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Abstract

Yao’s Garbled Circuit (GC) technique is a powerful cryptographic tool which allows to “encrypt”
a circuit C' by another circuit Cina way that hides all information except for the final output. Yao’s
original construction incurs a constant overhead in both computation and communication per gate of the
circuit C' (proportional to the complexity of symmetric encryption). Kolesnikov and Schneider (ICALP
2008) introduced an optimized variant that garbles XOR gates “for free” in a way that involves no
cryptographic operations and no communication. This variant has become very popular and has been
employed in several practical implementations leading to notable performance improvements.

The security of the free-XOR optimization was originally proven in the random oracle model. In the
same paper, Kolesnikov and Schneider also addressed the question of replacing the random oracle with
a standard cryptographic assumption and suggested to use a hash function which achieves some form of
security under correlated inputs. This claim was revisited by Choi et al. (TCC 2012) who showed that a
stronger form of security is required, and proved that the free-XOR optimization can be realized based
on a new primitive called circular 2-correlation hash function. Unfortunately, it is currently unknown
how to implement this primitive based on standard assumptions, and so the feasibility of realizing the
free-XOR optimization in the standard model remains an open question.

We resolve this question by showing that the free-XOR approach can be realized in the standard
model under the learning parity with noise (LPN) assumption. Our result is obtained in two steps:
(1) We show that the hash function can be replaced with a symmetric encryption which remains secure
under a combined form of related-key and key-dependent attacks; and (2) We show that such a symmetric
encryption can be constructed based on the LPN assumption.

1 Introduction

Yao’s garbled circuit (GC) construction [51] is an efficient transformation which maps any boolean circuit
C : {0,1}" — {0,1}™ together with secret randomness into a “garbled circuit” C' along with n pairs of
short k-bit keys (VVZ-O, I/Vll) such that, for any (unknown) input x, the garbled circuit C together with the
n keys W, = (W], ..., W2n) reveal C(x) but give no additional information about z. Yao’s celebrated
result shows that such a transformation can be based on the existence of any pseudorandom generator [16,
50], or equivalently a one-way function [27].

The GC construction was originally motivated by the problem of secure multiparty computation [50, 24].
Along the years, the GC construction has found a diverse range of other applications to problems such as
computing on encrypted data [48, 17], parallel cryptography [5, 6], verifiable computation [21, 7], software
protection [25], functional encryption [47, 26], and key-dependent message security [9, 1]. Despite its
theoretical importance, GC was typically considered to be impractical due to a large computational and
communication overhead which is proportional to the circuit size. This belief was recently challenged by

*School of Electrical Engineering at Tel-Aviv University, Email: bennyap@post.tau.ac.il.



a fruitful line of works that optimizes the concrete efficiency of GC-based protocols up to a level that suits
large-scale practical applications [43, 40, 37, 36, 45, 44, 28, 29, 49, 30, 35].

Among other things, all current implementations of GCs (e.g., [45, 28, 39, 49, 29]) employ the so-called
free-XOR optimization of Kolesnikov and Schneider [34]. While in Yao’s original construction every gate
of the circuit C' has a computational cost of few cryptographic operations (e.g., three or four applications
of a symmetric primitive) and a communication cost of few ciphertexts, Kolesnikov and Schneider showed
how to completely eliminate the communication and computational overhead of XOR-gates. Although this
leads “only” to an efficiency improvement by a constant factor, the effect on the practical performance turns
to be significant, especially for large or medium size circuits as demonstrated in [34, 33, 45].

As in many cases, this efficiency gain has a cost in terms of the underlying cryptographic assumptions.
Unlike Yao’s GC which can be based on the existence of standard symmetric-key cryptography, the free-
XOR optimization relies on a hash function H which is modeled as a random oracle [13]. Due to the known
limitation of the random oracle model [19], it is natural to ask:

Is it possible to realize the free-XOR optimization in the standard model?

This question was raised in the original work of Kolesnikov and Schneider [34] and was further studied
in [4, 20]. In [34] it was conjectured that the full power of the random oracle is not really needed, and that
the function H can be instantiated with a correlation-robust hash function [31], a strong (yet seemingly
realizable) version of a hash function which remains pseudorandom even when it is applied to linearly
related inputs. Choi et al. [20] showed that the picture is actually more complex: correlation robustness
alone does not suffice for security (as demonstrated by an explicit counter-example in the random-oracle
model). Instead, one has to employ a stronger form of hash function which, in addition to being correlation-
robust, also satisfies some form of circular security [18, 14]. While the existence of circular correlation-
robust hash functions (a new primitive introduced by Choi et al. [20]) seems to be a reasonable assumption
(significantly weaker than the existence of a random oracle), it is still unknown how to realize it based on a
standard cryptographic assumption. This leaves open the problem of implementing the free-XOR approach
in the standard model.

1.1 Our Contribution

We resolve the above feasibility question by showing that the free-XOR approach can be realized in the
standard model under the learning parity with noise (LPN) assumption [23, 15]. This assumption, which
can also be formulated as the intractability of decoding a random linear code, is widely studied by the coding
and learning communities and was extensively employed in cryptographic constructions during the last two
decades. Our main result is derived in two steps:

1. We prove that the free-XOR construction is secure when instantiated with a semantically-secure
symmetric encryption scheme whose security is preserved under both related-key attacks and key-
dependent message attacks. More precisely, we require security against a combined form of attack
in which the adversary is allowed to see ciphertexts of the form Encxga, (K @ Ag) where K is the
secret key and the shifts A and As are chosen by the adversary. This notion, referred to as RK-KDM
security (with respect to linear functions), strictly generalizes the previous definitions of semantic
security under related key attacks [4] and key-dependent message attacks [18, 14].

2. We show that the LPN-based symmetric encryption of [22] and its generalization [3] satisfies RK-
KDM security with respect to linear functions. In fact, our proof provides a general template for



proving RK-KDM security based on pseudorandomness and joint key/message homomorphism. This
is similar to previous results along these lines [3, 10, 4]

Altogether our proofs turn to be quite simple (which we consider as a virtue), short (full proofs fit into this
manuscript) and modular. This is due to the following choices:

Encryption vs. Hashing. The key point in which we deviate from [34, 20] is the use of (randomized)
symmetric encryption, as opposed to deterministic hash function (or some other pseudorandom primitive).
Indeed, the GC construction essentially employs the hash function only as a “computational one-time pad”,
namely, as a mean to achieve secrecy. Therefore, in terms of functionality it seems best (i.e., more general) to
abstract the underlying primitive as an encryption scheme. While this is true in general for the standard GC
(cf. [37, 6] and the recent discussion in [11]), this distinction becomes even more important in the context of
the free-XOR variant. In this case, the underlying primitive should satisfy stronger notions of security (RKA
and KDM), and this turns to be much easier for randomized encryption than for pseudorandom objects such
as hash functions. (See also [4].) As a secondary gain, the new security definition that arises for symmetric
encryption (RKA-KDM semantic security) is natural and compatible with existing, well studied, notions. In
contrast, the analog definition of RKA-KDM security for hash functions (circular correlation-robustness)
appears less natural as there is no obvious interpretation for the concepts of message and key.

GC as Randomized Encoding. It is important to distinguish between the garbled circuit transformation
(i.e., the mapping from C' to () and the secure function evaluation protocol which is based on it. The
distinction between the two, which is sometimes blurred, can be formulated via the notion of randomized
encoding of functions [32] as done in [6]. Our proofs follows this abstraction, and show that the free-XOR
technique yields computationally private randomized encoding. At this point one can invoke, for example,
the general theorem of [6] to derive a secure MPC protocol. Similarly, all other applications (cf. [2]) of
randomized encoding can be obtained directly by invoking the reduction from RE to the desired task. This
is the first modular treatment of the free XOR variant.

1.2 Discussion

The main goal of this work is to provide a solid theoretical justification for the free-XOR heuristic. This
is part of an ongoing effort of the theory community to explain the security of “real world” protocols.
Several such examples arise when trying to import random-oracle based protocols to the standard model.
In this context, [19] suggested a two-step methodology: (1) “identify useful special-purpose properties of
the random oracle” and (2) show that these properties “can be also provided by a fully specified function
(or function ensemble)”. In the context of the free-XOR optimization, the first step was essentially taken
by [20] who identified the extra need of “circular security”, while the current paper completes the second
step which involves, in addition, some fine-tuning of step 1.

It should be emphasized that we do not suggest to replace the hash function with an LPN-based scheme
in practical implementations (though we do not rule out such a possibility either). Still, we believe that
the results of this work are useful even if one decides, due to efficiency considerations, to use a heuristic
implementation. Specifically, viewing the primitive as an RKA-KDM secure encryption scheme allows to
rely on other heuristic solutions such as block ciphers, for which RKA and KDM security are well studied.

Other related works. The notions of key-dependent message security (aka circular security) and related-
key attacks were introduced by [18, 14] and [12]. Both notions were extensively studied (separately) during



the last decade. Most relevant to this paper is our joint work with Harnik and Ishai [4]. This work introduces
the notion of semantic security under related-key attacks, describes several constructions, and shows that
protocols employing correlation-robust hash functions and their relatives (e.g., [42, 31]), can be securely
instantiated with RKA-secure encryption schemes. In addition, [4] suggested to apply a similar modification
to the free-XOR variant, which was believed to be secure when instantiated with correlation-robust hash
functions [34]. As mentioned, the latter claim was found to be inaccurate, and therefore the results of [4]
cannot be used in the context of the free-XOR approach. (The other applications mentioned in [4] remain
valid.)

Organization. Following some preliminaries (Section 2), in Section 3 we define semantic security under
RK-KDM attacks and describe an LPN-based implementation. Section 4 is devoted to the garbled circuit
construction, including definitions (in terms of randomized encoding), a description of Yao’s original con-
struction and the free-XOR variant, and a proof of security that reduces the privacy of the free-XOR GC to
the RK-KDM security of the underlying encryption. Finally, we end with a short conclusion in Section 5.

2 Preliminaries

We let o denote string concatenation. Strings are often treated as vectors or matrices over the binary field
[y, accordingly string addition is interpreted simply as bit-wise exclusive-or. When adding together two
matrices A, x; and By, where n < N we assume that the last N — n missing rows of A are padded with
zeroes. The same convention holds with respect to vectors (i.e., when k = 1).

2.1 Randomized functions

We extensively use the abstraction of randomized functions which can be seen as a special case of Maurer’s
Random Systems [41]. A randomized function is a two argument function f : X X R — Y whose first
input x is referred to as the deterministic input and the second input is referred to as the random input.

For every deterministic input z, we think of f(x) as the random variable induced by sampling r £ Rand
computing f(x;r) € Y. When a (randomized) algorithm A gets an oracle access to a randomized function
f, we assume that A has control only on the deterministic input; namely, if A queries f with z, it gets as a
result a fresh sample from f(z). Note that A/ itself defines a randomized function. We say that { f,} sc{0,1}*
is a collection of randomized functions if f, is a randomized function for every key s. By default, all the
collections are efficiently computable in the sense that f,(z) can be sampled in time poly(|s| + |z|).

Indistinguishability. A pair of randomized functions f, g is equivalent f = g if for every input x the
random variables f(x) and g(z) are identically distributed. A pair f = {fs} and g = {gs} of collections
of randomized functions is computationally indistinguishable, denoted by f = g, if for every efficient
adversary A it holds that

Pr [Af(1%) =1—- Pr [A%(1F) =1]| < neg(k).
s&{0,1}k s&40,1}k

We extend the above definition to the case of collections f = {fi~} and g = {g1~} which contain a single
randomized function for every input length . In this case, we augment f (resp., g) by letting fs = fs



(resp., gs = gy1s) and use the previous definition.!
Let {fs},{gs} and {h,} be collections of randomized functions. We will need the following standard
facts (cf. [41)).

Fact 2.1. IfPr

&40 1}k[f5 = g,] > 1 — e(k) for some negligible function ¢, then {f} = {g,}.

Fact 2.2. If {fs} = {fs} and A is an efficient function then { A’ I3 = {A%},.

Fact 2.3. If {fs} = {gs} and {g5} = {hs} then {fs} = {hs}.

3 RK-KDM Security

A pair of efficient probabilistic algorithms (Enc, Dec) is a symmetric encryption scheme over the message-
space {0, 1}* and key-space {0, 1} (where k serves as the security parameter) if for every message M €
{0,1)"
Pr [Decs(Encs(M)) = M] = 1.
s&{0,1}k

We also assume (WLOG) length-regularity, i.e., that messages of equal length M, M’ are always encrypted
by ciphertexts of equal length |Encs(M)| = |Encs(M')].

Our security definitions are parameterized by a family of key-derivation and key-dependent-message
functions (which are also indexed by the security parameter k)

Bria = {¢ - {0,1}* — {0, 1}’f}, koM = {¢ . {0,1}* — {0, 1}*}.

These families determine the legal relations between the related-keys, and the key-related messages. RK-
KDM Security is defined via the following pair of real/fake oracles Real; and Fakes; which are indexed
by akey s € {0,1}*. For a query (¢ € ®rka,?’ € Ukpm), the oracle Real returns a sample from the
distribution Ency,)(1)(s)), whereas, the oracle Fake; returns a sample from the distribution Ency) (0l¥ @y,

Definition 3.1 (RK-KDM-secure encryption). A symmetric encryption scheme (Enc, Dec) is semantically-
secure under Related-Key and Key-Dependent Message Attacks (in short, RK-KDM-secure) with respect to

(1>RKA7 \I’KDM ifReaIs é Fakes where s £ {0, 1}k.
Remarks:

¢ Relation to previous definitions. We note that the above definition strictly generalizes semantic se-
curity under related-key attacks [4] and semantic security under key-dependent message attacks [14].
Indeed, the former notion is obtained by restricting ¥kpp to contain only constant functions, and the
latter is obtained by letting Prka contain only the identity function. If both restrictions are applied
simultaneously, the definition becomes identical to standard semantic security under Chosen-Plaintext
Attacks. On the other hand, it seems that a scheme may satisfies both RKA security and KDM security
without achieving the combined form of RKA-KDM security.

'"More generally, one can define computational indistinguishability with respect to a pair of key sampling algorithm
KeyGen‘f(l“) and KeyGen g(l") which induce, for every security parameter «, a probability distribution over the ensembles f
and g. However, for this paper the simpler definition suffices.



e Non-Adaptivity. Definition 3.1 allows the adversary to choose its queries in a fully adaptive way.
One may define a seemingly weaker non-adaptive variant in which the adversary has to specify all
its queries at the beginning of the game. We note that this weaker variant suffices for the free-XOR
application.

e LIN RK-KDM security. We will be interested in linear functions over F». Namely, both $grka and
Wkpm contain functions of the form s — s + A for every A € IF’Q“ To be compatible with standard
semantic security, we require that ¥kpp also contains all fixed functions. Using a compact notation,
we can describe each function in Wkpm by a message M € F3 and a bit ¢ and let gpr : 5 —
(M + (0 - s)). If the length of M is larger than k, we assume that (o - s) is padded with zeroes at the
end. Hence, the adversary may ask for an encryption of the shifted key concatenated with some fixed
message. We refer to this notion as LIN RK-KDM security.?

3.1 LPN-based Construction

The learning parity with noise problem is parameterized by positive integers k, ¢, and noise parameter

0<e<i
where s & 5 and each entry of e is chosen independently according to the error distribution Ber™ in
which each entry is chosen to be 1 independently with probability €. The goal is to recover the secret vector
s. (This can be considered to be a “decoding game” where A generates a random linear code and the goal
is to recover a random information word s given a noisy codeword y.) For polynomially bounded integer
function ¢ = ¢(k) and a parameter ¢, we say that the problem LPN, . is hard, if there is no efficient adversary
that can solve it with more than negligible success probability. We say that LPN, is hard if LPN; . is hard
for every polynomial ¢(-). We describe the symmetric encryption scheme of [3] which is a variant of the
scheme of [22].

The input to the problem is a random matrix A & IF%X’“ and a vector y = As + e € F}

Parameters. Let/ = /(k) be a message-length parameter which is set to be an arbitrary polynomial in the
security parameter k. (Shorter messages are padded with zeroes.) Let ¢ < % and 0 < § < % be constants.
We will use a family of linear binary error-correcting codes with information words of length ¢(k) and block
length ¢ = t(n), that has an efficient decoding algorithm D that can correct up to (¢ + J) - ¢ errors. We
let G = Gy be the t x £ binary generator matrix of this family and we assume that it can be efficiently
constructed (given 1%).

Construction 3.2 (LPN-construction). Let N = N(k) be an arbitrary polynomial (which controls the
tradeoff between the key-length and the time complexity of the scheme). The private key of the scheme is a
matrix S which is chosen uniformly at random from IF’QCXN .

. R .
e Encryption: 7o encrypt a message M & Féx N choose a random A & IF';Xk and a random noise

. R .
matrix E — BeréXN . Output the ciphertext

(A,A-S+E+G-M).

%A seemingly weaker definition of LIN RK-KDM security restricts the KDM family to functions gas,o : s — (M + (o - 5)).
If M is longer than k& where M and s are of the same length. We note that a scheme that satisfies this notion can be trivially
converted into a scheme that satisfies our definition (which supports M longer than s). This can be done by partitioning the long
message M into ¢ blocks M, ..., M; of length k each, and concatenating the encryptions of these two blocks. A query of the form
(f € Prka, gm0 ) can then be emulated by a linear query (f € ®rka, gar,,1) and ¢ — 1 fixed-message query (f € ®rka, gas;,0)-



e Decryption: Given a ciphertext (A, Z) apply the decoding algorithm D to each of the columns of the
matrix Z — AS and output the result.

Observe that the decryption algorithm errs only when there exists a column in £ whose Hamming weight
is larger than (e + §)m, which, by Chernoff Bound, happens with negligible probability. (This error can
be eliminated by rejecting noise vectors whose relative Hamming weight exceeds (¢ + 6).) The scheme is
also highly efficient. Encryption requires only cheap matrix operations and decryption requires in addition
to decode the code G. It is shown in [3] that for proper choice of parameters both encryption and decryption
can be done in quasilinear time in the message length (for sufficiently long message).

Construction 3.2 was proven to be semantically secure based on the intractability of the LPN, prob-
lem [3]. Security against KDM and RKA attacks with respect to linear functions was further proven in [3]
and [4]. We now generalize thses results and show that the scheme is LIN RK-KDM secure.

Lemma 3.3. Assuming that LPN. is hard, the above construction is LIN RK-KDM secure.

3.2 Proof of Lemma 3.3

kx N kx N
FQ FQ

Through this section we keep the convention that S & is a key, A € is a key-shift vector,
M € FEN is a message, b € {0,1} is a bit, and the pair (4, Z) € F** x FY*Y is a potential ciphertext. In
addition, we let Enc denote the LPN encryption defined in Construction 3.2.

Recall that our goal is to prove that for a random key S il IE";XN the randomized functions

Reals : (A, M,b) — Encgia(M + bS)
Fakeg : (A, M, b) — Encgyna (07N,

are indistinguishable. This will be proven via a sequence of hybrids.

Let Rg be a randomized function which ignores the key S and the given input, and outputs a fresh
uniformly chosen matrices A £ FQX’“ and Z & IE‘%XN . (If Rg is applied to the same input more than once
it responds with independent answers.)

The following claim (which is implicit in [3]) shows that the LPN encryption scheme is not only seman-
tically secure but also pseudorandom in the following sense:

Claim 3.4. Assuming that LPN, is hard, {Encs} = {Rs}, where S & XN,
We will need the following key observation:

Claim 3.5. There exists an efficient oracle machine F) : (A, M,b) — (A, Z) such that

Realg = FE"°s and FRs = Rg,

for every S € FE*N,
Proof. We define F' as follows: Given a query (A, M, b) the machine F calls the oracle with input M, gets
back the answer (A’, Z'), and outputs the pair A = A’ + GH and Z = Z' + AA where G is the generating

matrix used in Construction 3.2 and H € F5*¥ is the matrix ( éﬁ’jjxk,’c ).

Fix a key S and a query (A, M,b), we will show that FE"s(A, M, b) is distributed identically to
Realg(A, M,b). Let (A’,Z") be a fresh sample from Encg(M). Clearly, A = A’ + GH is uniform in



IE‘tQXk since A’ is uniform. In addition, since Z' = A’ - S + E 4+ G - M where E pid Berﬁ.XN , and since
A’ = A+ GH we can write

7 = (A+GH)-S+E+G-M+AA = A-(S+A)+ E+G-(M+HS) = A-(S+A)+ E+G-(M+bS)

where the first equality is due to linearity, and the second equality follows from the definition of H. It
follows that (A, Z) is a fresh sample from Encgya (M + bS).

To prove that FRs = R, it suffices to show that for any fixed query (A, M, b) the transformation from
(A, Z") to (A, Z) is an affine invertible mapping. This follows immediately from the definition of F.  [J

We conclude that for S & F’;XN,
Realg = FEes = FRs = Rg. (1)

Indeed, the first and third transitions are due to Claim 3.5, and the second transition is due to Claim 3.4 and
Fact 2.2.

To complete the argument we need two additional definitions. First we define an oracle machine which
given an oracle O and an input (A, M, b) outputs a sample from F© (A, 0N 0); namely, it replaces M, b
with zeroes and proceeds as F'©. By abuse of notation, we refer to this oracle as F'(-,0°*" 0). Similarly,
we let Realg (-, 0%V, 0) denote the randomized function which maps (A, M, b) to Realg(A, 0N, 0). Note
that the latter is just an equivalent formulation of Fakeg. Moreover, we can write:

Rg = F(-, 0N 0)Rs = F(., 00N, 0)Enes(0Y) = Realg(-, 02N, 0) = Fakeg, )

where the first and third transitions are due to Claim 3.5, and the second‘transition is due to Claim 3.4 and
Fact 2.2. By combining Eq. 1 and Eq. 2 with Fact 2.3 we get that Realg = Fakeg, and Lemma 3.3 follows.

Remark 3.6 (Abstraction). The proof of Lemuina 3.3 provides a general template for proving RKA-KDM se-
curity. Specifically, the properties needed are pseudorandomness (in the sense of Claim 3.4) and key/message
homomorphism (in the sense of Claim 3.5). Indeed, observe that, apart from the proofs of Claims 3.4 and 3.5,
the overall proof can be written in a fully generic form with no specific references to the LPN construction.

4 Yao’s Garbled Circuit

4.1 Definition

Let f = {fn}nen be a polynomial-time computable function. In an abstract level, Yao’s garbled circuit
technique [51] constructs a randomized function f ={ fn}neN which “encodes” f in the sense that for
every z the distribution f(z) reveals the value of f(z) but no other additional information. We formalize
this via the notion of computationally private randomized encoding from [6], while adopting the original
definition from a non-uniform adversarial setting to the uniform setting (i.e., adversaries are modeled by
probabilistic polynomial-time Turing machines).

Definition 4.1 (Computational randomized encoding). Ler f = {f, : {0,1}" — {0,1}("}, cy be an
efficiently computable function and let f = {fn {0,131 x {0, 1} — {0,1}5(M}, oy be an efficiently
computable randomized function. We say that f is a computational randomized encoding of f (or encoding
for short), if there exist an efficient recovery algorithm Rec and an efficient probabilistic simulator algorithm
Sim that satisfy the following:



e Perfect correctness. For any n and any input z € {0,1}", Pr[Rec(1?, f,(z)) # fu(z)] = 0.

e Computational privacy. The randomized function fn() is computationally indistinguishable from
the randomized function Sim(1", f,(-)).

Remark 4.2. The above definition uses n both as an input length parameter and as a cryptographic “secu-
rity parameter” quantifying computational privacy. When describing our construction, it will be convenient
to use a separate parameter k for the latter, where computational privacy will be guaranteed as long as
k > n€ for some constant € > 0. Furthermore, while it is convenient to define randomized encoding for
a single function f, Yao’s construction (as well as the free-XOR variant) actually provides a compiler that
given a circuit C outputs the encoding f, the recovery algorithm Rec and the simulator Sim, represented as
circuits. (See [8] for formal definition.) In this sense the encoding is fully constructive.

4.2 Yao’s Construction and the Free XOR variant

Let f = {fn, : {0,1}" — {0, 1}5(")}71@\; be a polynomial-time computable function computed by the
uniform circuit family {C), },en. In the following we describe Yao’s construction and its free-XOR variant.
Our notation and terminology borrow from previous presentations of Yao’s construction in [46, 43, 38, 6].

Double-keyed Encryption. Let & = k(n) be a security parameter (by default, & = n® for some constant
e > 0). We will employ a symmetric encryption scheme (E2, D?) which is keyed by a pair of k-bit keys
K1, K. Intuitively, this corresponds to a double-locked chest in the sense that decryption is possible only
if one knows both keys. There are several ways to implement such an encryption scheme based on standard
single-key symmetric encryption (Enc, Dec) and, for simplicity, we choose to use

E%, i, (M) == (Enck, (R),Encg,(R+ M)), D?k, k,(C1,Cs) := Decg, (C1) + Decg, (C2)  (3)

where R is a random string of length |M|. Other choices are also applicable under the LPN assumption.

The original construction. For each wire ¢ of the circuit C),, we assign a pair of keys: a 0-key I/Vi0 €
{0, 1}* that represents the value 0 and a 1-key W' € {0, 1}* that represents the value 1. For each of these

pairs we randomly “color” one key black and the other key white. This is done by choosing r; kil {0,1} and
by letting r; + b be the color of I/Vl-b. Fix some input x for f,,, and let b; = b;(z) be the value of the i-th wire
induced by x. We refer to the key Wibi as the active key of the i-th wire.

The idea is to let the encoding f,,(x; (W, 7)) reveal only the value of the active keys Wib" and their colors
¢;. This is done by traversing the circuit from inputs to outputs: first the encoding reveals the active keys of
the inputs; in addition, for each gate, the encoding provides a mechanism that translates the active keys of
the input wires into the active keys of the output wires. Specifically, for each Binary gate g(-, -) (e.g., AND)
the encoding outputs an encryption tables (or “gate labels”) in which the keys of the outgoing wire Wlf) , Wel
are encrypted under the keys of the incoming wires 7, j. Hence, one can propagate the values of Wibi from
the inputs to the outputs. It is crucial to observe that the values of the active keys Wibi and their colors ¢;
reveal nothing on their semantics b;. Only for the output wires, we reveal the coloring r;, which makes it
possible to recover the value of the i-th output wire b;.



Free XOR-gates. The “free-XOR” optimization modifies the above construction by making sure that the
key I/Vg0 and coloring 7, of a wire which outgoes a XOR gate is just the sum of the keys and coloring of the
incoming wires ¢ and j, namely,

Wgo = Wio + WJQ, re =71+ 1.

In addition, all key pairs W), W/ have a fixed global (secret) difference s = W) + W/}. As a result, for
every pair of values (a, 3) € {0, 1}? for the input wires of a XOR gate, we have that

Wyt =we+ wy

Hence, one can derive the colored active key (Wf ‘}'(x), r¢+be(x)) of the output wire by XOR-ing the colored

active keys (VVibi(m) ,1i + bi(x)), (W;’j (x), rj + b;(z)) of the input wires, and so gate labels are not needed.
XOR gates have, therefore, no effect on the communication complexity of the encoding, and only a minor
effect on the computational complexity. A formal description of the encoding is given in Figure 1.

Our main result shows that, assuming LIN RK-KDM security, the free XOR variant gives rise to a valid

computational encoding:

Theorem 4.3 (Main). If the underlying symmetric encryption scheme (Enc, Dec) is LIN RK-KDM secure,
then the randomized function f, as defined in Figure 1, is a randomized encoding of the function f.

The proof of the theorem is deferred to Section 4.3 (correctness) and 4.4 (privacy).

4.3 Correctness
The following lemma shows that the encoding is correct.

Lemma 4.4 (Correctness). There exists an efficient recovery algorithm Rec such that for every x € {0,1}"
it holds that Pr[Rec(1", fn(z; (r,W))) # fu(z)] = 0.

Proof. Let a = f,(x; (r,W)) for some = € {0,1}" and (r, W) € {0, 1} It suffices to show that, given
a, it is possible to recover the active key Wl-b"' of every wire 7 together with its color ¢; = (b;(z) + r;).
Indeed, once these values are known we can easily recover all the outputs of f,,(x): For every output wire
J» we recover b; by XOR-ing c¢; with the mask 7; which is given explicitly as part of o.

The active keys and their colors are computed by scanning the circuit from bottom to top as follows. For
an input wire ¢ the desired value, Wibi o ¢;, is given as part of c. Next, consider a wire y that goes out of a
gate ¢, and assume that we have already computed the desired values of the input wires ¢ and j of this gate.
If ¢ is a XOR gate then we let

W;y = W;i—’—bj = Wibi + Wibj, and Cy = (bi + bj) +ry = (bi + bj) + (Ti + Tj) = ¢ + ¢5.

It ¢ is not a XOR gate then we use the colors ¢;, ¢; of the active keys of the input wires to select the active
label Qf“cj of the gate ¢ (and ignore the other 3 inactive labels of this gate). Consider this label as in
Equation (4); recall that this cipher was “double-encrypted” under the key W™ " = Wib" and the key

I/Vj‘?j_’"j = W;j. Since we have already computed the values c;, ¢, Wib"' and W;’j, we can decrypt the label
Q;"“ (by applying the decryption algorithm D?) and recover the value

b;,b; b
W) o (g(bs, bs) + 1) = WY o (cy),

where ¢ is the function that gate ¢, which satisfies, by definition, the equality b, = g(b;, b;). O
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The Encoding f,,

Input: z € {0,1}".
Randomness: Choose a random global shift vector s & {0,1}~.
For a wire / that is not an output of a XOR gate let

ro & {0,1}, wyp pil {0,1}%, W} =W +s.
For a wire ¢ that is an output of a XOR gate with inputs i, j let
re =T + 715, WP =W+ W]Q, W} =W +s.
Outputs: The encoding consists of the following outputs:

1. For an input wire 7, labeled by a literal x (either some variable z,, or its negation) output
WZ-X(z) o (x(x) + r;). If 7 is an output wire 4, output the mask of this wire ;.

2. For a non-XOR gate ¢ that computes some binary function g : {0,1}? — {0, 1} with input
wires %, j and output wire? y. We associate with this gate 4 ordered outputs (“gate labels™).
For every (a;,a;) € {0,1}? we output:

:‘,Livaj = E?/Vath Waj+7'j <W1§](ai+ri’aj+vij) o (g(ai + Tiy Qj + rj) T Ty)>, (4)
i LA

where o denotes concatenation, and E? is a double-encryption algorithm whose randomness
is omitted for simplicity.

“If the fan-out is larger than 1, all outgoing wires are treated as a single wire, i.e., with the same key and the same
color.

Figure 1: The encoding fy,(2; (W, r, s)) of the function f,,(x). We assume that wires and gates of the circuit
that computes f,, are numbered according to some topological order. The double-encryption algorithm
E%{h K, (M) is defined based on a standard encryption (Enc, Dec) as in Eq. 3.
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4.4 Privacy

Computational privacy is slightly more subtle. The free-XOR optimization correlates the key pairs via
the global shift s. This introduces two form of dependencies: (1) The four ciphertexts of every gate are
encrypted under related keys; and (2) The keys (of the incoming wires) which are used to encrypt the gate-
labels are correlated with the content of the labels (i.e., the keys of the outgoing wires). We show that if
the underlying encryption (Enc, Dec) is RKA and KDM secure with respect to linear functions, then the
encoding is indeed private.

Lemma 4.5 (Privacy). There exists an efficient simulator Sim such that f,,(-) = Sim(1™, f(-)).

To prove the lemma we define an oracle-aided algorithm H© () such that (1) when the oracle O is the
real RK-KDM oracle (with respect to linear queries) the distribution of H(z) is identical to the distribu-
tion f,,(z), and (2) when the oracle O is the fake RK-KDM oracle, the distribution H? () can be efficiently
sampled based on the output f,,(x), and therefore can be used as a simulator Sim(1”, f,,(z)). The indistin-
guishability of the two oracles implies that the simulator’s output is computationally indistinguishable from
the encoding’s distribution f,, ().

The algorithm H()(z). Letk = k(n), z € {0,1}" be the input. We assume that H is given an oracle

access to a randomized function O, where s &- {0, 1}* will play the role of the secret global shifts. We will
assume that Oy has the same interface as Real; and Fake,, namely, given a pair of linear functions (¢, 1)
the oracle outputs a ciphertext of (Enc, Dec). For every wire ¢ we define the following values:

1. If Z is not an output of a XOR gate, choose a random active key Wé) e & {0,1}* and a random color
.. R
bit ¢y — {0, 1}.

2. If the wire £ is an output of a XOR gate, let Wzbé = Wibi + W;j and ¢y = ¢; + c¢;j where 7 and j are
the incoming wires.

3. If £ is an input wire output Wé’ ‘o ¢y; if it is an output wire output 7, = ¢; — by(z) (recall that x is
known).

4. The inactive key Wf *1 is unknown, but it can be written as a linear function of the master-key s, i.e.,
Qp:s— s+ ng ‘.

For every (non-XOR) gate ¢ with input wires ¢, j and output wire y we do the following:

5. Output the active label
by

CisCj . 12
Y j( y

CO =B (W o) 5)
AR

6. Compute the inactive labels as follows. For every (o, ) # (0,0) choose R, g & {0, 1}**+! and
define the linear function v, 3 which maps s to the value

((szy +5-g(bi +a,bj + B) +by) o (g(c; + a+1ri,¢5 + B+1;) + Ty)) + Ra s,

12



where g is the function that the gate computes, and b; = b;(z), r; = b; + ¢;, bj = bj(x), r; = bj +¢;
and b, = by(x), 7y = by + ¢,. Now, output

Quithe = <(’)(¢i,¢1,0)7 EncW;j (R170)>

T (0(60,011), O(6, Bu) ) ©
?Cﬁl — <Enchi(Ro,1), O(Qﬁj?woﬂl))’

i

where in the second equation, we let the string 27 ; represent the constant function s — Ry ;.

Claim 4.6. The randomized functions fn and HR®s for s hia {0, 1}* are identically distributed.

Proof. We prove a stronger claim: for every z € {0,1}" even if the encoding and the hybrid HRes(z)
output their internal coins (including the ones used by the oracle Reals), the two experiments are identically
distributed. First, it is not hard to verify that the values s, VVZ0 ,T¢ and VVE1 = W(P +s are identically distributed
in both experiments. When these values are fixed, the active labels are also identically distributed. Finally,
by substituting ¢;, 1, 3 in Eq. 6 it follows that the inactive labels are also distributed exactly as in f (). O

Let us move to the case where the oracle O is instantiated with the oracle Fake, for s £ {0, 1}*. By the
RK-KDM security of the scheme (Enc, Dec) and Fact 2.2, we get that

Claim 4.7. The randomized functions {H Reals }8 and {H Fakes }S are computationally indistinguishable.

Finally, we define the simulator which is just an equivalent description of H2kes (z):

The simulator Sim.  Given z = f,(x), for some z € {0, 1}", the simulator mimics the first three steps of
H which can be computed based on the value of the output wires f,, (x) (without knowing z itself). However,

instead of virtually setting inactive keys in the forth step, the simulator chooses a random shift vector s bl
{0,1}* and sets WKHb’“’ = Wé’ ¢ 4+ s for every wire £. Then, the simulator computes the active labels exactly
as in Eq. 5. Note that all these computations can be done without knowing x (or b;(z)). To compute the

inactive labels the simulator mimics the distribution of F/F2kes(z): It chooses Ri0,R11,Ro1 & {0, 1}F+1
and computes

§i+1,C]' — <EnCW?¢+1 (Ok—’_l)7 EnCij (R1,0)>
; ;

Q?—H’cj—i_l = <EHCW?)1'+1 (0k+1)7 EnCij+l (Ok+1)> @

J

Qgi,CjJrl = <EnCW_bi(R071), EnCij+1 (()kJrl)).

J

Indeed, all these ciphertexts can be computed directly since the inactive keys (and the global shift s) are
known.

Claim 4.8. The randomized functions Sim(f,,(+)) and H"*es(.) for s & {0, 1}* are identically distributed.
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Proof. Again, a stronger claim holds: for every x € {0,1}" even if the simulator and the algorithm
HF2kes() (1) output their internal coins, the two experiments are identically distributed. First, it is not hard
to verify that the values s, WEO, r¢ and VVK1 = WZO + s are identically distributed in both experiments. When
these values are fixed, the active labels are also identically distributed. Finally, the inactive labels as defined
by the simulator (Eq. 7) are computed exactly as they are computed by H2kes() (z) (i.e., as defined in Eq. 6
when the oracle Fake,(+) is being used). O

The proof of Lemma 4.5 follows from Claims 4.6—4.8 and Facts 2.1 and 2.3.

5 Conclusion

We defined a new combined form of RKA-KDM security, proved that such an encryption scheme can be
realized based on the LPN assumption, and showed that the free-XOR approach can be securely instantiated
with it. Altogether, our results enable a realization of the free-XOR optimization in the standard model
under a well-studied cryptographic assumption.

The new definition of RKA-KDM security further motivates the study of security under related-key
and key-dependent attacks, and raises several interesting questions. Specifically, it will be interested to
understand the exact power of combined RKA-KDM in comparison to RKA and KDM security, to discover
constructions which are based on abstract assumptions (e.g., CPA-secure encryption scheme), and to find
additional applications of RKA/KDM secure primitives.
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