our protocol can be used in practice, we analyze a concrete
example. Assume we use the Reed-Solomon-based construction of the codes we

need, using the field with 256 elements. This means that field elements conve-
niently fit in a byte and we can have codewords of length n up to n = 256.
Every MAC on a field element can be cheated with probability 1/256 = 2−8.
Say we want 128 bit security. This means that the Schur transform of the code
must have minimum distance at least 16, since (2−8)16 = 2−128. When encoding
k field elements, we construct a polynomial of degree k − 1, and this degree
doubles when we do the Schur transform, so we need that 256− 2(k − 1) ≥ 16,
or that k ≤ 121.

We see therefore that we expand a block of 121 bits to 256 bytes, i.e., by a
factor of about 17. This can be compared to the approach of [NNOB12] where
the factor is 128, that is, we save a factor of 8 on the data and communication
overhead. Moreover, in [NNOB12], the error of 2−128 can be obtained by com-
puting 16 MACs over F256 for every bit, whereas we need 256 MACs for 121
bits, so for computation we also save a factor of about 8. All this assumes, of
course that the computation is such that most of the work can actually be done
by block-wise operations so that we do not spend too much time on rearranging
bits. However, many computations are naturally structured in this way, i.e., that
the same pattern of gates occurs many times in parallel, one can think here of
arithmetic on large numbers, for instance.

