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Abstract

We present two unconditionally secure asynchronous multiparty computation (AMPC) protocols among n
parties with an amortized communication complexity of O(n) field elements per multiplication gate and which
can tolerate a computationally unbounded active adversary corrupting t < n/4 parties. These are the first AMPC
protocols with linear communication complexity per multiplication gate. Our first protocol is statistically secure
in a completely asynchronous setting and improves on the previous best AMPC protocol in the same setting by a
factor of Θ(n). Our second protocol is perfectly secure in a hybrid setting, where one round of communication
is assumed to be synchronous and improves on the previous best AMPC protocol in the hybrid setting by a
factor of Θ(n2).

The central contribution common to both the protocols is a new, simple and communication efficient, albeit
natural framework for the preprocessing (offline) phase that is used to generate sharings of random multiplica-
tion triples, to be used later for the circuit evaluation. The framework is built on two new components, both of
which are instantiated robustly: the first component allows the parties to verifiably share random multiplication
triples. The second component allows the parties to securely extract sharings of random multiplication triples
from a set of sharings of multiplication triples, verifiably shared by individual parties. Our framework is simple
and does not involve either of the existing somewhat complex, but popular techniques, namely player elimina-
tion and dispute control, used in the preprocessing phase of most of the existing protocols. The framework is of
independent interest and can be adapted to other MPC scenarios to improve the overall round complexity.
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1 Introduction

Threshold unconditionally secure multiparty computation (MPC) enables a set of n mutually distrusting parties to
jointly and securely compute a publicly known function f over some finite field F. The distrust among the parties
is modelled by a computationally unbounded centralized adversary Adv, who can actively corrupt any t out of the
n parties. The first generic but inefficient unconditionally secure protocols were proposed in [8, 14, 32, 2]. In a
general MPC protocol, the function f is usually expressed as an arithmetic circuit over F and then the protocol
evaluates each gate in the circuit in a shared/distributed fashion. Usually, the number of multiplication gates is
significantly larger than the other types of gates and the evaluation of a multiplication gate requires more com-
munication than the other types of gate. The focus therefore is rightfully placed on measuring the communication
complexity (namely the total number of field elements communicated) required to evaluate the multiplication gates.

In the recent past, several efficient unconditionally secure MPC protocols have been proposed [23, 22, 3, 18,
5, 10]. The state of the art unconditionally secure MPC protocols have linear (i.e. O(n) field elements) amortized
communication complexity per multiplication gate for both the perfect setting [5] (i.e. error-free) as well as for the
statistical setting [10] (where a negligible error is allowed). The amortized communication complexity is derived
under the assumption that the circuit is large enough so that the terms that are independent of the circuit size can
be ignored [10]. Moreover, these protocols have the optimal resilience of t < n/3 and t < n/2 respectively. The
significance of linear communication complexity roots from the fact that the amortized communication done by
each party for the evaluation of a multiplication gate is independent of n. This makes the protocol “scalable” in the
sense that the communication done by an individual party does not grow with the number of parties in the system.
In fact, even the best known unconditionally secure MPC protocol in the passive security setting [18] does not do
better than amortized communication complexity of O(n) field elements per multiplication gate. We note that if
one is willing to reduce the resilience t from the optimal resilience by a constant fraction, then by using techniques
like packed secret sharing [21] and committee election [12], one can achieve additional efficiency, as shown in
[17, 16]. However, the resultant protocols are quiet complex.

Our Motivation: The results discussed above are designed to work in the synchronous network setting, where
the delay of every message in the network is bounded by a known constant. However, it is well-known that such
networks do not model well the real-life networks like the Internet. Consequently, the asynchronous network
model has been proposed [7], where there are no timing assumptions and the messages can be arbitrarily delayed.
Protocols in the asynchronous model are much more involved than their synchronous counterparts due to the
following general phenomena, which is impossible to avoid in a complete asynchronous setting: if a party does
not receive an expected message, then it does not know whether the sender is corrupted (and did not send the
message at all) or the message is just delayed in the network. Thus, at any “stage” of an asynchronous protocol,
no party can afford to listen the communication from all the n parties, as the wait may turn out be endless and
so the communication from t (potentially honest) parties has to be ignored; see [13] for an introduction to the
asynchronous protocols. Perfectly secure (i.e. error-free) asynchronous MPC (AMPC) is possible if and only if
t < n/4 [7], while statistically secure AMPC (involving negligible error) is possible if and only if t < n/3 [9].

Unlike the synchronous setting, unconditional AMPC protocols have received less attention, probably due
to its complexity. Unconditionally secure AMPC protocols are presented in [7, 9, 34, 31, 4, 29, 28]. The best
known (perfectly secure) AMPC protocol is reported in [28]. The protocol has resilience t < n/4 and amortized
communication complexity of O(n2) field elements per multiplication gate. Designing AMPC protocols with
linear communication complexity per multiplication gate is the focus of this paper.

Our Results: We present two AMPC protocols with (amortized) communication complexity of O(n) field el-
ements per multiplication gate and with resilience t < n/4. The first protocol is statistically secure and works
in a completely asynchronous setting. Though non-optimally resilient, the protocol is the first AMPC protocol
with linear communication complexity per multiplication gate. The protocol does not use tools like packed secret
sharing and committee election, which are quiet complex to apply even in the synchronous setting [17, 16] and
which are not known how to be applied in the asynchronous setting. Instead, we use simple techniques and follow
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a simple, but new framework (more on this soon). Our second protocol trades the network model to gain perfect
security with optimal resilience of t < n/4. The protocol is designed in a hybrid setting, that allows a single
synchronous round at the beginning, followed by a fully asynchronous setting. The hybrid setting was exploited
earlier in [24, 4, 6] to enforce “input provision”, i.e. to consider the inputs of all the n parties for the computation,
which is otherwise impossible in a complete asynchronous setting. The best known AMPC protocol in the hybrid
setting was proposed in [4] with perfect security, resilience t < n/4 and communication complexity O(n3) per
multiplication gate. Thus, our protocol significantly improves over the hybrid model protocol of [4].

1.1 Our Results in More Details

We follow the well-known “offline-online” paradigm used in almost all the recent MPC protocols [3, 4, 18, 5,
10], where the offline (preprocessing) phase produces t-sharing of cM random multiplication triples {(a(i), b(i),
c(i))}i∈[cM ] unknown1 to Adv, where c(i) = a(i)b(i) and later the online phase uses the shared triples for the
shared evaluation of the multiplication gates using Beaver’s circuit randomization technique [2] (see Sec. 3.2). The
efficiency of the protocols in this paradigm is thus reduced to the problem of efficient implementation of the offline
phase. Our proposal for the offline phase takes a completely different approach compared to the existing ones and
significantly outperforms them in terms of the efficiency and simplicity; the details follow.

The traditional way of generating the shared triples {(a(i), b(i), c(i))}i∈[cM ] is the following: first the individual
parties are asked to t-share random pairs of values on which a “randomness extraction” algorithm (such as the one
based on Vandermonde matrix [18] or the one based on Hyper-invertible matrix [5] or the simplest of all, namely to
add all the pairs) is applied to generate t-sharing of “truly” random pairs {a(i), b(i)}i∈[cM ] and then known multipli-
cation protocols are invoked to compute t-sharing of {c(i)}i∈[cM ]. Instead, we find it a more natural approach to ask
the parties to “directly” share random multiplication triples and then “extract” shared random multiplication triples
unknown to Adv from the triples shared by the individual parties. This leads to a communication efficient, simple
and more natural “framework” to generate the triples. The framework is built with the following two components:

• The first component allows a party Pi to robustly and “verifiably” t-share Θ(n) random multiplication triples
with a private communication of O(n2) and thus requires linear (i.e. O(n)) “overhead”. The verifiability
ensures that the shared triples are indeed multiplication triples. If Pi is honest then the shared triples remain
private from Adv. Such shared triples generated by the individual parties are referred as “local” triples. Thus
far, we are unaware of any existing protocol (even in the synchronous setting) meeting these requirements.

• The second component allows the parties to extract sharings of Θ(n) random multiplication triples unknown
to Adv from a set of 3t + 1 local shared multiplication triples with a private communication of O(n2) (and
thus requiresO(n) “overhead”), given that at least 2t+1 out of the 3t+1 local sharings are generated by the
honest parties (and hence are random and private). While it is known how to extract shared random values
from a set of shared random and non-random values, our protocol is the first of its kind to extract shared
random multiplication triples from a set of shared random and non-random multiplication triples2.

We instantiate both the components robustly. Interestingly, we do not employ either the player elimination [23, 5]
or the dispute control [3, 18, 10] technique, the two powerful but somewhat complex techniques, used in the pre-
processing phase of most of the recent synchronous unconditional MPC protocols. We note that our framework
can be adapted to any honest majority setting to improve the round complexity of the preprocessing phase. For
example, when compiled in a completely synchronous network, our framework can lead to a very simple prepro-
cessing phase which will reduce the overall round round complexity of the existing round efficient MPC protocols
of [25, 26] in point-to-point networks; however, providing the exact details is out of scope of the current article.

For the first component, we present two protocols for verifiably sharing multiplication triples. The first protocol
is a completely asynchronous protocol and probabilistically verifies the correctness of the shared triples, leading to

1A value v is d-shared if there exists a random polynomial p(·) of degree at most d with v(0) = d and every honest party holds a distinct
point on v(·). Here cM denotes the number of multiplication gates in the circuit. By [X], we refer to the set {1, . . . , X}.

2It is not hard to note that the existing (information theoretic) techniques for extracting random values from a set of random and non-
random values cannot be deployed to extract random multiplication triples from a set of random and non-random multiplication triples.
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our statistical AMPC protocol. The second protocol verifies the shared triples in an error-free fashion in a hybrid
setting, leading to our perfect AMPC protocol in the hybrid setting. For the second component, we present a triple
extraction protocol. Central to all these protocols lie the following two simple and interesting protocols:

Verifiably Sharing Θ(n) Values with O(n2) Communication (Section 4): Our triple sharing protocols use a
robust secret sharing protocol, which allows a dealer D to “verifiably” t-share Θ(n) values with O(n2) commu-
nication, implying linear “overhead”. The protocol is obtained by modifying the perfectly secure asynchronous
verifiable secret sharing (AVSS) protocol of [29, 28] that allows D to generate a single 2t-sharing. To the best of
our knowledge, we are unaware of any robust secret sharing protocol (with t < n/4) having linear overhead.

Transforming Independent Triples to Co-related Triples (Section 5): A common protocol that is used in
the error-free triple sharing protocol and also in the triple extraction protocol is the following: the protocol
takes as input 3t + 1 t-shared triples, say {(x(i), y(i), z(i))}i∈[3t+1] and outputs 3t + 1 t-shared triples, say
{(x(i),y(i), z(i))}i∈[3t+1] such that the following holds: (a) there exists polynomials X(·),Y(·) and Z(·) of degree
at most 3t

2 ,
3t
2 and 3t respectively, where X(αi) = x(i),Y(αi) = y(i) and Z(αi) = z(i) holds for 3t + 1 distinct

αis; (b) the output triple (x(i),y(i), z(i)) is a multiplication triple if and only if the input triple (x(i), y(i), z(i)) is a
multiplication triple, which implies that the relation Z(·) = X(·)Y(·) is true if and only if all the input triples are
multiplication triples; and (c) if Adv knows at most t′ input triples and if t′ ≤ 3t

2 , then it learns at most t′ output
triples and thus t′ distinct values on the polynomials X(·),Y(·) and Z(·), implying 3t

2 +1−t′ “degree of freedom” in
the polynomials. The protocol for the “transformation” from {(x(i), y(i), z(i))}i∈[3t+1] to {(x(i),y(i), z(i))}i∈[3t+1]

is inherited from the batch verification protocol of [10], where the only goal was to probabilistically check whether
a set of input triples are multiplication triples. We use the protocol in two different contexts by “post-processing”
the output of the transformation. Namely, in our error-free triple sharing protocol, we use the transformation pro-
tocol to check in an error-free manner whether a set of triples shared by a dealer are multiplication triples and if
so, then extract a set of multiplication triples, such that if the dealer is honest, then the extracted triples are random
and unknown to Adv. On the other hand, in our triple extraction protocol, we use the transformation protocol on
a set of local multiplication triples shared by individual parties and extract random multiplication triples unknown
to Adv. We next elaborate a little more on our triple sharing protocols and the triple extraction protocol.

Verifiably Sharing Multiplication Triples (Section 6.1 and 8): Our first triple sharing protocol resorts to the
so called “sacrificing trick” [15, 19] that deploys two triples and sacrifices the privacy of the second triple (if it
was private before) to probabilistically confirm if the first triple is a multiplication triple by leaking nothing more
than the conviction that it is a multiplication triple. Specifically, if a dealer D has shared two independent triples
(x, y, z) and (f, g, h) and claims them to be multiplication triples, then the relation r(z − xy)

?
= (h − fg) must

hold for any random challenge r selected from F, except with probability at most 2
|F| . The relation can be checked

publicly by making ρ = rx− f and σ = y − g public, followed by making γ = rz − h− σf − ρg − ρσ public.
While the random r that is to be chosen once D shares the triples, ensures verifiability against a corrupted D with
very high probability, the publicly revealed values leak no further information about (x, y, z) when D is honest due
to the guarantee that (f, g, h) is random and unknown to Adv.

Our second triple sharing protocol first asks D to share 3t + 1 random multiplication triples {(x(i), y(i),
z(i))}i∈[3t+1] and then applies the transformation protocol to compute set of shared triples {(x(i),y(i), z(i))}i∈[3t+1].

We then propose a technique to verify the relation Z(·) ?
= X(·)Y(·) in an error-free fashion with the help of the

first synchronous round in a way that leaks at most t values (at the same evaluation points) on the three polyno-
mials; this implies t

2 “degree of freedom” in the polynomials for an honest D. If the verification passes, then t
2

output shared multiplication triples are computed as {a(i),b(i), c(i)}i∈[ t
2
] where a(i) = X(βi),b

(i) = Y(βi) and

c(i) = Z(βi) for {βi}i∈[ t
2
], which are distinct from {αi}i∈[n]. It is important to extract the output triples this way

after the verification instead of directly outputting the triples shared by D, since we need to guarantee that all the
output triples are unknown to Adv when D is honest and the verification process leaks some of the triples shared
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by D. The verification of the relation Z(·) ?
= X(·)Y(·) in an error-free way using the single synchronous round

while leaking at most t values on each polynomial is the core idea in this protocol3. Briefly, the relation can be
verified while leaking at most t points on the polynomials if each party Pi can verify if Z(αi)

?
= X(αi)Y(αi).

However in a fully asynchronous setting, it is impossible to wait for the response of all the n parties. Here the
synchronous round comes to our rescue. We ask each party to “non-verifiably” share a random multiplication
triple in the first synchronous round4 and later each such shared triple is used to perform the verification on behalf
of the corresponding party in an asynchronous fashion.

Extracting Random Multiplication Triples (Section 6.2): Let {(x(i), y(i), z(i))}i∈[3t+1] be the set of 3t + 1
local t-shared multiplication triples, such that at least 2t+ 1 of them are shared by the honest parties. From these
shared triples, we compute the set of shared multiplication triples {(x(i),y(i), z(i))}i∈[3t+1] using the transforma-
tion protocol. Since the input triples are guaranteed to be multiplication triples, the relation Z(·) = X(·)Y(·) holds.
Furthermore, since Adv may know at most t input triples, t output triples are leaked to Adv leaving t

2 “degree of
freedom” in these polynomials. It allows us to output t

2 shared random multiplication triples unknown to Adv as
{a(i),b(i), c(i)}i∈[ t

2
] where a(i) = X(βi),b

(i) = Y(βi) and c(i) = Z(βi) for {βi}i∈[ t
2
] distinct from {αi}i∈[n].

2 Model, Definitions and Notations

Model: We consider a set P = {P1, . . . , Pn} of n parties connected by pair-wise secure (private and authentic)
channels, where n = 4t+ 1. The distrust in the network is modelled by a computationally unbounded centralized
adaptive adversary Adv who can actively corrupt any t parties and can force them to deviate in any arbitrary
manner during the execution of a protocol. The communication channels are asynchronous, having arbitrary, but
finite delay (i.e. the messages will reach to their destination eventually). The order of the message delivery is
decided by a scheduler and to model the worst case scenario, we assume that the scheduler is under the control
of Adv. However, the scheduler can only schedule the messages exchanged between the honest parties (who are
not under the control of Adv), without having any access to the “contents” of these messages. As in [7], we
consider a computation (protocol execution) in the asynchronous model as a sequence of atomic steps, where a
single party is active in each such step. A party is activated by receiving a message after which it performs an
internal computation and then possibly sends messages on its outgoing channels. The order of the atomic steps
are controlled by the scheduler. At the beginning of the computation, each party will be in a special start state. A
party is said to terminate/complete the computation if it reaches a halt state, after which it does not perform any
further computation. A protocol execution is said to be complete if all the honest parties terminate the protocol.

We assume that the function f to be computed is specified as a publicly known arithmetic circuit C over a
finite field F, where |F| > 2n and α1, . . . , αn, β1, . . . , βn are publicly known distinct elements from F. For our
statistical AMPC protocol, we additionally require that |F| ≥ 2t · 2κ, for a given error parameter κ, to bound
the error probability by 2−κ. The circuit C consists of input, addition (linear), multiplication, random and output
gates. We denote the number of gates of each type by cI , cL, cM , cR and cO respectively. We assume that each
party Pi has ci inputs for the computation and so c1 + . . . + cn = cI . Without loss of generality, we assume that
f is expressed as f : FcI → Fn, where f(~x1, . . . , ~xn) = (y1, . . . , yn), such that ~xi ∈ Fci denotes the vector of
inputs of party Pi and Pi is supposed to receive the output yi ∈ F.

Definitions: A “property based” definition of secure AMPC in the information theoretic setting was followed
in [9], which in essence is “equivalent” to the more standard definition of secure AMPC in the “real-world/ideal-
world” paradigm [7]. All the papers on AMPC since then follow the style of definition used in [9]. As our
main goal is to provide efficient AMPC protocols, we keep the formalities to a bare minimum and instead use the

3Probabilistically Z(·) ?
= X(·)Y(·) can be verified by checking Z(α)

?
= X(α)Y(α) for a random α [10]; we aim for error-freeness.

4By “non-verifiably”, we mean neither the correctness of the t-sharing nor the fact that the shared triple is a multiplication triple is
guaranteed when the party that generates the sharing is corrupted.
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property based definition to prove the security. However, using standard techniques, our protocols can be proved
secure according to the (simulation based) real world/ideal-world definition of [7].

Definition 2.1 (Secure AMPC [9]). Let f : FcI → Fn be a publicly known function and party Pi has input
~xi ∈ Fci . In any asynchronous multiparty computation, each party Pi first commits to its input. Let ~x′i be the
values committed by Pi. If Pi is honest then ~x′i = ~xi. Due to the asynchronicity, the parties cannot wait for all the
n parties to commit their inputs and so the parties agree on a subset Com of size n − t of committed inputs. Fi-
nally, the parties compute an estimation of f as (y1, . . . , yn) = f(~x1, . . . ,~xn) and Pi receives the output yi, where
~xi = ~x′i if Pi ∈ Com, otherwise ~xi = 0ci . An asynchronous protocol Π among the n parties securely computes f
if it satisfies the following conditions for every possible Adv and every possible scheduler, on all possible inputs:

(1) TERMINATION: All the honest parties terminate Π almost surely, i.e. with probability5 1. (2) CORRECTNESS:
Every honest party Pi correctly obtains his output yi after completing Π, irrespective of the behavior of the cor-
rupted parties. (3) PRIVACY: The adversary obtains no additional information (in the information theoretic sense),
other than what is inferred from the inputs and the outputs of the corrupted parties.

Definition 2.2 (Statistical and Perfect AMPC [7, 9]). A statistical AMPC protocol satisfies the termination and
correctness with probability at least (1 − 2−κ), for a given error parameter κ (no compromise in the privacy
property is made). A perfect AMPC protocol satisfies the termination and correctness with probability 1 .

Definition 2.3 (d-sharing [3, 4, 18, 5]). A value s ∈ F is said to be d-shared among a set of parties P ⊆ P if
every (honest) party Pi ∈ P is holding a share si of s, such that there exists a polynomial p(·) of degree at most d,
where p(0) = s and p(αi) = si

6 holds for every (honest) Pi ∈ P . The vector of shares {si}Pi∈P , corresponding

to the (honest) parties in P is called a d-sharing of s and denoted by [s]Pd . A set of shares is called d-consistent if
the shares lie on a polynomial of degree at most d. A vector ~S = (s(1), . . . , s(`)) of ` values is said to be d-shared
among a set of parties P if each sl ∈ ~S is d-shared among the parties in P .

We write [s]d (ignoring the superscript) to mean that s is d-shared among all the (honest) parties in P . Notice that
d-sharings are linear in the sense that given [a]d and [b]d, then [a + b]d = [a]d + [b]d and [c · a]d = c · [a]d, for a
publicly known constant c. In general, given ` sharings ([x(1)]d, . . . , [x

(`)]d) and a publicly known linear function
g : F` → Fm, where g(x(1), . . . , x(`)) = (y(1), . . . , y(m)), then g([x(1)]d, . . . , [x

(`)]d) = ([y(1)]d, . . . , [y
(m)]d). By

saying that the parties compute (locally) ([y(1)]d, . . . , [y
(m)]d) = g([x(1)]d, . . . , [x

(`)]d), we mean that every party
Pi (locally) applies the function g to its shares of x(1), . . . , x(`). That is, party Pi computes (y

(1)
i , . . . , y

(m)
i ) =

g(x
(1)
i , . . . , x

(`)
i ), where y(l)i and x(l)i denotes the ith share of y(l) and x(l) respectively.

Definition 2.4 (Random Multiplication Triples). A triple (x, y, z) is called a multiplication triple, if z = xy holds.
A multiplication triple (x, y, z) is called random if x, y and z are uniformly random subject to z = xy.

Notation: By [X] and [X,Y ] for Y ≥ X , we denote the sets {1, . . . , X} and {X,X + 1, . . . , Y }, respectively.

3 Existing Building Blocks

3.1 Private and Public Reconstruction of d-shared Values

Private reconstruction of a d-shared value: Let [v]Pd be a d-sharing of v, shared through a polynomial p(·) of
degree at most d, where d < |P| − 2t. The goal is to make some party PR ∈ P to privately reconstruct v. The
well-know algorithm called online error correction (OEC) [7, 13] allows PR to reconstruct the polynomial p(·)
and thus v, as p(0) = v. The intuition behind OEC is that every party in P sends its share of v to PR, who waits to

5All probabilities are taken over all possible random coins of the honest parties. Asynchronous Byzantine agreement (ABA) is a special
case of secure computation. From [20], it follows that any (probabilistic) ABA protocol must have some non-terminating runs. Thus, the
best we can hope for is that a secure computation protocol terminates with probability 1 (see [7]).

6We often say that the share si lie on the polynomial p(·).
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receive d+ t+1 d-consistent shares from the parties in P . We call the protocol as OEC(PR, d, [v]Pd ). The protocol
requires a private communication of O(n) elements from F. If PR is honest then no additional information about
v is leaked to Adv. The protocol and its properties can be found in Appendix A.1.

Batch public reconstruction of several d-shared values: Protocol BatRecPubl takes (t + 1)(= Θ(n)) d-
shared values [u(1)]Pd , . . . , [u

(t+1)]Pd , where d < |P| − 2t and allows all the parties in P to robustly reconstruct
u(1), . . . , u(t+1), such that the protocol requires a private communication of O(n2). Protocol BatRecPubl is based
on the following idea of [18]: we first “expand” the t+1 sharings to n sharings, say [v(1)]Pd , . . . , [v

(n)]Pd , by apply-
ing a linear function. Specifically, by interpreting u(1), . . . , u(t+1) as the coefficients of a polynomial u(·) of degree
at most t and by letting v(1), . . . , v(n) to be the evaluations of u(·) at n publicly known distinct points, each [v(i)]d
can be computed as linear combination of the given t + 1 sharings. Once the parties compute [v(1)]d, . . . , [v

(n)]d,
then v(i) is privately reconstructed towards the party Pi using an instance of OEC. Each Pi then sends v(i) to every
other party in P . Finally, each party applies OEC on the received v(i)s to reconstruct the polynomial u(·) and
outputs u(1), . . . , u(t+1). We call the protocol as BatRecPubl(P, d, [u(1)]Pd , . . . , [u(t+1)]Pd ). Every honest party
will eventually terminate the protocol. The protocol and its properties can be found in Appendix A.2.

3.2 Batch Multiplication of ` Pairs of t-shared Values using Beaver’s Technique

Beaver’s circuit randomization method [2] is a well known method for securely computing [xy]t from [x]t and
[y]t, at the expense of two public reconstructions, using a pre-computed t-shared random multiplication triple
(from the pre-processing phase), say ([a]t, [b]t, [c]t). For this, the parties first (locally) compute [e]t and [d]t, where
[e]t = [x]t− [a]t = [x− a]t and [d]t = [y]t− [b]t = [y− b]t, followed by the public reconstruction of e = (x− a)
and d = (y − b). Since the relation xy = ((x − a) + a)((y − b) + b) = de + eb + da + c holds, the parties can
locally compute [xy]t = de+e[b]t+d[a]t+[c]t, once d and e are publicly known. The above computation leaks no
information about x and y if a and b are random and unknown to Adv. For the sake of efficiency, we will apply the
Beaver’s trick on a batch of ` pairs of t-shared values simultaneously so that we can use BatRecPubl to publicly
reconstruct the 2` values (note that two reconstructions are required for each pair) at once efficiently. Looking
ahead, we require ` to be at least t+1 and this will result the public reconstruction to cost a private communication
of O(d 2`

t+1e · n
2) = O(n`). We call the protocol as BatchBeaver({([x(i)]t, [y(i)]t, [a(i)]t, [b(i)]t, [c(i)]t)}i∈[`]) and

state its properties in Theorem 3.1. The protocol and the proof of Theorem 3.1 can be found in Appendix A.3.

Theorem 3.1. Let {([x(i)]t, [y(i)]t)}i∈[`] be a batch of ` pairs of t-sharing and {([a(i)]t, [b(i)]t, [c(i)]t)}i∈[`] be the
t-sharing of ` random multiplication triples unknown to Adv, where ` ≥ t + 1 = Ω(n). Then for every possible
Adv and for every possible scheduler, protocol BatchBeaver achieves:

(1) TERMINATION: All the honest parties eventually terminate. (2) CORRECTNESS: The protocol outputs {[x(i)
y(i)]t}i∈[`]. (3) PRIVACY: The view of Adv is distributed independently of the x(i)s and y(i)s. (4) COMMUNICA-
TION COMPLEXITY: The protocol requires a private communication of O(n`) elements from F.

3.3 Agreement on a Common Set (ACS)

Protocol ACS [7, 9] is a well known asynchronous protocol. It allows the (honest) parties to agree on a common set
Com of (n− t) parties, who have correctly shared values, which may be input to the computation, a multiplication
triple, a random value, etc. The idea behind ACS is to execute n instances of an ABA protocol [13], one on the
behalf of each party to decide if it should be included in Com. The protocol is invoked constant number of times
in our AMPC protocols and is presented in Appendix A.4. The communication complexity of ACS isO(poly(n)).

3.4 Asynchronous Broadcast

Bracha [11] implemented the asynchronous broadcast protocol A-Cast with 3t+ 1 parties, which allows a sender
Sen ∈ P to send some message m identically to all the n parties. If Sen is honest then all the honest parties
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eventually terminate with output m. If Sen is corrupted and some honest party terminates with output m′, then
every other honest party eventually terminates with output m′. The protocol requires a private communication of
O(n2|m|) to broadcast a message m of size |m| [4, 29, 28]. We say that Pi receives m from the broadcast of Pj if
Pi terminates the instance of A-Cast where Pj is Sen with m as the output; see Appendix A.5 for the protocol.

3.5 Generating a Random Value

The following well known protocol called Rand() allows the parties to generate a uniformly randomly value r ∈ F:
every party Pi ∈ P t-shares (using any AVSS scheme; in fact the protocol presented in Section 4 can be used for
this purpose) a random value r(i). The parties then execute an instance of ACS and decide a set of n − t parties
Com who have correctly shared the values. Finally, the parties set [r]t =

∑
Pi∈Com[r(i)]t and publicly reconstruct

the value r. Since the shared values of at least n− 2t honest parties in Com are unknown to Adv and random (due
to AVSS), r is indeed random. We note that the communication complexity of the protocol is polynomial in n.

4 Generating Batch of t-shared Values

We present a protocol called Sh, which allows a dealer D ∈ P to t-share ` values ~S = (s(1), . . . , s(`)) in a
“verifiable” manner, where ` ≥ t+ 1. The “verifiability” ensures that irrespective of the status of D, if the honest
parties terminate the protocol then the output sharings are t-sharing. The protocol requires a private communication
ofO(n`) and a broadcast communication ofO(n2). We first explain the protocol assuming that ~S has t+1 secrets
and later discuss how to extend it to share more than t+ 1 values together.

The starting point of our protocol Sh is the sharing protocol of the perfectly secure AVSS scheme of [28, 29].
The AVSS protocol of [28, 29] enables D to 2t-share a single secret s. The 2t-sharing is achieved via a univariate
polynomial F (x, 0) of degree at most 2t, where F (x, y) is a random bi-variate polynomial of degree at most 2t in
x and at most t in y (note the difference in degrees), such that F (0, 0) = s. Initially, D is asked to pick F (x, y)
and hand over the ith row polynomial fi(x) of degree at most 2t and the ith column polynomial gi(y) of degree

at most t to the party Pi, where fi(x)
def
= F (x, αi) and gi(y)

def
= F (αi, y). If the sharing protocol terminates,

then it is ensured that there exists a bi-variate polynomial F ′(x, y) of degree at most 2t in x and at most t in y,
such that every honest party Pj holds a column polynomial g′j(y) of degree at most t, where g′j(y) = F ′(αj , y).

This makes the secret s′
def
= F ′(0, 0) to be 2t-shared through the polynomial f ′0(x) of degree at most 2t where

f ′0(x)
def
= F ′(x, 0) and every honest party Pj holds its share s′j of s′, with s′j = f ′0(αj) = F ′(αj , 0) = g′j(0). For

an honest D, F ′(x, y) = F (x, y) will hold and thus s will be 2t-shared though the polynomial f0(x)
def
= F (x, 0).

To achieve our goal by using the sharing protocol of [29, 28], we first use the fact that the adversary’s view in
the sharing protocol leaves (t+1)(2t+1)− t(2t+1)− t = (t+1) “degree of freedom” in the polynomial F (x, y)
when D is honest. Informally this is because, Adv receives t(2t+1)+t distinct points on F (x, y) through the t row
and column polynomials of the corrupted parties, but (t+1)(2t+1) distinct points are required to completely define
F (x, y). While the authors of [29, 28] used the t+ 1 degree of freedom to create a single 2t-sharing by embedding
a single secret in F (x, y), we use it to create t-sharing of t + 1 different secrets by embedding t + 1 secrets in
F (x, y). Namely, given t+ 1 secrets ~S = (s(1), . . . , s(t+1)), the dealer D in our protocol fixes F (βl, 0) = s(l) for
l ∈ [t + 1], where F (x, y) is otherwise a random polynomial of degree at most 2t in x and at most t in y. At the
end, the goal is that the secret s(l) is t-shared among the parties through the polynomial F (βl, y) of degree at most
t, which we denote by gβl(y). As depicted in Fig. 1 (in blue color), an honest party Pi can compute his shares of
all the secrets in ~S by local computation, once it gets the polynomial fi(x) = F (x, αi). This follows from the fact
that for l ∈ [t+ 1] the ith share s(l)i of the secret s(l) satisfies s(l)i = gβl(αi) = fi(βl).

To enable Pi to get fi(x), we recall that the sharing protocol of [29, 28] ensures that every honest Pj holds
g′j(y) such that there exists a bi-variate polynomial F ′(x, y) of degree at most 2t in x and at most t in y such that
F ′(αj , y) = g′j(y) and furthermore for an honest D, F ′(x, y) = F (x, y) holds. Since by holding g′j(y), Pj already
holds a point on every f ′i(x) (namely g′j(αi) is the same as f ′i(αj), where f ′i(x) = F ′(x, αi)), we can ensure the
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(private) reconstruction of the polynomial f ′i(x) by Pi by asking every party Pj to send its point on f ′i(x) to Pi.
Since f ′i(x) has degree at most 2t and there are 4t+ 1 parties, OEC enables Pi to compute f ′i(x) from the received
points. This completes our discussion on t-sharing of t + 1 secrets verifiably. We note that for a corrupted D, the
values ~S′ = (F ′(β1, 0), . . . , F ′(βt+1, 0)) will be t-shared and in case of an honest D, ~S′ = ~S will hold.

g1(y) · · · gj(y) · · · gn(y) gβ1(y) · · · gβt+1(y)

f1(x) F (α1, α1) · · · F (αj , α1) · · · F (αn, α1) ⇒ s
(1)
1 = f1(β1) · · · s

(t+1)
1 = f1(βt+1)

...
...

...
...

...
...

...
... · · ·

...
fi(x) F (α1, αi) · · · F (αj , αi) · · · F (αn, αi) ⇒ s

(1)
i = fi(β1) · · · s

(t+1)
i = fi(βt+1)

...
...

...
...

...
...

...
... · · ·

...
fn(x) F (α1, αn) · · · F (αj , αn) · · · F (αn, αn) ⇒ s

(1)
n = fn(β1) · · · s

(t+1)
n = fn(βt+1)

⇓ · · · ⇓ · · · ⇓ ︸ ︷︷ ︸ · · · ︸ ︷︷ ︸
f0(x) s1 = g1(0) · · · sj = gj(0) · · · sn = gn(0) [s(1)]t · · · [s(t+1)]t︸ ︷︷ ︸ s(1) = gβ1(0) · · · s(t+1) = gβt+1(0)

[s]2t, s = f0(0)

Figure 1: Pictorial representation of the values distributed by (an honest) D in the AVSS scheme of [29, 28] and protocol Sh. The
polynomials f1(x), . . . , fn(x), g1(y), . . . , gn(y) computed from the bi-variate polynomial F (x, y) of degree at most 2t and t in x and y
are distributed in both the protocols. In the AVSS protocol, s is 2t-shared through the row polynomial f0(x) (shown in red color), while in
Sh, t+ 1 values s(1), . . . , s(t+1) are t-shared through the t+ 1 column polynomials gβ1(y), . . . , gβt+1(y) (shown in blue color).

Finally, we would like to comment that our idea of embedding several secrets in a single bi-variate polynomial is
different from the notion of packed secret sharing [21] where k secrets are embedded in a single univariate poly-
nomial of degree at most t such that each party receives a single share, namely a distinct point on the polynomial.
In the later, a single share is the share for k secrets and the robust reconstruction works when the adversary controls
at most t− k+ 1 instead of t parties. Protocol Sh, on the other hand, ensures that each secret in ~S is independently
t-shared and thus the robust reconstruction of each secret works even when the adversary corrupts t parties.

To avoid repetition of details, we present the protocol Sh in Appendix B next to the description of the AVSS
scheme of [29, 28]. The properties of Sh, stated in Theorem 4.1, mostly follow from the AVSS scheme of [29, 28]
and the discussion above; see Appendix B for more details.

Theorem 4.1. Let ~S = (s(1), . . . , s(t+1)) be a vector of t + 1 values, which a dealer D ∈ P wants to t-share
among the parties in P . Then for every possible Adv and scheduler, the protocol Sh achieves:

(1) TERMINATION: If D is honest, then every honest party will eventually terminate Sh. Moreover, even if D is
corrupted and some honest party terminates Sh, then all the honest parties will eventually terminate Sh. (2)
CORRECTNESS: Once an honest party terminates Sh, there exists a vector ~S′ = (s′(1), . . . , s′(t+1)) of t+1 values,
such that ~S′ will be eventually t-shared among the parties in P . Moreover, if D is honest, then ~S′ = ~S. (3)
PRIVACY: If D is honest, then the information received by Adv during the protocol Sh is distributed independently
of the shared secrets in ~S. (4) COMMUNICATION COMPLEXITY: The protocol requires a private communication
of O(n2) elements from F and a broadcast of O(n2) elements from F.

4.1 Sharing more than t+ 1 Values without Blowingup the Broadcast Communication

On having ` values for ` > t + 1, D can divide them into groups of t + 1 and execute an instance of Sh for each
group. This will require a private communication ofO(d `

(t+1)e·n
2) = O(n`) field elements, since (t+1) = Θ(n).

The broadcast communication can be keptO(n2) (independent of `) by executing all instances of Sh (each handling
t + 1 secrets) in parallel and by asking each party to broadcast only once for all the instances, after confirming
the veracity of the “pre-condition” for the broadcast for all the instances of Sh. The sharing protocol of the AVSS
scheme of [29, 28] describes the same idea to keep the broadcast communication independent of ` when D 2t-
shares ` secrets; for details see Appendix B. In the rest of the paper, we will say that a party t-shares ` values,
where ` ≥ t+ 1 using an instance of Sh to mean the above.
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5 Transforming Independent Shared Triples to Co-related Shared Triples

We present a protocol TripTrans which takes as input a set of (3t+1) independent t-shared triples {([x(i)]t, [y(i)]t,
[z(i)]t)}i∈[3t+1] and outputs a set of (3t+1) “co-related” t-shared triples {([x(i)]t, [y

(i)]t, [z
(i)]t)}i∈[3t+1], such that

the following holds: (a) There exist polynomials X(·),Y(·) and Z(·) of degree at most 3t
2 ,

3t
2 and 3t respectively,

such that X(αi) = x(i),Y(αi) = y(i) and Z(αi) = z(i), for i ∈ [3t + 1]. (b) The ith output triple (x(i),y(i), z(i))
is a multiplication triple iff the ith input triple (x(i), y(i), z(i)) is a multiplication triple. This further implies that

Z(·) ?
= X(·)Y(·) is true iff all the 3t + 1 input triples are multiplication triples. (c) If Adv knows t′ input triples

and if t′ ≤ 3t
2 , then Adv learns t′ distinct values of X(·),Y(·) and Z(·), implying at least 3t

2 + 1 − t′ “degree of
freedom” on X(·),Y(·) and Z(·). If t′ > 3t

2 , then Adv will completely know X(·),Y(·) and Z(·).
The protocol is inherited from the protocol for the batch verification of the multiplication triples proposed in

[10]. The idea is as follows: we assume X(·) and Y(·) to be “defined” by the first and second component of the first
3t
2 + 1 input triples, compute 3t

2 “new” points on the X(·) and Y(·) polynomials and compute the product of the
3t
2 new points using Beaver’s technique making use of the remaining 3t

2 input triples. The Z(·) is then defined by
the 3t

2 computed products and the third component of the first 3t
2 + 1 input triples. In a more detail, we define the

polynomial X(·) (of degree at most 3t
2 ) by setting X(αi) = x(i) for i ∈ [3t2 + 1] and get [x(i)]t = [X(αi)]t = [x(i)]t

for i ∈ [3t2 +1]. Following the same logic, we define Y(αi) = y(i) for i ∈ [3t2 +1] and get [y(i)]t = [Y(αi)]t = [y(i)]t
for i ∈ [3t2 + 1]. Moreover, we set Z(αi) = z(i) for i ∈ [3t2 + 1] and get [z(i)]t = [Z(αi)]t = [z(i)]t for i ∈ [3t2 + 1].

Now for i ∈ [3t2 + 2, 3t + 1], we compute [x(i)]t = [X(αi)]t and [y(i)]t = [Y(αi)]t which requires only local
computation on the t-sharings

{
([x(i)]t, [y

(i)]t)
}
i∈[ 3t

2
+1]

, as it is a linear function. For i ∈ [3t2 + 2, 3t + 1], fixing

z(i) to be the same as z(i) will, however, violate the requirement that Z(·) = X(·)Y(·) holds if all the input triples
are multiplication triples; this is because x(i) = X(αi) 6= x(i) and Y(αi) = y(i) 6= y(i) and thus z(i) = x(i)y(i) 6=
x(i)y(i). Here we resort to the Beaver’s technique to find [z(i)]t = [x(i)y(i)]t from [x(i)]t and [y(i)]t, using the
t-shared triples {([x(i)]t, [y(i)]t, [z(i)]t)}i∈[ 3t

2
+2,3t+1]. We note that the triples {([x(i)]t, [y(i)]t, [z(i)]t)}i∈[ 3t

2
+2,3t+1]

are never touched before for any computation and used only for the Beaver’s technique.
It is easy to see that (x(i),y(i), z(i)) is a multiplication triple if and only if (x(i), y(i), z(i)) is a multiplication

triple. For i ∈ [3t2 + 1], this is trivially true, as for such an i, ([x(i)]t, [y
(i)]t, [z

(i)]t) = ([x(i)]t, [y
(i)]t, [z

(i)]t). For
i ∈ [3t2 +2, 3t+1], it follows from the correctness of the Beaver’s technique and the fact that ([x(i)]t, [y

(i)]t, [z
(i)]t)

is used to compute [z(i)]t from [x(i)]t and [y(i)]t and so z(i) = x(i)y(i) if and only if z(i) = x(i)y(i).
For privacy, we see that if Adv knows the ith input triple then the ith output triple will be known to Adv: for

i ∈ [3t2 + 1] the statement is trivially true, while for i ∈ [3t2 + 2, 3t + 1], the statement follows because Adv will
know the ith input triple (x(i), y(i), z(i)), which is used to compute [z(i)]t from [x(i)]t and [y(i)]t. Since (x(i)−x(i))
and (y(i) − y(i)) are disclosed during the computation of z(i), Adv will learn x(i), y(i) and trivially z(i). Thus if
Adv knows t′ input triples where t′ ≤ 3t

2 then Adv will learn t′ output triples and hence t′ values of the polynomials
X(·),Y(·) and Z(·), leaving 3t

2 +1− t′ degree of freedom in these polynomials. The protocol is presented in Fig. 2;
its properties are stated in Theorem 5.1 and the proof can be found in Appendix C.

Figure 2: Protocol for transforming a set of independent shared triples to a set of co-related shared triples.
Protocol TripTrans({([x(i)]t, [y(i)]t, [z(i)]t)}i∈[3t+1])

1. For each i ∈ [ 3t
2
+ 1], the parties locally set [x(i)]t = [x(i)]t, [y(i)]t = [y(i)]t and [z(i)]t = [z(i)]t.

2. Let the points {(αi,x(i))}i∈[ 3t
2

+1] and the points {(αi,y(i))}i∈[ 3t
2

+1] define the polynomial X(·) and Y(·) respectively of

degree at most 3t
2

. The parties locally compute [x(i)]t = [X(αi)]t and [y(i)]t = [Y(αi)]t, for eacha i ∈ [ 3t
2
+ 2, 3t+ 1].

3. The parties execute BatchBeaver({([x(i)]t, [y
(i)]t, [x

(i)]t, [y
(i)]t, [z

(i)]t)}i∈[ 3t
2

+2,3t+1]) to compute 3t
2

sharings

{[z(i)]t}i∈[ 3t
2

+2,3t+1]. The parties output {([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[3t+1] and terminate.

a Computing a new point on a polynomial of degree d is a linear function of d+ 1 given unique points on the same polynomial.
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Theorem 5.1. For every possible Adv and every possible scheduler, protocol TripTrans achieves:

(1) TERMINATION: All the honest parties eventually terminate the protocol. (2) CORRECTNESS: (a) There ex-
ist polynomials X(·),Y(·) and Z(·) of degree 3t

2 ,
3t
2 and 3t respectively, such that X(αi) = x(i),Y(αi) = y(i)

and Z(αi) = z(i) holds for i ∈ [3t + 1]. (b) Z(·) = X(·)Y(·) holds iff all the input triples are multiplication
triples. (3) PRIVACY: If Adv knows t′ ≤ 3t

2 input triples then Adv knows t′ values on X(·),Y(·) and Z(·). (4)
COMMUNICATION COMPLEXITY: The protocol requires a private communication of O(n2) elements from F.

6 The Asynchronous Preprocessing Phase

We present a completely asynchronous protocol called PreProc, which generates t-sharing of cM + cR random
multiplication triples, unknown to Adv, with a private communication of O((cM + cR)n) and broadcast com-
munication of O(n3). All the existing protocols follow the following common strategy to create the t-sharing
of random multiplication triples: first every party t-shares pairs of random values (possibly coupled with player
elimination/dispute control technique). Then a “randomness extraction” algorithm is applied on the shared pairs to
extract sharings of truly random pairs, unknown to Adv. Finally, known multiplication protocols are invoked to se-
curely compute t-sharing of the product of the random pairs. We propose a completely different, albeit seemingly
more natural approach. Briefly, the preprocessing phase takes t-sharing of “local” random multiplication triples
shared by individual parties acting as dealers such that the local triples are random and private when shared by an
honest dealer and then “extract” random multiplication triples from the shared multiplication triples. On a high
level, the preprocessing phase protocol is built on two sub-protocols: the first subprotocol allows a dealer D ∈ P to
t-share random multiplication triples in a “verifiable” fashion. The “verifiability” ensures that irrespective of the
status of D, if the honest parties terminate the subprotocol then the output sharings are of multiplication triples. The
second subprotocol allows to securely extract random multiplication triples unknown to Adv from a set of local
multiplication triples, shared by individual parties acting as a dealer. We next elaborate on the two subprotocols.

6.1 Verifiably Sharing Multiplication Triples

We present an asynchronous protocol called TripleSh which resorts to a probabilistic approach to ensure the veri-
fiability of the shared triples except with a negligible error probability for a corrupted D.

The High Level Idea of TripleSh: Protocol TripleSh is based on the well known technique, called the “sacrificing
trick” [19]. The trick deploys two triples and sacrifices the privacy of the second triple (if it was private before)
to probabilistically confirm if the first triple is a multiplication triple by leaking no further information except
the conviction that it is a multiplication triple. More specifically, suppose D has t-shared a pair of triples, say
(x, y, z) and (f, g, h) and has claimed that they are multiplication triples. If the claim of D is false then except with
probability at most 2

|F| , the relation r(z − xy) = (h − fg) will be false as well, for any random challenge r ∈ F
unknown to D while t-sharing the triples (x, y, z) and (f, g, h). The probability comes from the fact that for every
non-multiplication triple (x, y, z), there exists a single non-zero r for which the relation r(z − xy) = (h − fg)
will be true (we note that for r = 0, the relation will be true irrespective of (x, y, z)). To check the condition

r(z − xy)
?
= (h− fg), the parties (locally) compute the t-sharing of ρ and σ, where ρ = rx− f , σ = y − g and

publicly reconstruct ρ and σ. The parties then locally compute the t-sharing of γ, where γ = rz−h−σf−ρg−σρ
and publicly reconstruct γ. By noting that γ is the same as rz − rxy − h + fg which in turn is the same as
r(z − xy) − (h − fg), it can be concluded that the triple (x, y, z) is a multiplication triple if γ = 0. The above
technique probabilistically confers the conviction if the triple (x, y, z) is a multiplication triple. The privacy of
(x, y, z) for an honest D is maintained at the expense of sacrificing the privacy of (f, g, h) while making ρ, σ and
γ public (to carry out the verification). Protocol TripleSh is presented in Fig. 3, where the above idea is applied on
a batch of ` pairs of triples, where ` ≥ t+ 1. A single r is used for the verification of all the ` pairs. Theorem 6.1
states the properties of TripleSh. The proof can be found in Appendix D.1
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Figure 3: A probabilistic protocol for t-sharing ` random multiplication triples where ` ≥ t+ 1.
Protocol TripleSh(D)

1. D selects two sets of ` random multiplication triples ~S = ((x(1), y(1), z(1)), . . . , (x(`), y(`), z(`))) and ~Ssac =
((f (1), g(1), h(1)), . . . , (f (`), g(`), h(`))). D invokes an instance of the sharing protocol Sh to t-share all the secrets
in ~S and ~Ssac togethera and the parties participate in the instance of Sh.

2. After terminating the instance of Sh initiated by D, the parties execute an instance of Rand to generate a random r.

3. For each i ∈ [`], the parties locally compute [ρ(i)]t and [σ(i)]t and then execute d 2`
t+1
e instances of BatRecPublb to

reconstruct {ρ(i), σ(i)}i∈[`], where [ρ(i)]t = r[x(i)]t − [f (i)]t and [σ(i)]t = [y(i)]t − [g(i)]t.

4. For each i ∈ [`], the parties locally compute [γ(i)]t and then execute d `
t+1
e instances of BatRecPubl to reconstruct

{γ(i)}i∈[`], where [γ(i)]t = r[z(i)]t − [h(i)]t − σ(i)[f (i)]t − ρ(i)[g(i)]t − ρ(i)σ(i).

5. Upon terminating the instances of BatRecPubl, parties (locally) check γ(i) ?
= 0 for each i ∈ [`], output

{([x(i)]t, [y(i)]t, [z(i)]t)}i∈[`] if the condition holds and terminate. If the condition does not hold then the parties output
default t-sharing of ` publicly known multiplication triples and terminate.

a See section 4.1 for the description of the protocol Sh sharing ` secrets together for any ` ≥ t+ 1.
b BatRecPubl allows to publicly reconstruct t+ 1 values and so 2`/(t+ 1) instances are required to reconstruct 2` values.

Theorem 6.1. For every possible Adv and for every possible scheduler, protocol TripleSh achieves:

(1) TERMINATION: If D is honest then all the honest parties eventually terminate the protocol. If D is corrupted
and some honest party terminates, then all the honest parties eventually terminate. (2) CORRECTNESS: If D is
honest then `multiplication triples will be t-shared, where ` ≥ t+1. If D is corrupted and some honest party termi-
nates then ` triples will be t-shared; moreover except with probability at most 2

|F| , the triples will be multiplication
triples. (3) PRIVACY: If D is honest, then the view of Adv in the protocol is distributed independently of the output
multiplication triples. (4) COMMUNICATION COMPLEXITY: The protocol requires a private communication of
O(n`) elements and a broadcast of O(n2) elements from F, plus one invocation to Rand.

6.2 Extraction of Random Multiplication Triples from Local Multiplication Triples

Let Com ⊂ P be a set of 3t + 1 parties, known to all the parties in P , such that every party in Com has t-shared
` multiplication triples among the parties in P , where the the triples shared by the honest parties are random and
unknown to Adv. We present a protocol called TripExt that “extracts” t`

2 = Θ(n`) random t-shared multiplication
triples unknown to Adv from these (3t + 1)` “local” t-shared multiplication triples with a private communication
of O(n2`). Without loss of generality, we assume Com to consist of the first 3t+ 1 parties.

The high level idea is as follows: the input triples from the parties in Com are perceived as ` batches of 3t+ 1
triples where the lth batch contains the lth local triple from each party in Com. Then the transformation protocol
TripTrans is executed on the lth batch to obtain a new set of 3t + 1 triples and the three associated polynomials
of degree 3t

2 , 3t
2 and 3t, namely Xl(·),Yl(·) and Zl(·). Since, each input triple is guaranteed to be a multiplication

triple, the multiplicative relation holds among the polynomials, i.e. Zl(·) = Xl(·)Yl(·). Since Adv gets to know at
most t input triples in the lth batch, the transformation ensures that Adv gets to know at most t points on each of
the three polynomials, leaving t

2 degree of freedom on each polynomial. The random output multiplication triples
for the lth batch, unknown to Adv, are then extracted as

{
([Xl(βi)]t, [Y

l(βi)]t, [Z
l(βi)]t)

}
i∈[ t

2
]

without requiring
any interaction. Protocol TripExt is presented in Fig. 4. The properties of protocol TripExt are stated in Theorem
6.2 and the proof is provided in Appendix D.2.

Theorem 6.2. Let Com be a set of 3t + 1 parties known to all the parties in P , such that each party party
Pi ∈ Com has t-shared ` random multiplication triples {(x(i,l), y(i,l), z(i,l))}l∈[`]. Then for every possible Adv and
for every possible scheduler, protocol TripExt achieves:

(1) TERMINATION: All the honest parties eventually terminate the protocol. (2) CORRECTNESS: Each triple in
{(a(i,l),b(i,l), c(i,l))}l∈[`], i∈[ t

2
] is a multiplication triple and will be t-shared. (3) PRIVACY: The view of Adv in
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Figure 4: Protocol for extracting t`
2 random multiplication triples from a set of (3t+1)` local multiplication triples.

Protocol TripExt(Com, {([x(i,l)]i, [y(i,l)]t, [z(i,l)]t)}l∈[`], Pi∈Com)

Without loss of generality, assume Com = {P1, . . . , P3t+1}. For each l ∈ [`], the parties do the following in parallel:

1. The parties execute the protocol TripTrans({([x(i,l)]t, [y(i,l)]t, [z(i,l)]t)}i∈[3t+1]) and compute the shar-
ings {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}i∈[3t+1], such that the points {(αi,x(i,l))}i∈[3t+1], {(αi,y(i,l))}i∈[3t+1] and

{(αi, z(i,l))}i∈[3t+1] lie on the polynomial Xl(·),Yl(·) and Zl(·) respectively of degree at most 3t
2
, 3t

2
and 3t.

2. The parties locally compute [a(i,l)]t = [Xl(βi)]t, [b(i,l)]t = [Yl(βi)]t and [c(i,l)]t = [Zl(βi)]t for i ∈ [ t
2
] and terminate.

the protocol is distributed independently of the multiplication triples in {(a(i,l),b(i,l), c(i,l))}l∈[`], i∈[ t
2
]. (4) COM-

MUNICATION COMPLEXITY: The protocol requires a private communication of O(n2`) elements from F.

6.3 Preprocessing Phase using Triple Sharing and Triple Extraction

Our asynchronous protocol PreProc for the preprocessing phase consists of the following three steps: (1) Every
party in P acts as a dealer and t-share ` = 2(cM+cR)

t random multiplication triples using an instance of the protocol
TripleSh. (2) The parties then execute an instance of ACS to decide on a common set Com of 3t + 1 parties who
have correctly shared multiplication triples in their respective instances of TripleSh. (3) The parties then execute
the random triple extraction protocol TripExt on the triples shared by the parties in Com to extract t`2 = cM + cR
random multiplication triples. The properties of the protocol PreProc are stated in Theorem 6.3. The details of the
protocol PreProc and the proof of Theorem 6.3 are provided in Appendix D.3.

Theorem 6.3. For every possible Adv and every possible scheduler, protocol PreProc achieves:

(1) TERMINATION: All the honest parties terminate the protocol with probability 1. (2) CORRECTNESS: The
output triples will be t-shared among the parties. Moreover, except with error probability at most 2t

F , the triples
are multiplication triples. (3) PRIVACY: The view of Adv in the protocol is independent of the output multiplication
triples. (4) COMMUNICATION COMPLEXITY: The protocol incurs private communication ofO((cM + cR)n) and
broadcast of O(n3) elements from F plus one invocation to ACS and Rand.

7 The AMPC Protocol

Given the preprocessing phase that generates t-sharing of cM + cR random multiplication triples, an AMPC pro-
tocol is quiet straight forward to achieve by implementing the rest of the two phases: input phase and computation
phase. In the sequel we discuss the high level idea and refer to Appendix E for the details.

In the input phase implemented by the protocol Input, the parties provide their input(s) for the computation.
Recall that party Pi has ci inputs and c1 + . . . + cn = cI , where cI is the number of input gates in the circuit.
Assuming ci ≥ t+1, party Pi executes an instance of Sh to t-share his ci inputs. Due to asynchronicity, the parties
cannot wait to terminate more than n− t instances of Sh. So the parties execute an instance of ACS to agree on a
set of n− t parties whose inputs will be taken into computation. For the remaining t parties, default t-sharing of 0
is taken as the input to the computation.

The next phase is the computation phase, implemented by the protocol CircEval, where the circuit is securely
“evaluated” on a gate by gate basis. This phase employs the standard technique of circuit evaluation in the infor-
mation theoretic setting using preprocessed multiplication triples [3, 18, 4, 5]. The protocol (securely) implements
the following invariant for each gate of the circuit: given the t-sharing of the input(s) of a gate, the protocol allows
the parties to compute the t-sharing of the output of the gate. A gate is said to be evaluated if the t-sharing of the
output of the gate is computed. This is achieved as follows for various gates: the linearity of the t-sharing ensures
that the linear gates can be evaluated locally. For a multiplication gate, the parties associate a multiplication triple
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from the set of preprocessed multiplication triples and then evaluate the gate by applying the Beaver’s circuit ran-
domization technique. Similar to [5] for the sake of efficiency, we evaluate t + 1 multiplication gates at once by
using the protocol BatchBeaver, assuming that in general the circuit is well-spread and we will have sufficiently
many “ independent” multiplication gates to evaluate in parallel. Here two gates are called independent of each
other if the input of one gate does not depend on the output of the other gate. For every random gate, the parties
associate a multiplication triple from the set of preprocessed multiplication triples and the first component of the
triple is considered as the outcome of the random gate. Once all the gates are evaluated, the t-sharing of each
output gate is privately reconstructed towards the party who is supposed to receive that output.

Finally, the AMPC protocol AsynAMPC is a sequence of three protocols: protocol PreProc, Input and CircEval,
where a party terminates after completing all the three protocols. We avoid giving the complete formal (simulation
based) proofs for CircEval, since it is well known in the literature (see [3, 18, 4, 5]) that the protocol CircEval de-
scribed above securely computes the function f . The properties of the protocol AsynAMPC are stated in Theorem
7.1. For more details on Input, CircEval and the (informal) proof of Theorem 7.1, see Appendix E.

Theorem 7.1. Let f : FcI → Fn be a publicly known function expressed as an arithmetic circuit C over a finite
field F, where |F| ≥ max{2t · 2κ, 2n} for a given error parameter κ, consisting of cI , cO, cM and cR number of
input, output, multiplication and random gates respectively. Then for every possible Adv and for every possible
scheduler, protocol AsynAMPC is a statistical AMPC protocol to securely compute f . The protocol requires a
private communication of O((cI + cO + cM + cR)n) and broadcast of O(n3) elements from F, along with two
invocations to ACS and one invocation to Rand.

8 Error-free AMPC Protocol in the Hybrid Model

An inherent drawback of a completely asynchronous setting is that the inputs of up to t potentially honest parties
may get ignored. Noting this undesirability for many real-world applications, [4, 6] introduced a “partial syn-
chronous” or hybrid setting wherein the very first communication round is a synchronous round. It was shown in
[4] how to enforce “input provision” from all the n parties using the synchronous round, at the expense of gen-
erating cI(t + 1) additional random t-sharings in the preprocessing stage. Interestingly in this paper, we further
utilize the first synchronous round to present an error-free protocol called HybTripleSh for t-sharing multiplication
triples. In contrast to the protocol TripleSh (see Section 6.1) designed for the same purpose in the fully asyn-
chronous network, HybTripleSh ensures error-free verifiability of the shared triples even for a corrupted D. We
dispose the high level idea in the following and defer the details to Appendix F.

High Level Idea of HybTripleSh: We explain the high level idea assuming that D wants to t-share t
2 mul-

tiplication triples. In HybTripleSh, the same idea is used parallely ` times, where ` ≥ t + 1, resulting in t-
sharing of t`

2 multiplication triples. To generate t-sharing of t
2 multiplication triples, D t-shares 3t+ 1 triples, say

{([x(i)]t, [y(i)]t, [z(i)]t)}i∈[3t+1]. From these sharings a new set of sharings of 3t + 1 triples, say {([x(i)]t, [y
(i)]t,

[z(i)]t)}i∈[3t+1], are generated using the transformation protocol TripTrans (see Section 5), so that there exists
polynomials X(·),Y(·) and Z(·) of degree at most 3t

2 ,
3t
2 and 3t respectively, where X(αi) = x(i),Y(αi) = y(i)

and Z(αi) = z(i) holds for i ∈ [3t + 1]. The transformation guarantees that if the input triples are multiplication

triples then the relation Z(·) = X(·)Y(·) holds. Here our goal is to verify if Z(·) ?
= X(·)Y(·) in an error-free man-

ner, by leaking at most t values on the three polynomials during the verification. Since this leaves at least t2 degree
of freedom on each of the polynomials for an honest D, t2 output shared multiplication triples can be computed (if
the verification is successful) as {[a(i)]t, [b(i)]t, [c

(i)]t}i∈[ t
2
] where a(i) = X(βi),b

(i) = Y(βi) and c(i) = Z(βi).
We continue with the discussion on the verification. If each party Pi can confirm that (X(αi),Y(αi),Z(αi)) is

a multiplication triple (i.e. Z(αi) = X(αi)Y(αi) is true) on holding X(αi),Y(αi),Z(αi), then it can be concluded
that the relation Z(·) = X(·)Y(·) is true. This follows from the fact that the confirmation comes from at least 3t+1
honest parties and the degree of the polynomials X(·), Y(·) is at most 3t

2 and the degree of Z(·) is at most 3t. This
further ensures that only t values on each polynomial are leaked to the adversary through the t corrupted parties.
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However, due to asynchronicity, we cannot wait for the confirmation from all the parties in P , as the wait may turn
out to be endless. Fortunately, the synchronous round at the beginning rescues us from the deadlock.

In the synchronous round, every party Pi is asked to “non-verifiably” t-share a dummy multiplication triple,
say (f (i), g(i), h(i)) which will be used later to verify if (X(αi),Y(αi),Z(αi)) is a multiplication triple without
further participation of Pi. Here by non-verifiably we mean that neither the correctness of the t-sharing nor the
fact that the shared triple is a multiplication triple is guaranteed if Pi is corrupted. The synchronous round ensures
that a triple sharing is done non-verifiably on behalf of every party, since even if a corrupted party does not send
the shares of the dummy triples to some party by the end of the round, the receiver can take some default value
to complete the sharing. This leads to two important cases: each honest party’s triple are “good”, since they
will be correctly t-shared and the triple will be a random multiplication triple. For a corrupted party, none of
the above guarantees are provided. Assuming that (f (i), g(i), h(i)) is a good triple, it can be easily verified if
(X(αi),Y(αi),Z(αi)) is a multiplication triple by computing the sharing of X(αi)Y(αi) from the sharing of X(αi)
and Y(αi) by using the Beaver’s technique with the shared dummy triple (f (i), g(i), h(i)), followed by publicly
checking if the difference sharing of X(αi)Y(αi) and Z(αi) is the sharing of 0. If the checking passes then
(X(αi),Y(αi),Z(αi)) can be concluded as a multiplication triple. Further if Pi is honest then the verification leaks
nothing more about (X(αi),Y(αi),Z(αi)) due to the dummy multiplication triple (f (i), g(i), h(i)). If the checking
fails, then the sharing of (X(αi),Y(αi),Z(αi)) are publicly reconstructed for its public verification. Note that
in such a case, either Pi or D must be corrupted and thus the privacy of the triple is lost already. However, if
(X(αi),Y(αi),Z(αi)) is proven to be a non-multiplication triple then D is definitely corrupted in which case the
protocol can be halted after outputting t

2 default sharing of multiplication triples.
When the shared triple (f (i), g(i), h(i)) is not a good triple due to the reason that it is a non-multiplication

triple (but t-shared correctly), the checking of the corresponding multiplication triple (X(αi),Y(αi),Z(αi)) might
fail leading to its public reconstruction and verification. But in this case Pi is surely corrupted and thus loosing
the privacy of the triple does not matter. Furthermore, the public verification of the multiplication triple will be
successful for an honest D, implying that an honest D can not be disqualified. The case when the shared triple
(f (i), g(i), h(i)) is not a good triple due to the reason that it is not t-shared correctly is more intricate to handle.
The problem might be during the reconstructions of the values while applying the Beaver’s technique, as they may
not be t-shared. We solve this problem by using a “variant” of OEC that concludes the reconstructed value upon
receiving shares from any 3t + 1 parties without further waiting. This however, might cause different parties to
reconstruct different values. Therefore an ABA protocol is run to reach agreement and then continue with the
agreed value. We note that this does not alter the properties claimed before for the case when (f (i), g(i), h(i)) is a
good triple and correctly t-shared. The reason is that the parties will implicitly have a pre-agreement on the correct
reconstructed value prior to the execution of ABA and by the property of ABA the pre-agreement is maintained.

Now combining the protocol HybTripleSh with the the triple extraction protocol TripExt, we get an error-free
protocol HybPrePro for the preprocessing phase, which can generate t-sharing of random multiplication triples,
without any error. In the protocol HybPrePro, instead of generating cM + cR random multiplication triples, we
will generate cM + cR + cI(t+ 1) random multiplication triples. Then by using the additional cI(t+ 1) sharings,
we enforce “input provision” from all the n parties by using the method of [4]. Note that now the preprocessing
phase protocol and the input phase protocol start parallely, so that both can use the first synchronous round. While
the preprocessing phase protocol uses it for the error-free generation of the triples, the input phase protocol uses it
to get the inputs from all the n parties. As the values shared by the parties in these two protocols are independent,
this will not cause any problem. Finally, the protocol CircEval is used for the computation phase. Thus we get a
perfectly secure AMPC protocol called HybridAMPC, whose properties are stated in Theorem 8.1.

Theorem 8.1. Let f : FcI → Fn be a publicly known function expressed as an arithmetic circuit C over a finite
field F, where |F| > 2n, consisting of cI , cO, cM and cR number of input, output, multiplication and random
gates respectively. Given that the first communication round is a synchronous round, protocol HybridAMPC is
a perfectly secure protocol to securely compute f , for every possible Adv and for every possible scheduler. The
protocol requires a private communication ofO((cO + cM + cR)n+ cIn

2) and broadcast ofO(n3) elements from
F, along with two invocations to ACS and n2 invocations to ABA.
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[16] I. Damgård, Y. Ishai, and M. Krøigaard. Perfectly secure multiparty computation and the computational
overhead of cryptography. In H. Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May
30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 445–465. Springer,
2010.

[17] I. Damgård, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith. Scalable multiparty computation with nearly
optimal work and resilience. In D. Wagner, editor, Advances in Cryptology - CRYPTO 2008, 28th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, volume
5157 of Lecture Notes in Computer Science, pages 241–261. Springer, 2008.
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A Known Protocols

A.1 Private Reconstruction of a d-shared Value using OEC [7, 29]

Let v be a value which is d-shared among a set of parties P ⊆ P , where d < |P| − 2t. The goal is to make some
party, say PR, to reconstruct the value v robustly. In the synchronous setting, this can be achieved by asking every
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party in P to send its share of v to PR, who can apply the Reed-Solomon (RS) error correction [27] algorithm on
the received shares to reconstruct the value. Given the condition that d < (|P| − 2t), the reconstruction will be
robust, even if at most t corrupted parties in P send incorrect or no shares. In an asynchronous setting, achieving
the same requires a bit of trick as explained in the OEC protocol of [13].

The intuition behind the OEC is that PR keeps waiting till it receives d+ t+ 1 shares which are d-consistent.
This step requires applying the RS error correction algorithm repeatedly. Let RSDec(d, r, I) denote an RS error
correction procedure, which takes as input a set I of shares (contains possibly some incorrect shares) of a d-shared
value (that we would like to reconstruct) and outputs a polynomial of degree at most d, by correcting at most r
errors (incorrect shares) in I. Coding theory [27] says that RSDec can correct upto r errors in I and correctly
output the original polynomial provided that |I| ≥ d + 2r + 1. There are several efficient implementations of
RSDec (for example, the Berlekamp-Welch algorithm [27]). Once PR receives d+ t+ 1 consistent shares that lie
on a unique polynomial p(·) (returned by RSDec) of degree at most d, then PR outputs p(0) as v. The correctness
follows from the fact that at least d + 1 shares out of the d + t + 1 consistent shares are from the honest parties
in P and those d + 1 shares uniquely define the original polynomial p(·) implying that p(·) = p(·). Note that
the corrupted parties in P may send incorrect shares to PR or may not send any value. But the shares of at least
|P|−t ≥ (d+t+1) honest parties in the set P are d-consistent and they will eventually reach to PR. As mentioned
in [7, 29], the above procedure is nothing but applying the RS error correction algorithm in an “online” fashion.

The above steps are formally described in the protocol OEC presented in Fig. 5. The current description is
inspired from [13] (skipping several other formal details).

Figure 5: Protocol OEC.
OEC(PR, d, [v]

P
d )

1. The following code is executed by every party Pi ∈ P:

• Send the share vi of v to the party PR and terminate.

2. For r = 0, . . . , t, party PR executes the following code during the iteration r:

(a) LetW denote the set of parties in P from whom PR has received the shares and Ir denote the shares received from
the parties inW , whenW contains exactly d+ t+ 1 + r parties.

(b) Wait until |W| ≥ d+ t+ 1+ r. Execute RSDec(d, r, Ir). If no polynomial of degree at most d is obtained at the end
of RSDec, then skip the next step and proceed to the next iteration. Otherwise, let pr(·) be the polynomial of degree at
most d obtained at the end of RSDec.

(c) If for at least d+ t+1 shares vi ∈ Ir it holds that pr(αi) = vi, then output pr(·) and pr(0) and terminate. Otherwise,
proceed to the next iteration.

The properties of the protocol OEC are stated in Theorem A.1.

Theorem A.1. Given [v]Pd for P ⊆ P and d < |P| − 2t, let the sharing is done using polynomial p(·) of degree at
most d. Then for every possible Adv and for every possible scheduler, protocol OEC achieves:

(1) TERMINATION: Every honest party in P will eventually terminate the protocol. Moreover, if PR is honest then
PR will also eventually terminate the protocol. (2) CORRECTNESS: Party PR will output p(·) and v. (3) PRIVACY:
If PR is honest then Adv obtains no additional information about v. (4) COMMUNICATION COMPLEXITY: The
protocol requires a private communication of O(n) elements from F.

PROOF: The TERMINATION property is argued as follows. The honest parties in P will terminate the protocol
trivially after sending their shares of v to PR. We now argue that (an honest) PR will terminate the protocol as
well. Let Adv corrupts r̂ parties in P , where r̂ ≤ t. Further assume r̂1 corrupted parties send wrong values and
r̂2 corrupted parties send nothing ever, subject to r̂1 + r̂2 = r̂. Consider the (t − r̂2)th iteration; since r̂2 parties
in P never send any value, PR will receive d+ t+ 1 + t− r̂2 distinct values on the polynomial p(·), of which r̂1
are corrupted. Since |It−r̂2 | = d+ t+ 1 + t− r̂2 ≥ d+ 2r̂1 + 1, the algorithm RSDec will correct r̂1 errors and
will return pt−r̂2(·) = p(·) during the (t − r̂2)th iteration. Therefore the protocol will terminate at the latest after
(t− r̂2)th iteration.
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To argue CORRECTNESS, assume that the protocol terminates during the rth iteration and PR outputs p̄r(0)
such that the polynomial p̄r(·) is consistent with d+ t+ 1 shares from Ir. To prove the correctness, we now show
that p̄r(·) = p(·). However, the equality follows from the fact that at least d+ 1 shares in Ir belong to the honest
parties and thus they lie on p(·) as well. In other words, these d + 1 shares are the common points of the two
polynomials which are of degree at most d.

The PRIVACY is argued as follows. It is easy to see that if PR is honest, then Adv gets no additional information
about v. Since the (honest) parties in P privately send their shares to PR, no additional information about v or the
values of p(·) is revealed to Adv during OEC.

In the protocol, each party in P privately sends its share to PR, causing a private communication of O(n)
elements from F. 2

A.2 Batch Public Reconstruction of Several d-shared Values

Let u(1), . . . , u(t+1) be d-shared among a set of parties P ⊆ P , where d < |P| − 2t; i.e., [u(1)]Pd , . . . , [u
(t+1)]Pd

is available. The goal is to make every party in P to reconstruct u(1), . . . , u(t+1), such that the protocol requires a
private communication of O(n2) (and no broadcast communication). Protocol BatRecPubl uses the idea of [18]
to solve this problem and is presented in Fig. 6.

Figure 6: Protocol BatRecPubl for the public reconstruction of t+ 1 d-shared Values.
BatRecPubl(P, d, [u(1)]Pd , . . . , [u

(t+1)]Pd )

Let u(x) =
∑t+1
i=1 u

(i)xi−1 be the polynomial of degree at most t and v(i) = u(αi) for i ∈ [n]. Then we have
[u(0)]Pt = (v(1), . . . , v(n)).

1. For each j ∈ [n], the parties in P (locally) compute [v(j)]Pd as:

[v(j)]Pd = [u(1)]Pd + αj · [u(2)]Pd + α2
j · [u(3)]Pd + . . .+ αtj · [u(t+1)]Pd .

2. For each i ∈ [n], party Pi and the parties in P execute OEC(Pi, d, [v
(i)]Pd ) to enable Pi to privately reconstruct v(i).

3. For each i ∈ [n], party Pi executes the following code:

(a) Execute an instance OEC(Pi, t, [u(0)]
P
t ) to reconstruct the polynomial u(x). For each j ∈ [n], participate in the

instance OEC(Pj , t, [u(0)]
P
t ) to enable the party Pj to reconstruct the polynomial u(x).

(b) On reconstructing the polynomial u(x) at the end of the instance OEC(Pi, t, [u(0)]
P
t ), output the t+ 1 coefficients of

u(x) and terminate.

The properties of the protocol BatRecPubl are stated in Theorem A.2.

Theorem A.2. Given [u(1)]Pd , . . . , [u
(t+1)]Pd for P ⊆ P and d < |P| − 2t, for every possible Adv and for every

possible scheduler, protocol BatRecPubl achieves:

(1) TERMINATION: Every honest party in P will eventually complete the protocol. (2) CORRECTNESS: Every
honest party in P will output u(1), . . . , u(t+1). (3) COMMUNICATION COMPLEXITY: The protocol requires a
private communication of O(n2) elements from F.

PROOF: The TERMINATION property of the protocol follows from the termination property of OEC (Theorem
A.1). For CORRECTNESS, we note that the correctness property of OEC (Theorem A.1) implies that each hon-
est party Pi ∈ P will eventually reconstruct v(i) at the end of the instance OEC(Pi, d, [v

(i)]Pd ). Moreover,
(v(1), . . . , v(n)) = [u(0)]Pt ; so from the correctness property of OEC, each honest party Pi will output the polyno-
mial u(x) at the end of OEC(Pi, t, [u(0)]Pt ) and hence will output u(1), . . . , u(t+1), which are the coefficients of
u(x). The COMMUNICATION COMPLEXITY follows from the communication complexity of OEC (Theorem A.1)
and the fact that 2n instances of OEC are executed. 2

Unlike OEC that enables the reconstruction of the polynomial used for the given input sharing, protocol BatRecPubl
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allows to reconstruct only the d-shared values and not the individual polynomials that are used for the sharings. We
further note that the above mentioned property of OEC is instrumental in the correctness of BatRecPubl, since the
entire polynomial u(x) is required to be reconstructed in BatRecPubl in order to output the coefficients of u(x).

A.3 Batch Multiplication of ` Pairs of t-shared Values using Beaver’s Technique

Protocol BatchBeaver is presented in Fig. 7.

Figure 7: Protocol to perform batch multiplication of ` pairs of t-shared values where ` ≥ t+ 1.
Protocol BatchBeaver({([x(i)]t, [y(i)]t, [a(i)]t, [b(i)]t, [c(i)]t)}i∈[`])

1. For each i ∈ [`], the parties in P locally compute [e(i)]t and [d(i)]t, where [e(i)]t = [x(i)]t − [a(i)]t = [x(i) − a(i)]t and
[d(i)]t = [y(i)]t − [b(i)]t = [y(i) − b(i)]t.

2. The parties execute d 2`
t+1
e instances of BatRecPubl and publicly reconstructa{d(i), e(i)}i∈[`]. If ` is not an exact multiple

of t+ 1, some default sharings are added to make ` exact multiple of t+ 1.

3. For each i ∈ [`], the parties in P locally compute [x(i)y(i)]t = d(i)e(i) + e(i)[b(i)]t + d(i)[a(i)]t + [c(i)]t and terminate.

a A single instance of BatRecPubl can reconstruct t + 1 values. To reconstruct 2` values, d 2`
t+1
e instances of BatRecPubl are

required.

We now prove Theorem 3.1 (for the theorem statement see Sec. 3).

Proof of Theorem 3.1: The TERMINATION property follows from the termination property of BatRecPubl. The
CORRECTNESS follows from the fact that for each i ∈ [`], we have x(i)y(i) = ((x(i) − a(i)) + a(i))((y(i) − b(i)) +
b(i)) = d(i)e(i) + e(i)b(i) + d(i)a(i) + c(i), where e(i) = x(i) − a(i) and d(i) = y(i) − b(i). The PRIVACY is
argued as follows: the only step where the parties communicate is during the reconstruction of d(i)s and e(i)s.
Now e(i) = x(i) − a(i) and the fact that a(i) is random and unknown to Adv implies that even after learning e(i),
the value x(i) remains as secure as it was before from the view point of Adv. Similarly, as b(i) is random, even
after learning d(i), the value y(i) remains as secure as before from the view point of Adv. This proves the privacy
property. The COMMUNICATION COMPLEXITY follows from the communication complexity of BatRecPubl and
the fact that 2d `

t+1e instances of BatRecPubl are executed in total and (t+ 1) = Θ(n). 2

A.4 Agreement on a Common Set (ACS)

Protocol ACS is a well known protocol to allow the parties to agree on a common set of n − t parties, say Com,
where each party in Com satisfies a “property” Q, where Q has the following characteristics:

1. Every honest party will satisfy Q eventually, while a corrupted party may or may not choose to satisfy Q.

2. If some honest party Pi ∈ P finds some (probably corrupted) party Pj ∈ P to satisfy Q, then every other
honest party in P will eventually find Pj to satisfy Q.

Protocol ACS is presented in Fig. 8.
The properties of the protocol ACS are stated in Theorem A.3.

Theorem A.3 ([7]). LetQ be a property satisfying the above described conditions. Then for every possible Adv and
for every possible scheduler, protocol ACS achieves:
(1) TERMINATION: All the honest parties terminate the protocol almost surely (i.e. with probability 1). (2) COR-
RECTNESS: Every honest party will output a set of n − t parties Com such that every party in Com satisfies the
property Q eventually. (3) COMMUNICATION COMPLEXITY: The protocol requires a private communication of
O(poly(n)).
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Figure 8: Protocol for agreement on a common set of parties satisfying some property Q.

Protocol ACS

CODE FOR THE PARTY Pi — Every party in P executes this code:

1. For each Pj ∈ P such thatQ(j) = 1 (i.e. Pj satisfies the propertyQ), participate in ABAj with input 1. Here for j ∈ [n],
ABAj denotes the instance of an ABA protocol executed for Pj ∈ P to decide whether Pj will be in the common set.

2. Upon terminating (n− t) instances of ABA with output 1, enter input 0 to all other instances of ABA, for which you have
not entered a value yet.

3. Upon terminating all the n instances of ABA, let your SubSeti be the set of all indices j for which ABAj had output 1.

4. Set Com to be the set of parties corresponding to the indices in SubSeti, output Com and terminate.

A.5 Asynchronous Broadcast

We recall the Bracha’s asynchronous broadcast protocol from [13] and present it in Fig. 9.

Figure 9: Bracha’s asynchronous broadcast protocol with n = 3t+ 1 parties.

Protocol A-Cast

CODE FOR THE SENDER Sen (WITH INPUT m) — only Sen executes this code:

1. Send the message (MSG,m) privately to all the parties.

CODE FOR THE PARTY Pi — every party in P executes this code:

1. Upon receiving a message (MSG,m) from Sen, send the message (ECHO,m) privately to all the parties.

2. Upon receiving (n−t) messages (ECHO,m?) that agree on the value ofm?, send the message (READY,m?) privately
to all the parties.

3. Upon receiving (t + 1) messages (READY,m?) that agree on the value of m?, send the message (READY,m?)
privately to all the parties.

4. Upon receiving (n− t) messages (READY,m?) that agree on the value of m?, send the message (OK,m?) privately
to all the parties, output m? and terminate.

The properties of the protocol are stated in Theorem A.4.

Theorem A.4 ([13]). Let Sen ∈ P has a message m of size `, which it wants to reliably send to all the parties in
P . Then for every possible Adv and every possible scheduler, protocol A-Cast achieves:

(1) TERMINATION: If Sen is honest then then all the honest parties eventually terminate. Moreover, even if Sen is
corrupted and some honest party terminates, then all the honest parties eventually terminate. (2) CORRECTNESS:
All the honest parties upon terminating outputm?. Moreover, if Sen is honest thenm? = m. (3) COMMUNICATION

COMPLEXITY: The protocol requires a private communication of O(n2`).

B Sharing Protocol Sh and its Properties

In this section, we first recall the sharing protocol of the perfectly secure AVSS scheme of [28, 29]. Then we
present the protocol Sh with the required modification and extension. We finally discuss how to share ` values
where ` ≥ t+ 1 and keep the broadcast communication independent of `.
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B.1 AVSS Protocol of [28, 29] for 2t-sharing a Single Value

The goal of the sharing protocol of the AVSS scheme of [28, 29] is to enable D to 2t-share (and not t-share) a secret
s and is divided into three stages. The first stage is the distribution stage, where D selects a bi-variate polynomial
F (x, y) of different degrees in x and y; namely the degree of x is at most 2t and the degree of y is at most
t. We call such a polynomial a bi-variate polynomial of degree-(2t, t). The polynomial F (x, y) is an otherwise
random polynomial except that F (0, 0) = s. The dealer then hands the ith row polynomial fi(x) of degree at

most 2t and the ith column polynomial gi(y) of degree at most t to the party Pi, where fi(x)
def
= F (x, αi) and

gi(y)
def
= F (αi, y). The second stage is the verification stage, where the parties interact and verify that there

exists a set of 3t+ 1 parties called CORE and a bi-variate polynomial of degree-(2t, t), say F ′(x, y), such that the
following holds:

• Every (honest) party Pi in CORE has a row polynomial, say f ′i(x), of degree at most 2t and a column
polynomial, say g′i(y), of degree at most t, such that f ′i(x) = F ′(x, αi) and g′i(y) = F ′(αi, y) holds. We
often say in this case that the row and column polynomials are consistent with F ′(x, y).

• If D is honest then F ′(x, y) = F (x, y) and hence f ′i(x) = fi(x) and g′i(y) = gi(y) holds.

The last stage called completion stage ensures that even the (honest) parties outside the CORE possess their re-
spective column polynomial, consistent with F ′(x, y); i.e. every Pi ∈ P possesses g′i(y), where g′i(y) = F ′(αi, y).
Once this is done, we say that D has committed the polynomial F ′(x, y) and the secret s′, where s′ = F ′(0, 0).
Now s′ is 2t-shared through the polynomial f ′0(x) with f ′0(x) = F ′(x, 0) of degree at most 2t and every party
Pi will have its share s′i of s′, where s′i = f ′0(αi) = g′i(0). For an honest D, we have s′ = s. Furthermore, the
privacy of the 2t-sharing of s follows from the fact that the view of Adv in the protocol leaves (t + 1) “degree of
freedom” in F (x, y). Informally this is because (t + 1)(2t + 1) distinct points are required to know F (x, y), but
only t(2t + 1) + t distinct points are revealed to Adv through the t row and column polynomials. We now recall
the sharing protocol of AVSS scheme of [29, 28] in Fig. 10. Prior to that, we need to recall the following definition
and algorithm presented originally in [13, 7].

Definition B.1 ((n, t)-star[13, 7]). Let G be an undirected graph with the n parties in P as its vertex set. We say
that a pair (C,D) of sets with C ⊆ D ⊆ P is an (n, t)-star in G, if the following holds:

1. |C| ≥ n− 2t;

2. |D| ≥ n− t;

3. For every Pj ∈ C and every Pk ∈ D the edge (Pj , Pk) exists in G.

In [7], the authors have presented an elegant and efficient algorithm for finding an (n, t)-star, provided the graph
contains a clique of size n − t. The algorithm, called FindStar outputs either an (n, t)-star or the message
star-Not-Found in polynomial time. Whenever the input graph contains a clique of size n−t, FindStar always
outputs an (n, t)-star in the graph.

B.2 Protocol Sh for t-sharing t+ 1 Values

The protocol Sh that creates t-sharing of secrets in ~S = (s(1), . . . , s(t+1)) is obtained by making the following
modification in the first step of the distribution stage of the protocol presented in Figure 10. Specifically, D now
embeds t+ 1 secrets from ~S in the polynomial F (x, y) as follows:

– D selects a random bivariate polynomialF (x, y) of degree-(2t, t) over F, such thatF (βl, 0) = s(l), for l ∈ [t+1].

Additionally, in the completion stage, we add the following step after the step 1 to enable every party Pi to compute
f ′i(x):
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Figure 10: The sharing protocol of the AVSS of [28, 29].
Distribution Stage

The following code is executed only by D:

1. On having a secret s, select a random bivariate polynomial F (x, y) of degree-(2t, t) over F, such that F (0, 0) = s. Let

fi(x)
def
= F (x, αi) and gi(y)

def
= F (αi, y), for i ∈ [n].

2. For every i ∈ [n], send the row polynomial fi(x) and the column polynomial gi(y) to the party Pi and terminate.

Verification Stage

i. CODE FOR Pi (FOR PAIR-WISE CONSISTENCY CHECKING): Every party in P (including D) executes the following code.

1. Wait to receive from D a row polynomial, say f ′i(x), and a column polynomial, say g′i(y), of degree at most 2t and t

respectively. Upon receiving, send f ′ij and g′ij to the party Pj , for every j ∈ [n], where f ′ij
def
= f ′i(αj) and g′ij

def
= g′i(αj).

2. Upon receiving f ′ji and g′ji from the party Pj , check if f ′i(αj)
?
= g′ji and g′i(αj)

?
= f ′ji. If both the equalities hold, then

broadcast the message OK(Pi, Pj).

3. Construct the undirected consistency graph Gi with P as the vertex set. Add an edge (Pj , Pk) in Gi upon receiving the
message OK(Pk, Pj) and OK(Pj , Pk) from the broadcast of Pk and Pj respectively.

ii. CODE FOR D (FOR GENERATING CORE). Only D executes the following code: Let GD be the consistency graph of D.

1. After every new receipt of some OK(?, ?) message, update GD. If a new edge is added to GD, then execute FindStar on
GD. Let there are α distinct (n, t)-stars that are found in the past, from different executions of FindStar, where α ≥ 0.

(a) If an (n, t)-star is found from the current execution of FindStar that is distinct from all the previously obtained α
(n, t)-stars, do the following:

i. Call the new (n, t)-star as (Cα+1,Dα+1).
ii. Construct a set Fα+1 and add Pj to Fα+1 if Pj has at least 2t+ 1 neighbours from the set Cα+1 in GD.

iii. Construct a set Eα+1 and add Pk to Eα+1 if Pk has at least 3t+ 1 neighbours from the set Fα+1 in GD.
iv. For each β ∈ [α], update the existing Fβ and Eβ sets (constructed earlier) as follows:

A. Add Pj to Fβ , if Pj 6∈ Fβ and Pj has now at least 2t+ 1 neighbours from the set Cβ in GD.
B. Add Pk to Eβ , if Pk 6∈ Eβ and Pk has now at least 3t+ 1 neighbours from the set Fβ in GD.

(b) If an (n, t)-star that has been already found in the past is obtained from the current execution of FindStar, then
execute the steps (a).iv(A-B) to update the existing Fβs and Eβs for β ∈ [α].

Let (Eγ ,Fγ) be the first pair among the generated (Eβ ,Fβ)s, such that |Eγ | ≥ 3t + 1 and |Fγ | ≥ 3t + 1. Assign
CORE = Eγ and broadcast ((Cγ ,Dγ), (Eγ ,Fγ)).

iii. CODE FOR Pi (FOR VERIFYING CORE): Every party in P (including D) executes the following code.

1. Wait to receive ((Cγ ,Dγ), (Eγ ,Fγ)) from the broadcast of D, such that |Eγ | ≥ 3t+ 1 and |Fγ | ≥ 3t+ 1.

2. Wait until (Cγ ,Dγ) becomes an (n, t)-star in the consistency graph Gi. For this, wait to receive the corresponding OK
messages from the broadcast of the parties in Cγ and Dγ .

3. Wait till every Pj ∈ Fγ has at least 2t + 1 neighbours from Cγ and every Pk ∈ Eγ has at least 3t + 1 neighbours from
Fγ in Gi.

Once the above conditions are satisfied, set CORE = Eγ and terminate.

Completion Stage

Let F ′(x, y) be the bi-variate polynomial of degree-(2t, t), committed by D to the parties in CORE, such that the row and

column polynomials of the parties in CORE are consistent with F ′(x, y). For every Pi 6∈ CORE, let f ′i(x)
def
= F ′(x, αi) and

g′i(y)
def
= F ′(αi, y). The parties in P execute the following code to have the secret F ′(0, 0) 2t-shared though the polynomial

f ′0(x), where f ′0(x) = F ′(x, 0):

1. For every Pi 6∈ CORE, the parties in CORE and party Pi execute OEC(Pi, t, [g
′
i(0)]

CORE
t ), to enable Pi to reconstruct

the polynomial g′i(y); for this every party Pj ∈ CORE sends f ′j(αi) to Pi, where Pj holds the row polynomial f ′j(x).

2. Party Pi outputs g′i(0) (which is the same as f ′0(αi)) as his share of the secret F ′(0, 0) and terminate.
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– For every Pi 6∈ CORE, the parties in P and party Pi execute OEC(Pi, 2t, [f
′
i(0)]P2t), to enable Pi to privately

reconstruct the polynomial f ′i(x); for this every party Pj ∈ P sends g′j(αi) to Pi, where Pj holds the column
polynomial g′j(y).

Finally, we modify the last step of the completion stage as follows to enable the parties to output the shares
corresponding to the t-sharing of the secrets:

– For each i ∈ [n], party Pi outputs his share ~S′i, where ~S′i = (f ′i(β1), . . . , f
′
i(βt+1)) and terminate.

We appeal to the proof of the properties of the sharing protocol of the perfectly secure AVSS scheme of [29, 28]
for proving the properties of our protocol Sh, stated in Theorem 4.1 (see Section 4 for the theorem statement).

Proof of Theorem 4.1:

TERMINATION: From the termination property of the AVSS scheme of [29, 28], it follows that if D is honest
then the parties will eventually complete the sharing phase; moreover even if D is corrupted and some honest party
completes the sharing phase, then every other honest party will also eventually do the same. Now the completion
of the sharing phase of the AVSS scheme of [29, 28] implies that every party in P will eventually have its column
polynomial. It now follows by the property of OEC that every honest party will eventually compute its row
polynomial f ′i(x) since each f ′i(0) is already 2t-shared among the parties via the column polynomials. After the
computation of row polynomial, the parties output their shares of the secrets and terminate the protocol. This
completes the proof of the termination property.

CORRECTNESS: The correctness property of the AVSS scheme of [29, 28] ensures that if some honest party
terminates the sharing protocol, then there exists a unique bi-variate polynomial, say F ′(x, y), of degree-(2t, t),
such that every honest party Pi ∈ P has the column polynomial g′i(y) of degree at most t, where g′i(y) = F ′(αi, y);
moreover if D is honest then F ′(x, y) = F (x, y) and hence g′i(y) = gi(y). Our Sh protocol ensure the same. We
define D’s committed secret in Sh as ~S′ = (s′(1), . . . , s′(t+1)), where s′(l) is the constant term of the polynomial
g′βl(y) of degree at most t and g′βl(y) = F ′(βl, y). By the additional step added in the protocol Sh, every party Pi
eventually computes its row polynomial f ′i(x) of degree at most 2t, where f ′i(x) = F ′(x, αi). The correctness of
this step follows by the correctness of the OEC protocol. Now it is easy to see that the ith share s′(l)i = g′βl(αi) of
the committed secret s′(l) is the same as F ′(βl, αi) and thus f ′i(βl). So every party Pi can compute its shares of
the committed secrets by evaluating f ′i(x) at x = β1, . . . , βt+1 and hence ~S′ will be t-shared. Moreover, it is easy
to see that if D is honest then ~S′ = ~S will hold. This completes the proof of the correctness.

PRIVACY: For privacy, we consider an honest D. Without loss of generality, let P1, . . . , Pt be under the con-
trol of Adv. It is easy to see that in the protocol Sh, Adv will obtain t row and column polynomials, namely
f1(x), . . . , ft(x), g1(y), . . . , gt(y). Each row polynomial is of degree at most 2t and provides 2t+1 distinct points
on F (x, y). On the other hand, each column polynomial is of degree at most t and can provide t+1 distinct points;
however out of these t + 1 points, t points are the common points with the row polynomials and already counted
in the view of Adv. So each column polynomial adds one new point on F (x, y) to the view of Adv. This in total
provides Adv with t(2t + 1) + t distinct points on F (x, y). Moreover, the points F (βl, 0) for l ∈ [t + 1], which
are the secrets in ~S are not distributed in the protocol.

Now F (x, y) is of degree-(2t, t) and it requires the knowledge of (t+ 1)(2t+ 1) distinct points on F (x, y) to
uniquely interpolate the polynomial; this gives (2t+1)(t+1)−t(2t+1)−t = t+1 degree of freedom for F (x, y).
More specifically, from the view point of the adversary, for every possible choice of the t + 1 secrets, there exists
a unique bi-variate polynomial of degree-(2t, t), which is consistent with the t+ 1 secrets (which constitute t+ 1
distinct points on the polynomial) and the t(2t+ 1) + t distinct points known to Adv in the protocol. This implies
that the information (namely the row and column polynomials) obtained by Adv is distributed independently of the
t+ 1 secrets.
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COMMUNICATION COMPLEXITY: The communication complexity directly follows from the communication
complexity analysis of the AVSS scheme of [29, 28]. 2

B.3 Sharing more than t+ 1 Values Together using Sh

If D wants to t-share ` secrets, where ` > t + 1, then it can form `
t+1 groups, each consisting of t + 1 secrets

(without loss of generality, we assume that ` is a multiple of t + 1) and execute an instance of Sh for each group.
This requires a private communication of O(n`) field elements, as t + 1 = Θ(n). To keep the total broadcast
communication independent of `, we follow the same trick as used in [29, 28] for keeping the broadcast commu-
nication independent of ` while generating 2t-sharing of ` secrets. We first note that the broadcast communication
occurs only in the verification stage of the protocol. We execute all instances of the Sh protocol (each handling t+1
secrets) in parallel so that each party broadcasts only when the pre-condition for the broadcast is satisfied in all the
Sh instances. Specifically, we ensure that the parties (locally) construct a single consistency graph for all instances
of Sh, instead of `

t+1 individual consistency graphs. For this, we ask every party Pi to broadcast the OK message
involving party Pj (namely the OK(Pi, Pj) message) only if the ith row polynomial is “pair-wise consistent” with
the jth column polynomial and the ith column polynomial is pair-wise consistent with the jth row polynomial in
all the `

t+1 instances of Sh. That is, Pi should check whether f ′i(αj)
?
= g′ji and g′i(αj)

?
= f ′ji holds in all the `

t+1
instances of Sh, before broadcasting the message OK(Pi, Pj). Now a single consistency graph is constructed for all
the `

t+1 instances and accordingly a single C,D, E and F set is broadcasted. The above trick keeps the broadcast
communication to be O(n2) for all the `

t+1 instances.

C Proof of Theorem 5.1

TERMINATION: This property follows from the termination property of BatchBeaver (see Theorem 3.1).

CORRECTNESS: By construction, it is ensured that the polynomials X(·),Y(·) and Z(·) are of degree 3t
2 ,

3t
2

and 3t respectively and X(αi) = x(i),Y(αi) = y(i) and Z(αi) = z(i) holds for i ∈ [3t + 1]. To argue the
second statement in the correctness property, we first show that if the input triples are multiplication triple then
Z(·) = X(·)Y(·) holds. For this, it is enough to show the multiplicative relation Z(αi) = X(αi)Y(αi), which is
the same as z(i) = x(i)y(i), holds for i ∈ [3t + 1]. For i ∈ [3t2 + 1], the relation z(i) = x(i)y(i) holds since we
have x(i) = x(i), y(i) = y(i), z(i) = z(i) and the triple (x(i), y(i), z(i)) is a multiplication triple by assumption. For
i ∈ [3t2 +2, 3t+1], we have z(i) = x(i)y(i) due to the correctness of the protocol BatchBeaver and the assumption
that the triples used in BatchBeaver, namely

{
(x(i), y(i), z(i))

}
i∈[ 3t

2
+2,3t+1]

are multiplication triples. Proving the

other way, that is, if Z(·) = X(·)Y(·) is true then all the input triples are multiplication triples is easy. Since
Z(·) = X(·)Y(·), it implies that z(i) = x(i)y(i) for i ∈ [3t + 1]. This trivially implies

{
(x(i), y(i), z(i))

}
i∈[ 3t

2
+1]

are multiplication triples. On the other hand, if some triple in
{

(x(i), y(i), z(i))
}
i∈[ 3t

2
+2,3t+1]

, say (x(j), y(j), z(j))

is not a multiplication triple, then (x(j),y(j), z(j)) is not a multiplication triple as well (by the correctness of the
Beaver’s technique), which is a contradiction.

PRIVACY: First note that if Adv knows more than 3t
2 input triples, then it knows all the three polynomials

completely. Now to prove the privacy, we show that if Adv knows the input triple (x(i), y(i), z(i)), then it also
knows the output triple (x(i),y(i), z(i)). If i ∈ [3t2 + 1], this follows trivially since (x(i),y(i), z(i)) is the same
as (x(i), y(i), z(i)). Else if i ∈ [3t2 + 2, 3t + 1], then Adv knows the t-sharing of (x(i), y(i), z(i)) which is used to
compute the t-sharing of z(i) from the t-sharing of x(i) and y(i). Since the values (x(i)−x(i)) and (y(i)− y(i)) are
disclosed during the computation of z(i), Adv knows x(i), y(i) and hence z(i). So we proved that the knowledge
of t′ input triples allows Adv to know t′ output triples. It now follows that Adv knows t′ points on the polynomials
X(·),Y(·) and Z(·).
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COMMUNICATION COMPLEXITY: The communication complexity follows from the fact that one instance of
BatchBeaver is invoked which requires a private communication of O(n2) elements from F. 2

D Properties of the Preprocessing Phase

D.1 Proof of Theorem 6.1

TERMINATION: We start with noting that D starts TripleSh by invoking an instance of Sh and the termination
property of the protocol Sh (see Theorem 4.1) implies that if D is honest, then the instance of Sh will terminate.
Once the instance of Sh is terminated, the remaining sub-protocols in TripleSh, namely the instance of Rand and
the instances of BatRecPubl will eventually terminate. So the honest parties will terminate the protocol TripleSh
when D is honest. On the other hand, if D is corrupted and some honest party has terminated the protocol TripleSh,
then it implies that the honest party has terminated all the sub-protocols in TripleSh, namely the instance of Sh, the
instance of Rand and the instances of BatRecPubl. The termination property of Sh (see Theorem 4.1) implies that
in this case, every other honest party will eventually terminate the instance of Sh too. Subsequently, all the other
sub-protocols, namely Rand and BatRecPubl will eventually terminate for each honest party. This proves that if
some honest party terminates TripleSh, then every other honest party will eventually terminate TripleSh.

CORRECTNESS: We first consider the easy case of an honest D. The correctness property of Sh (see Theorem 4.1)
implies that the triples in ~S and ~Ssac will be t-shared among the parties. Since the triples are indeed multiplication
triples, the condition γ(i) = 0 is true for every i ∈ [`] and any r. It thus follows that the multiplication triples in ~S
will be t-shared.

We next consider a corrupted D and assume that some honest party has terminated the protocol TripleSh.
This implies that it has terminated all the sub-protocols in TripleSh, including the instance of Sh. The correctness
property of the Sh protocol (see Theorem 4.1) implies that there exists triples, say ~S′ = {(x′(i), y′(i), z′(i))}i∈[`]
and ~S′sac = {(f ′(i), g′(i), h′(i))}i∈[`] that are t-shared among the parties. We next claim that if the ith triple in ~S′ is
not a multiplication triple for some i ∈ [`], then the parties will see that γ(i) 6= 0, except with probability at most
2
|F| and they will output the default publicly known t-sharing of `multiplication triples. So let the ith triple in ~S′ be

a non-multiplication triple. In this case, the condition r(z′(i) − x′(i)y′(i)) = (h′(i) − f ′(i)g′(i)) will be true if either
r = 0 or r = (h′(i)− f ′(i)g′(i))(z′(i)− x′(i)y′(i))−1. However, the challenge r is completely random (follows from
the property of Rand) and is known to the corrupted D only after the instance of Sh is completed. This implies that
the only way of ensuring that the condition r(z′(i) − x′(i)y′(i)) = (h′(i) − f ′(i)g′(i)) holds is by correctly guessing
the value of r, which can be done with probability at most 2

F . This completes the proof of correctness.

PRIVACY: We consider an honest D. In this case, the privacy property of the protocol Sh (see Theorem 4.1)
implies that the multiplication triples in ~S = {(x(i), y(i), z(i))}i∈[`] and ~Ssac = {(f (i), g(i), h(i))}i∈[`] are not
known to Adv till the end of Sh. We now fix an i ∈ [`] and show that the information obtained by Adv in the rest of
the protocol does not leak anything about the triple (x(i), y(i), z(i)), except the fact that it is a multiplication triple.
In TripleSh, ρ(i), γ(i) and σ(i) are publicly reconstructed. However, ρ(i) = rx(i) − f (i) provides no information
about x(i), as f (i) is random from the view point of Adv. Similarly, as g(i) is random from the view point of Adv,
learning σ(i) = y(i) − g(i) provides no information about y(i). Finally, the fact that γ(i) = 0 gives Adv no further
information about the triple except that it is a multiplication triple.

COMMUNICATION COMPLEXITY. We note that the instance of Sh invoked by D requires a private communi-
cation of O(n`) and broadcast communication of O(n2); this follows from the communication complexity of the
Sh protocol to share ` values, where ` ≥ t+1 (see Theorem 4.1 and Sec. 4.1). The instances of BatRecPubl will re-
quire a private communication ofO(n`) following the argument as follows: each instance of BatRecPubl requires
a private communication of O(n2) (see Theorem A.2) and TripleSh invokes 3d `

t+1e instances of BatRecPubl;
moreover t+ 1 = Θ(n). 2
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D.2 Proof of Theorem 6.2

Recall that for simplicity, although without loss of generality, while describing the protocol, we assumed Com to
contain the first 3t+ 1 parties. We follow the same assumption here to keep the proof simple.

TERMINATION: This property follows from the termination property of the protocol BatchBeaver (see Theorem
3.1).

CORRECTNESS: To argue correctness, we have to show that each triple in
{

(a(i,l),b(i,l), c(i,l))
}
l∈[`], i∈[ t

2
]

is a

correct multiplication triple and is t-shared. For the proof, we fix an l ∈ [`] and show that
{

(a(i,l),b(i,l), c(i,l)
)
}i∈[ t

2
]

is indeed a multiplication triple. Recall that a(i,l) = Xl(βi),b
(i,l) = Yl(βi) and c(i,l) = Zl(βi), for each i ∈ [ t2 ],

for three polynomials Xl(·),Yl(·) and Zl(·). To complete the proof, it is enough to show that the protocol ensures
the multiplicative relation Zl(·) = Xl(·)Yl(·) holds. However, this follows from the correctness property of the
triple transformation protocol TripTrans and the fact that Xl(·),Yl(·) and Zl(·) are computed from the 3t+1 triples{

(x(i,l), y(i,l), z(i,l)
)
}i∈[3t+1], all of which are multiplication triples.

PRIVACY: We fix l ∈ [`] and prove the privacy for the triples in {(a(i,l),b(i,l), c(i,l))}i∈[ t
2
]. Specifically, we show

that the view of the adversary in the protocol TripExt is distributed independently of the multiplication triples in
{(a(i,l),b(i,l), c(i,l))}i∈[ t

2
]. For this, we first claim that Adv learns at most t points on the polynomials Xl(·),Yl(·)

and Zl(·). However, this follows from the privacy property of the protocol TripTrans and the fact that at most t
input triples

{
(x(i,l), y(i,l), z(i,l)

)
}i∈[3t+1] which are used to compute Xl(·),Yl(·) and Zl(·) will be known to Adv.

Given the above claim, the proof goes as follows: since the degree of Xl(·) is at most 3t
2 , from the view point of

the adversary, for every possible choice of {a(i,l)}i∈[ t
2
], there exists a unique polynomial Xl(·) of degree at most

3t
2 , which will be consistent with the points {(βi,a(i,l))}i∈[ t

2
] and the t points from {(αi,x(i,l))}i∈[3t+1] known to

Adv. Thus {Xl(βi) = a(i,l)}i∈[ t
2
] will be random to Adv. The same argument allows us to claim that {b(i,l)}i∈[ t

2
]

and {c(i,l)}i∈[ t
2
] will be random to Adv subject to Zl(βi) = Xl(βi)Yl(βi).

COMMUNICATION COMPLEXITY: For communication complexity, we note that ` instances of the protocol
TripTrans are executed, where each instance incurs a private communication of O(n2) elements from F. 2

D.3 Protocol PreProc and Proof of Theorem 6.3

Protocol PreProc is presented in Fig. 11.

Proof of Theorem 6.3:

TERMINATION: We first prove that the instance of ACS will terminate with an output consisting of 3t+1 parties.
The instances of TripleSh corresponding to at least 3t+ 1 honest parties in P will be eventually terminated by all
the honest parties. Now the termination of ACS follows from the termination property of the underlying Byzantine
agreement protocol. Given that ACS terminates with an output consisting of 3t+1 parties, the termination property
of TripExt (see Theorem 6.2) ensures that all the honest parties will terminate the protocol PreProc.

CORRECTNESS: It is easy to see that if the honest parties terminate PreProc then the output triples are indeed
t-shared. The correctness property of TripleSh ensures that the triples shared by the parties in Com are indeed
t-shared and the correctness property of TripExt ensures that its output triples are also t-shared. What remains
to be shown is that the output triples are multiplication triples. Here we note that except with probability at
most 2t

|F| , all the triples shared by the parties in Com are indeed multiplication triples (follows from the correctness
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Figure 11: An asynchronous protocol to generate t-sharing of cM + cR random multiplication triples.
Protocol PreProc

TRIPLE SHARING — For i ∈ [n], every party Pi executes the following code:

• Act as a dealer D and execute an instance of TripleSh to t-share ` random multiplication triples
{(x(i,l), y(i,l), z(i,l))}l∈[`], where ` = 2(cM+cR)

t
. Let this instance of TripleSh be denoted as TripleShi.

• For every j ∈ [n] participate in the instance TripleShj .

AGREEMENT ON A COMMON SET — For i ∈ [n], every party Pi executes the following code:

• Create an accumulative set Ci = ∅.
• Upon terminating the instance TripleShj , include Pj in Ci.
• Participate in an instance of ACS with the accumulative set Ci as your input.

• Wait to terminate the instance of ACS with an output Com consisting of 3t+ 1 parties.

TRIPLE EXTRACTION AND TERMINATION — The parties in P execute the following code:

• The parties execute TripExt(Com, {([x(i,l)]i, [y(i,l)]t, [z(i,l)]t)}l∈[`], Pi∈Com), output sharing of cM + cR triples
{([a(i,l)]t, [b

(i,l)]t, [c
(i,l)]t)}l∈[`], i∈[ t

2
], where ` = 2(cM+cR)

t
and terminate.

property of TripleSh and the union bound). Given this pre-condition, it follows from the correctness of the protocol
TripExt that the output triples are indeed multiplication triples.

PRIVACY: Given that there will be at least 2t + 1 honest parties in the set Com and the multiplication triples
shared by the honest parties in Com are random and unknown to Adv, the privacy property of TripExt ensures that
the output triples in the protocol PreProc are random and unknown to Adv.

COMMUNICATION COMPLEXITY: By substituting ` = 2(cM+cR)
t and t = Θ(n) in Theorem 6.1, we find that a

single instance of TripleSh in PreProc will require a private communication ofO(cM+cR) and broadcast ofO(n2)
elements from F. So n instances of TripleSh will require private communication ofO((cM+cR)n) and broadcast of
O(n3). Similarly substituting ` = 2(cM+cR)

t in Theorem 6.2, we find that the instance of TripExt in PreProc will
require a private communication of O((cM + cR)n). So overall, PreProc requires a private communication of
O((cM + cR)n) and broadcast of O(n3) elements from F. 2

E The AMPC Protocol and Its Phases

E.1 The Input phase

The steps for the protocol Input are given in Fig. 12. Recall that we assume that each party has ci inputs for the
computation, such that ci ≥ t+ 1 and c1 + . . .+ cn = cI , where cI is the number of input gates in the circuit.
The properties of the protocol Input are stated in Theorem E.1.

Theorem E.1. For every possible Adv and for every possible scheduler, protocol Input achieves:

1. TERMINATION: All the honest parties terminate the protocol with probability 1.

2. CORRECTNESS: Each honest party will output its shares corresponding to t-sharing of the inputs of the
parties in Com.

3. PRIVACY: The information obtained by Adv in the protocol is distributed independently of the inputs of the
honest parties in the set Com.
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Figure 12: Protocol for the input phase.
Protocol Input

1. INPUT SHARING — For i ∈ [n], every party Pi executes the following code:

• On having the input {x(i,`)}`∈[ci] where ci is the number of inputs from Pi for the computation, act as a dealer and
execute an instance of Sh to t-share {x(i,`)}`∈[ci]. Let this instance of Sh be denoted by Shi.

• For every j ∈ [n], participate in the instance Shj .

2. AGREEMENT ON A COMMON SET AND TERMINATION — For i ∈ [n], every party Pi executes the following code:

• Create an accumulative set Ci = ∅.
• On terminating the instance Shj , include Pj in Ci.
• Participate in an instance of ACS with the accumulative set Ci as your input.

• Wait to terminate the instance of ACS with an output Com consisting of 3t+ 1 parties.

• For every Pj ∈ Com output the shares obtained in the instance Shj and for every Pj 6∈ Com, output cj 0s as the shares
and terminate.

4. COMMUNICATION COMPLEXITY: The protocol incurs a private communication of O(cIn) and broadcast
communication of O(n3) elements from F and requires one invocation to ACS.

PROOF: TERMINATION: We first claim that the instance of ACS will eventually terminate for each honest party
(with probability 1) with an output consisting of 3t + 1 parties. This follows from the fact that there are 3t + 1
honest parties in P and the Sh instance dealt by each honest party will be terminated eventually. Now it is easy to
see that once the instance of ACS terminates, the parties will terminate the protocol Input.

CORRECTNESS: It follows from the correctness of Sh.

PRIVACY: The privacy property of the protocol Sh implies that the information obtained by Adv in the instances
of Sh executed by the honest parties (dealers) in Com is distributed independently of the values shared in those
instances. This implies the privacy property for the protocol Input.

COMMUNICATION COMPLEXITY: Assuming that every party Pi has ci inputs for the computation where ci ≥
t + 1, each instance of Sh requires a private communication of O(cin) and broadcast of O(n2) elements from F;
this follows from the communication complexity of the protocol Sh. So in total, protocol Input will incur a private
communication of O(cIn) and broadcast of O(n3), since c1 + . . .+ cn = cI . 2

E.2 The Computation phase

The computation phase is implemented by the protocol CircEval. The protocol works given t-sharing of cM + cR
random multiplication triples, say {([a(i)]t, [b(i)]t, [c

(i)]t)}i∈[cM+cR] and t-sharing of the inputs of the parties.
We assume that it is a common knowledge that the shared triple ([a(i)]t, [b

(i)]t, [c
(i)]t) is associated with the ith

multiplication gate in the circuit and the shared triple ([a(cM+i)]t, [b
(cM+i)]t, [c

(cM+i)]t) is associated with the ith
random gate in the circuit. Moreover, we evaluate7 t + 1 multiplication gates at once, assuming that they are
independent of each other. Protocol CircEval is presented in Fig. 13.
The properties of the protocol CircEval are stated in Theorem E.2.

Theorem E.2. Given t-sharings {([a(i)]t, [b(i)]t, [c
(i)]t)}i∈[cM+cR] of cM + cR random multiplication triples and

t-sharings of the inputs of the parties (for the computation), protocol CircEval achieves the following for every
possible Adv and every possible scheduler:

7Recall that evaluating a gate means to compute t-sharing of the output of the gate from t-sharing of the inputs of the gate.
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Figure 13: Protocol for evaluating the circuit using preprocessed multiplication triples.
Protocol CircEval({([a(i)]t, [b

(i)]t, [c
(i)]t)}i∈[cM+cR])

For all the gates in the circuit the (honest) parties in P do the following (depending upon the type of gate) and then terminate:

• ADDITION/LINEAR GATE: The parties locally apply the linear function on their respective shares of the inputs of the gate.

• RANDOM GATE: If this is the ith random gate in the circuit then the parties locally output their shares corresponding to the
sharing [a(cM+i)]t.

• MULTIPLICATION GATES: Up to t + 1 multiplication gates are processed simultane-
ously. Let ([x(1)]t, [y

(1)]t), . . . , ([x
(t+1)]t, [y

(t+1)]t) be the input sharings of the gates and
([a(1)]t, [b

(1)]t, [c
(1)]t), . . . , ([a

(t+1)]t, [b
(t+1)]t, [c

(t+1)]t) be the associated multiplication triples. The parties exe-
cute BatchBeaver({([x(i)]t, [y(i)]t, [a

(i)]t, [b
(i)]t, [c

(i)]t)}i∈[t+1]) to compute {[x(i)y(i)]t}i∈[t+1].

• OUTPUT GATE (OUTPUT [s]t TO PARTY PR): The parties execute OEC(PR, t, [s]t).

1. TERMINATION: All the honest parties eventually terminate the protocol.

2. CORRECTNESS: All the gates are evaluated correctly.

3. PRIVACY: For every gate in the circuit, the evaluation of the gate reveals no additional information to Adv.

4. COMMUNICATION COMPLEXITY: The protocol requires a private communication of O((cM + cO)n) ele-
ments from F.

PROOF: The correctness and termination property follows from the correctness and termination property of
BatchBeaver and OEC. For privacy, we see that the evaluation of random and linear gates require no commu-
nication among the parties. Moreover, for the multiplication gates, we use the protocol BatchBeaver by employing
the random multiplication triples from the preprocessing phase and so the privacy follows from the privacy property
of BatchBeaver. For communication complexity, we observe that each instance of BatchBeaver in CircEval re-
quires a private communication of O(n2) (follows by substituting ` = t + 1 in Theorem 3.1) and so evaluating
cM multiplication gates will require a private communication of O( cMt+1n

2) = O(cMn), as t + 1 = Θ(n). The
reconstruction of each output value requires a private communication ofO(n) (follows from the property of OEC).
2

E.3 The AMPC Protocol

Let f be a publicly known function over F, expressed as an arithmetic circuit C over F, consisting of cI , cO, cM
and cR number of input, output, multiplication and random gates respectively. Then the statistical AMPC protocol
AsynAMPC to securely compute the function f is given in Fig. 14.

Figure 14: The statistical AMPC protocol.
Protocol AsynAMPC(C, cI , cM , cR, cO)

The parties in P do the following and terminate:

1. Invoke PreProc to generate t-sharing of cM + cR random multiplication triples.

2. Invoke Input to generate the t-sharing of the inputs of the parties for the computation.

3. Invoke CircEval to evaluate the circuit C.

We now prove Theorem 7.1.

(Informal) Proof of Theorem 7.1: We first note that properties of the protocol PreProc imply that all the honest
parties will terminate the protocol PreProc and will output t-sharing of cM + cR random multiplication triples,
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except with probability 2t
|F| . Given this precondition, it is easy to see that each honest party will eventually terminate

Input and CircEval with correct outputs. Now if |F| ≥ 2t · 2κ, then 2t
|F| ≤ 2−κ and thus it follows that except with

error probability at most 2−κ, protocol TripleSh will satisfy the correctness property (of AMPC). The privacy
property follows from the privacy property of PreProc, Input and CircEval, while the communication complexity
follows from the communication complexity of PreProc, Input and CircEval. 2

F Error-free AMPC Protocol in the Hybrid Model

This section is organized as follows: we first discuss the preprocessing phase in the hybrid model, followed by the
input phase protocol and finally present the MPC protocol.

F.1 Error-free Preprocessing Phase

The error-free preprocessing phase protocol consists of two subprotocols: an error-free triple sharing protocol
HybTripleSh which allows a dealer D ∈ P to verifiably t-share multiplication triples, assuming the first communi-
cation round to be a synchronous round. The second subprotocol is the triple extraction protocol TripExt (used in
the asynchronous preprocessing phase protocol). Looking ahead, in our hybrid model protocol HybTripleSh, each
party will be asked to t-share a number of random multiplication triples in the synchronous round by using Shamir
secret sharing [33]. However no sanity check on the generated sharings is performed (also is not required for the
working of HybTripleSh). Such triples are said to be generated “non-verifiably” and might allow the corrupted
parties to do arbitrary sharings in place of t-sharings. By noting that any arbitrary distribution of values to the
honest parties in the name of sharing can be perceived as a d-sharing for an appropriate d ≤ 3t (since there are
3t+ 1 honest parties and the shares of these honest parties can define a polynomial of degree at most 3t), we refer
a sharing with an arbitrary degree below 3t + 1 as an arbitrary sharing and we denote such an arbitrary sharing
without specifying the subscript that denotes the degree of sharing; for example [v] instead of [v]d. Note that an
arbitrary sharing with degree at most t becomes a valid sharing. Looking ahead, if the corrupted parties perform
arbitrary sharing (instead of t-sharing) then this might lead to inputting arbitrary sharings to the protocols OEC,
BatRecPubl and BatchBeaver (which will be used in the hybrid protocol HybTripleSh), which may cause problem
for the termination. For such sharings, our goal is therefore to first modify the protocols OEC, BatRecPubl and
BatchBeaver so that they always terminate, even if the input sharings are not t-sharings. Furthermore, the modified
protocols guarantee the correctness property of OEC, BatRecPubl and BatchBeaver, respectively, when the inputs
sharings are valid t-sharing. The correctness property is therefore not desirable when the inputs are not t-sharing.
We next discuss how to obtain the modified protocols and note that a linear function applied on a set of arbitrary
sharings leads to arbitrary sharings.

• mOEC(PR, [v]): mOEC is obtained from OEC by modifying the steps for PR, the party that would like to
reconstruct the input sharing, as follows: party PR waits for the shares from any 3t+ 1 parties and includes
them in I. Then it applies RSDec(t, t, I). If a polynomial of degree at most t is obtained from RSDec, then
it outputs the same polynomial (and its constant term). Otherwise it outputs a default polynomial of degree
at most t (and its constant term). Now it is easy to note that (an honest) PR always terminates the protocol
(irrespective of the degree of sharing of v), since the 3t + 1 honest parties in P will send their shares to
PR. Furthermore, if the input sharing is a t-sharing, then clearly the output of PR in mOEC is the same
as it would be in the protocol OEC (with input [v]t); this follows from the property of RSDec. Note that
mOEC has the same communication complexity as that of OEC.

• mBatRecPubl(P, [u(1)], . . . , [u(t+1)]): mBatRecPubl is obtained by modifying BatRecPubl where each
instance of OEC is replaced by mOEC. The termination now follows from the termination of mOEC. Fur-
thermore, when the input sharings are t-sharings, then the output (of the honest parties) in mBatRecPubl will
be the same as it would be in the protocol BatRecPubl (with inputs [u(1)]t, . . . , [u

(t+1)]t), i.e. all the honest
parties will robustly reconstruct u(1), . . . , u(t+1). However, if all the input sharings are not t-sharings, then
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different (honest) parties may end up reconstructing different t+ 1 values, depending upon the output of the
instances of mOEC. The communication complexity of mBatRecPubl is the same as BatRecPubl.

• mBatchBeaver({([x(i)]t, [y(i)]t, [a(i)], [b(i)], [c(i)])}i∈[`]): it is obtained by modifying BatchBeaver, where
each instance of BatRecPubl is replaced by mBatRecPubl. We note that in mBatchBeaver, only the sharings
{([a(i)], [b(i)], [c(i)])}i∈[`] of the triples may be arbitrary (and possibly the triples may be non-multiplication
triples); the sharings of the pairs {([x(i)]t, [y(i)]t)}i∈[`] (whose product need to be computed) will be t-
sharings. The termination now follows from the termination of mBatRecPubl. Furthermore, when the
sharings {[a(i)], [b(i)], [c(i)])}i∈[`] are t-sharing of multiplication triples, then the output (of the honest parties)
in mBatchBeaver will be the same as it would be in the protocol BatchBeaver; i.e. the parties will output
{[x(i)y(i)]t}i∈[`]. Otherwise, the parties will output {[z(i)]}i∈[`], where each z(i) can be any arbitrary value.
The communication complexity of mBatchBeaver is the same as BatchBeaver.

We are now ready to present the error-free protocol HybTripleSh for triple sharing in the hybrid model.

F.1.1 The Error-free Protocol for Verifiably Sharing Multiplication Triples

We present a protocol called HybTripleSh, which allows a dealer D ∈ P to t-share t`
2 random multiplication

triples in a verifiable fashion with a private communication ofO(n2`), a broadcast communication ofO(n2) and n
invocations of any existing almost surely terminating ABA protocol [1, 30], where ` ≥ t+ 1. The efficient almost
surely terminating ABA protocol of [30] designed with 4t+1 parties with a communication complexity of poly(n)
is good enough for our purpose. Since the high level idea of HybTripleSh has been already discussed in Section 8,
we present the protocol in Fig. 15 rightaway where the idea discussed in Section 8 is applied ` times in parallel.

Theorem F.1. In a hybrid network model where the first communication round is a synchronous round, protocol
HybTripleSh achieves the following for every possible Adv and every possible scheduler:

(1) TERMINATION: If D is honest then all the honest parties eventually terminate the protocol with probability 1. If
D is corrupted and some honest party terminates, then all the honest parties eventually terminate the protocol with
probability 1. (2) CORRECTNESS: If D is honest then t`

2 multiplication triples will be t-shared, where ` ≥ t+ 1. If
D is corrupted and some honest party terminates then t`

2 multiplication triples will be t-shared, where ` ≥ t + 1.
(3) PRIVACY: If D is honest, then the view of Adv in the protocol is distributed independently of the t`

2 output
multiplication triples, where ` ≥ t + 1. (4) COMMUNICATION COMPLEXITY: The protocol requires a private
communication of O(n2`) and broadcast of O(n2) elements from F, plus n invocations to ABA.

PROOF: TERMINATION: The termination property follows from the termination property of Sh,mBatchBeaver,
mBatRecPubl, the termination property of the almost surely terminating ABA and the fact that the first syn-
chronous round will always terminate.

CORRECTNESS: We first consider an honest D, where the t-shared triples {([x(i,l)]t, [y(i,l)]t, [z(i,l)]t)}i∈[3t+1], l∈[`]
will be multiplication triples. By the property of TripTrans, the relation Zl(·) = Xl(·)Yl(·) will hold for all l ∈ [`]
and the triples {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}i∈[n], l∈[`] will be multiplication triples. Now consider an honest Pi in

P , where the dummy triples shared by Pi will be multiplication triples and will be t-shared. It thus follows from
the properties of mBatchBeaver that {z(i,l)}l∈[`] = {x(i,l)y(i,l)}l∈[`] will hold and each such z(i,l) will be t-shared.
This further implies that {[γ(i,l)]}l∈[`] = {[0]t}l∈[`] will hold, as z(i,l) = z(i,l) will hold. It thus follows from
the properties of mBatRecPubl that each honest Pj will reconstruct γ(i,l,j) = 0 for all l ∈ [`] and will input
0 to the instance ABA(i) which further implies that the honest parties will set flagi = 1 at the end of ABA(i).
Next consider a corrupted Pi, where the dummy triples (probably non-multiplication triples) may be arbitrarily
shared by Pi. Corresponding to such an i, if the output of ABA(i) is 1, then the parties will robustly reconstruct
the triples {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}l∈[`], which in this case are multiplication triples and so the parties will set

flagi = 1. So for an honest D, flagi = 1 will hold for all i ∈ [n]. It is now easy to see that the multiplication triples
{(a(i,l),b(i,l), c(i,l))}i∈[ t

2
], l∈[`] will be t-shared among the parties.
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Figure 15: An error-free protocol for t-sharing t`
2 random multiplication triples where ` ≥ t+ 1.

Protocol HybTripleSh(D)

First Synchronous Round

For i ∈ [n], every party Pi executes the following code:

1. Select ` random dummy multiplication triples {(f (i,l), g(i,l), h(i,l))}l∈[`] and t-share them using Shamir secret sharing.

2. For every j ∈ [n], receive from Pj the shares of the dummy triples selected by Pj , till the first round is over. If some
share is not received from Pj by the end of first round, then set them to a publicly known default value.

Let {([f (i,l)], [g(i,l)], [h(i,l)])}l∈[`], Pi∈P denote the sharings of the dummy triples done by the party Pi.

The Remaining Asynchronous Protocol

1. D selects (3t + 1)` random multiplication triples {(x(i,l), y(i,l), z(i,l))}i∈[3t+1], l∈[`] and t-shares them by executing an
instance of Sh and the parties participate in the instance of Sh.

2. After terminating the instance of Sh, the parties do the following for each l ∈ [`]:

(a) Execute TripTrans({([x(i,l)]t, [y(i,l)]t, [z(i,l)]t)}i∈[3t+1]) to compute ({([x(i,l)]t, [y
(i,l)]t, [z

(i,l)]t)}i∈[3t+1]).
Let Xl(·), Yl(·) and Zl(·) denote the associated polynomials.

(b) Compute (locally) ({([x(i,l)]t, [y
(i,l)]t, [z

(i,l)]t)}i∈[3t+2,n]) such that x(i,l) = Xl(αi), y(i,l) = Yl(αi) and
z(i,l) = Zl(αi) for i ∈ [3t+ 2, n].

3. For i ∈ [n], the parties verify the ` shared triples {([x(i,l)]t, [y
(i,l)]t, [z

(i,l)]t)}l∈[`] using the ` shared dummy triples
{([f (i,l)], [g(i,l)], [h(i,l)])}l∈[`] shared by Pi as follows:

(a) The parties execute mBatchBeaver({[x(i,l)]t, [y
(i,l)]t, [f

(i,l)], [g(i,l)], [h(i,l)]}l∈[`]) and compute the sharings
{[z(i,l)]}l∈[`].

(b) The parties compute (locally) {[γ(i,l)]}l∈[`], where [γ(i,l)] = [z(i,l)]− [z(i,l)]t, for l ∈ [`].

(c) The parties execute d `
t+1
e instances of mBatRecPubl on {[γ(i,l)]}l∈[`] to reconstruct these values. Let the output

of mBatRecPubl for Pj be {γ(i,l,j)}l∈[`]a.

(d) The parties participate in the instance ABA(i) of ABA where party Pj inputs 0 if γ(i,l,j) = 0 for all l ∈ [`],
otherwise Pj inputs 1.

(e) If the output of ABA(i) is 0 then the parties (locally) set a Boolean flag flagi = 1 to indicate
that {(x(i,l),y(i,l), z(i,l))}l∈[`] are correct multiplication triples. Else if the output of ABA(i) is 1 then
the parties execute d 3`

t+1
e instances of BatRecPubl on {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}l∈[`] to reconstruct

{(x(i,l),y(i,l), z(i,l))}l∈[`]. After reconstruction, the parties check if all the triples {(x(i,l),y(i,l), z(i,l))}l∈[`]
are multiplication triples and accordingly (locally) set flagi = 1 or flagi = 0

4. If flagi = 1 for all i ∈ [n], then the parties output t`
2

sharings {([a(i,l)]t, [b
(i,l)]t, [c

(i,l)]t)}i∈[ t
2
], l∈[`] and terminate,

where a(i,l) = Xl(βi),b
(i,l) = Yl(βi) and c(i,l) = Zl(βi), for i ∈ [ t

2
] and l ∈ [`]. Else, the parties output t`

2
default

sharings of multiplication triples and terminate.

a Each instance of mBatRecPubl can be used to reconstruct t + 1 shared values and so to reconstruct ` shared values, d `
t+1
e

instances are required. If the γ(i,l)s are not t-shared then different parties may reconstruct different values at the end of

mBatRecPubl and so the extra index j here is used to capture the values which are reconstructed by Pj at the end of

mBatRecPubl.

On the other hand, if D is corrupted, then there are two possible cases: the parties either output default t-sharing
of t`

2 publicly known multiplication triples or the parties output triples as computed in the protocol. We focus on
the second case, which also implies that flagi = 1 for all i ∈ [n]. Here, it is enough to show that corresponding
to every honest Pi, the triples {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}l∈[`] are indeed multiplication triples, which will further

confirm that Zl(·) = Xl(·)Yl(·) holds, implying that all the triples shared by D are multiplication triples. An honest
Pi will correctly t-share its random dummy multiplication triples. This implies that the parties will correctly obtain
{[z(i,l) = x(i,l)y(i,l)]t}l∈[`] at the end of mBatchBeaver. Now if all the ` triples in {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}l∈[`]

are not multiplication triples, then clearly all the ` values in {γ(i,l) = z(i,l) − z(i,l)}l∈[`] will not be 0. However, if
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this is the case, then every honest party would have input 1 to ABA(i) and obtain 1 as its output. This is because
each γ(i,l) would be t-shared (as the dummy triples were t-shared) and so all the honest parties would correctly
reconstruct {γ(i,l)}l∈[`] at the end of mBatRecPubl. Moreover, after obtaining 1 as the output of ABA(i), the parties
would have publicly reconstructed the triples {(x(i,l),y(i,l), z(i,l))}l∈[`] and would have set flagi = 0 after finding
that all the triples in {(x(i,l),y(i,l), z(i,l))}l∈[`] are not multiplication triples. However, this is a contradiction.

PRIVACY: For privacy, we consider an honest D. We first fix an l ∈ [`] and then claim that Adv will learn at most
t points on the polynomials Xl(·),Yl(·) and Zl(·), which are of degree at most 3t

2 ,
3t
2 and 3t respectively. Then

following the same arguments as used for the triple extraction protocol TripExt, it will follow that the multiplica-
tion triples {(a(i,l),b(i,l), c(i,l))}i∈[ t

2
] will be random from the view point of Adv. Since D is honest, clearly all the

shared triples in {([x(i,l)]t, [y(i,l)]t, [z(i,l)]t)}i∈[3t+1] will be random and unknown to Adv and so from the proper-
ties of TripTrans (by substituting t′ = 0), it follows that all the shared triples in {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}i∈[n]

will be random and so Adv will not learn any point on Xl(·),Yl(·) and Zl(·) after TripTrans. Now there can be
at most t corrupted Pis and corresponding to them, Adv will learn the multiplication triple (x(i,l),y(i,l), z(i,l))
during its verification, as Adv will know the corresponding dummy triple (f (i,l), g(i,l), h(i,l)), used for its verifi-
cation. However, corresponding to the honest Pis, the random dummy multiplication triples (f (i,l), g(i,l), h(i,l))
will be t-shared and will be not known to Adv. This further implies that while computing [z(i,l) = x(i,l)y(i,l)]t
using ([f (i,l)]t, [g

(i,l)]t, [h
(i,l)]t), no additional information about the multiplication triple (x(i,l),y(i,l), z(i,l)) will

be leaked to Adv. Finally, the sharings [z(i,l)]t and [z(i,l)]t will be independent, except that z(i,l) = z(i,l) and so
Adv will already know that γ(i,l) = 0 and thus no new information is added to its view after the public reconstruc-
tion of [γ(i,l)]t. So overall, Adv will learn t values on Xl(·),Yl(·) and Zl(·).

COMMUNICATION COMPLEXITY: During the synchronous round, each party has to Shamir share ` multiplica-
tion triples, which will incur a total private communication ofO(n2`) elements from F. Sharing of (3t+1)` triples
by D during the instance of Sh requires a private communication of O(n2`) elements and broadcast of O(n2) ele-
ments from F. Apart from this, there will be ` instances of TripTrans incurring O(n2`) private communication, n
instances of mBatchBeaver incurring O(n2`) private communication, d n`t+1e instances of mBatRecPubl incurring
O(n2`) private communication and at most d 3n`t+1e instances of BatRecPubl incurring O(n2`) private communica-
tion. Moreover, n invocations of ABA are involved, one on behalf of each party. So overall, the protocol requires
a private communication of O(n2`) elements and broadcast communication of O(n2) elements from F and n
invocations to the ABA protocol. 2

F.2 The Error-free Preprocessing Phase Protocol HybPrePro in the Hybrid Model

The goal of the protocol HybPrePro is to generate t-sharing of cM + cR + cI(t+ 1) random multiplication triples
in an error-free fashion, assuming that the first communication round is a synchronous round. The protocol goes
along the same line as the asynchronous preprocessing phase protocol PreProc, with the following differences:

• Instead of t-sharing 2(cM+cR)
t random multiplication triples, each party now t-shares 2(cM+cR+cI(t+1))

t ran-
dom multiplication triples. This is because now we require additional cI(t + 1) random sharings from the
preprocessing phase (to be used for the input provision during the input phase).

• Instead of executing an instance of the probabilistic triple sharing protocol TripleSh, each party shares the
triples using an instance of the error-free triple sharing protocol HybTripleSh.

After each party shares the triples, as in the protocol PreProc, we execute an instance of ACS to agree on a set
Com of 3t + 1 “good” dealers, who have correctly shared the multiplication triples. We then execute an instance
of the triple extraction protocol TripExt to extract t-sharing of cM + cR + cI(t+ 1) random multiplication triples.
As the protocol is a straight forward modification of the protocol TripleSh we do not provide the formal details.
The properties of the protocol are stated in Theorem F.2.
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Theorem F.2. Assuming a hybrid network where the first communication round is a synchronous round, for every
possible Adv and every possible scheduler, protocol HybPrePro achieves:

(1) TERMINATION: All the honest parties eventually terminate with probability 1. (2) CORRECTNESS: cM +
cR + cI(t + 1) multiplication triples will be t-shared among the parties. (3) PRIVACY: The view of Adv during
the protocol will be independent of the output multiplication triples. (4) COMMUNICATION COMPLEXITY: The
protocol incurs private communication of O((cM + cR)n + cIn

2) and broadcast of O(n3) elements from F, plus
one invocation to ACS and n2 invocations to ABA.

PROOF: The termination, correctness and privacy follow from the properties of the protocol HybTripleSh and
TripExt and similar arguments as used in Theorem 6.3. For communication complexity, we see that each in-
stance of HybTripleSh will incur a private communication of O(cM + cR + cI(t + 1)) and broadcast of O(n2)
elements from F, plus n invocations to ABA. This is because each instance of HybTripleSh outputs t-sharing of
2(cM+cR+cI(t+1))

t multiplication triples, which implies that ` (for the protocol HybTripleSh) is 4(cM+cR+cI(t+1))
t2

(recall that HybTripleSh outputs t`
2 multiplication triples). So n instances of HybTripleSh incurs private commu-

nication of O((cM + cR)n+ cIn
2) and broadcast of O(n3) elements from F and n2 invocations to ABA. 2

F.3 The Input Phase Protocol in the Hybrid Model

We now briefly recall from [4] how using the first synchronous round, we can enforce input provision and consider
the inputs of all the n parties for the computation. For the ease of explanation, we assume that each party Pi
has a single input x(i) ∈ F for the computation. The idea is that during the first synchronous round, each party
Pi computes a degree-t Shamir sharing [33] of his input x(i) and sends one share to each party. If a party does
not receive the share corresponding to the input of some party by the end of this synchronous round, then it
substitutes a default publicly known share. In [4], this (trivial) one round protocol is called PrepareInputs. An
easy observation is that if Pi is honest then x(i) will be t-shared at the end of PrepareInputs. However, for a
corrupted Pi, its input x(i) may not be t-shared. Note that the protocol PrepareInputs need to be executed parallely
with the preprocessing phase protocol HybPrePro, as the protocol HybPrePro also need to use the first synchronous
round. Now later, the parties execute the fully asynchronous protocol Input (the protocol for the input phase in the
completely asynchronous protocol AsynAMPC), where the input for a party Pi will be now a vector x̃(i) consisting
of his “real input” x(i), plus his shares x

(j)
i of the inputs x(j) of the other parties. As a result of the asynchronous

protocol Input, the parties will agree on a common set Com of 3t + 1 parties, whose vectors are (eventually)
t-shared among the parties. For every party Pi ∈ Com, the t-sharing [x(i)]t of his input is obtained directly from
the t-sharing of the first component of his t-shared vector x̃(i). On the other hand, for every party Pk 6∈ Com, the
t-sharing [x(k)]t of his input x(k) is “restored” using a protocol called RestoreInputs [4]. We next present the high
level description of RestoreInputs; for the complete details, see [4].

The idea behind the protocol RestoreInputs is the following: consider a party Pk 6∈ Com. There will be 3t+ 1

shares of his input x(k), namely {x(k)i }Pi∈Com, each of which will be t-shared as a component of the input vector
x̃(i) corresponding to the parties in Com. Now at most t parties in Com might have t-shared incorrect shares of the
input x(k); these t-shared incorrect shares are error-corrected in a shared fashion and finally the t-sharing of x(k) is
restored. To perform the error correction in a shared fashion, t+1 random t-sharings from the preprocessing phase
are used and this is why, cI(t + 1) additional t-shared multiplication triples are generated in the preprocessing
phase protocol HybPrePro. Note that the protocol RestoreInputs is a completely asynchronous protocol and will
be executed only after the preprocessing phase is over. We also note that the error correction may fail in case if Pk
is corrupted and did not t-shared his input x(k) during the synchronous protocol PrepareInputs; however, if this is
the case then all the honest parties will come to known this at the end of RestoreInputs and a default t-sharing is
substituted as the input sharing for such a corrupted Pk.

In a more detail, the shared error correction is done as follows: let Pk ∈ Com and the goal is to restore [x(k)]t
by using t + 1 random t-sharings from the preprocessing phase, say [r(0)]t, . . . , [r

(t)]t, provided the party Pk has
correctly t-shared his input x(k) among the parties in Com during the synchronous protocol PrepareInputs. For

this, we first define a blinding polynomial b(x)
def
= r(0)+r(1)x+ . . .+r(t)xt and let every party Pi ∈ P to privately
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reconstruct bi, where bi = b(αi). For this, the parties first locally compute [bi]t = [r(0)]t+αi[r
(1)]t+. . .+α

t
i[r

(t)]t,
followed by the private reconstruction of [bi]t towards Pi. Thus, each party will have a distinct point on the blinding
polynomial, which has degree at most t. The next step is that for every Pi ∈ Com, the parties locally compute
[di]t = [x

(k)
i ]t + [bi]t, followed by the public reconstruction of these [di]ts. Finally, the parties apply the RS error

correction on the 3t+ 1 publicly reconstructed dis to correct t errors and check whether there exists a polynomial,
say p(·), having degree at most t, such that at least 2t+1 reconstructed dis lie on p(·). If this is the case, then every
party Pi outputs p(αi) − bi as his share for x(k); otherwise the parties output a default t-sharing. The intuition
here is that the parties try to reconstruct the polynomial p(·) = b(·) + q(·), where q(·) is the polynomial through
which Pk has shared x(k) during the synchronous protocol PrepareInputs. Now if Pk is honest, then q(·) will be a
polynomial of degree at most t and so will be the polynomial p(·). So even if the corrupted parties in Com share
incorrect shares (points) of q(·), the error correction will correctly output b(·) + q(·) and every honest party Pi will
have the correct share q(αi) = p(αi) − b(αi). Moreover, the input x(k) will remain private, due to the blinding
polynomial. For the complete protocol steps and the formal details, see [4].

Thus, the input phase in the hybrid model is “splitted” into two parts: the first part, namely PrepareInputs uti-
lizes the synchronous round, while the second part restores all the inputs using the protocol Input and RestoreInputs,
both of which are executed in a complete asynchronous setting. In our protocol, we will execute the protocols
PrepareInputs and RestoreInputs, assuming that each party Pi has ci inputs, where ci ≥ t+ 1. It is easy to see that
protocol PrepareInputs will require a private communication of O(cIn) elements from F, as c1 + . . . + cn = cI .
In the protocol Input, each party will now have to t-share ci + cI values using Sh: ci values corresponding to
his real inputs and cI values corresponding to the shares of the inputs of all the parties. This will require a total
private communication of O(cIn

2) and broadcast of O(n3) elements from F. The protocol RestoreInputs will be
executed on behalf of t parties not in Com. An instance of RestoreInputs executed on the behalf of a party Pi will
require private reconstruction of nci values (namely n points on each of the ci blinding polynomial) and public
reconstruction of nci values (namely n points on each of the ci blinded polynomial p(·)). So a single instance of
RestoreInputs will require a private communication of O(cin

2) elements from F and so for the t instances it will
be of O(cIn

2) elements from F.

F.4 The Error-free AMPC Protocol

Finally, the error-free AMPC protocol HybridAMPC in the hybrid model is a sequence of the following steps:

1. The parties start executing the protocol HybPrePro from the first synchronous round to generate t-sharing of
cM + cR+ cI(t+ 1) random multiplication triples. Parallely, the parties execute the protocol PrepareInputs.

2. After terminating HybPrePro and PrepareInputs, the parties execute the protocol Input. In the protocol
Input, the input for a party is a vector of his real input plus the shares of the inputs of the other parties
received during PrepareInputs.

3. After terminating Input, the parties execute RestoreInputs to restore the t-sharing of the inputs of the parties
not in the common set Com, where Com is the set of 3t+ 1 parties, whose vectors are t-shared during Input.

4. After terminating RestoreInputs, the parties execute CircEval to evaluate the circuit and then terminate.
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