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Abstract

We provide a framework enabling the construction of IBE schemes that are secure under related-
key attacks (RKAs). Specific instantiations of the framework yield RKA-secure IBE schemes for
sets of related key derivation functions that are non-linear, thus overcoming a current barrier in
RKA security. In particular, we obtain IBE schemes that are RKA secure for sets consisting of all
affine functions and all polynomial functions of bounded degree. Based on this we obtain the first
constructions of RKA-secure schemes for the same sets for the following primitives: CCA-secure
public-key encryption, CCA-secure symmetric encryption and Signatures. All our results are in the
standard model and hold under reasonable hardness assumptions.
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1 Introduction

Related-key attacks (RKAs) were first conceived as tools for the cryptanalysis of blockciphers [24, 8].
However, the ability of attackers to modify keys stored in memory via tampering [13, 9] raises concerns
that RKAs can actually be mounted in practice. The key could be an IBE master key, a signing key
of a certificate authority, or a decryption key, making RKA security important for a wide variety of
primitives.

Provably achieving security against RKAs, however, has proven extremely challenging. This paper
aims to advance the theory with new feasibility results showing achievability of security under richer
classes of attacks than previously known across a variety of primitives.

Contributions in brief. The primitive we target in this paper is IBE. RKA security for this primitive
was defined by Bellare, Cash, and Miller [4]. As per the founding theoretical treatment of RKAs by
Bellare and Kohno [5], the definition is parameterized by the class Φ of functions that the adversary is
allowed to apply to the target key. (With no restrictions, security is unachievable.) For future reference
we define a few relevant classes of functions over the space S of master keys. The set Φc = {φc}c∈S with
φc(s) = c is the set of constant functions. If S is a group under an operation ∗ then Φlin = {φa}a∈S with
φa(s) = a ∗ s is the class of linear functions. (Here ∗ could be multiplication or addition.) If S is a field
we let Φaff = {φa,b}a,b∈S with φa,b(s) = as + b be the class of affine functions and Φpoly(d) = {φq}q∈Sd[x]

with φq(s) = q(s) the class of polynomial functions, where q ranges over the set Sd[x] of polynomials
over S of degree at most d. RKA security increases and is a more ambitious target as we move from
Φlin to Φaff to Φpoly(d).

The choice of IBE as a primitive is not arbitrary. First, IBE is seeing a lot of deployment, and
compromise of the master secret key would cause widespread damage, so we are well motivated to
protect it against side-channel attacks. Second, IBE was shown in [4] to be an enabling primitive in the
RKA domain: achieving RKA-secure IBE for any class Φ immediately yields Φ-RKA-secure CCA-PKE
(CCA-secure public-key encryption) and Sig (signature) schemes. These results were obtained by noting
that the CHK [12] IBE-to-CCA-PKE transform and the Naor IBE-to-Sig transform both preserve RKA
security. Thus, results for IBE would immediately have wide impact.

We begin by presenting attacks showing that existing IBE schemes such as those of Boneh-Franklin [14]
and Waters [27] are not RKA secure, even for Φlin. This means we must seek new designs.

We present a framework for constructing RKA-secure IBE schemes. It is an adaptation of the
framework of Bellare and Cash [3] that builds RKA-secure PRFs based on key-malleable PRFs and
fingerprinting. Our framework has two corresponding components. First, we require a starting IBE
scheme that has a key-malleability property relative to our target class Φ of related-key deriving func-
tions. Second, we require the IBE scheme to support what we call collision-resistant identity renaming.
We provide a simple and efficient way to transform any IBE scheme with these properties into one that
is Φ-RKA secure.

To exploit the framework, we must find key-malleable IBE schemes. Somewhat paradoxically, we
show that the very attack strategies that broke the RKA security of existing IBE schemes can be
used to show that these schemes are Φ-key-malleable, not just for Φ = Φlin but even for Φ = Φaff .
We additionally show that these schemes support efficient collision-resistant identity renaming. As a
consequence we obtain Φaff-RKA-secure IBE schemes based on the same assumptions used to prove
standard IBE security of the base IBE schemes.

From the practical perspective, the attraction of these results is that our schemes modify the known
ones in a very small and local way limited only to the way identities are hashed. They thus not only
preserve the efficiency of the base schemes, but implementing them would require minimal and modular
software changes, so that non-trivial RKA security may be added without much increase in cost. From
the theoretical perspective, the step of importance here is to be able to achieve RKA security for non-
linear functions, and this without extra computational assumptions. As we will see below, linear RKAs,
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Primitive Linear Affine Polynomial

IBE [4]+[3] X X

Sig [4]+[3] X X

CCA-PKE [28], [4]+[3] X X

CPA-SE [2], [4]+[3] [22] [22]

CCA-SE [4]+[3] X X
∗

PRF [3] – –

Figure 1: Rows are indexed by primitives. Columns are indexed by the class Φ of related-key derivation

functions, Φlin,Φaff and Φpoly(d) respectively. Entries indicate work achieving Φ-RKA security for the primitive

in question. Checkmarks indicate results from this paper that bring many primitives all the way to security under

polynomial RKAs in one step. The table only considers achieving the strong, adaptive notions of security from [4];

non-adaptively secure signature schemes for non-linear RKAs were provided in [22]. Note that symmetric key

primitives cannot be RKA secure against constant RKD functions, so affine and polynomial RKA security for

the last three rows is with respect to the RKD sets Φaff \ Φc and Φpoly(d) \ Φc. The “∗” in the CCA-SE row is

because our CCA-SE construction is insecure against RKD functions where the linear coefficient is zero, so does

not achieve RKA security against the full set Φpoly(d) \ Φc.

meaning Φlin-RKA security, has so far been a barrier for most primitives.

However, we can go further, providing a Φpoly(d)-RKA-secure IBE scheme. Our scheme is an exten-
sion of Waters’ scheme [27]. The proof is under a q-type hardness assumption that we show holds in
the generic group model. The significance of this result is to show that for IBE we can go well beyond
linear RKAs, something not known for PRFs.

As indicated above, we immediately get Φ-RKA-secure CCA-PKE and Sig schemes for any class Φ
for which we obtained Φ-RKA-secure IBE schemes, and under the same assumptions. When the base
IBE scheme has a further malleability property, the CCA-PKE scheme so obtained can be converted
into a Φ-RKA-secure CCA-SE (CCA-secure symmetric encryption) scheme. This yields the first RKA
secure schemes for the primitives Sig, CCA-PKE, and CCA-SE for non-linear RKAs, meaning beyond
Φlin.

Background and context. The theoretical foundations of RKA security were laid by Bellare and
Kohno [5], who treated the case of PRFs and PRPs. Research then expanded to consider other prim-
itives [21, 2, 22, 4]. In particular, Bellare, Cash and Miller [4] provide a comprehensive treatment
including strong definitions for many primitives and ways to transfer Φ-RKA security from one primi-
tive to another.

RKA-security is finding applications beyond providing protection against tampering-based sidechan-
nel attacks [20], including instantiating random oracles in higher-level protocols and improving effi-
ciency [2, 1].

With regard to achieving security, early efforts were able to find PRFs with proven RKA security
only for limited Φ or under very strong assumptions. Eventually, using new techniques, Bellare and
Cash [3] were able to present DDH-based PRFs secure against linear RKAs (Φ = Φlin). But it is not
clear how to take their techniques further to handle larger RKA sets Φ.

Figure 1 summarizes the broad position. Primitives for which efforts have now been made to achieve
RKA security include CPA-SE (CPA secure symmetric encryption), CCA-SE (CCA secure symmetric
encryption), CCA-PKE (CCA secure public-key encryption1) Sig (Signatures), and IBE (CPA secure

1 RKAs are interesting for symmetric encryption already in the CPA case because encryption depends on the secret
key, but for public-key encryption they are only interesting for the CCA case because encryption does not depend on the
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identity-based encryption). Schemes proven secure under a variety of assumptions have been provided.
But the salient fact that stands out is that prior to our work, results were all for linear RKAs with
the one exception of CPA-SE where a scheme secure against polynomial (and thus affine) RKAs was
provided by [22].

In more detail, Bellare, Cash and Miller [4] show how to transfer RKA security from PRF to any
other primitive, assuming an existing standard-secure instance of the primitive. Combining this with [3]
yields DDH-based schemes secure against linear RKAs for all the primitives, indicated by a “[4]+[3]”
table entry. Applebaum, Harnik and Ishai [2] present LPN and LWE-based CPA-SE schemes secure
against linear RKAs. Wee [28] presents CCA-PKE secure schemes for linear RKAs. Goyal, O’Neill and
Rao [22] gave a CPA-SE scheme secure against polynomial RKAs. (We note that their result statement
should be amended to exclude constant RKD functions, for no symmetric primitive can be secure under
these.) Wee [28] (based on a communication of Wichs) remarks that AMD codes [18] may be used to
achieve RKA security for CCA-PKE, a method that extends to other primitives including IBE (but not
PRF), but with current constructions of these codes [18], the results continue to be restricted to linear
RKAs. We note that we are interested in the stronger, adaptive versions of the definitions as given
in [4], but non-adaptively secure signature schemes for non-linear RKAs were provided in [22].

In summary, a basic theoretical question that emerges is how to go beyond linear RKAs. A concrete
target here is to bring other primitives to parity with CPA-SE by achieving security for affine and
polynomial RKAs. Ideally, we would like approaches that are general, meaning each primitive does
not have to be treated separately. As discussed above, we are able to reach these goals with IBE as a
starting point.

A closer look. Informally, key-malleability means that user-level private keys obtained by running
the IBE scheme’s key derivation algorithm K using a modified master secret key φ(s) (where φ ∈ Φ and
s ∈ S, the space of master secret keys) can alternatively be computed by running K using the original
master secret key s, followed by a suitable transformation. A collision-resistant identity renaming
transform maps identities from the to-be-constructed RKA-secure IBE scheme back into identities in
the starting IBE scheme in such a way as to “separate” the sets of identities coming from different
values of φ(s). By modifying the starting IBE scheme to use renamed identities instead of the original
ones, we obtain a means to handle otherwise difficult key extraction queries in the RKA setting.

To show that the framework is applicable to the Boneh-Franklin [14] and Waters [27] IBE schemes
with Φ = Φaff (the space of master keys here is Zp), we exploit specific algebraic properties of the
starting IBE schemes. In the Waters case, we obtain an efficient, Φaff-RKA-secure IBE scheme in
the standard model, under the Decisional Bilinear Diffie-Hellman (DBDH) assumption. In the Boneh-
Franklin case, we obtain an efficient, Φaff -RKA-secure IBE scheme under the Bilinear Diffie-Hellman
(BDH) assumption with more compact public keys at the expense of working in the Random Oracle
Model. Going further, we exhibit a simple modification of the Waters scheme which allows us to handle
related key attacks for Φpoly(d), this being the set of polynomial functions of bounded degree d. This
requires the inclusion of an extra 2d − 2 elements in the master public key, and a modified, q-type
hardness assumption. We show that this assumption holds in the generic group model.

Applying the results of [4] to these IBE schemes, we obtain the first constructions of RKA-secure
CCA-PKE and signature schemes for Φaff and Φpoly(d). Again, our schemes are efficient and our results
hold in the standard model under reasonable hardness assumptions. The CCA-PKE schemes, being
derived via the CHK transform [12], just involve the addition of a one-time signature and verification
key to the IBE ciphertexts and so incur little additional overhead for RKA security. As an auxiliary
result that improves on the corresponding result of [4], we show that the more efficient MAC-based
transform of [15, 12] can be used in place of the CHK transform. The signature schemes arise from the
Naor trick, wherein identities are mapped to messages, IBE user private keys are used as signatures,
and a trial encryption and decryption on a random plaintext are used to verify the correctness of a

secret key.
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signature. This generic construction can often be improved by tweaking the verification procedure, and
the same is true here: for example, for the Waters-based signature scheme, we can base security on
the CDH assumption instead of DBDH, and can achieve more efficient verification. We stress that our
signature schemes are provably unforgeable in a fully adaptive related-key setting, in contrast to the
recently proposed signatures in [22].

Note that RKA-secure PRFs for sets Φaff and Φpoly(d) cannot exist, since these sets contain constant
functions, and we know that no PRF can be RKA-secure in this case [5]. Thus we are able to show
stronger results for IBE, CCA-PKE and Sig than are possible for PRF. Also, although Bellare, Cash
and Miller [4] showed that Φ-RKA security for PRF implies Φ-RKA security for Sig and CCA-PKE,
the observation just made means we cannot use this result to get Φaff or Φpoly(d) RKA-secure IBE,
CCA-PKE or Sig schemes. This provides further motivation for starting from RKA-secure IBE as we
do, rather than from RKA-secure PRF.

Finally we note that even for linear RKAs where IBE schemes were known via [4]+[3], our schemes
are significantly more efficient.

Further contributions. As a combination of the results of [4] and [26], we provide definitions for
RKA security in the joint security setting, where the same key pair is used for both signature and
encryption functions, and show that a Φ-RKA-secure IBE scheme can be used to build a Φ-RKA and
jointly secure combined signature and encryption scheme. This construction can be instantiated using
any of our specific IBE schemes, by which we obtain the first concrete jointly secure combined signature
and encryption schemes for the RKA setting.

We also show how to adapt the KEM-DEM (or hybrid encryption) paradigm to the RKA setting,
and describe a highly efficient, Φaff -RKA-secure CCA-KEM that is inspired by our IBE framework and
is based on the scheme of Boyen, Mei and Waters [17]. Our CCA-KEM’s security rests on the hardness
of the DBDH problem for asymmetric pairings e : G1 × G2 → GT ; its ciphertexts consist of 2 group
elements (one in G1 and one in G2), public keys are 3 group elements (two in G2 and one in GT ),
encryption is pairing-free, and the decryption cost is dominated by 3 pairing operations.

The final contribution is an extension of our framework that lets us build an RKA-secure CCA-SE
scheme from any IBE scheme satisfying an additional master public key malleability property. Such
an IBE scheme, when subjected to our transformation, meets a notion of strong Φ-RKA security [4]
where the challenge encryption is also subject to RKA. Applying the CHK transform gives a strong
Φ-RKA-secure CCA-PKE scheme which can be converted into a Φ-RKA-secure CCA-SE scheme in the
natural way.

Paper organization. Section 2 contains preliminaries, Section 3 describes some IBE schemes and
RKA attacks on them, while Section 4 presents our framework for constructing RKA-secure IBE
schemes. Section 5 applies the framework to specific schemes, and sketches the CCA-PKE and signature
schemes that result from applying the techniques of [4]. Section 7 contains our efficient RKA-secure
CCA-KEM. In Section 8, we show how to extend our results to the setting of strong RKA security and
how to construct RKA-secure CCA-SE. Appendix B explains how to extend our results to the joint
security setting.

2 Preliminaries

Notation. For sets X,Y let Fun(X,Y ) be the set of all functions mapping X to Y . If S is a set
then |S| denotes its size and s←$ S the operation of picking a random element of S and denoting it
by s. Unless otherwise indicated, an algorithm may be randomized. An adversary is an algorithm. By
y←$ A(x1, x2, . . .) we denote the operation of running A on inputs x1, x2, . . . and letting y denote the
outcome. We denote by [A(x1, x2, . . . , xn)] the set of all possible outputs of A on inputs x1, x2, . . . , xn.

Games. Some of our definitions and proofs are expressed through code-based games [7]. Recall that
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such a game consists of an Initialize procedure, procedures to respond to adversary oracle queries,
and a Finalize procedure. A game G is executed with an adversary A as follows. First, Initialize
executes and its output is the input to A. Then A executes, its oracle queries being answered by the
corresponding procedures of G. When A terminates, its output becomes the input to the Finalize

procedure. The output of the latter is called the output of the game. We let GA denote the event that
this game output takes value true. The running time of an adversary, by convention, is the worst case
time for the execution of the adversary with any of the games defining its security, so that the time of
the called game procedures is included.

RKD functions and classes. We say that φ is a related-key deriving (RKD) function over a set S
if φ ∈ Fun(S,S). We say that Φ is a class of RKD functions over S if Φ ⊆ Fun(S,S) and id ∈ Φ where
id is the identity function on S. In our constructs, S will have an algebraic structure, such as being a
group, ring or field. In the last case, for a, b ∈ S we define φ+b , φ

∗
a, φ

aff
a,b ∈ Fun(S,S) via φ+b (s) = s + b,

φ∗a(s) = as, and φaffa,b(s) = as+ b for all s ∈ S. For a polynomial q over field S, we define φpolyq (s) = q(s)

for all s ∈ S. We let Φ+ = { φ+b : b ∈ S } be the class of additive RKD functions, Φ∗ = { φ∗a : a ∈ S }
be the class of multiplicative RKD functions, Φaff = {φaffa,b : a, b ∈ S } the class of affine RKD functions,

and for any fixed positive integer d, we let Φpoly(d) = {φpolyq : deg q ≤ d} be the set of polynomial RKD
functions of bounded degree d.

If φ 6= φ′ are distinct functions in a class Φ there is of course by definition an s such that φ(s) 6= φ′(s),
but there could also be keys s on which φ(s) = φ′(s). We say that a class Φ is claw-free if the latter
does not happen, meaning for all distinct φ 6= φ′ in Φ we have φ(s) 6= φ′(s) for all s ∈ S. With the
exception of [22], all previous constructions of Φ-RKA-secure primitives with proofs of security have
been for claw-free classes [5, 25, 21, 3, 4, 28]. In particular, key fingerprints are defined in [3] in such a
way that their assumption of a Φ-key fingerprint automatically implies that Φ is claw-free.

IBE syntax. We specify an IBE scheme IBE = (S,P,K, E ,D) by first specifying a non-empty set S
called the master-key space from which the master secret key s is drawn at random. The master public
key π ← P(s) is then produced by applying to s a deterministic master public key generation algorithm
P. A decryption key for an identity u is produced via dku ←$K(s, u). A ciphertext C encrypting a
message M for u is generated via C←$ E(π, u,M). A ciphertext C is deterministically decrypted via
M ← D(dk , C). Correctness requires that D(K(s, u), E(π, u,M)) = M with probability one for all
M ∈ MSp and all u ∈ USp where MSp,USp are, respectively, the message and identity spaces associated
to IBE .

The usual IBE syntax specifies a single parameter generation algorithm that produces s, π together,
and although there is of course a space from which the master secret key is drawn, it is not explicitly
named. But RKD functions will have domain the space of master keys of the IBE scheme, which is
why it is convenient in our context to make it explicit in the syntax. Saying the master public key is a
deterministic function of the master secret key is not strictly necessary for us, but it helps make some
things a little simpler and is true in all known schemes, so we assume it.

We make an important distinction between parameters and the master public key, namely that the
former may not depend on s while the latter might. Parameters will be groups, group generators,
pairings and the like. They will be fixed and available to all algorithms without being named as explicit
inputs.

RKA-secure IBE. We define Φ-RKA security of IBE schemes following [4]. Game IBE of Figure 2 is
associated to IBE = (S,P,K, E ,D) and a class Φ of RKD functions over S. An adversary is allowed
only one query to LR. Let Advibe−rka

IBE ,Φ (A) equal 2Pr[IBEA] − 1. A feature of the definition we draw
attention to is that the key derivation oracle KD refuses to act only when the identity it is given
matches the challenge one and the derived key equals the real one. This not only creates a strong
security requirement but one that is challenging to achieve because a simulator, not knowing s, cannot
check whether or not the IBE adversary succeeded. This difficulty is easily resolved if Φ is claw-free
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proc Initialize // IBE

s ←$ S;π ← P(s)
b←$ {0, 1}
u∗ ← ⊥ ; I ← ∅
Return π

proc Finalize(b′) // IBE

Return (b = b′)

proc KD(φ, u) // IBE

s ′ ← φ(s)
If (s ′ = s) I ← I ∪ {u}
If (u∗ ∈ I) Return ⊥
Return dk ←$K(s ′, u)

proc LR(u,M0,M1) // IBE

If (|M0| 6= |M1|) Return ⊥
u∗ ← u

If (u∗ ∈ I) Return ⊥
Return C←$ E(π, u∗,Mb)

Figure 2: Game IBE defining Φ-RKA-security of IBE scheme IBE = (S,P,K, E ,D).

Algorithm P(s):

π ← gs

Return π

Algorithm K(s, u):

dk ← H1(u)
s

Return dk

Algorithm E(π, u,M):

t←$ Zp

C1 ← gt

C2 ← H2(e(π,H1(u))
t)⊕M

Return (C1,C2)

Algorithm D(dk ,C ):

M ← C2 ⊕H2(e(dk ,C1))
Return M

Algorithm P(s):

π ← gs

Return π

Algorithm K(s, u):

r←$ Zp

dk 1 ← gs1 ·H(u)r

dk 2 ← gr

Return (dk1, dk2)

Algorithm E(π, u,M):

t←$ Zp

C1 ← gt

C2 ← H(u)t

C3 ← e(π, g1)
t ·M

Return (C1,C2,C3)

Algorithm D(dk ,C ):

M ← C3 ·
e(dk2,C2)
e(dk1,C1)

Return M

Figure 3: Boneh-Franklin IBE scheme on the left, Waters IBE scheme on the right.

but not otherwise. We consider this particular RKA security definition as, in addition to its strength,
it is the level of RKA security required of an IBE scheme so that application of the CHK and Naor
transforms results in RKA-secure CCA-PKE and signature schemes.

3 Existing IBE schemes and RKA attacks on them

The algorithms of the Boneh-Franklin BasicIdent IBE scheme [14] are given in Figure 3. The parameters
of the scheme are groups G1,GT of prime order p, a symmetric pairing e : G1 ×G1 → GT , a generator
g of G1 and hash functions H1 : {0, 1}

∗ → G1, H2 : GT → {0, 1}
n which are modeled as random oracles

in the security analysis. Formally, these are output by a pairing parameter generator on input 1k. This
scheme is IND-CPA secure in the usual model for IBE security, under the Bilinear Diffie-Hellman (BDH)
assumption.

The algorithms of the Waters IBE scheme [27] are also given in Figure 3. The parameters of the
scheme are groups G1,GT of prime order p, a symmetric pairing e : G1 ×G1 → GT , generators g, g1 of
G1 and group elements h0, . . . , hn ∈ G1 specifying the hash function H(u) = h0

∏

i∈u hi. The Waters
IBE scheme is also IND-CPA secure in the usual model for IBE security, under the DBDH assumption.

The Waters IBE scheme is not RKA secure if Φ includes a function φ∗a(s) = as. A call to the key
derivation oracle with any such φ yields a user secret key (dk 1, dk 2) = (gas1 ·H(u)r, gr). Raising this to

a−1 gives (dk ′1, dk
′
2) = (gs1 ·H(u)ra

−1

, gra
−1
), so that (dk ′1, dk

′
2) is a user secret key for identity u under

the original master secret key with randomness r′ = ra−1. An RKA adversary can thus obtain the user
secret key for any identity of his choosing and hence break the RKA security of the Waters scheme. A
similar attack applies to the Boneh-Franklin scheme.

8



4 Framework for deriving RKA-secure IBE schemes

In the previous section we saw that the Boneh-Franklin and Waters schemes are not RKA secure. Here
we will show how to modify these and other schemes to be RKA secure by taking advantage, in part, of
the very algebra that leads to the attacks. We describe a general framework for creating RKA-secure
IBE schemes and then apply it obtain several such schemes.

We target a very particular type of framework, one that allows us to reduce RKA security of a
modified IBE scheme directly to the normal IBE security of a base IBE scheme. This will allow us to
exploit known results on IBE in a blackbox way and avoid re-entering the often complex security proofs
of the base IBE schemes.

Key-malleability. We say that an IBE scheme IBE = (S,P,K, E ,D) is Φ-key-malleable if there is
an algorithm T , called the key simulator, which, given π, an identity u, a decryption key dk ′←$K(s, u)
for u under s and an RKD function φ ∈ Φ, outputs a decryption key dk for u under master secret key
φ(s) that is distributed identically to the output of K(φ(s), u). The formalization takes a little more
care for in talking about two objects being identically distributed one needs to be precise about relative
to what other known information this is true. A simple and rigorous definition here can be made using
games. We ask that

Pr[KMRealMIBE ,Φ] = Pr[KMSimM
IBE ,Φ,T ]

for all (not necessarily computationally bounded) adversaries M , where the games are as follows. The
Initialize procedure of both picks s at random from S and returns π ← P(s) to the adversary.
In game KMRealIBE ,Φ, oracle KD(φ, u) returns dk ←$K(φ(s), u) but in game KMSimIBE ,Φ,T it lets
dk ′←$K(s, u) and returns T (π, u, dk ′, φ). There are no other oracles, and Finalize(b′) returns (b′ = 1).

Using KM. Intuitively, key-malleability allows us to simulate a Φ-RKA adversary via a normal adver-
sary and would thus seem to be enough to prove Φ-RKA security of IBE based on its normal security.
Let us see how this argument goes and then see the catches that motivate a transformation of the scheme
via collision-resistant identity renaming. Letting A be an adversary attacking the Φ-RKA security of
IBE , we aim to build an adversary A such that

Advibe−rka
IBE ,Φ (A) ≤ Advibe

IBE (A) . (1)

On input π, adversary A runs A(π). When the latter makes a KD(φ, u) query, A lets dk ← KD(id, u),
where KD is A’s own key derivation oracle. It then lets dk ← T (π, u, dk , φ) and returns dk to A.
Key-malleability tells us that dk is distributed identically to an output of KD(φ, u), so the response
provided by A is perfectly correct. When A makes a LR(u,M0,M1) query, A lets C ← LR(u,M0,M1)
and returns C to A. Finally when A halts with output a bit b′, adversary A does the same.

The simulation seems perfect, so we appear to have established Equation (1). What’s the catch?
The problem is avoiding challenge key derivation. Suppose A made a KD(φ, u) query for a φ such that
φ(s) 6= s; then made a LR(u,M0,M1) query; and finally, given C, correctly computed b. It would win
its game, because the condition φ(s) 6= s means that identity u may legitimately be used both in a key
derivation query and in the challenge LR query. But our constructed adversary A, in the simulation,
would make query KD(id, u) to answer A’s KD(φ, u) query, and then make query LR(u,M0,M1). A
would thus have queried the challenge identity u to the key-extraction oracle and would not win.

This issue is dealt with by transforming the base scheme via what we call identity renaming, so that
Φ-RKA security of the transformed scheme can be proved based on the Φ-key-malleability of the base
scheme.

Identity renaming. Renaming is a way to map identities in the new scheme back to identities of the
given, base scheme. Let us now say how renaming works more precisely and then define the modified
scheme.
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Let IBE = (S,P,K, E ,D) denote the given, base IBE scheme, and let USp be its identity space. A
renaming scheme is a pair (SI,PI) of functions where SI: S ×USp→ USp and PI: [P(S)]×USp×Φ→
USp where USp, implicitly specified by the renaming scheme, will be the identity space of the new
scheme we will soon define. The first function SI, called the secret renaming function, uses the master
secret key, while its counterpart public renaming function PI uses the master public key. We require
that SI(φ(s), u) = PI(π, u, φ) for all s ∈ S, all π ∈ [P(s)], all u ∈ USp and all φ ∈ Φ. This compatibility

condition says that the two functions arrive, in different ways, at the same outcome.

The transform. The above is all we need to specify our Identity Renaming Transform IRT that maps
a base IBE scheme IBE = (S,P,K, E ,D) to a new IBE scheme IBE = (S,P,K, E ,D). As the notation
indicates, the master key space, master public key generation algorithm and decryption algorithm are
unchanged. The other algorithms are defined by

K(s, u) = K(s,SI(s, u)) and E(π, u ,M) = E(π,PI(π, u , id),M) .

We clarify that algorithms of the new IBE scheme do not, and cannot, have as input the RKD functions
φ used by the attacker. We are defining an IBE scheme, and algorithm inputs must follow the syntax
of IBE schemes. When the new encryption algorithm invokes PI, it sets φ to the identity function id.
(Looking ahead, the simulation will call the renaming functions with φ emanating from the adversary
attacking the new IBE scheme.) The key derivation algorithm has s but not π (recall we cannot give it
π because otherwise it becomes subject to the RKA) and thus uses the secret renaming function. On
the other hand the encryption algorithm has π but obviously not s and thus uses the public renaming
function. This explains why we need two, compatible renaming functions. The new scheme has the
same message space as the old one. Its identity space is inherited from the renaming scheme, being the
space USp from which the renaming functions draw their identity inputs.

The above compatibility requirement implies that SI(s, u) = PI(π, u , id). From this it follows that
IBE preserves the correctness of IBE . We now go on to specifying properties of the base IBE scheme
and the renaming functions that suffice to prove Φ-RKA security of the new scheme.

A trivial renaming scheme is obtained by setting SI(s, u) = u = PI(π, u , φ). This satisfies the
compatibility condition. However, the transformed IBE scheme IBE ends up identical to the base IBE

and thus this trivial renaming cannot aid in getting security. We now turn to putting a non-trivial
condition on the renaming scheme that we will show suffices.

Collision-resistance. The renaming scheme (SI,PI) will be required to have a collision-resistance
property. In its simplest and strongest form the requirement is that

(φ(s), u1) 6= (s, u2) ⇒ SI(φ(s), u1) 6= SI(s, u2)

for all s ∈ S, all u1, u2 ∈ USp and all φ ∈ Φ. This statistical collision-resistance will be enough to prove
that IBE is Φ-RKA secure if IBE is Φ-key-malleable (cf. Theorem 4.1). We will now see how this goes.
Then we will instantiate these ideas to get concrete Φ-RKA-secure schemes for many interesting classes
Φ including Φaff and Φpoly(d).

Theorem 4.1 Let IBE = (S,P,K, E ,D) be a Φ-key-malleable IBE scheme with key simulator T . Let

IBE = (S,P,K, E ,D) be obtained from IBE and renaming scheme (SI,PI) via the transform IRT

described above. Assume the renaming scheme is statistically collision-resistant. Let A be a Φ-RKA

adversary against IBE that makes q key derivation queries. Then there is an adversary A making q key

derivation queries such that

Advibe−rka

IBE ,Φ
(A) ≤ Advibe

IBE (A) . (2)

Furthermore, the running time of A is that of A plus the time for q executions of T .

Proof of Theorem 4.1: Consider the games of Figure 4. Game G0 is written to be equivalent to
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proc Initialize //G0

000 s←$ S ; π ← P(s)
001 b←$ {0, 1} ; u∗ ← ⊥
002 I ← ∅
003 Return π

proc Initialize //G1,G2,G3

100 s←$ S ; π ← P(s)
101 b←$ {0, 1} ; u∗ ← ⊥
102 I ← ∅
103 Return π

proc KD(φ, u) //G0

010 s ′ ← φ(s)

011 If (s ′ = s) I ← I ∪ {u}
012 If (u∗ ∈ I) Return ⊥
013 u ← SI(s ′, u)

014 Return dk ←$K(s ′, u)

proc KD(φ, u) //G1

110 s ′ ← φ(s)
111 u ← SI(s ′, u)
112 I ← I ∪ {u}
113 If (u∗ ∈ I) Return ⊥
114 Return dk ←$K(s ′, u)

proc KD(φ, u) //G2

210 u ← PI(π, u , φ)
211 I ← I ∪ {u}
212 If (u∗ ∈ I) Return ⊥
213 Return dk ←$K(φ(s), u)

proc KD(φ, u) //G3

310 u ← PI(π, u , φ)
311 I ← I ∪ {u}
312 If (u∗ ∈ I) Return ⊥
313 dk ←$K(s, u)
314 Return dk ← T (π, u, dk , φ)

proc LR(u,M0,M1) //G0

020 If (|M0| 6= |M1|) Return ⊥
021 u∗ ← u

022 If (u∗ ∈ I) Return ⊥
023 u∗ ← SI(s, u∗)
024 Return C←$ E(π, u∗,Mb)

proc LR(u,M0,M1) //G1

120 If (|M0| 6= |M1|) Return ⊥
121 u∗ ← SI(s, u)
122 If (u∗ ∈ I) Return ⊥
123 Return C←$ E(π, u∗,Mb)

proc LR(u,M0,M1) //G2,G3

220 If (|M0| 6= |M1|) Return ⊥
221 u∗ ← PI(π, u , id)
222 If (u∗ ∈ I) Return ⊥
223 Return C←$ E(π, u∗,Mb)

proc Finalize(b′) //All

030 Return (b = b′)

Figure 4: Games for proof of Theorem 4.1.

game IBE
IBE

, so that

Advibe−rka

IBE ,Φ
(A) = 2Pr[GA

0 ]− 1 . (3)

In answering a KD(φ, u) query, G0 must use the key-generation algorithm K of the new scheme IBE but
with master secret key s ′ = φ(s). From the definition of K, it follows that not only is the key-generation
at line 014 done under s ′, but also the identity renaming at line 013. LR, correspondingly, should use
E , and thus the public renaming function PI. The compatibility property however allows us at line 023
to use SI instead. This will be useful in exploiting statistical collision-resistance in the next step, after
which we will revert back to PI.

The adversary A we aim to construct will not know s. A central difficulty in the simulation is thus lines
011, 012 of G0 where the response provided to A depends on the result of a test involving s, a test that
A cannot perform. Before we can design A we must get rid of this test. Statistical collision-resistance is
what will allow us to do so. KD of game G1 moves the identity renaming up before the list of queried
identities is updated to line 111 and then, at line 112, adds the transformed identity to the list. LR is
likewise modified so its test now involves the transformed (rather than original) identities. We claim
this makes no difference, meaning

Pr[GA
0 ] = Pr[GA

1 ] . (4)

Indeed, statistical collision-resistance tell us that (s ′, u) = (s, u∗) iff SI(s ′, u) = SI(s, u∗). This means
that lines 011, 012 and lines 112, 113 are equivalent.

Compatibility is invoked to use PI in place of SI in both KD and in LR in G2, so that

Pr[GA
1 ] = Pr[GA

2 ] . (5)

Rather than use s ′ for key generation as at 213, G3 uses s at 313 and then applies the key simulator T .
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We claim the key-malleability implies

Pr[GA
2 ] = Pr[GA

3 ] . (6)

To justify this we show that there is an adversary M such that

Pr[KMRealMIBE ,Φ] = Pr[GA
2 ] and Pr[KMSimM

IBE ,Φ,T ] = Pr[GA
3 ] .

Adversary M , on input π, begins with the initializations u∗ ← ⊥ ; I ← ∅ ; b←$ {0, 1} and then runs A
on input π. When A makes a KD(φ, u) query, M does the following:

u ← PI(π, u , φ) ; I ← I ∪ {u} ; If (u∗ ∈ I) Return ⊥ ; dk ← KD(φ, u).

If M is playing game KMReal then its KD oracle will behave as line 213 in game G2, while if M
is playing game KMSim its KD oracle will behave as lines 313,314 in game G3. When A makes its
LR(u,M0,M1) queryM sets u∗ ← PI(π, u, id) and checks if u∗ ∈ I, returning ⊥ if so. M then computes
C←$ E(π, u∗,Mb) which it returns to A. When A halts with output b′, M returns the result of (b′ = b).
If M is playing game KMReal then game G2 is perfectly simulated, while if M is playing KMSim then
game G3 is perfectly simulated, so M returns 1 with the same probability that A wins in each case and
by the key-malleability of IBE Equation (6) holds.

Finally, we design A so that

Advibe
IBE (A) = 2Pr[GA

3 ]− 1 . (7)

On input π, adversary A runs A(π). When the latter makes a KD(φ, u) query, A does the following:

u ← PI(π, u , φ) ; dk ← KD(id, u) ; dk ← T (π, u, dk , φ).

It then returns dk to A. The KD invoked in this code is A’s own oracle. Compatibility tells us that
u = SI(φ(s), u) and thus from the definition of IBE , the response to A’s query is distributed according
to K(φ(s), u). But key-malleability then tells us that dk is distributed identically to this, so the response
provided by A is perfectly correct. When A makes a LR(u,M0,M1) query, A does the following:

u ← PI(π, u , id) ; C ← LR(u,M0,M1).

It then returns C to A. The LR invoked in this code is A’s own oracle. The definition of IBE implies
that the response provided by A is again perfectly correct. Finally when A halts with output a bit b′,
adversary A does the same.

5 Applying the framework

Affine RKD functions for Boneh-Franklin and Waters. We show how the framework can be
instantiated with the IBE schemes of Boneh-Franklin and Waters to achieve IBE schemes secure against
affine related-key attacks. First we look at key-malleability. Keys in the Boneh-Franklin IBE scheme
are of the form dk ′ = H1(u)

s , so the algorithm T is as follows:

T (π, u, dk ′, φa,b): dk ← dk ′
a
·H1(u)

b; Return dk

The output of T is a valid key for user u under master secret key φa,b(s), since:

dk ′a ·H1(u)
b = H1(u)

sa ·H1(u)
b = H1(u)

as+b .

Since the key derivation algorithm is deterministic, the keys output by T are distributed identically to
the keys output by K(φ(s), u), and so the Boneh-Franklin IBE scheme is key-malleable.

Keys in the Waters IBE scheme are of the form (dk ′1, dk
′
2) = (gs1 ·H(u)r, gr) for some r in Zp, so the

algorithm T is as follows:
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T (π, u, dk ′, φa,b):
If (a = 0) then r←$ Zp ; dk1 ← gb1 ·H(u)r ; dk 2 ← gr

Else dk1 ← dk ′a1 · g
b
1 ; dk2 ← dk ′a2

Return (dk1, dk2)

When the RKD function is a constant function, T behaves exactly as the key derivation algorithm under
master secret key b, so its output is valid and correctly distributed. Otherwise, the output of T is still
a valid key for user u under master secret key φa,b(s), now under randomness ra, since:

dk ′a1 · g
b
1 = (gs1 ·H(u)r)a · gb1 = gas+b

1 H(u)ra dk ′a2 = gra .

Since r is uniformly distributed in Zp, ra is also uniformly distributed in Zp and so the keys output by T
are distributed identically to those output by K(φ(s), u). Hence the Waters IBE scheme is key-malleable.

The same identity renaming scheme can be used for both IBE schemes:

SI(s, u)← u||gs , PI(π, u, φa,b)← u||πa · gb

The compatibility requirement is satisfied and the renaming scheme is clearly collision-resistant since
u1||g

φ(s) = u2||g
s ⇒ u1 = u2 ∧ φ(s) = s. Thus the IBE schemes of Boneh-Franklin and Waters

are key-malleable and admit a suitable identity renaming scheme, and so satisfy the requirements of
Theorem 4.1. For concreteness, the algorithms of the transformed schemes are given in Appendix A.
Notice that in the Waters case, we must increase the parameter n by the bit length of elements of G1

(and hence increase the size of the description of the scheme parameters) to allow identities of the form
u||gs to be used in the renaming scheme.

The following theorem is obtained by combining Theorem 4.1 with [14], and the running time of B
below may be obtained in the same way.

Theorem 5.1 Let IBE = (S,P,K, E ,D) be the Boneh-Franklin IBE scheme shown in Figure 3 under

the above identity renaming transform. Let A be a Φaff-RKA adversary against IBE making qKD key

derivation queries and qH2 queries to random oracle H2. Then there is an algorithm B solving the

Decision Bilinear Diffie-Hellman problem such that

Advibe−rka

IBE ,Φaff
(A) ≤

e(1 + qKD)qH2

2
·Advdbdh(B) . (8)

The following theorem is obtained by combining Theorem 4.1 with [27], and the running time of B
below may be obtained in the same way. Concrete-security improvements would be obtained by using
instead the analysis of Waters’ scheme from [6].

Theorem 5.2 Let IBE = (S,P,K, E ,D) be the Waters scheme shown in Figure 3 under the above

identity renaming transform. Let A be a Φaff-RKA adversary against IBE making qKD key derivation

queries. Then there is an algorithm B solving the Decision Bilinear Diffie-Hellman problem such that

Advibe−rka

IBE ,Φaff
(A) ≤ 32(n + 1) · qKD ·Advdbdh(B) . (9)

We recall from [4] that, given a Φ-RKA-secure IBE scheme, the CHK transform [12] yields a Φ-RKA-
secure CCA-PKE scheme at the cost of adding a strongly unforgeable one-time secure signature and
its verification key to the IBE ciphertexts. In Appendix E we show that the more efficient Boneh-Katz
transform [12] can also be used to the same effect. We omit the details of the Φaff -RKA-secure CCA-
PKE schemes that result from applying these transforms to the above IBE schemes. We simply note
that the resulting CCA-PKE schemes are as efficient as the pairing-based schemes of Wee [28], which
are only Φlin-RKA-secure. Similarly, using a result of [4], we may apply the Naor transform to these
IBE schemes to obtain Φaff-RKA-secure signature schemes that are closely related to (and as efficient
as) the Boneh-Lynn-Shacham [16] and Waters [27] signature schemes. The verification algorithms of
these signature schemes can be improved by replacing Naor’s trial encryption and decryption procedure
by bespoke algorithms, exactly as in [16, 27].
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proc Initialize

g←$ G1 ; x, y, z←$ Zp ; b←$ {0, 1}
If (b = 1) T ← e(g, g)xyz

Else T ←$ GT

Return g, gx, gx
2
, . . . , gx

q
, gy, g(x

2)y, g(x
3)y, . . . , g(x

q)y, gz, T

proc Finalize(b′)

Return (b = b′)

Figure 5: q-Extended Decision Bilinear Diffie-Hellman (q-EDBDH) game.

An IBE scheme handling RKAs for bounded degree polynomials. We show how to construct
an IBE scheme that is RKA secure when the RKD function set equals Φpoly(d), the set of all polynomials
of degree at most d, for an arbitrary d chosen at the time of master key generation. The scheme is
obtained through a simple extension of the IBE scheme of Waters combined with the identity renaming
transform used above. The only change we make to the Waters scheme is in the master public key, where
we add the extra elements gs

2
, . . . , gs

d
, g1

s2 , . . . , g1
sd alongside gs . These elements assist in achieving

key-malleability for the set Φpoly(d). The master public-key generation algorithm of the extended Waters
scheme is then

P(s) : π ← (gs , gs
2
, . . . , gs

d

, (g1)
s2 , . . . , (g1)

sd) ; Return π

The other algorithms and keys remain unchanged; in particular, key derivation does not make use of
these new elements. This extended Waters IBE scheme is secure (in the usual IND-CPA sense for IBE)
under the q-type extension of the standard DBDH assumption captured by the game in Figure 5. We
define the advantage of an adversary A against the problem as Advq-edbdh(A) = 2Pr[q-EDBDHA]− 1.

Theorem 5.3 Let IBE = (S,P,K, E ,D) be the extended Waters scheme. Let A be an adversary against

IBE making qKD key derivation queries. Then there is an algorithm B solving the q-Extended Decision

Bilinear Diffie-Hellman problem for q = d such that

Advibe
IBE (A) ≤ 32(n + 1) · qKD ·Advq-edbdh(B) . (10)

To see this, observe that the original proof of security for Waters’ scheme [27, 6] also goes through for
the extended scheme, using the elements g, gx, gy, T from the q-EDBDH problem to run the simulation
as in the original proof and using the additional elements from the q-EDBDH problem to set up the
master public key in the extended scheme.

We give evidence for the validity of the q-EDBDH assumption by examining the difficulty of
the problem in the generic group model. The problem falls within the framework of the generic
group model “master theorem” of Boneh, Boyen and Goh [11]. In their notation, we have P =
{1, x, x2, . . . , xq, y, x2y, . . . , xqy, z}, Q = 1, and f = xyz. It is clear by inspection that P,Q and f
meet the independence requirement of the master theorem, and it gives a lower bound on an adver-
sary’s advantage of solving the q-EDBDH problem in a generic group of the form (q+1)(qξ +4q+6)2/p
where qξ is a bound on the number of queries made by the adversary to the oracles computing the group
operations in G,GT . While a lower bound in the generic group model does not rule out an efficient
algorithm when the group is instantiated, it lends heuristic support to our assumption.

The extended Waters IBE scheme is Φpoly(d)-key malleable with algorithm T as follows:

T (π, u, dk ′, φa0,a1,...,ad):

If (a0 = 0) then r←$ Zp ; dk1 ← ga01 ·H(u)r · (g1
s2)

a2
· · · (g1

sd)
ad

; dk2 ← gr

Else dk1 ← ga01 · dk
′a1
1 · (g1

s2)
a2
· · · (g1

sd)
ad

; dk2 ← dk ′a12

Return (dk1, dk 2)

The identity renaming scheme is then

SI(s, u)← u||gs , PI(π, u , φa0,a1,...,ad)← u||ga0 · πa1 · (gs
2
)
a2
· · · (gs

d

)
ad
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which clearly meets the compatibility and collision-resistance requirements. For concreteness, the algo-
rithms of the transformed scheme are given in Appendix A. Combining Theorem 4.1 with Theorem 5.3
gives the following theorem.

Theorem 5.4 Let IBE = (S,P,K, E ,D) be the extended Waters scheme under the above identity

renaming transform. Let A be a Φpoly(d)-RKA adversary against IBE making qKD key derivation

queries. Then there is an algorithm B solving the q-Extended Decision Bilinear Diffie-Hellman problem

for q = d such that

Advibe−rka

IBE ,Φpoly(d)
(A) ≤ 32(n + 1) · qKD ·Advq-edbdh(B) . (11)

As in the affine case, we may apply results of [4] to obtain a Φpoly(d)-RKA-secure CCA-PKE scheme
and a Φpoly(d)-RKA-secure signature scheme. We omit the detailed but obvious description of these
schemes, noting merely that they are efficient and secure in the standard model under the q-EDBDH
assumption.

6 On joint security in the RKA setting

A combined signature and encryption (CSE) scheme [23] is a combination of a signature scheme and a
PKE scheme that share a key generation algorithm and hence a key pair. Since the component schemes
share a key pair, operations in one component may leak key-dependent material that can be used to
break the other component, so the standard notions of security for signatures and PKE need to be
enhanced with an additional oracle evaluating the key-dependent operation of the other component.

Paterson et al. [26] gave a construction of a secure CSE scheme from IBE using signatures obtained
through the Naor transform [14] and public-key encryption obtained through the CHK transform [12].
Meanwhile, Bellare, Cash and Miller [4] showed that the Naor and CHK transforms individually preserve
Φ-RKA-security, so that a Φ-RKA-secure IBE scheme leads to both a Φ-RKA-secure signature scheme
and a Φ-RKA-secure CCA-PKE scheme.

In Appendix B, we combine the existing security definitions for Φ-RKA-security and joint security
to produce a new security model for Φ-RKA joint security of CSE schemes. There, we also extend the
results of [4] and [26] to show that the combined signature and encryption scheme of [26] has Φ-RKA
joint security if the starting IBE scheme is Φ-RKA-secure. This construction can be applied to obtain
efficient CSE schemes for interesting sets Φ using any of the RKA-secure IBE schemes from this section.

7 RKA for the KEM-DEM paradigm and an RKA-secure CCA-KEM

from the BMW scheme

As noted above, the framework for constructing Φ-RKA-secure IBE schemes developed in the previous
section can be combined with results from [4] to build Φ-RKA-secure CCA-PKE schemes. In this
section, we give a more efficient, direct construction for a Φ-RKA-secure CCA-PKE scheme based on
the KEM of Boyen, Mei and Waters [17]. Compared to the schemes of Section 5, our scheme enjoys
shorter ciphertexts and smaller public parameters. We begin by providing appropriate definitions for
RKA security for Key Encapsulation Mechanisms (KEMs) and show that the KEM/DEM paradigm
of [19] extends to the RKA setting in a natural way. We then show how to modify the BMW scheme
to build an efficient CCA-secure Key Encapsulation Mechanism (CCA-KEM) that is Φaff-RKA-secure
under the Decision Bilinear Diffie-Hellman assumption for asymmetric pairings. We conclude with a
comparison of our scheme to the results of [28].
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proc Initialize // KEM

b←$ {0, 1} ; C ∗ ← ⊥ ; (ek , dk)←$K
Return ek

proc Finalize(b′) // KEM

Return (b = b′)

proc Dec(φ,C ) // KEM

dk ′ ← φ(dk )
If (dk ′ = dk ∧ C = C ∗)
Return ⊥

Return K←$D(dk ′, C)

proc Challenge() // KEM

(C ∗,K∗)←$ E(ek )
If (b = 0) K∗←$ Ksp

Return (C ∗,K∗)

Figure 6: Game KEM defining Φ-RKA-security for a CCA-KEM.

Algorithm K:

s←$ Zp

h0 ← hs

Z ← e(g, h0)
y1, y2←$ Zp

u1 ← gy1 ; u2 ← gy2

ek ← (Z, u1, u2)
dk ← (h0, y1, y2)
Return ek , dk

Algorithm E(ek):

t←$ Zp

C1 ← gt

w ← Hk(C1)
C2 ← ut1u

tw
2

K ← Zt

Return ((C1,C2),K)

Algorithm D(dk ,C ):

w ← Hk(C1)
w′ ← y1 + y2 · w mod p

If (Cw′

1 6= C2)
Return ⊥

Return e(C1, h0)

Algorithm K:

s←$ Zp

Z ← e(g, h)s

y1, y2←$ Zp

u1 ← hy1 ; u2 ← hy2

ek ← (Z, u1, u2)
dk ← s
Return ek , dk

Algorithm E(ek):

t←$ Zp

C1 ← gt

w ← Hk(C1||Z)
C2 ← ut1u

tw
2

K ← Zt

Return ((C1,C2),K)

Algorithm D(dk ,C ):

w ← Hk(C1||e(g, h)dk )
If (e(C1, u1u

w
2 ) 6= e(g,C2))

Return ⊥
Return e(C1, h)

dk

Figure 7: Original Boyen-Mei-Waters CCA-KEM on the left, RKA-secure variant BMW -KEM on the
right.

7.1 RKA for the KEM-DEM paradigm

We recall the functional definitions of KEMs and Symmetric Encryption (SE) schemes from [19]. We
define Φ-RKA-security for a CCA-KEM through the game in Figure 6, which is the natural extension
of CCA security for KEMs from [19] to the RKA setting.

We recall in Appendix C the definitions of Φ-RKA-security for CCA-PKE from [4] and of OT-CCA
security for SE from [19]. Figure 20 in Appendix C shows how to combine a CCA-KEM KEM and an
SE scheme SE to build a hybrid CCA-PKE scheme HPKE .

We now show that the KEM-DEM composition theorem of [19] also holds in the RKA setting:

Theorem 7.1 Suppose KEM is Φ-RKA-secure, and SE is one-time-CCA secure. Then the hybrid

encryption scheme HPKE is Φ-RKA-secure.

The proof of Theorem 7.1 is given in Appendix C.

7.2 An RKA-secure CCA-KEM from the BMW scheme

Boyen, Mei and Waters [17] build a very efficient CCA-KEM based on the first IBE scheme of Boneh and
Boyen [10] and show the CCA-KEM is secure under the DBDH assumption in the setting of asymmetric
pairings. The algorithms of their CCA-KEM are shown on the left-hand side of Figure 7. Here, we are
in the setting where G1,G2,GT are groups of prime order p, e : G1×G2 → GT is an asymmetric pairing,
g is a generator of G1, h is a generator of G2, and Hk : {0, 1}∗ → Zp is a member of a collision-resistant
hash function family defined by key k.

The BMW CCA-KEM from [17] is insecure in the RKA setting when the set Φ contains a function
φa(h0) = ha0 operating on the first element s of the secret key, admitting the following attack. On
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receipt of the public key (Z, u1, u2), the adversary makes a challenge query and receives a key K∗ and a
ciphertext C ∗ of the form (gt, ut1u

tw
2 ), where w = Hk(g

t) and t is the randomness used to generate the
challenge ciphertext. The adversary then makes a query Dec(φa, C

∗) and receives in response the key
K ′ = e(g, h)ast. The adversary can then compute the key encapsulated by the challenge ciphertext as
K ′a−1

= e(g, h)st and check if this is equal to the challenge key K∗, outputting b′ = 1 if so and b′ = 0 if
not, winning the Φ-RKA-security game.

The right half of Figure 7 shows the algorithms of BMW -KEM , an enhanced version of the CCA-
KEM of [17] that resists such an attack. We modify the decapsulation algorithm so that it uses the
pairing to evaluate ciphertext validity, allowing us to eliminate y1, y2 from the secret key. We move
some public key elements from G1 to G2 to accommodate these changes. We store the exponent s
instead of the group element hs so that the secret key is a single element of Zp. We then apply the
technique of Section 4 by including the secret key dependent part of the public key in the hash, resulting
in a Φaff -RKA-secure CCA-KEM. These modifications result in a scheme that is slightly less efficient
than the original CCA-KEM (it has a larger public key since elements in G2 generally have larger bit
representations than elements in G1, and slower decapsulation since an extra 2 pairings are required).

Theorem 7.2 Assume DBDH is hard and that Hk is a collision resistant hash function. Then the

CCA-KEM BMW -KEM is Φaff-RKA-secure.

The proof of Theorem 7.2 is given in Appendix D.

Our scheme bears comparison to the CCA-PKE schemes of Wee [28]. We reiterate that Wee only
achieves security for the claw-free RKD set Φlin, whereas our scheme BMW -KEM is Φaff-RKA-secure.
The most directly comparable scheme is the one in [28, Section 5.2], which is presented in the symmetric
setting e : G1 × G1 → GT . To make an accurate comparison with BMW -KEM , and for efficiency at
high security levels, this scheme needs to be translated to the asymmetric setting e : G1 × G2 → GT .
This can be done in such a way that ciphertexts are kept short, consisting of two elements of G1 plus a
verification key and a signature from a one-time signature scheme, while the public key is also an element
of G1. Here, we view the scheme as a CCA-KEM and so ignore the element ψ ∈ GT . The modified
scheme’s security is based on an asymmetric version of the DBDH assumption, like BMW -KEM .

By comparison, our scheme BMW -KEM has ciphertexts that consist of two group elements (one in
G1 and one in G2), while its public keys contain 3 group elements (two in G2 and one in GT ). Avoiding
the overhead of a one-time signature and verification key more than compensates for having an element
of G2 in place of an element of G2 in ciphertexts, and so our ciphertexts are more compact. On the
other hand, our public key is larger. The costs of encapsulation and decapsulation for BMW -KEM are
roughly the same as for Wee’s scheme: in both schemes, encapsulation is pairing-free while decapsulation
requires 3 pairings (a more detailed comparison would count the number of exponentiations needed in
the two schemes).

In summary, the two schemes have roughly comparable performance, but our scheme BMW -KEM

is RKA-secure for a significantly larger class of RKD functions.

8 RKA-secure CCA-SE

We now show how to build RKA-secure CCA-SE starting from an IBE scheme meeting certain mal-
leability properties and admitting a collision-resistant identity renaming scheme. We show that applying
the identity renaming transform of Section 4 to such an IBE scheme results in an IBE scheme meeting
a notion of strong RKA security, wherein the challenge ciphertext is encrypted under a related key of
the adversary’s choosing. Waters’ IBE scheme and the extended Waters IBE scheme are shown to have
the required properties.

We then show that the CHK transform preserves strong RKA security, leading to strong Φ-RKA-
secure PKE from selective-ID strong Φ-RKA-secure IBE. We then show that the natural method for
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proc Initialize // strIBE

s ←$ S;π ← P(s)
b←$ {0, 1} ; u∗, s∗ ← ⊥
I ← ∅
Return π

proc Finalize(b′) // strIBE

Return (b = b′)

proc KD(φ, u) // strIBE

s ′ ← φ(s)
I ← I ∪ {(u, s ′)}
If ((u∗, s∗) ∈ I) Return ⊥
Return dk ←$K(s ′, u)

proc Enc(φ, u,M) // strIBE

s ′ ← φ(s)
π′ ← P(s ′)
Return C←$ E(π′, u,M)

proc LR(φ, u,M0,M1) // strIBE

If (|M0| 6= |M1|) Return ⊥
u∗ ← u

s∗ ← φ(s)
If ((u∗, s∗) ∈ I) Return ⊥
π∗ ← P(s∗)
Return C←$ E(π∗, u∗,Mb)

Figure 8: Game strIBE defining strong Φ-RKA-security of IBE scheme IBE = (S,P,K, E ,D).

converting a PKE scheme into a symmetric encryption scheme gives a Φ-RKA-secure CCA-SE scheme
when the PKE scheme is strong Φ-RKA-secure.

8.1 Strong RKA-secure IBE

Figure 8 gives a definition of strong Φ-RKA security for an IBE scheme. In strong RKA security, in
addition to obtaining user-level keys computed under related master keys, the adversary may obtain
the challenge encryption under a related master key. As in standard RKA security, the adversary is
allowed only one call to the LR oracle. An alternative definition of security could be considered where
instead of having access to an Enc oracle the adversary is given access to an oracle returning the public
key corresponding to a related key deriving function. The schemes considered here can be shown to
meet this definition, but meeting that of Figure 8 is sufficient as a step on the way to our end goal of
RKA-secure CCA-SE.

Master public key-malleability. In Section 4 we showed how to use an identity renaming trans-
form to construct an RKA-secure IBE scheme from an IBE scheme that is key malleable and has a
collision-resistant identity renaming scheme. The additional property required to prove strong RKA
security is that of master public key-malleability. We say that an IBE scheme IBE = (S,P,K, E ,D) is
Φ-mpk-malleable if there exists an algorithm R and a function f ∈ Fun(MSp,MSp) such that

R(E(P(s), u, f(M); t), φ) = E(P(φ(s)), u,M ; t)

for all s ∈ S, u ∈ USp, M ∈ MSp, φ ∈ Φ and randomness t. This property says that we can take a
ciphertext encrypting a message f(M) related to M under master public key P(s) and use it to build
a ciphertext encrypting M under master public key P(φ(s)), for the same user u and under the same
randomness, t.

Waters’ IBE scheme is Φ-mpk-malleable for affine φ with a 6= 0. The function f is f(M) = Ma−1

and the algorithm R taking ciphertext C = (C ′
1, C

′
2, C

′
3) is as follows:

R(C ′
1, C

′
2, C

′
3, φa,b):

C1 ← C ′
1 ; C2 ← C ′

2

C3 ← (C ′
3)

a · e((C ′
1)

b, g1)
Return (C1, C2, C3)

Let C ← E(P(s), u,Ma−1
; t) = (gt,H(u)t, e(P(s), g1)

t ·Ma−1
) be the ciphertext input to R. Then

C3 = (C ′
3)

a · e((C ′
1)

b, g1)

(e(gs , g1)
t ·Ma−1

)
a
· e((gt)

b
, g1)

e(g, g1)
ast ·M · e(g, g1)

bt
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e(g, g1)
(as+b)t ·M

e(g(as+b), g1)
t
·M

e(P(φ(s)), g1)
t ·M ,

so (C1, C2, C3) = (gt,H(u)t, e(P(φ(s)), g1)
t ·M) = E(P(φ(s)), u,M ; t) and R’s output is correct.

The extended Waters IBE scheme is Φ-mpk-malleable for polynomial φa0,a1,...,ad with linear coeffi-

cient a1 6= 0. The function f is f(M) = Ma−1
1 and the algorithm R taking ciphertext C = (C ′

1, C
′
2, C

′
3)

is as follows:

R(C ′
1, C

′
2, C

′
3, φa0,a1,...,ad):

C1 ← C ′
1 ; C2 ← C ′

2

C3 ← (C ′
3)

a1 · e((C ′
1)

a0 , g1) · e((C
′
1)

a2 , (gs
2

1 )) · · · e((C ′
1)

ad , (gs
d

1 ))
Return (C1, C2, C3)

Let C ← E(P(s), u,Ma−1
1 ; t) = (gt,H(u)t, e(P(s), g1)

t ·Ma−1
1 ) be the ciphertext input to R. Then

C3 = (C ′
3)

a1 · e((C ′
1)

a0 , g1) · e((C
′
1)

a2 , (gs
2

1 )) · · · e((C ′
1)

ad , (gs
d

1 ))

(e(gs , g1)
t ·Ma−1

1 )
a1
· e((gt)

a0 , g1) · e((g
t)

a2 , (gs
2

1 )) · · · e((gt)
ad , (gs

d

1 ))

e(g, g1)
a1st ·M · e(g, g1)

a0t · e(g, g1)
a2s

2t · · · e(g, g1)
ads

dt

e(g, g1)
(a0+a1s+a2s

2+···+ads
d)t ·M

e(g(a0+a1s+a2s
2+···+ads

d), g1)
t
·M

e(P(φ(s)), g1)
t ·M ,

so (C1, C2, C3) = (gt,H(u)t, e(P(φ(s)), g1)
t ·M) = E(P(φ(s)), u,M ; t) and R’s output is correct.

The restriction that the non-linear coefficient of the RKD polynomial be non-zero comes from the
algorithm R inverting this coefficient. Strong RKA security is unachievable for constant RKD functions
φ(s) = a0 as the adversary can submit such a φ to the LR oracle to obtain the challenge ciphertext
under a public key for which it knows the corresponding secret key is a0. Thus strong Φ-RKA security
for the full set of polynomials φa0,a1,...,ad is unachievable. However there is still a gap between the RKD
set consisting of polynomials of non-zero degree and our RKD set of polynomials with non-zero linear
coefficient.

Theorem 8.1 Let IBE = (S,P,K, E ,D) be a Φ-key-malleable IBE scheme with key simulator T . Sup-

pose further that IBE is Φ-mpk-key-malleable with functions R and f . Let IBE = (S,P,K, E ,D) be

obtained from IBE and renaming scheme (SI,PI) via the transform IRT described in Section 4. Assume

the renaming scheme is statistically collision-resistant. Let A be a strong Φ-RKA adversary against IBE

that makes q key derivation queries. Then there is an adversary A making q key derivation queries such

that

Advibe−srka

IBE ,Φ
(A) ≤ Advibe

IBE (A) . (12)

Proof: The proof is very similar to that of Theorem 4.1. Consider the games of Figure 9. Game G0 is
written to be equivalent to game strIBE

IBE
, so that

Advibe−srka

IBE ,Φ
(A) = 2Pr[GA

0 ]− 1 . (13)

In answering a KD(φ, u) query, G0 must use the key-generation algorithm K of the new scheme IBE but
with master secret key s ′ = φ(s). From the definition of K, it follows that not only is the key-generation
at line 014 done under s ′, but also the identity renaming at line 013. LR, correspondingly, should use
E , and thus the public renaming function PI. The compatibility property however allows us at line 025
to use SI instead. This will be useful in exploiting statistical collision-resistance in the next step, after
which we will revert back to PI.
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proc Initialize // G0

000 s ←$ S ; π ← P(s)
001 b←$ {0, 1} ; u∗, s∗ ← ⊥
002 I ← ∅
003 Return π

proc KD(φ, u) // G0

010 s ′ ← φ(s)

011 I ← I ∪ {(u, s ′)}
012 If ((u∗, s∗) ∈ I) Return ⊥
013 u ← SI(s ′, u)

014 Return dk ←$K(s ′, u)

proc LR(φ, u ,M0,M1) // G0

020 If (|M0| 6= |M1|) Return ⊥
021 u∗ ← u

022 s∗ ← φ(s)

023 If ((u∗, s∗) ∈ I) Return ⊥
024 π∗ ← P(s∗)
025 u∗ ← SI(s∗, u∗)
026 Return C←$ E(π∗, u∗,Mb)

proc Enc(φ, u,M) // G0,G1,G2

030 s ′ ← φ(s)
031 π′ ← P(s ′)
032 u ← PI(π′, u, id)
033 Return C←$ E(π′, u,M)

proc Finalize(b′) // All

040 Return (b = b′)

proc Initialize // G1,G2,G3,G4

100 s ←$ S ; π ← P(s)
101 b←$ {0, 1} ; u∗ ← ⊥
102 I ← ∅
103 Return π

proc KD(φ, u) // G1

110 s ′ ← φ(s)
111 u ← SI(s ′, u)
112 I ← I ∪ {u}
113 If (u∗ ∈ I) Return ⊥
114 Return dk ←$K(s ′, u)

proc LR(φ, u ,M0,M1) // G1

120 If (|M0| 6= |M1|) Return ⊥
121 s∗ ← φ(s)
122 u∗ ← SI(s∗, u)
123 If (u∗ ∈ I) Return ⊥
124 π∗ ← P(s∗)
125 Return C←$ E(π∗, u∗,Mb)

proc KD(φ, u) // G2,G3

210 u ← PI(π, u, φ)
211 I ← I ∪ {u}
212 If (u∗ ∈ I) Return ⊥
213 Return dk ←$K(φ(s), u)

proc LR(φ, u ,M0,M1) // G2

220 If (|M0| 6= |M1|) Return ⊥
221 u∗ ← PI(π, u , φ)
222 If (u∗ ∈ I) Return ⊥
223 π∗ ← P(s∗)
224 Return C←$ E(π∗, u∗,Mb)

proc KD(φ, u) // G4

410 u ← PI(π, u, φ)
411 I ← I ∪ {u}
412 If (u∗ ∈ I) Return ⊥
413 dk ←$K(s, u)
414 Return dk ← T (π, u, dk , φ)

proc LR(φ, u ,M0,M1) // G3,G4

420 If (|M0| 6= |M1|) Return ⊥
421 M ← f(Mb)
422 u∗ ← PI(π, u , φ)
423 If (u∗ ∈ I) Return ⊥
424 C ′←$ E(π, u∗,M)
425 Return C←$R(C,φ)

proc Enc(φ, u ,M) // G3,G4

430 M ′ ← f(M)
431 u ← PI(π, u, φ)
432 C ′←$ E(π, u,M ′)
433 Return C←$R(C,φ)

Figure 9: Games for proof of Theorem 8.1.

The adversary A we aim to construct will not know s. A central difficulty in the simulation is thus lines
011, 012 of G0 where the response provided to A depends on the result of a test involving s, a test that
A cannot perform. Before we can design A we must get rid of this test. Statistical collision-resistance is
what will allow us to do so. KD of game G1 moves the identity renaming up before the list of queried
identities is updated to line 111 and then, at line 112, adds the transformed identity to the list. LR is
likewise modified so its test now involves the transformed (rather than original) identities. We claim
this makes no difference, meaning

Pr[GA
0 ] = Pr[GA

1 ] . (14)

Indeed, statistical collision-resistance tell us that (s ′, u) = (s∗, u∗) iff SI(s ′, u) = SI(s∗, u∗). This means
that lines 011, 012 and lines 112, 113 are equivalent.

Compatibility is invoked to use PI in place of SI in both KD and in LR in G2, so that

Pr[GA
1 ] = Pr[GA

2 ] . (15)
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Game G3 makes changes to encryption and challenge ciphertext generation. Φ-mpk-malleability means
these changes are invisible to the adversary and so

Pr[GA
2 ] = Pr[GA

3 ] . (16)

By compatibility the user u computed at lines 032 and 431 is the same, and by Φ-mpk-malleability the
ciphertext C output at line 033 is identical to that output at line 433, so from the adversary’s point of
view Enc behaves the same way in games G2 and G3. Φ-mpk-malleability means LR also outputs the
same ciphertexts in both games.

Rather than use s ′ for key generation as at 213, G4 uses s at 413 and then applies the key simulator T .
We claim the key-malleability implies

Pr[GA
3 ] = Pr[GA

4 ] . (17)

To justify this we show that there is an adversary M such that

Pr[KMRealMIBE ,Φ] = Pr[GA
3 ] and Pr[KMSimM

IBE ,Φ,T ] = Pr[GA
4 ] .

Adversary M , on input π, begins with the initializations u∗ ← ⊥ ; I ← ∅ ; b←$ {0, 1} and then runs
A on input π. M responds to encryption queries as specified in the game. When A makes a KD(φ, u)
query, M does the following:

u ← PI(π, u , φ) ; I ← I ∪ {u} ; If (u∗ ∈ I) Return ⊥ ; dk ← KD(φ, u).

If M is playing game KMReal then its KD oracle will behave as line 213 in game G3, while if M
is playing game KMSim its KD oracle will behave as lines 413,414 in game G4. When A makes its
LR(φ, u ,M0,M1) query M sets u∗ ← PI(π, u, φ) and checks if u∗ ∈ I, returning ⊥ if so. M then
computes C ← R(E(π, u∗, f(Mb)), φ) which it returns to A. When A halts with output b′, M returns
the result of (b′ = b). If M is playing game KMReal then game G3 is perfectly simulated, while if M is
playing KMSim then game G4 is perfectly simulated, so M returns 1 with the same probability that A
wins in each case and by the key-malleability of IBE Equation (6) holds.

Finally, we design A so that

Advibe
IBE (A) = 2Pr[GA

4 ]− 1 . (18)

On input π, adversary A runs A(π). When the latter makes a KD(φ, u) query, A does the following:

u ← PI(π, u , φ) ; dk ← KD(id, u) ; dk ← T (π, u, dk , φ).

It then returns dk to A. The KD invoked in this code is A’s own oracle. Compatibility tells us that
u = SI(φ(s), u) and thus from the definition of IBE , the response to A’s query is distributed according
to K(φ(s), u). But key-malleability then tells us that dk is distributed identically to this, so the response
provided by A is perfectly correct. When A makes a LR(φ, u ,M0,M1) query, A does the following:

u ← PI(π, u , φ) ; C ′ ← LR(u, f(M0), f(M1)) ; C ← R(C ′, φ).

It then returns C to A. The LR invoked in this code is A’s own oracle. The definition of IBE implies
that the response provided by A is again perfectly correct. Finally when A halts with output a bit b′,
adversary A does the same.

8.2 Strong RKA secure PKE from IBE

Figure 10 shows the definition of strong Φ-RKA-security for CCA-PKE, an extension of Φ-RKA security
where the adversary may request the challenge ciphertext be encrypted under a related key. As with

21



proc Initialize // strPKE

b←$ {0, 1} ; sk∗, C∗ ← ⊥
sk ←$ S ; pk ← P(sk)
Return pk

proc Enc(φ,M) // strPKE

sk ′ ← φ(sk)
pk ′ ← P(sk ′)
Return C∗←$ E(pk ′,M)

proc Dec(φ,C) // strPKE

sk ′ ← φ(sk)
If ((sk ′ = sk∗) ∧ (C = C∗))
Return ⊥

Return M ← D(sk ′, C)

proc LR(φ,M0,M1) // strPKE

If (|M0| 6= |M1|)
Return ⊥

sk∗ ← φ(sk)
pk∗ ← P(sk∗)
Return C∗←$ E(pk∗,Mb)

proc Finalize(b′) // strPKE

Return (b = b′)

proc Initialize // strsIBE

s ←$ S ; π ← P(s)
b←$ {0, 1} ; u∗, s∗ ← ⊥

proc SID(u) // strsIBE

u∗ ← u

Return π

proc KD(φ, u) // strsIBE

If (u∗ =⊥) Return ⊥
s ′ ← φ(s)
If (s ′ = s∗ ∧ u = u∗) Return ⊥
Return dk ←$K(s ′, u)

proc Enc(φ, u,M) // strsIBE

If (u∗ =⊥) Return ⊥
s ′ ← φ(s)
π′ ← P(s ′)
Return C←$ E(π′, u,M)

proc LR(φ,M0,M1) // strsIBE

If (|M0| 6= |M1|) Return ⊥
If (u∗ =⊥) Return ⊥
s∗ ← φ(s)
π∗ ← P(s∗)
Return C←$ E(π∗, u∗,Mb)

proc Finalize(b′) // strsIBE

Return (b = b′)

Algorithm E ′(π,M):

(vk , sk)←$K
c←$ E(π, vk ,M)

σ←$ S(sk , c)
C ← (c, vk , σ)
Return C

Algorithm D′(s , (c, vk , σ)):

If (V(vk , c, σ) = 0) Return ⊥
dk ←$K(s , vk)
M ← D(dk , c)
Return M

Figure 10: Game strPKE defining strong Φ-RKA-security for CCA-PKE, game strsIBE defining strong
Φ-RKA-selective-ID security for IBE , CHK PKE scheme.

IBE the definition assumes the secret key s is chosen at random from a secret key space S and the
public key is deterministically derived from it through an algorithm P. We show that applying the
CHK transform to a strong Φ-RKA-selective-ID secure IBE scheme results in a strong Φ-RKA-secure
CCA-PKE scheme.

Theorem 8.2 Let PKE = (S,P, E ′,D′) be the public key encryption scheme constructed from strong

Φ-RKA-selective-ID secure IBE = (S,P,K, E ,D) and strongly unforgeable one time signature scheme

DS = (K,S,V) through the CHK transform as in Figure 10. Then PKE is strong Φ-RKA-secure.

Proof: The proof uses the sequence of games in Figure 11. Game G0 implements strPKEA with PKE ,
so we have

Adv
pke−srka
PKE ,Φ (A) = 2Pr[GA

0 ]− 1.

Game G1 has an additional check in the Dec oracle: now if vk = vk
∗
and (c, σ) 6= (c∗, σ∗), the game

sets bad and responds to the query with ⊥. Since G1 and G0 are identical until bad, we have

Pr[GA
1 ]− Pr[GA

0 ] ≤ Pr[E1],

where E1 is the event that G1 sets bad. We now construct an adversary B that breaks the strong unforge-
ability of DS with probability Pr[E1]. B is given as input vk

∗
and starts by selecting b←$ {0, 1}, s ←$ S

and computing π ← P(s). It runs A(π) and simulates the response to the LR query by computing

If (|M0| 6= |M1|) Return ⊥
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proc Initialize // G0,G1,G2

b←$ {0, 1} ; s∗, C∗ ← ⊥
s ←$ S ; π ← P(s)
Return π

proc LR(φ,M0,M1) // G0,G1,G2

If (|M0| 6= |M1|) Return ⊥
s∗ ← φ(s)
π∗ ← P(s∗)

(vk
∗

, sk
∗

)←$K

c∗←$ E(π∗, vk
∗

,Mb)

σ∗←$ S(sk
∗

, c∗)

C∗ ← (c∗, vk
∗

, σ∗)
Return C∗

proc Finalize(b′) // G0,G1,G2

Return (b = b′)

proc Enc(φ,M) // G0,G1,G2

s ′ ← φ(s)
π′ ← P(s ′)
(vk , sk)←$K
c′←$ E(π′, vk ,M)

σ←$ S(sk , c)
C ← (c, vk , σ)
Return C

proc Dec(φ, (c, vk , σ)) // G0,G1

s ′ ← φ(s)

If ((s ′ = s∗) ∧ ((c, vk , σ) = C∗))
Return ⊥

If (V(vk , c, σ) = 0)
Return ⊥

If ((vk = vk
∗

) ∧ ((c, σ) 6= (c∗, σ∗)))
bad← true ; Return ⊥

dk ←$K(s ′, vk)
Return M ← D(dk , c)

proc Dec(φ, (c, vk , σ)) // G2

If (V(vk , c, σ) = 0)
Return ⊥

If ((vk = vk
∗

) ∧ ((c, σ) 6= (c∗, σ∗)))
Return ⊥

s ′ ← φ(s)

If ((s ′ = s∗) ∧ (vk = vk
∗

))
Return ⊥

dk ← K(s ′, vk)
Return M ← D(dk , c)

Figure 11: Games for the proof of Theorem 8.2.

s∗ ← φ(s) ; π∗ ← P(s∗)

c∗←$ E(π∗, vk
∗
,Mb) ;

σ∗←$ S(sk
∗
, c∗) ; C∗ ← (c∗, vk

∗
, σ∗) ; Return C∗

using its own signing oracle to generate σ∗ on c∗. It also simulates Dec and Enc query responses
exactly as specified in G1, noting the first query that triggers bad, if any. If there is such a query
Dec(φ, c, vk , σ), then B outputs (c, σ) as its forgery. This is a valid forgery for B because this query
must have passed the validity check V(vk , c, σ) (otherwise the oracle would have returned before going
to set bad), and we have that (c, σ) 6= (c∗, σ∗) by the check immediately before bad is set.

Game G2 rearranges some of the validity checks in Dec oracle processing, but these changes don’t
affect oracle responses. This change is valid because the same ciphertexts end up being rejected in
either game. We have

Pr[GA
2 ] = Pr[GA

1 ] .

We are now in a position to show that an adversary winning G2 with good probability can be used to
break the strong Φ-RKA-selective-ID security of IBE . We construct A′ such that

Advsibe−srka
IBE ,Φ (A′) = 2Pr[GA

2 ]− 1.

A′ generates (vk
∗
, sk

∗
)←$K and calls its SID oracle with vk

∗
, receiving π in return. A′ runs A(π),

simulating the response to LR(φ,M0,M1) by querying its own oracle for c∗ ← LR(φ,M0,M1), and
then signing c∗ using sk

∗
, finally returning the ciphertext C∗ = (c∗, vk

∗
, σ∗). A′ simulates responses to

Enc(φ,M) by querying its own oracle for c ← Enc(φ,M) and generating (vk , sk)←$K then signing
c using sk , returning the ciphertext C = (c, vk , σ). A′ simulates responses to Dec(φ, (c, vk , σ)) by
computing

If ((V(vk , c, σ) = 0) ∨ ((vk = vk
∗
) ∧ ((c, σ) 6= (c∗, σ∗)))) Return ⊥;

dk ← KD(φ, vk) ; M ← D(dk , c) ; Return M .

A′ runs A until it halts, and outputs whatever A outputs.
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proc Initialize // SE

b←$ {0, 1} ; K∗, C∗ ← ⊥
K←$K

proc Enc(φ,M) // SE

K ′ ← φ(K)
Return C←$ E(K ′,M)

proc Dec(φ,C) // SE

K ′ ← φ(K)
If ((K ′ = K∗) ∧ (C = C∗))
Return ⊥

Return M ← D(K ′, C)

proc LR(φ,M0,M1) // SE

If (|M0| 6= |M1|)
Return ⊥

K∗ ← φ(K)
Return C∗←$ E(K∗,Mb)

proc Finalize(b′) // SE

Return (b = b′)

Algorithm K′:

K←$ S
Return K

Algorithm E ′(K,M):

π ← P(K)
Return C←$ E(π,M)

Algorithm D′(K,C):

Return M ← D(K,C)

proc Initialize // G0

b←$ {0, 1} ; K∗, C∗ ← ⊥
K←$ S

proc Enc(φ,M) // G0

K ′ ← φ(K)
π ← P(K ′)
Return C←$ E(π,M)

proc Dec(φ,C) // G0

K ′ ← φ(K)
If ((K ′ = K∗) ∧ (C = C∗))
Return ⊥

Return M ← D(K ′, C)

proc LR(φ,M0,M1) // G0

If (|M0| 6= |M1|)
Return ⊥

K∗ ← φ(K)
π∗ ← P(K ′)
Return C∗←$ E(π∗,Mb)

proc Finalize(b′) // G0

Return (b = b′)

Figure 12: Game SE defining Φ-RKA-security of CCA-SE scheme SE = (K, E ,D), algorithms defining
CCA-SE scheme SE = (K′, E ′,D′) from strong Φ-RKA secure CCA-PKE scheme PKE = (S,P, E ,D),
and games for the proof of Theorem 8.3.

To complete the claim we need to argue that A′ properly simulates G2. The only subtlety is in how
decryption queries are handled. In simulating decryption query responses the first two checks are exactly
as in G2. The check the KD oracle performs rejects the same ciphertexts as the last check in G2, so the
rest of Dec is properly simulated and so A′ performs as claimed.

The proof is completed by collecting the relationships between games G0,G1 and G2.

Since strong Φ-RKA-security for IBE implies strong Φ-RKA-selective-ID security the CHK transform
can be applied to the Waters and extended Waters IBE schemes under the identity renaming transform
of Section 4 to obtain strong Φ-RKA-secure CCA-PKE for affine and polynomial φ with non-zero linear
coefficients.

8.3 RKA-secure CCA-SE

A definition of Φ-RKA-security for a CCA-SE scheme is presented in Figure 12. It is a find-then-guess
style definition where the adversary is allowed just one query to the LR oracle. This definition is
equivalent to the left-or-right definition presented in [4], losing a factor of q in the reduction where q is
the number of LR queries made in the same way as for standard CCA security. Figure 12 shows the
natural way of constructing a symmetric encryption scheme from a public key encryption scheme, and
Theorem 8.3 states that this construction applied to a strong Φ-RKA-secure CCA-PKE scheme gives a
Φ-RKA-secure CCA-SE scheme.

Theorem 8.3 Let PKE = (S,P, E ,D) be a strong Φ-RKA-secure CCA-PKE scheme. Then the CCA-

SE scheme constructed as in Figure 12 is Φ-RKA secure.

Proof: Game G0 in Figure 12 implements SEA with SE , so we have

Advse−rka
SE ,Φ (A) = 2Pr[GA

0 ]− 1.
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It is straightforward to build from A an adversary A′ against the strong Φ-RKA security of PKE such
that

Adv
pke−srka
PKE ,Φ (A′) = 2Pr[GA

0 ]− 1.

The adversary simply runs A, forwarding all its queries to its own oracles. When A halts and outputs
a bit b′, A′ does the same, winning precisely when A does.

Constructing a symmetric encryption scheme in this way from the PKE scheme obtained by applying
the CHK transform to the Waters and extended Waters IBE schemes under the identity renaming
transform of Section 4 gives Φ-RKA-secure CCA-SE for affine and polynomial φ with non-zero linear
coefficients. It is interesting to note here that the restriction on the RKD function polynomials that the
scheme is secure against differs from that of [22]. In [22] a CPA-SE scheme RKA secure against RKD
functions consisting of polynomials of non-zero degree is presented, while our CCA-SE scheme is RKA
secure against the more restricted RKD set consisting of polynomials with non-zero linear coefficients.

References

[1] B. Applebaum. Garbling XOR gates “for free” in the standard model. Cryptology ePrint Archive, Report
2012/516, 2012. http://eprint.iacr.org/. (Cited on page 4.)

[2] B. Applebaum, D. Harnik, and Y. Ishai. Semantic security under related-key attacks and applications. In
A. C.-C. Yao, editor, ICS 2011. Tsinghua University Press, 2011. (Cited on page 4, 5.)

[3] M. Bellare and D. Cash. Pseudorandom functions and permutations provably secure against related-key
attacks. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 666–684. Springer, Aug. 2010.
(Cited on page 3, 4, 5, 6, 7.)

[4] M. Bellare, D. Cash, and R. Miller. Cryptography secure against related-key attacks and tampering. In
D. H. Lee and X. Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 486–503. Springer, Dec.
2011. (Cited on page 3, 4, 5, 6, 7, 13, 15, 16, 24.)

[5] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and
applications. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 491–506. Springer, May
2003. (Cited on page 3, 4, 6, 7.)

[6] M. Bellare and T. Ristenpart. Simulation without the artificial abort: Simplified proof and improved concrete
security for Waters’ IBE scheme. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 407–
424. Springer, Apr. 2009. (Cited on page 13, 14.)

[7] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer,
May / June 2006. (Cited on page 6.)

[8] E. Biham. New types of cryptoanalytic attacks using related keys (extended abstract). In T. Helleseth,
editor, EUROCRYPT’93, volume 765 of LNCS, pages 398–409. Springer, May 1993. (Cited on page 3.)

[9] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In B. S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 513–525. Springer, Aug. 1997. (Cited on page 3.)

[10] D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption without random oracles. In
C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 223–238. Springer,
May 2004. (Cited on page 16.)

[11] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with constant size ciphertext. In
R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 440–456. Springer, May 2005. (Cited
on page 14.)

[12] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption.
SIAM J. Comput., 36(5):1301–1328, 2007. (Cited on page 3, 5, 13, 15, 27, 35, 36.)

25

http://eprint.iacr.org/


[13] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryptographic protocols for faults
(extended abstract). In W. Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 37–51. Springer,
May 1997. (Cited on page 3.)

[14] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Comput., 32(3):586–
615, 2003. (Cited on page 3, 5, 8, 13, 15, 27.)

[15] D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built using identity-based encryp-
tion. In A. Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 87–103. Springer, Feb. 2005. (Cited
on page 5.)

[16] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd, editor, ASI-
ACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Dec. 2001. (Cited on page 13.)

[17] X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-based techniques. In
V. Atluri, C. Meadows, and A. Juels, editors, ACM CCS 05, pages 320–329. ACM Press, Nov. 2005. (Cited
on page 6, 15, 16, 17.)
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A RKA-secure schemes

For completeness, we provide in Figure 13 the RKA-secure IBE schemes that result from applying our
framework to the Boneh-Franklin, Waters, and extended Waters IBE schemes.
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Algorithm P(s):

π ← gs

Return π

Algorithm K(s, u):

dk ← H1(u||g
s)s

Return dk

Algorithm E(π, u ,M):

t←$ Zp

C1 ← gt

C2 ← H2(e(π,H1(u||π))
t)⊕M

Return (C1,C2)

Algorithm D(dk ,C ):

M ← C2 ⊕H2(e(dk ,C1))
Return M

Algorithm P(s):

π ← gs

Return π

Algorithm K(s, u):

r←$ Zp

dk1 ← gs1 ·H(u||gs)r

dk2 ← gr

Return (dk 1, dk 2)

Algorithm E(π, u ,M):

t←$ Zp

C1 ← gt

C2 ← H(u||π)t

C3 ← e(π, g1)
t ·M

Return (C1,C2,C3)

Algorithm D(dk ,C ):

M ← C3 ·
e(dk2,C2)

e(dk1,C1)

Return M

Algorithm P(s):

π ← (gs , gs
2
, . . . , gs

d
, (g1)

s2 , . . . , (g1)
sd)

Return π

Algorithm K(s, u):

r←$ Zp

dk1 ← gs1 ·H(u||gs )r

dk2 ← gr

Return (dk1, dk2)

Algorithm E(π, u,M):

t←$ Zp

C1 ← gt

C2 ← H(u||π)t

C3 ← e(π, g1)
t ·M

Return (C1,C2,C3)

Algorithm D(dk ,C ):

M ← C3 ·
e(dk2,C2)

e(dk1,C1)

Return M

Figure 13: Φaff -RKA-secure Boneh-Franklin IBE scheme on the left, Φaff -RKA-secure Waters IBE
scheme in the middle, Φpoly(d)-RKA-secure extended Waters IBE scheme on the right.

B RKA-secure combined signature and encryption

The games associated with the notions of joint security for CSE schemes from [26] can be extended to
Φ-RKA-security and are given in Figure 15. Game PKESO defines Φ-RKA-security of the encryption
component of a CSE scheme in the presence of a signing oracle, with Adv

pkeso
CSE ,Φ(A) = 2Pr[PKESOA]−1.

Game SigDO defines Φ-RKA-security of the signature component of a CSE scheme in the presence of
a decryption oracle, with Adv

sigdo
CSE ,Φ(A) = Pr[SigDOA]. When both of these are satisfied we say the

scheme is Φ-RKA jointly secure (or has Φ-RKA joint security).
Paterson et al. [26] gave a construction of a secure CSE scheme from IBE using signatures obtained

through the Naor transform [14] and public-key encryption obtained through the CHK transform [12].
The algorithms of this scheme are given in Figure 16.

Theorem B.1 Let CSE = (K′,S ′,V ′, E ′,D′) be the combined signature and encryption scheme con-

structed from Φ-RKA-selective-ID secure IBE = (S,P,K, E ,D) and strongly unforgeable one time sig-

nature scheme DS = (K,S,V) as in Figure 16. Then the encryption component of CSE is Φ-RKA-secure

in the presence of a signing oracle.

Proof: The proof uses the sequence of games in Figure 17. Game G0 implements PKESOA with CSE ,
so we have

Adv
pkeso
CSE ,Φ(A) = 2Pr[GA

0 ]− 1.

Game G1 has an additional check in the Dec oracle: now if vk = vk
∗
and (c, σ) 6= (c∗, σ∗), the game

sets bad and responds to the query with ⊥. Since G1 and G0 are identical until bad, we have

Pr[GA
1 ]− Pr[GA

0 ] ≤ Pr[E1],

where E1 is the event that G1 sets bad. We now construct an adversary B that breaks the strong unforge-
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proc Initialize // sIBE

s ←$ S ; π ← P(s)
b←$ {0, 1} ; u∗ ← ⊥

proc SID(u) // sIBE

u∗ ← u

Return π

proc KD(φ, u) // sIBE

If (u∗ =⊥) then return ⊥
s ′ ← φ(s)
If (s ′ = s ∧ u = u∗) Return ⊥
Return dk ←$K(s ′, u)

proc LR(M0,M1) // sIBE

If (|M0| 6= |M1|) Return ⊥
If (u∗ =⊥) Return ⊥
Return C←$ E(π, u∗,Mb)

proc Finalize(b′) // sIBE

Return (b = b′)

proc Initialize // OWIBE

s ←$ S ; π ← P(s)
b←$ {0, 1} ; u∗ ← ⊥ ; I ← ∅
Return π

proc KD(φ, u) // OWIBE

s ′ ← φ(s)
If (s ′ = s) I ← I ∪ {u}
If (u∗ ∈ I) Return ⊥
Return dk ←$K(s ′, u)

proc SID(u) // OWIBE

u∗ ← u

If (u∗ ∈ I) Return ⊥
M ←$ MSp

Return C←$ E(π, u∗,M)

proc Finalize(M ′) // OWIBE

Return (M =M ′)

Figure 14: Games sIBE, OWIBE defining various flavors of Φ-RKA-security of IBE scheme IBE =
(S,P,K, E ,D).

ability of DS with probability Pr[E1]. B is given as input vk
∗
and starts by selecting b←$ {0, 1}, s ←$ S

and computing π ← P(s). It runs A(π) and simulates the response to the LR query by computing

If (|M0| 6= |M1|) Return ⊥ ; c∗←$ E(π, 1||vk
∗
,Mb) ;

σ∗←$ S(sk
∗
, c∗) ; C∗ ← (c∗, vk

∗
, σ∗) ; Return C∗

using its own signing oracle to generate σ∗ on c∗. It also simulates Dec and Sign query responses
exactly as specified in G1, noting the first query that triggers bad, if any. If there is such a query
Dec(φ, c, vk , σ), then B outputs (c, σ) as its forgery. This is a valid forgery for B because this query
must have passed the validity check V(vk , c, σ) (otherwise the oracle would have returned before going
to set bad), and we have that (c, σ) 6= (c∗, σ∗) by the check immediately before bad is set.

Game G2 rearranges some of the validity checks in Dec oracle processing, but these changes don’t
affect oracle responses. This change is valid because the same ciphertexts end up being rejected in
either game. We have

Pr[GA
2 ] = Pr[GA

1 ] .

We are now in a position to show that an adversary winning G2 with good probability can be used to
break the Φ-RKA-selective-ID security of IBE . We construct A′ such that

Advsibe-rka
IBE ,Φ (A′) = 2Pr[GA

2 ]− 1.

A′ generates (vk
∗
, sk

∗
)←$K and calls its SID oracle with 1||vk

∗
, receiving π in return. A′ runs A(π),

simulating the response to LR(M0,M1) by querying its own oracle for c∗ ← LR(M0,M1), and then
signing c∗ using sk

∗
, finally returning the ciphertext C∗ = (c∗, vk

∗
, σ∗). A′ simulates responses to

Sign(φ,M) by querying its oracle σ ← KD(φ, 0||M), and responses to Dec(φ, (c, vk , σ)) by computing

If ((V(vk , c, σ) = 0) ∨ ((vk = vk
∗
) ∧ ((c, σ) 6= (c∗, σ∗)))) Return ⊥;
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proc Initialize // PKESO

b←$ {0, 1} ; C∗ ← ⊥
(pk , sk)←$K
Return pk

proc Dec(φ,C) // PKESO

sk ′ ← φ(sk)
If ((sk ′ = sk) ∧ (C = C∗)) Return ⊥
Return M ← D(sk ′, C)

proc LR(M0,M1) // PKESO

If (|M0| 6= |M1|) Return ⊥
Return C∗←$ E(pk ,Mb)

proc Sign(φ,M) // PKESO

sk ′ ← φ(sk)
Return σ←$ S(sk ′,M)

proc Finalize(b′) // PKESO

Return (b = b′)

proc Initialize // SigDO

S ← ∅
(pk , sk)←$K
Return pk

proc Sign(φ,M) // SigDO

sk ′ ← φ(sk )
If (sk ′ = sk) S ← S ∪ {M}
Return σ←$ S(sk ′,M)

proc Dec(φ,C) // SigDO

sk ′ ← φ(sk )
Return M ← D(sk ′, C)

proc Finalize(M,σ) // SigDO

Return ((V(pk ,M, σ) = 1) ∧ (M 6∈ S))

Figure 15: Game PKESO defining Φ-RKA-security for the encryption component of a CSE scheme in
the presence of a signing oracle, and game SigDO defining Φ-RKA-security for the signature component
of a CSE scheme in the presence of a decryption oracle.

Algorithm K′:

s ←$ S
π ← P(s)
Return (s , π)

Algorithm S ′(s ,M):

σ←$K(s , 0||M)
Return σ

Algorithm V ′(π, σ,M):

x←$ MSp

c←$ E(π, 0||M,x)
If (D(σ, c) = x) Return 1
Return 0

Algorithm E ′(π,M):

(vk , sk)←$K
c←$ E(π, 1||vk ,M)

σ←$ S(sk , c)
C ← (c, vk , σ)
Return C

Algorithm D′(s , (c, vk , σ)):

If (V(vk , c, σ) = 0) Return ⊥
dk ←$K(s , 1||vk)
M ← D(dk , c)
Return M

Figure 16: Combined signature and encryption scheme from IBE [26].

dk ← KD(φ, 1||vk ) ; M ← D(dk , c) ; Return M .

A′ runs A until it halts, and outputs whatever A outputs.

To complete the claim we need to argue that A′ properly simulates G2. The only subtlety is in how
decryption and signature queries are handled. In simulating decryption query responses the first two
checks are exactly as in G2. The check the KD oracle performs rejects the same ciphertexts as the
last check in G2, so the rest of Dec is properly simulated. The differing bits prepended to identities in
encryption and signature ensure the KD oracle’s check will never be true in a signing query, so Sign is
properly simulated and so A′ performs as claimed.

The proof is completed by collecting the relationships between games G0,G1 and G2.

Theorem B.2 Let CSE = (K′,S ′,V ′, E ′,D′) be the combined signature and encryption scheme con-

structed from Φ-RKA-secure IBE = (S,P,K, E ,D) and strongly unforgeable one time signature scheme
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proc Initialize // G0,G1,G2

b←$ {0, 1} ; C∗ ← ⊥ ; S ← ∅
s ←$ S ; π ← P(s)
Return π

proc LR(M0,M1) // G0,G1,G2

If (|M0| 6= |M1|) Return ⊥

(vk
∗

, sk
∗

)←$K

c∗←$ E(π, 1||vk
∗

,Mb)

σ∗←$ S(sk
∗

, c∗)

C∗ ← (c∗, vk
∗

, σ∗)
Return C∗

proc Finalize(b′) // G0,G1,G2

Return (b = b′)

proc Sign(φ,M) // G0,G1,G2

s ′ ← φ(s)
σ←$K(s ′, 0||M)
Return σ

proc Dec(φ, (c, vk , σ)) // G0,G1

s ′ ← φ(s)

If ((s ′ = s) ∧ ((c, vk , σ) = C∗))
Return ⊥

If (V(vk , c, σ) = 0)
Return ⊥

If ((vk = vk
∗

) ∧ ((c, σ) 6= (c∗, σ∗)))
bad← true ; return ⊥

dk ←$K(s ′, 1||vk)
Return M ← D(dk , c)

proc Dec(φ, (c, vk , σ)) // G2

If (V(vk , c, σ) = 0)
Return ⊥

If ((vk = vk
∗

) ∧ ((c, σ) 6= (c∗, σ∗)))
Return ⊥

s ′ ← φ(s)

If ((s ′ = s) ∧ (vk = vk
∗

))
Return ⊥

dk ← K(s ′, 1||vk)
Return M ← D(dk , c)

Figure 17: Games for the proof of Theorem B.1.

proc Initialize // G3

b←$ {0, 1} ; C∗ ← ⊥ ; S ← ∅
s ←$ S ; π ← P(s)
Return π

proc Finalize(M,σ) // G3

x←$M
c←$ E(π, 0||M,x)
Return ((D(σ, c) = x) ∧ (0||M 6∈ S))

proc Dec(φ, (c, vk , σ)) // G3

s ′ ← φ(s)

If (V(vk , c, σ) = 0)
Return ⊥

dk ←$K(s ′, 1||vk)
Return M ← D(dk , c)

proc Sign(φ,M) // G3

s ′ ← φ(s)
If (s ′ = s) S ← S ∪ {0||M}
Return σ←$K(s , 0||M)

Figure 18: Games for the proof of Theorem B.2.

DS = (K,S,V) as in Figure 16. Then the signature component of CSE is Φ-RKA-secure in the presence

of a decryption oracle.

Proof: The proof uses the game in Figure 18. Game G3 implements SigDOA with CSE , so we have

Adv
sigdo
CSE ,Φ(A) = Pr[GA

3 ].

We now show that an adversary winning G3 with good probability can be used to break the Φ-RKA
one-way security of IBE . We construct A′ such that

Advowibe-rka
IBE ,Φ (A′) = Pr[GA

3 ].

A′ takes input π and runs A(π). A′ simulates the response to signing oracle queries Sign(φ,M) with
a call to KD(φ, 0||M). The restriction that a user private key corresponding to the challenge identity
cannot be requested ensures no signature will be generated for the message output as a forgery. A′

simulates the response to decryption oracle queries Dec(φ, (c, vk , σ)) by computing

If (V(vk , c, σ) = 0) Return ⊥ ; dk ← KD(φ, 1||vk ) ; M ← D(dk , c) ; Return M .

The bit prefix ensures this call to KD does not request a key for the challenge identity.

When A halts and returns a forgery σ∗ on a message M∗, A′ makes a call to its SID oracle with identity
0||M∗. If a signature has already been issued for M∗ under the original master secret key then 0||M∗

will be on the list of identities A′ requested secret keys for under the original master secret key. In
this case SID will return ⊥ and A′ will halt without output. If no signature has been issued for M∗
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proc Initialize // PKE

b←$ {0, 1} ; C∗ ← ⊥
(pk , sk)←$K
Return pk

proc Dec(φ,C) // PKE

sk ′ ← φ(sk )
If ((sk ′ = sk ) ∧ (C = C∗))
Return ⊥

Return M ← D(sk ′, C)

proc LR(M0,M1) // PKE

If (|M0| 6= |M1|)
Return ⊥

Return C∗←$ E(pk ,Mb)

proc Finalize(b′) // PKE

Return (b = b′)

proc Initialize // OT-CCA

b←$ {0, 1} ; C∗ ← ⊥
K←$K

proc Dec(C) // OT-CCA

If (C∗ = ⊥)
Return ⊥

If (C = C∗)
Return ⊥

Return M ← D(K,C)

proc LR(M0,M1) // OT-CCA

If (|M0| 6= |M1|)
Return ⊥

Return C∗←$ E(K,Mb)

proc Finalize(b′) // OT-CCA

Return (b = b′)

Figure 19: Game PKE defining Φ-RKA-security for CCA-PKE and game OT-CCA defining one-time-
CCA security for SE.

Algorithm K:

(ek , dk)←$ KEM .K
Return ek

Algorithm E(ek ,M):

(C1,K)←$ KEM .E(ek )
C2←$ SE .E(K,M)
Return C∗ ← (C1,C2)

Algorithm D(dk ,C ):

K ← KEM .D(dk ,C1)
Return M ← SE .D(K,C2)

Figure 20: Algorithms for the hybrid encryption scheme HPKE

then SID will return an encryption of a random message under identity 0||M∗ which A′ will attempt to
decrypt using σ∗ as the secret key. If σ∗ is a valid signature on 0||M∗ this decryption will be successful
and A′ will output the resulting message. A′ succeeds in outputting the correct message precisely when
A makes a valid forgery, and the theorem follows.

C Proof of Theorem 7.1

Proof: The proof uses the sequence of games in Figure 21. Game G0 implements PKEA with HPKE .
Game G1 is as game G0, except that in game G1 if the adversary submits for decryption a ciphertext
whose first component is C ∗

1 and a φ such that φ(dk ) = dk , the key K∗ generated in the LR query is
used directly rather than obtaining this key through decapsulating C ∗

1 under key dk . The behavior of
the games is identical, so we have that

Pr[GA
0 ] = Pr[GA

1 ] .

Game G2 is as game G1 except that the key K∗ encapsulated by the first component of the challenge
ciphertext is replaced by a random key K ′. We now construct an adversary B against the Φ-RKA-
security of KEM such that

∣

∣Pr[GA
1 ]− Pr[GA

2 ]
∣

∣ = Advkem-rka
KEM ,Φ(B) .

B is given a key pair for KEM . It chooses a random bit σ and passes the keypair to A. When A
makes a decryption query, B passes φ and the first component of the ciphertext to its decapsulation
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oracle, obtaining in response a key which it uses to decrypt the symmetric component of the ciphertext,
returning the result to A. When A makes its LR query, B calls its Challenge oracle to obtain
(C ∗

1 ,K
∗), then computes C ∗

2 ← SE .E(K∗,Mσ) and passes (C ∗
1 ,C

∗
2 ) to A. B handles A’s decryption

queries as before, except in the case where C1 = C ∗
1 . In this case B forwards φ,C ∗

1 to its decapsulation
oracle. If the response to this query is a key K then φ(dk ) 6= dk and B uses K to decrypt the symmetric
component and returns the result to A. If instead the response is ⊥ then φ(dk ) = dk . B checks whether
C2 = C ∗

2 , returning ⊥ if so, decrypting the symmetric component with the keyK∗ it received in response
to its Challenge query and returning the result to A if not. Eventually A will halt and output a bit
σ′. If A has guessed correctly σ′ = σ, B outputs b′ = 1, else B outputs b′ = 0. When the challenge bit
b in B’s game is 1, the key K∗ returned by the Challenge oracle is the real key, so A is provided with
a perfect simulation of game G1, while when B’s challenge bit is 0, K∗ is a random key so A is playing
game G2. This gives us that

Advkem-rka
KEM ,Φ(B) =

∣

∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣

∣

=
∣

∣Pr[σ′ = σ|b = 1]− Pr[σ′ = σ|b = 0]
∣

∣

=
∣

∣Pr[GA
1 ]− Pr[GA

2 ]
∣

∣ ,

as required.

We finally construct an adversary C against the one-time-CCA security of SE such that

Advse-ot-cca
SE (C) =

∣

∣Pr[GA
2 ]− 1/2

∣

∣ .

C begins by generating a keypair (ek , dk)←$ KEM .K which it passes to A. A makes decryption queries
which C handles by computing dk ′ ← φ(dk ) and using dk ′ to decapsulate the first ciphertext component,
then decrypting the second component with the session key, passing the result to A. When A calls its
LR oracle with messages M0,M1, C calls its own LR oracle with the same messages, receiving C ∗

2

in response. B then generates (C ∗
1 ,K

∗)←$ KEM .E(ek) and passes (C ∗
1 ,C

∗
2 ) to A. A makes further

decryption queries to which C responds as before, except when φ(dk ) = dk and the first component
of the ciphertext is C ∗

1 . If the ciphertext submitted for decryption is C ∗ then C returns ⊥. If instead
the first component of the ciphertext is C ∗

1 and C2 6= C ∗
2 , C calls its decryption oracle with ciphertext

C2 and returns the response to A. Eventually A halts outputting a bit b′ which C forwards as its own
output. C provides a perfect simulation of G2 for A and correctly determines the challenge bit with the
same probability as A, so the above equation holds.

Collecting the equations gives us

Adv
pke-rka
HPKE ,Φ

(A) =
∣

∣Pr[GA
0 ]− 1/2

∣

∣

=
∣

∣Pr[GA
1 ]− 1/2

∣

∣

=
∣

∣Pr[GA
1 ]− Pr[GA

2 ] + Pr[GA
2 ]− 1/2

∣

∣

≤ Advkem-rka
KEM ,Φ(B) +Advse-ot-cca

SE (C) ,

establishing the theorem.

D Proof of Theorem 7.2

Proof: The proof uses the sequence of games in Figure 22. Game G0 implements KEMA with KEM .
Game G1 moves the generation of the challenge ciphertext and key to the initialize phase. It is identical
to game G0 from the adversary’s point of view, unless the adversary makes a decapsulation query with
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proc Initialize // G0,G1,G2

b←$ {0, 1} ; C∗ ← ⊥
(ek , dk)←$ KEM .K
Return ek

proc Dec(φ,C) // G0

dk ′ ← φ(dk )
If ((dk ′ = dk ) ∧ (C = C∗))
Return ⊥

K ← KEM .D(dk ′,C1)
Return M ← SE .D(K,C2)

proc LR(M0,M1) // G0,G1

If (|M0| 6= |M1|)
Return ⊥

(C ∗

1 ,K
∗)←$ KEM .E(ek)

C ∗

2 ←$ SE .E(K∗,Mb)
Return C∗ ← (C ∗

1 ,C
∗

2 )

proc Finalize(b′) // G0,G1,G2

Return (b = b′)

proc Dec(φ,C) // G1

dk ′ ← φ(dk )
If ((dk ′ = dk ) ∧ (C = C∗))
Return ⊥

If ((dk ′ = dk ) ∧ C1 = C ∗

1 )
Return M ← SE .D(K∗,C2)

K ← KEM .D(dk ′,C1)
Return M ← SE .D(K,C2)

proc Dec(φ,C) // G2

dk ′ ← φ(dk )
If ((dk ′ = dk ) ∧ (C = C∗))
Return ⊥

If ((dk ′ = dk ) ∧ C1 = C ∗

1 )
Return M ← SE .D(K ′,C2)

K ← KEM .D(dk ′,C1)
Return M ← SE .D(K,C2)

proc LR(M0,M1) // G2

If (|M0| 6= |M1|)
Return ⊥

(C ∗

1 ,K
∗)←$ KEM .E(ek )

K ′←$ SE .Ksp
C ∗

2 ←$ SE .E(K ′,Mb)
Return C∗ ← (C ∗

1 ,C
∗

2 )

Figure 21: Games used in the proof of Theorem 7.1.

φ(dk ) = dk for a valid ciphertext with the same random value t as the challenge ciphertext before it
has made a challenge query. We call this event E1, and argue that its probability is q/p, where q is
the number of decapsulation queries the adversary makes before making a challenge query, since until a
challenge query is made no information is leaked about t. By the fundamental lemma of game playing
we have that

Advkem-rka
KEM ,Φ(A) = 2Pr[GA

0 ]− 1

= 2(Pr[GA
0 ]− Pr[GA

1 ] + Pr[GA
1 ])− 1

≤ 2(Pr[GA
1 ] + Pr[E1])− 1

≤ 2(Pr[GA
1 ] + q/p)− 1 .

Game G2 is as game G1, but sets the flag bad and returns ⊥ if the adversary makes a decapsulation
query for a valid ciphertext with the same hash value as the challenge ciphertext. Games G1 and G2

are identical from the adversary’s point of view until this event occurs, so we have that

Pr[GA
1 ]− Pr[GA

2 ] ≤ Pr[E2] ,

where E2 is the event that G2 sets bad. We construct an adversary B against the collision resistance of
H such that

Pr[E2] = Advcr
H(B) .

B is given the key k for the hash function H and runs K to get a keypair ek , dk for the KEM. It chooses
t←$ Zp and computes C ∗

1 ← gt, w∗ ← Hk(g
t||e(g, h)dk ), C ∗

2 ← ut1u
tw∗

2 , andK∗ ← e(g, h)(dk )t. B chooses
a random bit b←$ {0, 1}, then runs A, supplying ek as the public key. When A makes a decapsulation
query B acts exactly as game G2’s decapsulation oracle, which it is able to do since it knows dk . When
A makes a challenge query B responds with ((C ∗

1 ,C
∗
2 ),K

∗), first setting K∗←$ Ksp if b = 0. Eventually
A halts and outputs a bit b′. If event E2 occurred then there was a query (φ,C ) with w = w∗, where
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proc Initialize // G0

dk ←$ Zp

Z ← e(g, h)dk

y1, y2←$ Zp

u1 ← hy1 ; u2 ← hy2

ek ← (Z, u1, u2)
b←$ {0, 1} ; C ∗ ← ⊥
Return ek

proc Dec(φ,C ) // G0,G1

dk ′ ← φ(dk )
If (dk ′ = dk ∧ C = C ∗)

Return ⊥

w ← Hk(C1||e(g, h)
dk

′

)
If (e(C1, u1u

w
2 ) 6= e(g,C2))

Return ⊥

Return e(C1, h)
dk

′

proc Challenge() // G0

t←$ Zp

C ∗
1 ← gt

w∗ ← Hk(C1||Z)
C ∗
2 ← ut1u

tw∗

2

K∗ ← Zt

If (b = 0) K∗←$ Ksp

Return ((C ∗
1 ,C

∗
2 ),K

∗)

proc Finalize(b′) // G0,G1,G2

Return (b = b′)

proc Initialize // G1,G2

dk ←$ Zp

Z ← e(g, h)dk

y1, y2←$ Zp

u1 ← hy1 ; u2 ← hy2

ek ← (Z, u1, u2)
b←$ {0, 1}
t←$ Zp

C ∗
1 ← gt

w∗ ← Hk(C1||Z)
C ∗
2 ← ut1u

tw∗

2

K∗ ← Zt

Return ek

proc Dec(φ,C ) // G2

dk ′ ← φ(dk)
If (dk ′ = dk ∧ C = C ∗)

Return ⊥

w ← Hk(C1||e(g, h)
dk

′

)
If (e(C1, u1u

w
2 ) 6= e(g,C2))

Return ⊥
If (w = w∗)

bad← true ; Return ⊥

Return e(C1, h)
dk

′

proc Challenge() // G1,G2

If (b = 0) K∗←$ Ksp

Return ((C ∗
1 ,C

∗
2 ),K

∗)

Figure 22: Games G0,G1,G2 used in proving the Φaff -RKA-security of BMW -KEM .

C = (C1,C2) is a valid ciphertext so is of the form (gx, ux1u
xw
2 ) where w = Hk(g

x||e(g, h)φ(dk )). Then
we have a pair m = gt||e(g, h)dk , m′ = gx||e(g, h)φ(dk ) with Hk(m) = Hk(m

′). To show this is a collision
it remains to show that m 6= m′. If m = m′ then e(g, h)dk = e(g, h)φ(dk ), so φ(dk) = dk (since GT is
of prime order and e(g, h) 6= 1GT

). Since C is valid, it follows from the decapsulation oracle’s second
check that if it has C ∗

1 = C1, then it must also have C ∗
2 = C2. But by the first check performed by

the decapsulation, we have that C ∗ 6= C , so the ciphertexts must differ in the first component. Then
gt 6= gx, contradicting the assumption that m = m′. We deduce that m and m′ are not equal. B
outputs (m,m′) and wins the game with probability Pr[E2].

We now show that an adversary winning G2 with good probability can be used to solve the DBDH
problem. We build C such that

Advdbdh(C) = 2Pr[GA
2 ]− 1 .

C is given as input a DBDH challenge tuple (g, gx, gy , gz , h, hx, hy, hz , T ). C computes Z ← e(gx, hy) so
that the private key dk is the unknown value xy, and then computes w∗ ← Hk(g

z||Z). It then chooses
δ←$ Zp and sets

u1 ← (hx)−w∗

hδ and u2 ← hx .
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proc Initialize // HIDING

pub←$ Init()
r0←$ {0, 1}k

(r1, com, dec)←$ S(pub)
b←$ {0, 1}
Return (pub, com, rb)

proc Finalize(b′) // HIDING

Return (b = b′)

proc Initialize // BINDING

pub←$ Init()
(r, com, dec)←$ S(pub)
Return (pub, com, dec)

proc Finalize(dec′) // BINDING

Return R(pub, com, dec′) /∈ {⊥, r}

proc Initialize // S-OT

m←⊥
tag←⊥
r←$ {0, 1}k

proc MAC(m′) // S-OT

m← m′

tag← Mac(k,m)
Return tag

proc Finalize(m∗, tag∗) // S-OT

Return (Vrfy(k,m∗, tag∗) = 1)
∧((m∗, tag∗) 6= (m, tag))

Figure 23: Games defining security (hiding and binding) for an encapsulation scheme, and one-time
strong unforgeability for a message authentication code.

C then computes the challenge ciphertext as C ∗ ← (gz, (hz)δ). This is a valid ciphertext as C ∗ =
(gz , uz1u

zw∗

2 ). C sets the challenge session key K∗ ← T , so that it is the correct session key when
the DBDH tuple has T = e(g, h)xyz and a random element of GT otherwise. C then runs A with
public key (Z, u1, u2). C responds to A’s decapsulation queries (φa,b,C1,C2) in the following way. Let
Z ′ ← Za · e(g, h)b = e(g, h)a(dk )+b and calculate w← Hk(C1||Z

′). First check whether φa,b(dk ) = dk by
checking whether Z ′ = Z. If this equality holds and C = C ∗ then return ⊥. Next check the ciphertext
is valid, that is check that e(C1, u1u

w
2 ) = e(g,C2). If this equality does not hold, the ciphertext is invalid

so C returns ⊥ to A. Next, check whether w = w∗ and return ⊥ if so. Now compute

K ←
e(C1, (h

y)
−δ

w−w∗u1u
w
2 )

e((gy)
−1

w−w∗ g,C2)

and return K to A. Note that, assuming all the checks hold, we have:

K =

(

e(g, h)x(w−w∗)+δ−y δ
w−w∗

e(g, h)x(w−w∗)+δ−y δ
w−w∗ −xyw−w∗

w−w∗

)t

= e(g, h)xyt ,

where C1 = gt, i.e. t is the randomness used in creating the ciphertext. Hence this decapsulation
procedure is correct. When A makes its challenge query, C responds with the challenge ciphertext
C ∗ and session key K∗. When A halts and outputs its guess b′, C forwards this guess as its own
output. C provides a perfect simulation of G2 for C, so C wins its game precisely when A wins, giving
Advdbdh(C) = 2Pr[GA

2 ]− 1 as required.

Gathering terms, we get that

Advkem-rka
KEM ,Φ(A) ≤ Advdbdh(C) + 2Advcr

H(B) + 2q/p ,

establishing the theorem.

E RKA security of the Boneh-Katz transform

The Boneh-Katz transform [12] constructs a CCA-PKE scheme from a selective-ID secure IBE scheme,
making use of an encapsulation scheme and a message authentication code.

An encapsulation scheme consists of three algorithms (Init,S,R) such that Init() outputs a string
pub of public parameters, S(pub) outputs (r, com, dec) where r ∈ {0, 1}k , and R(pub.com, dec) outputs
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Algorithm K:

s ←$ S
π ← P(s)
pub←$ Init()
pk ← (π, pub))
Return (s , pk )

Algorithm E(pk ,M):

(r, com, dec)←$ S(pub)
c←$ E(π, com,M ||dec)
tag← Mac(r, c)
C ← (com, c, tag)
Return C

Algorithm D(s , (com, c, tag)):

dk ←$K(s , com)
M ′ ← D(dk , c)
If (M ′ =⊥) Return ⊥
M ||dec←M ′

r← R(pub, com, dec)
If (r =⊥)
Return ⊥

If (Vrfy(r, c, tag) = 0)
Return ⊥

Return M

Figure 24: Boneh-Katz transform algorithms.

r ∈ {0, 1}k ∪ {⊥}. The correctness property requires that when pub is output by Init() and (r, com, dec)
is output by S(pub), we have that R(pub, com, dec) = r. An encapsulation scheme should satisfy the
hiding and binding properties defined by the games in Figure 23.

A message authentication code consists of two algorithms (Mac,Vrfy) such that Mac(k,m) outputs
a tag tag, and Vrfy(k,m, tag) outputs 0 or 1. The correctness property requires that when tag is output
by Mac(k,m) we have that Vrfy(k,m, tag) = 1. The game defining one-time strong unforgeability of a
message authentication code is given in Figure 23. The adversary is allowed to make only one call to
MAC(m′).

The transform uses an encapsulation scheme where com and dec are n bit strings, and an IBE scheme
with identities of length n. The algorithms of the transform are described in Figure 24.

We show that the Boneh-Katz transform preserves RKA security, that is that the transform can be
applied to a Φ-RKA-selective-ID secure IBE scheme to obtain a Φ-RKA-secure CCA-PKE scheme. The
encapsulation scheme and message authentication scheme do not need to be RKA-secure, instead they
need only meet regular hiding and binding, and one-time strong unforgeability notions respectively. The
proof follows closely the original proof in [12].

Theorem E.1 Let PKE = (K, E ,D) be the public-key encryption scheme constructed as in Figure 24

from Φ-RKA-selective-ID secure IBE = (S,P,K, E ,D), hiding and binding encapsulation scheme ECP =
(Init,S,R) and one-time strongly unforgeable message authentication code MAC = (Mac,Vrfy). Then

PKE is a Φ-RKA-secure CCA-PKE scheme.

Proof: Let A be an adversary against the Φ-RKA-security of PKE . We will prove the theorem by
bounding A’s probability of success. The proof uses the sequence of games in Figure 25. Game G0

implements PKEA with PKE , so we have

Adv
pke-rka
PKE ,Φ (A) = 2 · Pr[GA

0 ]− 1 . (19)

In game G0 the values (r∗, com∗, dec∗) are generated in the initialization phase rather than when A
makes its call to LR. This makes no difference since A’s actions have no effect on their generation.

Game G1 is as G0 except that the decryption oracle outputs ⊥ on input an RKD function φ where
φ(s) = s and a ciphertext of the form (com∗, c, tag). We say that a ciphertext (com, c, tag) is valid if its
decryption under s does not return ⊥. Let Valid be the event that A playing game G1 submits to its
decryption oracle an RKD function φ where φ(s) = s and a valid ciphertext of the form (com∗, c, tag).
Since G0 and G1 are identical until Valid occurs we have that

∣

∣Pr[GA
0 ]− Pr[GA

1 ]
∣

∣ ≤ Pr[Valid] . (20)
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We now want to bound Pr[Valid]. Let NoBind be the event that A playing G1 ever submits to its
decryption oracle an RKD function φ where φ(s) = s and a ciphertext of the form (com∗, c, tag), such
that c decrypts under dk ←$K(s, com∗) to M ||dec, and R(pub, com∗, dec) = r with r /∈ {r∗,⊥}. Let
Forgei be the event that A ever submits to its decryption oracle an RKD function φ where φ(s) = s

and a ciphertext (com∗, c, tag) such that Vrfy(r∗, c, tag) = 1 in game Gi, for i ∈ {1, 2}. Then we have a
bound on Pr[Valid] as

Pr[Valid] ≤ Pr[NoBind] + Pr[Forge1] . (21)

We build an adversary A1 against the binding property of the encapsulation scheme such that

Advbind
ECP(A1) = Pr[NoBind] . (22)

The adversary A1 behaves as follows. On input (pub, com∗, dec∗), A1 chooses s ←$ S, then computes
π ← P(s) and runs A on (π, pub). A1 uses its knowledge of s to respond to A’s decryption queries as
specified by game G1, returning ⊥ in response to queries of the form (φ, (com∗, c, tag)) with φ(s) = s

and storing them in a list. When A makes its LR query, A1 chooses a random bit b←$ {0, 1} and
computes c∗←$ E(π, com∗,Mb||dec

∗). A1 then recovers r∗ as r∗ ← R(pub, com∗, dec∗) and computes
tag∗ ← Mac(r∗, c∗), returning to A the challenge ciphertext C∗ ← (com∗, c∗, tag∗). When A halts, A1

ignores its output and decrypts under s each of A’s queries of the form (φ, (com∗, c, tag)) where φ(s) = s

to see if NoBind occurred, in which case one such query reveals a value dec in the IBE ciphertext such
that R(pub, com∗, dec) = r with r /∈ {r∗,⊥}. If such a query was submitted, A1 outputs dec, violating
the binding property of the encapsulation scheme and establishing Equation (22).

Game G2 is as G1 with a modification to the way the challenge ciphertext is generated. The IBE
ciphertext component of the challenge ciphertext in game G2 is computed as c←$ E(π, com∗, 0M0 ||0n),
where n is the length of a decommitment string in ECP . The tag component tag∗ ← Mac(r∗, c∗) is
computed as usual and the challenge ciphertext is (com∗, c∗, tag∗). The challenge ciphertext is now
independent of b, so we have that

Pr[GA
2 ] =

1

2
. (23)

We now want to bound Pr[GA
2 ] − Pr[GA

1 ]. To achieve this, we build an adversary A2 against the Φ-
RKA-selective-ID security of IBE . The adversary A2 generates public parameters for the encapsulation
scheme as pub←$ Init(), then generates (r∗, com∗, dec∗)←$ S(pub). It outputs challenge identity com∗

and receives in return the master public key π. A2 then runs A on (π, pub).

A2 computes appropriate responses to A’s decryption queries (φ, (com, c, tag)) by using its key derivation
oracle to obtain dk ← (φ(s), com) then decrypting in the usual way, responding with ⊥ to decryption
queries of the form (φ, (com∗, c, tag)) where φ(s) = s. Note that A2 never makes a key derivation query
for the challenge identity com∗ under an RKD function φ with φ(s) = s.

When A makes its LR query with messages M0,M1, A2 chooses d←$ {0, 1} and submits to its own
LR oracle the messages Md||dec

∗ and 0M0 ||0n. A2 gets in return an IBE ciphertext c∗, then computes
tag∗ ← Mac(r∗, c∗) and returns (com∗, c∗, tag∗) to A.

A may make further decryption queries to which A2 responds as before, then A halts outputting a bit
d′. If d′ = d then A2 outputs 1, otherwise A2 outputs 0.

When the hidden bit in A2’s game is b = 0 then c∗ is an encryption of Md||dec
∗, so A’s view is that of

game G1, while when the hidden bit in A2’s game is b = 1 then c∗ is an encryption of 0M0 ||0n, so A’s
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view is that of game G2.

We then have that

Advsibe-rka
IBE ,Φ (A2) = 2 · Pr[b′ = b]− 1

= Pr[GA
2 ]− Pr[GA

1 ] . (24)

A similar adversary A3 can be built bounding Pr[Forge2]− Pr[Forge1]. A3 behaves exactly as A2 until
A halts, at which point A3 checks if A has made a decryption query of the form (φ, (com∗, c, tag)) with
φ(s) = s and Vrfy(r∗, c∗, tag) = 1. If such a query has occurred A3 outputs 1, otherwise A3 outputs 0.
We then have that

Advsibe-rka
IBE ,Φ (A3) = 2 · Pr[b′ = b]− 1

= Pr[Forge2]− Pr[Forge1] . (25)

Game G3 is as game G2 but with a modification to the way the challenge ciphertext is generated. The
tag component of the challenge ciphertext is now generated by choosing r←$ {0, 1}k and computing
tag∗ ← Mac(r, c∗). We let Forge3 denote the event that A playing game G3 makes a decryption query
of the form (φ, (com∗, c, tag)) with φ(s) = s and Vrfy(r, c, tag) = 1.

We now want to bound Pr[Forge2] − Pr[Forge3] which we do by constructing an adversary A4 against
the hiding property of the encapsulation scheme. On input (pub, com∗, r̃), A4 chooses s ←$ S, then
computes π ← P(s) and runs A on (π, pub). A4 uses its knowledge of s to respond to A’s decryption
queries, returning ⊥ in response to queries of the form (φ, (com∗, c, tag)) where φ(s) = s. When A
makes its LR query, A4 computes c∗←$ E(π, com∗, 0M0 ||0n). A4 then computes tag∗ ← Mac(r̃, c∗),
returning to A the challenge ciphertext C∗ ← (com∗, c∗, tag∗). When A halts, A4 checks if any of A’s
decryption queries were of the form (φ, (com∗, c, tag)) with φ(s) = s and Vrfy(r̃, c, tag) = 1, outputting
1 if so and 0 otherwise. If b = 1 in the hiding game then A’s view is that of game G2, so A4 outputs 1
with probability Forge2, while if b = 0 in the hiding game then r̃ is independent of com∗ and A’s view
is that of game G3, so A4 outputs 1 with probability Forge3. Then we have that

Advhide
ECP(A4) = 2 · Pr[b′ = b]− 1

= Pr[Forge2]− Pr[Forge3] . (26)

Finally, we want to bound Pr[Forge3], which we do by constructing an adversary A5 against the one-
time unforgeability of the message authentication code. A5 chooses a random index j ∈ {1, . . . , q},
where q is the maximum number of decryption queries A can make. A5 generates pub←$ Init(), then
chooses s ←$ S and computes π ← P(s), then runs A on (π, pub). A5 uses its knowledge of s to
respond to A’s decryption queries as specified by game G3, returning ⊥ in response to queries of the
form (φ, (com∗, c, tag)) where φ(s) = s. If A makes its jth decryption query (φj , (comj, cj , tagj)) before
its LR query, A5 halts and outputs (cj , tagj). Otherwise, when A makes its LR query A5 computes

(r∗, com∗, dec∗)←$ S(pub), then computes c∗←$ E(π, com∗, 0M0 ||0n). A5 then makes its MAC query
with message c∗ to obtain tag∗, returning to A the challenge ciphertext C∗ ← (com∗, c∗, tag∗). When
A makes its jth decryption query (φj , (comj , cj , tagj)), A5 halts and outputs (cj , tagj). If the event
Forge3 occurred, that is if A made a decryption query of the form (φ, (com∗, c, tag)) with φ(s) = s and
Vrfy(r, c, tag) = 1, then with probability 1/q it was on A’s jth query, so the probability that A5 makes
a successful forgery is Pr[Forge3]/q. We now have that

Adv
forge
MAC

(A5) = Pr[Forge3]/q . (27)

38



proc Initialize // All

b←$ {0, 1} ; C∗ ← ⊥
s ←$ S ; π ← P(s)
pub←$ Init()
pk ← (π, pub))
(r∗, com∗, dec∗)←$ S(pub)
Return (s , pk)

proc LR(M0,M1) // G0,G1

If (|M0| 6= |M1|)
Return ⊥

c∗←$ E(π, com∗,Mb||dec
∗)

tag∗ ← Mac(r∗, c∗)
C∗ ← (com∗, c∗, tag∗)
Return C∗

proc LR(M0,M1) // G2

If (|M0| 6= |M1|)
Return ⊥

c∗←$ E(π, com∗, 0M0 ||0n)
tag∗ ← Mac(r∗, c∗)
C∗ ← (com∗, c∗, tag∗)
Return C∗

proc Dec(φ, (com, c, tag)) // G0

If ((φ(s) = s) ∧ ((com, c, tag) = C∗))
Return ⊥

dk ← K(s , com)
M ′ ← D(dk , c)
If (M ′ =⊥)
Return ⊥

M ||dec←M ′

r←R(pub, com, dec)
If (r =⊥)
Return ⊥

If (Vrfy(r, c, tag) = 0)
Return ⊥

Return M

proc LR(M0,M1) // G3

If (|M0| 6= |M1|)
Return ⊥

c∗←$ E(π, com∗, 0M0 ||0n)
r←$ {0, 1}k

tag∗ ← Mac(r, c∗)
C∗ ← (com∗, c∗, tag∗)
Return C∗

proc Dec(φ, (com, c, tag)) // G1,G2,G3

If ((φ(s) = s) ∧ ((com, c, tag) = C∗))
Return ⊥

If ((φ(s) = s) ∧ (com = com∗))
Return ⊥

dk ← K(s , com)
M ′ ← D(dk , c)
If (M ′ =⊥)
Return ⊥

M ||dec←M ′

r ←R(pub, com, dec)
If (r =⊥)
Return ⊥

If (Vrfy(r, c, tag) = 0)
Return ⊥

Return M

proc Finalize(b′) // All

Return (b = b′)

Figure 25: Games for the proof of Theorem E.1.

Collecting equations 19-27, we get that

Adv
pke-rka
PKE ,Φ (A) =

∣

∣2 · Pr[GA
0 ]− 1

∣

∣

≤ 2 ·
∣

∣Pr[GA
0 ]− Pr[GA

1 ]
∣

∣+ 2 ·
∣

∣Pr[GA
1 ]− Pr[GA

2 ]
∣

∣+ 2 ·
∣

∣Pr[GA
2 ]−

1
2

∣

∣

≤ 2 · Pr[Valid] + 2 ·Advsibe-rka
IBE ,Φ (A2) + 2 ·

∣

∣

1
2 −

1
2

∣

∣

≤ 2 ·Advsibe-rka
IBE ,Φ (A2) + 2 · Pr[NoBind] + 2 · Pr[Forge1]

≤ 2 ·
(

Advbind
ECP(A1) +Advsibe-rka

IBE ,Φ (A2)
)

+ 2 · |Pr[Forge1]− Pr[Forge2]|

+ 2 · |Pr[Forge2]− Pr[Forge3]|+ 2 · Pr[Forge3]

≤ 2 ·
(

Advbind
ECP(A1) +Advsibe-rka

IBE ,Φ (A2) +Advsibe-rka
IBE ,Φ (A3) +Advhide

ECP(A4) + qAdv
forge
MAC

(A5)
)

,

establishing the theorem.
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