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Abstract

It is well-known that one-way permutations (and even one-to-one one-way functions) imply
the existence of non-interactive commitments. Furthermore the construction is black-box (i.e.,
the underlying one-way function is used as an oracle to implement the commitment scheme, and
an adversary attacking the commitment scheme is used as an oracle in the proof of security).

We rule out the possibility of black-box constructions of non-interactive commitments from
general (possibly not one-to-one) one-way functions. As far as we know, this is the first result
showing a natural cryptographic task that can be achieved in a black-box way from one-way
permutations but not from one-way functions.

We next extend our black-box separation to constructions of non-interactive commitments
from a stronger notion of one-way functions, which we refer to as hitting one-way functions.
Perhaps surprisingly, Barak, Ong, and Vadhan (Siam JoC ’07) showed that there does exist a
non-black-box construction of non-interactive commitments from hitting one-way functions. As
far as we know, this is the first result to establish a “separation” between the power of black-box
and non-black-box use of a primitive to implement a natural cryptographic task.

We finally show that unless the complexity class NP has program checkers, the above sepa-
rations extend also to non-interactive instance-based commitments, and 3-message public-coin
honest-verifier zero-knowledge protocols with O(log n)-bit verifier messages. The well-known
classical zero-knowledge proof for NP fall into this category.
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1 Introduction

It is well-known that most of the cryptographic constructions are “black-box” in the sense that
they ignore the specific implementation of the primitive, and they use both the primitive and the
adversary (in the proof of security) as an oracle. Thus black-box constructions capture a main body
of our techniques in cryptography for designing protocols and proving their security. In addition,
black-box constructions are usually much more efficient than their non-black-box counterparts. In
light of this, studying the power and limits of black-box constructions has been a major line of
research in cryptography, aiming at finding the “minimal cryptographic primitives” under which a
cryptographic task Q is possible and “separating” Q from “weaker primitives”.

Black-Box Separations. The seminal work of Impagliazzo and Rudich [IR89] put forward a
framework for proving the limits of black-box constructions by separating public-key cryptography
from private-key cryptography when the construction is black-box. Many other black-box sepa-
ration results were subsequently established (e.g., [Sim98, GKM+00, GMR01, BPR+08, Vah10,
KSY11, MM11]1). Reingold, Trevisan, and Vadhan [RTV04] further studied various forms of black-
box constructions (based on their proof of security). 2 In search of the “minimal” computational
primitives required for accomplishing cryptographic tasks, one-way functions emerge as the cen-
tral player: Almost all natural cryptographic primitives “imply” one-way functions [IL89, OW93,
HO11]; moreover, all these constructions are black-box.

One-Way Functions vs. Permutations. One-way permutations are a closely related primitive
to one-way functions. Even though it is known that there is no black-box construction of one-way
permutations from one-way functions [BI87, HHry, Tar89, Rud88, KSS00]3, a surprisingly successful
line of research has been to first realize a cryptographic task securely based on the existence of one-
way permutations, weaken the assumption to one-to-one one-way functions, and then eventually ob-
tain a construction solely based on the existence of general one-way functions. Examples of this phe-
nomenon include works on pseudorandom generators [BM82, Yao82, Lev87, GKL93, GL89, HILL99]
and statistical zero-knowledge arguments as well as statistically-hiding commitments [BCC88,
GMR88, BCY91, NOVY98, GK96, DPP98, HHK+05, NOV06, HR07, HNO+07, HRVW09].

Why Trying to Rely on One-Way Functions? We emphasize that all known candidates for
one-way permutations are based on structured number-theoretic assumptions, and the vulnerability
of such structured primitives to possible algebraic (sub-exponential) attacks [LHWL93] makes the
feasibility of using one-way functions (rather than permutations) interesting both from theoretical
and practical points of view. This puts forward the following basic question:

1A closely related line of research aimed at proving lower-bounds on the efficiency of black-box constructions (e.g.,
[KST99, GGKT05, LTW05, HHRS07, BM07, DSLMM11]).

2Our notion of black-box construction here corresponds to the notion of fully black-box construction as defined in
[RTV04] where we also include the security parameter; see Definition 3.9.

3The results implicit in [BI87, HHry, Tar89] show that there is no fully black-box construction of one-way per-
mutations from one-way functions (see [MM11] for an exposition of this argument). This results extends even to
separating one-way functions from injective one-way functions. Rudich [Rud88] observes that this separation is im-
plicit in those previous works and improves them to separate one-way permutations from random oracles, even if the
construction is allowed to have small completeness error, at the cost of assuming a combinatorial conjecture that was
later resolved in [KSS00]. See [Rud88] for more discussions.
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Main Question 1: Is there any natural cryptographic task that can be accomplished
based on the black-box assumption of one-way permutations but not one-way functions?

We consider one-way functions and permutations both as computational assumptions and not as
natural cryptographic tasks, and so the separation of one-way permutations from one-way functions
does not answer our question above.

The Power of Black-Box vs. Non-Black-Box Constructions. Another similar successful
line of research in the foundations of cryptography has been to start by providing non-black-box
constructions of a primitive and later turning them into black-box ones. Examples include e.g.,
secure computations from various primitive [HIK+11, CDSMW08, CDSMW09, Wee10, Goy11],
oblivious transfer from semi-honest oblivious transfer [Hai08], constant-round zero-knowledge ar-
guments and trapdoor commitments from one-way functions [PW09], etc. Despite this, as far as
we know the following intriguing question has remained open:

Main Question 2: Is there a natural cryptographic task Q that can be based on a
cryptographic primitive P in a non-black-box way, while no black-box construction of Q
based on P exists?

In this work we answer both the above questions affirmatively: (1) There is a cryptographic
task that can be based on one-way permutations but not one-way functions in a black-box way. (2)
The same primitive can be used to separates the power of black-box and non-black-box construc-
tions. Interestingly, the primitive is a very natural cryptographic building block: non-interactive
commitments.

Commitment Schemes. Bit-commitments are one of the most fundamental cryptographic build-
ing blocks. Their application ranges from zero-knowledge proofs [GMR89, GMW91] to secure com-
putations [GMW87]. Roughly speaking, a commitments scheme is a two-stage protocol between
two parties: the sender and the receiver. In the first, so-called, commitment phase, the sender
commits to a secret bit b; and then later in the decommitment phase, the sender reveals the bit b
together with some additional information which allows the receiver to verify the correctness of the
decommitment. Commitment schemes are required to satisfy two properties: hiding and binding.
Roughly speaking, the hiding property stipulates that after the commitment phase the bit b should
remain hidden to the receiver, whereas the binding property asserts that in the decommitment
phase the sender is not able to decommit successfully to both b = 0 and b = 1.

The results of Naor [Nao91] and H̊astad, Impagliazzo, Luby and Levin [HILL99] establish that
the existence of one-way functions implies the existence of commitment schemes where the com-
mitment phase consists of two messages. Furthermore their construction is black-box and the
commitment scheme uses the underlying one-way function as an oracle. On the other hand, Im-
pagliazzo and Luby [IL89] establish that the existence of commitment schemes implies the existence
of one-way functions (in a black-box way).

We focus on the black-box complexity of non-interactive commitments—namely, commitment
schemes where both the commitment phase and the decommitment phase consist of a single mes-
sage. The results of [Blu81, GL89] establish the existence of non-interactive commitments based
on one-way permutations (or even one-to-one one-way functions) using a black-box construction.
These results extend even to the case of families of one-way permutations where given an index
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p one can efficiently verify that fp is indeed a permutation.4 The work of Naor showed how to
obtain interactive commitments based on any one-way function in a black-box way, where the com-
mitment phase consists only of a random message from the receiver followed by a message from
the sender (thus the first message can be eliminated in the common reference string model). It
remained an open question whether there a black-box construction of non-interactive commitments
from one-way functions, or that to obtain this primitive one-way permutations are more powerful
than one-way functions.

1.1 Our Results

Our first result shows that one-way functions cannot be used as a black-box to obtain noninteractive
commitments, answering our first main question affirmatively.

Theorem 1.1. There is no black-box construction of non-interactive commitments from one-way
functions.

The separation extends to stronger primitives than one-way functions (e.g., families of collision-
resistant hash function). As far as we know, this is the first result showing a natural cryptographic
task that can be constructed in a black-box way from one-way permutations but not from one-way
functions resolving our first question affirmatively.

Non-Black-Box Non-Interactive Commitments from One-Way Functions. The elegant
work by Barak, Ong and Vadhan [BOV03] provides a non-black-box construction of non-interactive
commitments assuming the existence of one-way functions and certain hitting-set generators (see
the discussion in Section 2.2) against co-non-deterministic circuits (see Definition 2.3 for a formal-
ization) which can be constructed under worst-case complexity assumptions. Roughly speaking, the
hitting-set generator G : {0, 1}` 7→ {0, 1}poly(n) is used to derandomize Naor’s 2-message commit-
ment scheme by executing the commitment in parallel over all of G({0, 1}`) as the “first messages”
of the protocol (thus we require 2` = poly(n)). Naor’s commitment has the nice property that for
every one-way function used, most of {0, 1}n can be fixed as the first message to make the scheme
perfectly binding. The hitting property of the generator G guarantees that at least one of the fixed
first messages G({0, 1}`) makes the (non-interactive) scheme binding.

Conditional Separation of the Power of Black-Box and Non-Black-Box Constructions.
The result of [BOV03] together with our Theorem 1.1 show that under any complexity assumption
that guarantees the existence of hitting-set generators against co-nondeterministic circuits, non-
black-box constructions are more powerful than black-box constructions (since a non-black-box
construction of non-interactive commitments from one-way functions would exist, while no such
black-box construction exists). This answers our second main question also affirmatively based on
believable complexity conjectures. As we will see shortly, we are able to make this “separation”
(between the power of the two models) unconditional by defining a new primitive that can be used
as a hitting-set generator.

4For example, one can sample a random prime number p and define the permutation fp to be the discrete logarithm
function in the group Z∗p. Primality of p can be tested efficiently [Mil76, Rab80, AKS02] and this guarantees fp is
indeed a permutation.
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Non-Interactive Commitments from Hitting One-Way Functions. Inspired by the work
of [BOV03], we introduce the notion of hitting one-way functions; roughly speaking, a (one-way)
function f is said to be hitting, if for every co-non-deterministic circuit of size n which accepts
at least half of its inputs, there exists at least one input x ∈ [1, . . . , n2] ⊆ {0, 1}n which f(x)
is accepted by the circuit. It is easy to see that a random oracle is a hitting one-way function
with overwhelming probability (see Lemma 2.7). Furthermore, we show that there exists a non-
black-box construction of non-interactive commitments from hitting one-way functions as follows.
Following [BOV03], we derandomize Naor’s commitment scheme by evaluating the hitting one-way
function f on the inputs 1, . . . , n2 (appropriately planted in {0, 1}n), where n is a polynomial that is
determined by the size of the verification circuit in Naor’s commitment. Since Naor’s commitment
also relies on the use of the one-way function f , the choice of n depends on the circuit size of f ;
thus the construction is non-black-box. Thus we obtain the following theorem.5

Theorem 1.2. There is a non-black-box construction of non-interactive commitments from hitting
one-way functions.

In contrast, we prove the following theorem in the black-box regime resolving our second main
question affirmatively (unconditionally).

Theorem 1.3. There is no black-box construction of non-interactive commitments from hitting
one-way functions.

As far as we know, this constitutes the first separation between the power of black-box and
non-black-box use of a primitive in the implementation of a natural cryptographic task. This
is different from the results of Barak [Bar01] and Goldreich-Krawczyk [GK92] which provide a
separation between the power of black-box and non-black-box proofs of security, and in this work
all proofs of security are black-box. Thus we also resolve our second main question affirmatively.

Extension to 3-Message Honest-Verifier Zero-Knowledge (3-HVZK). A major appli-
cation of commitment schemes is to construct zero-knowledge proofs for NP. Non-interactive
commitments for NP can be used to derive 3-HVZK for NP in a black-box way, and so a sepa-
ration between 3-HVZK and one-way functions would be a stronger statement. Thus we also study
whether 3-HVZK for NP can be constructed based on one-way functions in a black-box way. We
extend our separation (from one-way functions) also for some forms of 3-HVZK in a conditional
way; our separations hold assuming that the complexity class NP does not have “program check-
ers” [BK95]. In particular, we show that black-box constructions of public-coin 3-HVZK protocols
with short verifier messages based on one-way functions would imply program checkers for SAT.
Such constructions still include the classical 3-message zero-knowledge protocols, e.g., GMW Graph
3-Coloring protocol [GMW87], Blum’s Hamiltonian Cycle protocol [Blu87] etc.

Theorem 1.4. Any black-box construction of a 3-message honest-verifier zero-knowledge proofs (or
arguments) for NP from one-way functions with the following features implies that NP is checkable.

1. 1− negl(n) completeness.

2. 1/ poly(n) soundness, i.e., soundness error as large as 1− 1/ poly(n).

5Our positive and negative results are robust to choosing n2 as the size of the hitting set generator and they can
be adopted to work with any function ω(n). We choose to use n2 for sake of simplicity.
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3. The verifier has no secret randomness and in the second message she sends O(log n) bits.

Whether NP has program checkers or not has been open for more than two decades [FRS88,
BK95, BFL90], thus our results indicate that providing black-box constructions of 3-HVZK with
properties mentioned above for NP at least requires resolving a long-standing open question in
computational complexity. Note that computational assumptions such as P 6= NP are necessary
to obtain Theorem 1.4. It is easy to see that if P = NP, then forms of non-interactive com-
mitments known as “instance-based commitments”6, which are sufficient to obtain 3-HVZK exist
unconditionally.

Organization. In Section 2 we sketch the ideas and tools used in the proofs of our results whose
full proofs will appear in the subsequent sections. See Section 3.1 for the description of our notation
and terminology and Section 8 for some concluding remarks and remaining open questions

2 Outline of Proofs and Techniques

In this section we outline the framework and the main ideas and techniques used in the proofs of
Theorems 1.1, 1.3, and 1.4.

2.1 Separation from One-Way Functions

Here we outline the proof of Theorem 1.1. For simplicity of the presentation here we settle this
theorem only for the natural setting that the verification of the decommitment is deterministic and
the scheme has perfect completeness.

We start by formalizing the notion of black-box constructions by following the paradigm of
[RTV04] with the following changes: (1) we include the security parameter, and (2) we restrict
ourself to constructions that use “almost everywhere” security (i.e., that for large enough security
parameter there is no efficient adversary breaking the primitive) as opposed to “infinitely often”
security (i.e., that for an infinite sequence of security parameters the scheme is secure). Roughly
speaking, black-box constructions consist of two reductions: implementation and proof of security.
The implementation Q of the new primitive Q uses any implementation P of the base primitive P
only as an oracle. The security reduction S bases the security of QP on the security of P as follows:
for every (unbounded) adversary A who breaks the security of QP , SA,P breaks the security of P .
Note that a commitment scheme has two players, and so breaking the security amounts to breaking
either of hiding or binding properties. The following definition formalizes the above definition for
the case of commitment schemes.

Definition 2.1. A black-box construction of non-interactive commitments from one-way functions
is a pair of efficient oracle algorithms Com(·) = (S(·), R(·)) such that: The parties receive the
common input 1n as the security parameter and access an oracle f = {fm : {0, 1}m 7→ {0, 1}m}.
The security of the scheme is guaranteed through reductions to the one-wayness of f as follows.

• Proving the Hiding: There is an efficient security reduction H that proves that Comf

is hiding. Namely, for every oracle f and every malicious receiver R̂ (who could arbitrarily

6In an instance-based commitment scheme w.r.t. a language L, the parties receive some common input x. The
hiding needs to hold only when x ∈ L, and the binding needs to hold only when x 6∈ L.
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depend on f) that distinguishes commitments to 0, 1 with non-negligible advantage ε >

1/ poly(n), the oracle algorithm Hf,R̂ breaks the one-wayness of f with probability at least
poly(ε/n) over a polynomially related m = nΘ(1) input length:

Pr
y

$←f(Um)

[Hf,Ŝ(y) ∈ f−1(y)] ≥
( ε
m

)O(1)
.

• Proving the Binding: It is defined similarly to the definition of Hiding using another
reduction B that inverts f with non-negligible probability given oracle address to f and any
adversary who breaks the binding of Comf .

In order to prove Theorem 1.1, we employ the methodology formally described in the following
lemma (which is also used in the previous works of [BM07, DSLMM11]).

Lemma 2.2. There is no black-box construction of non-interactive commitments form OWFs, if
there is any randomized oracle O with the following properties:

1. The hiding or binding of ComO is violated by a poly(n)-query attack.

2. O is strongly one-way in the sense that no poly(n)-query computationally-unbounded adver-
sary can invert O over O(Un) with probability ≥ 1/ poly(n).

Roughly speaking Lemma 2.2 holds because if the black-box construction from OWFs existed,
one could use O to implement the scheme and then use the poly(n) attacker against this scheme
combined with the black-box proof of security to get an algorithm that invert O with only poly(n)
oracle queries to O (which is a contradiction).

In the following we describe how to find a distribution for the randomized oracle O so that we
can apply Lemma 2.2 to prove Theorem 1.1.

The Oracle O Cannot be a Random Oracle. We first note that we can not simply use
O to be a random oracle which is indeed a common method to derive separations from one-
way functions. This is expected, since otherwise we could also get a separation from one-way
permutations (since random oracle and random permutation oracle are indistinguishable over large
enough input lengths), and this would be a contradiction. In particular, relative to a random
oracle, with high probability, there exists a one-to-one one-way function7 which is indeed sufficient
for constructing non-interactive commitments in a black-box way [Blu81].

Partially-Fixed Random Oracles. We overcome the above obstacle by choosing the distribu-
tion of our oracle O to be fixed over a polynomial-size subset F of its domain (which in fact depends
on the construction Com itself), and at any other point out of F we choose the answers randomly.
In general, we call oracles partially-fixed random. Partially-fixed random oracles allow us to bypass
the obstacle explained above against random oracles, because the way we fix the part F most likely
makes the oracle O have collisions; thus, O will not be one-to-one. In fact, the collisions of O are

7For example, using standard tricks one can make the output of the random oracle long enough, say n3 bits, while
the input is only n bits. Such function is one-to-one with overwhelming probability.
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planted in an adversarial way against the construction Com and that is why the distribution of O
depends on Com.8

It is easy to see that a partially-fixed random oracle is still hard to invert using poly(n)-query
attacks. We show how to define the the distribution of O such that, either of the binding or hiding
properties of ComO will be violated through a poly(n)-query attack. As we discussed above, this is
sufficient for deriving a black-box separation. We prove the existence of such partially-fixed random
oracle O by proving that there are in fact two partially-fixed random oracles OR and OS such that
either of the following holds:

1. The hiding of ComOR is broken by a poly(n)-query malicious receiver R̂.

2. The binding of ComOS is broken by a poly(n)-query malicious sender Ŝ.

Therefore, there always exists an oracle O ∈ {OS ,OR} relative to which either of the hiding or
binding properties of Com is broken by some Adv ∈ {R̂, Ŝ}.

2.1.1 Cheating Strategies Ŝ, R̂.

The cheating sender Ŝ and the distribution of OS are defined assuming that R̂ fails in its attack,
but that is still sufficient for us. The oracle OR is simply the random oracle, but the oracle OS will
always be fixed over a polynomial-size domain (thus the final oracle O ∈ {OR,OS} will always be a
partially-fixed random oracle. The algorithm of the malicious R̂ is in fact very simple: try to learn
any query q that has a non-negligible chance of being asked by the sender during the generation
of the commitment C, and after learning these queries make a guess about the committed bit b
by outputting the more likely value of b conditioned on the knowledge learned about the random
oracle OR. In the following we formally describe this algorithm and will show that if this algorithm
fails in guessing the bit b correctly with probability 1/2 + 1/poly(n), then we can come up with a
partially-fixed random oracle OS such that the binding of ComOS could be violated.

Technical Tool: Learning Heavy Queries. Suppose Com = (S,R) is a non-interactive com-
mitment scheme in a model where some randomized oracle O (e.g., the random oracle) is accessed
by the sender S and the receiver R and suppose S generates a commitment C to a random bit

b
$← {0, 1}. Let S be the view of the sender consisting its randomness as well as its oracle query-

answers and R be the view of the receiver after the verification of C which consists of C itself, the
revealed bit b and some “decommitment” string D justifying the claim of S that he had committed
to b. We can look at all of S,R, C, b, and D as random variables depending on the randomness of
the parties and the randomness of O. That is the case also for the set of queries Q(S),Q(R) asked
by the sender and the receiver represented in their views.

Consider the following simple learning algorithm that upon receiving C, which is the commit-

ment to a random b
$← {0, 1}, keeps updating a “learned” set of oracle query-answer pairs L as

follows: As long as there is an oracle query q 6∈ L which has ε probability to be asked by the sender
during the generation of C or by the receiver during the verification of C:

Pr[q ∈ Q(S) ∪Q(R) | C,L] ≥ ε,
8As far as we know, this way of choosing the oracle’s distribution based on the scheme itself was fist employed in

the work of Gertner et al. [GMR01].
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then go ahead and ask q from the oracle. After asking q from O, the pair (q,O(q)) will be added
to L and the knowledge of O(q) will be incorporated in deciding which other queries might be
likely as described above. A result due to [BM07] shows that such learning algorithm would (on
average) ask at most poly(n/ε) = poly(n) queries and reach a point that there is no “ε-heavy”
query left for the distribution of the views of the sender and the (honest) receiver conditioned on
the learned information (C,L). As we will see, this learning algorithm will essentially form the
cheating receiver’s algorithm R̂.

Defining the Cheating Strategies. Suppose we execute the learning algorithm above when
the randomized oracle O in the scheme is simply a random oracle. We focus on the moment that
the learning algorithm stops (i.e., for any query q 6∈ L it holds that Pr[q ∈ Q(S)∪Q(R) | C,L] < ε),
and divide possible the cases into two. In each case we show how to derive a cheating party and a
corresponding randomized oracle.

• Case 1. In the first case, with non-negligible probability 1/poly(n) over the executing of the
learning algorithm, at the end there is a value b ∈ {0, 1} such that Pr[b is the committed bit |
(C,L)] > 1/2 + 1/ poly(n). In this case we can simply take OR to be the random oracle, and
relative to OR the cheating strategy R̂ could just follow the learning algorithm above and
output the more likely value of b conditioned on its view (C,L) at the end. It is easy to see
that this malicious receiver R̂ can guess the bit b with probability at least 1/2 + 1/ poly(n).

• Case 2. In the second case, at the end of the learning phase when there is no ε-heavy query
left to be learned, with overwhelming probability: both of the values of b ∈ {0, 1} are almost
equally likely to be the committed bit conditioned on knowing (C,L). We will show that at
this point there is always a way to fix a set of oracle query-answer pairs F for some partially-
fixed random oracle OS such that Ŝ can successfully open the commitment C (which is the
result of a single execution of the learning algorithm and is fixed forever) into both of {0, 1}.
Since we are in the case that conditioned on (C,L) both values of b ∈ {0, 1} have non-zero
(in fact ≈ 1/2) chance to be the committed bit, we can always sample two views V0 =
(S0,R0),V1 = (S1,R1) of full executions of the system for the sender and the receiver where
they are both consistent with (C,L) and Vb describes a case where C is a commitment to
the bit b. Note that due to the (assumed) perfect completeness of the scheme, in both of the
views V0,V1 the verification leads to an accept. We claim that if S0 and S1 are consistent over
the query-answer pairs that they posses (i.e., use the same answer for the queries that they
both have asked: Q(S0)∩Q(S1)) then we are done, because we can take F to be the answers
to Q(S0) ∪ Q(S1) plus the query-answer pairs of L and fix F as part of the partially-fixed
random oracle OS . This way, whenever the sender wants to decommit to the bit b ∈ {0, 1}
it can use the fixed view Sb ∈ Vb for the needed decommitment, and he knows that such
decommitment will always lead to the verification described by R0 ∈ Vb (since the verification
is deterministic) which is an accept.

It only remains to show how to find a pair of consistent views V0,V1. Here we use the
fact that conditioned on (C,L), both of {0, 1} have chance > 1/3 to be the committed bit.
Using a probabilistic analysis and also relying on the fact that there is no ε-heavy query left
conditioned on (C,L) (when the committed bit is considered random), and assuming that
the total number of oracle queries of (S,R) is at most m, one can show that with probability
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≥ 1 − 3mε a pair of random samples V0,V1, where Vb is sampled conditioned on (C,L, b),
would have no query in common out of L (i.e., Q(V0) ∩ Q(V1) ⊆ L). The reason is that for
any query q which has probability at most ε to be in the queries of V, by conditioning on
b = 0 or b = 1, this probability can increase at most to 3ε. Therefore, if we sample and fix
V0, any of the m queries of the sampled V0 would be sampled in V1 only with probability at
most 3ε. Thus, by a union bound, with probability at least 1 − 3mε, none of the quereis of
V0 will be sampled in V1. Since both of V0,V1 are sampled conditioned on (and consistent
with) L, we conclude that such samples are in fact consistent.

The Role of Non-Interactivity. Our argument above only applies to the non-interactive setting
because of the way we constructed (Ŝ,OS) in case R̂ does not succeed. In particular, in the
interactive setting C would be the transcript of an interactive protocol which could change every
time that the protocol is executed, even if the sender commits to the same message using the same
randomness, simply because the receiver’s randomness might change every time. That should not
be a surprise since Naor’s commitment scheme [Nao91] is a black-box construction based on one-way
functions and has only two messages during the commitment phase (which perfectly complements
our negative result of Theorem 1.1).

2.2 Separation from Hitting One-Way Functions

Here we outline the proof of Theorem 1.3. Before doing so we need to develop the notion of a
hitting one-way function.

2.2.1 Hitting One-Way Functions

Hitting Set Generators. A (basic) hitting set generator G is an efficient deterministic procedure
to generate sets that intersect any “dense” set recognized by an efficient circuit. More formally,
given n ≥ m, G runs in time poly(n) and generates a set of m-bit strings H such that for any circuit
T accepting at least half of {0, 1}m, it holds that T (h) = 1 for at least one h ∈ H (see [GW99] and
references therein for more background on the subject). A hitting set generator G can be directly
used to derandomize the complexity class RP and perhaps surprisingly even to derandomize the
class BPP [ACP98, ACPT99]. Here we are interested in the notion of hitting set generators against
co-nondeterministic circuits defined as follows.

A more general notion of hitting set generators was also developed for the purpose of derandom-
izing nondeterministic algorithms by Miltersen and Vinodchandran [MV05] based on the previous
works of [AK01, KvM02] in the broader context of using NW-type pseudorandom generators for
derandomization purposes. Such hitting set generators are proved to exist under the complex-
ity assumption that the class E = DTIME(2O(n)) has 2Ω(n) nondeterministic circuit complexity.
Barak, Ong, and Vadhan [BOV03] showed the first application of NW-type generators (against
co-nondeterministic circuits) to cryptography by derandomizing Naor’s bit commitment scheme.

Definition 2.3 (Co-Nondeterministic Circuits). A nondeterministic Boolean circuit T takes two
inputs and accepts the set ST defined as follows ST = {x | ∃ w, T (x,w) = 1}. A co-nondeterministic
Boolean circuit T also takes two inputs and accepts the set ST = {x | ∀ w, T (x,w) = 0}. By abusing
the notation we call the first input simply the “input” and call the second input the “witness”.
Thus, the input length refers to the length of x. If the input length is n, we call dT (n) = |ST∩{0,1}n|

2n

the input density of T .
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Now we introduce a new primitive that combines a one-way function and a hitting set generator
against co-nondeterministic circuits.

Definition 2.4 (Hitting One-Way Functions). We say a function f : {0, 1}n 7→ {0, 1}n hits a co-
nondeterministic circuit T of size n and input lengthm if it holds that {f(1)|m, . . . f(n2)|m}∩ST 6= ∅
where 1, 2, . . . , n2 are analogs of the first n2 elements of {0, 1}n and y|m refers to the first m bits of
y. We say that a sequence of functions {fn : {0, 1}n 7→ {0, 1}n} is a hitting function, if fn hits every
circuit T of size n and input density dT ≥ 1/2 for large enough n. A length preserving function
family f = {fn : {0, 1}n 7→ {0, 1}n} is simply called a hitting one-way function, if it is both hitting
and one-way simultaneously.

As we will see later, a random oracle is a hitting one-way function with overwhelming probability,
and thus being hitting one-way could be thought of as a natural abstracted property of a random
oracle (similar to e.g., collision resistance). Moveover, it is easy to see that hitting one-wayness
can be formalized using a standard cryptographic security game, and as such, the assumption that
a function f is a hitting one-way function is a falsiafiable assumption, in the terminology of Naor
[Nao03].9

Construction 2.5 (Security Game of Hitting One-Way Functions). The security of hitting one-
way functions can be defined through a two-party game whose winner can be efficiently and publicly
verified.10 For the security parameter n, the challenger sends f(Un) = y to the adversary Adv
who in return does as follows:

1. Either Adv sends back some x such that f(x) = y, or
2. Adv sends back a “proof” that fn is not hitting, which includes a circuit T of size n and

input length m and a sequence w1, . . . , wn2 such that T (f(i)|m, wi) = 1 for all i ∈ [n2] ⊂ {0, 1}n.

Clearly, if an efficient adversary wins in this game for an infinite sequence of security parameters,
then either f is not hitting or it is not one-way. On the other hand, if f is not hitting one-way, it is
easy to see that there is always a non-uniform adversary Adv of size poly(n) that wins the game
above for an infinite sequence n ∈ {n1 < n2 < . . .} with a non-negligible probability, because for
every input length n over which f is not hitting Adv can know the sequence w1, . . . , wn2 through its
non-uniform advice. This motivates the definition of a weaker primitive: uniformly-secure hitting
one-way functions as follows.

Definition 2.6 (Uniform Hitting One-Way Functions). We call an efficiently computable sequence
of functions {fn : {0, 1}n 7→ {0, 1}n} uniform hitting one-way, if any efficient uniform adversary Adv
participating in the security game of Construction 2.5 can win only with negligible probability.

Note that any uniform hitting one-way function f is also a (uniformly-secure) one-way function,
but it might be that it is only hard to refute the hitting property of f even though it is not actually
a hitting function. Interestingly, Theorem 1.2 can be proved only based on the existence of uniform
hitting one-way functions (resulting in a uniformly secure commitment scheme). We believe it is
a reasonable conjecture to assume that (a generalized version of say) AES is a uniform hitting

9A subtle point here is that the hitting property is defined w.r.t. co-nondeterministic (as opposed to nondeter-
ministic) circuits. Thus when f is not hitting, there always exits a polynomal-size witness for that: a circuit T of
size n and input length m and a sequence w1, . . . , wn2 such that T (f(i)|m, wi) = 1 for all i ∈ [n2] ⊂ {0, 1}n.

10Note that in a similar game that captures the hitting property of a function against nondeterministic (as opposed
to co-nondeterministic) circuits, one can not provide short witness that the function is not hitting.
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one-way function, since even though it might not be hitting it seems extremely hard to refute it
efficiently. As we show later on, a random oracle is clearly is a hitting one-way function, and so an
attack against the hitting property of AES would also constitute a concise evidence against AES
as a random oracle.

Finally, we note that it is easy to prove the existence of hitting one-way functions assuming
that (1) one-way functions exist and that (2) there exist efficient hitting set generators against co-
nondeterministic circuits. More formally, let G(1n, 1m) be the hitting set generator which generates
q = poly(n,m) ≤ poly(n) output strings of length m hitting any co-nondeterministic circuit of size
n and input length m. Suppose also that f is a one-way function. First, we can get G′(1n) to be
an efficient algorithm that enumerates over all m ≤ n as possible first input lengths and obtains
a larger output set of size q′ = m · q ≤ poly(n) that hits any co-nondeterministic circuit of size n.
Then we can “substitute” the first q′ outputs of f (i.e., f(1), . . . , f(q′)) over the domain {0, 1}n
with the elements of G′(1n) (when padded to n bits).11

2.2.2 Outline of the Proof of Theorem 1.2

Here we assume the reader is familiar with Naor’s commitment scheme. Following [BOV03] our
non-black-box construction of non-interactive commitments from one-way functions is essentially a
derandomization of Naor’s protocol, with the difference that here we use a hitting one-way function
rather than worst-case complexity assumptions. Recall that in Naor’s protocol the first message

sent by the verifier is a random string r
$←{0, 1}3m where g : {0, 1}m 7→ {0, 1}3m is a pseudorandom

generators constructed based on a one-way function f : {0, 1}` 7→ {0, 1}`. To guarantee (perfect)
binding, it is sufficient to have f({0, 1}m)∩{y : y ∈ f({0, 1}m)+r} = ∅. The set of all such “good”
r (that satisfy f({0, 1}m) ∩ {y : y ∈ f({0, 1}m) + r} = ∅) is accepted by a co-nondeterministic
circuit T defined as: T (r, w) = 1 iff w = (x1, x2) and g(x1) = g(x2) + r.

The derandomized protocol uses the hitting one-way function f over input length n = |T | to
obtain a small set {r1, . . . , rn2} such that at least one of ri is good (i.e., accepted by T ). This is
possible assuming that f is hitting because T accepts at least 1− 2−m > 1/2 fraction of its (first)
inputs. Therefore, one can eliminate the first round of the protocol and run the original protocol
over all of {r1, . . . , rn2} in parallel.

The hiding property of the new non-interactive protocol follows from the hiding of the origi-
nal protocol and a standard hybrid argument. The hiding of the original protocol relies on the
pseudorandomness of g, which in turn relies on the fact that f is one-way.

The binding property of the new protocol directly relies on the hitting property of f . Namely,
any adversary that breaks the binding of the new protocol can be efficiently (and uniformly) turned
into an algorithm that refutes the hitting property of f . Therefore, the new protocol is uniformly
binding, assuming that f is uniform hitting, and it is perfectly binding if the one-way function f is
simply hitting.

Why is the Construction Non-Black-Box? Following the steps above, the final construction
of non-interactive commitments from hitting one-way functions that one gets has the following
crucial property: In order to use the one-way function f as a hitting set generator, one needs to call
f over an input of length s where s depends on the running-time of the (one-way) function f itself
(on smaller input lengths). Therefore, one needs to first know the running time of f , which makes

11Working with a fixed polynomial n2 as the size of the hitting set makes our negative result only stronger.
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the implementation of the final construction (based on hitting one-way functions) non-black-box.
Similar results where the only non-black-box use of an oracle is the knowledge of its running time
were previously known (e.g., [BCKT94, GTS07, GV08]).

2.2.3 Outline of the Proof of Theorem 1.3

Before describing the main ideas and the technical tools developed and employed in the proof of
Theorem 1.3 let us start by reviewing what a black-box construction based on hitting one-way
functions looks like.

Black-Box Constructions from Hitting One-Way Functions. We skip a separate defini-
tion for black-box constructions based on hitting one-way functions, since this definition could be
obtained from Definition 3.9 and Definition 2.4. Namely, given any oracle adversary that breaks
the security of Comf , the security reduction Secf,Adv, with non-negligible probability shall break
the hitting one-way property of the oracle f (by either inverting f , or finding a circuit T of input
density dT ≥ 1/2 that is not hit by f together with a witness of such claim).

In order to prove Theorem 1.3, we rely on the proof of Theorem 1.1 outlined in Section 2.1. A
natural approach would be to show that our partially-fixed random oracle O is already a hitting
one-way function with overwhelming probability. Doing so would prove Theorem 1.3 as a direct
extension of the proof of Theorem 1.1, however, the problem with this approach is that a partially-
fixed random function f , in general, might not be a hitting function, simply because the fixed part
of the randomized function f could be adversarially chosen to make it not hit a particular circuit
T . However, recall that our oracle OR relative to which the cheating receiver R̂ was successful, was
indeed the random oracle. So in the following we start by handling the case that R̂ was a successful
cheating receiver.

Case 1: The cheating receiver R̂ succeeds relative to a random oracle. It is easy to see
that a random oracle is one-way with high probability.12 We first show that a random oracle is
also a hitting function with overwhelming probability (and so it will be hitting one-way).

Lemma 2.7. For every n ∈ N, with probability at least 1 − 2−n
2(1−o(1)) a random function

f : {0, 1}n 7→ {0, 1}n hits all co-nondeterministic circuits of size n and input density dT ≥ 1/2.

Proof. Fix any co-nondeterministic circuit T of size n and input density dT ≥ 1/2. Any of the
random images of f(j) for j ∈ [n2] ⊆ {0, 1}n (when truncated to the right size) will hit an element
in ST with probability at least the input density of T which is dT ≥ 1/2. Therefore, the probability
that none of {f(1), . . . f(n2)} hits ST is at most 2−n

2
. Since the total number of circuits of size13

n is at most 2O(n logn), the lemma follows by a union bound.

Lemma 2.7 implies that for large enough n a random function from {0, 1}n to {0, 1}n is hitting
with overwhelming probability. Therefore Lemma 2.7 is sufficient for refuting the existence of
black-box constructions of non-interactive commitments from hitting one-way functions. Namely,
for large enough n, with overwhelming probability, there exists no circuit T of size n that the
security reduction Sec (of any potential black-box construction Com) can output to refute the

12Recall that our random oracle chooses its randomness after the adversary is fixed and is different from the settings
of [IR89, GT00] who fix the random oracle after sampling it once and for all.

13Here we denote the size of a circuit by the number of its wires.
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hitting property of f . Therefore, in this case the security reduction Sec might as well just try to
invert the random oracle (with the help of the adversary). Therefore, if we are in Case 1 (where
OR is the random oracle), we can safely assume that we are back to the setting of Theorem 1.1
where the security reduction only tries to invert f , but we have already settled this case!

Remark 2.8 (Generalization to Separations in the Random Oracle Model). The argument above
can be generalized to any black-box separation result that is established through an attack in the
random-oracle model to also handle primitives that in addition are hitting (e.g., hitting one-way
functions, hitting collision resistant hash functions, etc). Thus, the result of [IR89] can be extended
to separate key-agreement from hitting one-way functions.

Case 2: The cheating receiver R̂ fails relative to a random oracle. In this case, we
would like to follow the general structure of Case 2 in Section 2.1, but as we mentioned before the
issue is that the partially-fixed randomized oracle OS might not be a hitting function. However,
recall that the fixed part of OS was due to the learned set L and the query-answer pairs inside
the two randomly sampled views V0 and V1. Therefore, even though we fixed the sampled part of
the oracle inside (L,Q(V0),Q(V1)) and relied on the remaining randomness of OS to conclude that
OS is one-way, this fixed part was also generated through a randomized process (even though it
was fixed after being sampled). This lets us to still have a hope that the whole random process of
generating OS (also over the randomness of generating the fixed part at the beginning) makes the
final result a hitting one-way function with overwhelming probability.

Recall that the two sampled views V0,V1 were obtained conditioned on (C,L, and) the com-
mitted bit to be 0 and 1. Now suppose instead of such samples we would have sampled only one
view V (for the sender and the receiver) conditioned on the values of (C,L) but without condition-
ing the committed bit b to be 0 or 1. Then, since C was already the commitment to a random
bit b, V would be a sample from the real distribution of the views of the sender and the receiver
conditioned on (C,L). Therefore, the joint samples (C,L,V) together have the same marginal
distribution as (C,L,V′) where V′ is the true view of the parties. Therefore we can conclude the
following crucial property of our sampling process: If we first sample (C,L,V) to get a partial or-
acle over F = (L,Q(V)) and then choose the oracle answers to any query out of F at random, the
final result is a random oracle. The reason simply is that this property holds for (C,L,V′) which
has the same marginal distribution as that of (C,L,V); so the same should hold for (C,L,V) as
well! We call such randomized partial functions (which are not defined over some of their inputs)
partially-defined random functions.

Definition 2.9 (Partially-Defined Random Functions). Suppose f is a random variable whose
output is a partial function from {0, 1}n to {0, 1}n (therefore, a sample f ← f might be defined
only over a subset of its domain {0, 1}). Define the randomized total function f̃ over the domain

{0, 1}n (as the random extension of f) as follows: First sample f
$←f . Then for every point x ∈ {0, 1}

which is not answered by f choose a random answer from {0, 1}n. Call the resulting function f̃ (and
its random variable f̃). If the randomized function f̃ is distributed exactly the same as a uniformly
sampled function from {0, 1}n to {0, 1}n, then we call f a partially-defined random function.

The New Definition of OS. The fact that a random extension of the randomized partial
function described in (C,L,V) is a random oracle indicates that our randomized oracle OS which
was generated through two sampled views V0,V1 might have similar properties and be a hitting
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one-way function. With this intuition in mind, we change the distribution of the randomized oracle
OS as follows: The two sampled views V0 and V1 are sampled independently conditioned on (C,L)
without conditioning on the bit b to be 0 or 1 (just like the way V was sampled). The final (new)
definition of the randomized oracle OS is as follows. We first sample (C,L,V0,V1) as above to
randomly sample a partial oracle f , and then randomly extend it to a full oracle f̃ ≡ OS according
to Definition 2.9. Since we would like to avoid rejection-sampling (not to change the marginal
distributions of (C,L,V0) and (C,L,V1)) if the sampled views V0,V1 had contradicting answers for
any oracle query q we choose the answer provided by one of V0,V1 at random. In the following we
will show that a cheating sender Ŝ still exists relative to OS , and that relative to Ŝ, OS remains
one-way and hitting.

Concluding Theorem 1.3. The following three claims imply Theorem 1.3.

Claim 2.10. If R̂ does not break the hiding of ComOR , then there exists a malicious sender Ŝ that
breaks the binding of ComOS .

Proof. Since we are in the case that the cheating receiver R̂ is not successful, thus the distribution
of the bit b conditioned on (C,L) remains close to uniform over {0, 1}, which means that in our new
way of sampling (V0,V1), still with probability polynomially close to 1/2 (and so bigger than, say,
1/3) we get that V0 (resp. V1) corresponds to the bit b = 0 (resp. b = 1) used as the committed
bit by the sender. Therefore by choosing the fixed part of OS based on the sampled answers of
(L,Q(V0),Q(V1)), with Ω(1) probability we get a cheating sender Ŝ who is able to successfully
decommit to both values of the bit b using the fixed sampled view Vb.

Claim 2.11 (OS Remains One-Way). No poly(n)-query adversary Adv can invert OS(Un) with
probability 1/poly(n), even when Adv is given oracle access to the cheating sender Ŝ.

Proof. Any query out of L ∪ Q(V0) ∪ Q(V1) is answered at random and the cheating sender Ŝ is
defined solely based on (L,V0,V1).

The main techincal meat of the proof of Theorem 1.3 is found in the following claim. Due to
lack to space, we only provide a very high-level outline.

Claim 2.12. OS is hitting with overwhelming probability.

In the following we outline the proof of Claim 2.12. We would like to show that when one evalu-
ates the oracle OS over [n2] it will hit at least one of the accepted inputs of any (co-nondeterministic)
circuit T of input density dT ≥ 1/2 with “high” probability ρ. We want the probability ρ to be
extremely close to one so that we can change the order of quantifiers and conclude that OS hits all
circuits of size n.

Recall that each of the sampled partial oracles f0, f1 described by the query-answer pairs in
(L,V0) and (L,V1) is a partially-defined random oracle, and that the final oracle OS is a random
extension of the “combination” of f0 and f1 (that combines the answers of f0 and f1 whenever their
sets of queries out of L do not collide). The intuition is that now, over the domain [n2] (planted
at the beginning of {0, 1}n) at least half of the queries are answered randomly and independently
and would behave like a random function because they either come from f0, or f1, or from the final
random extension of (f0, f1) to the full domain of {0, 1}n which we denote by f ′ (and is chosen
independently of (f0, f1)). More formally, since f ′ is chosen independently of (f0, f1), both of (f0, f

′)
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and (f1, f
′) are also partially-defined random oracles. Moreover, we know that over the domain

[n2], at least half of the queries are answered either by (f0, f
′) or by (f1, f

′). We would like to use
this property to conclude that OS hits every circuit with high probability.

For any circuit T we would like to know whether there is any oracle query q ∈ [n2] whose
answer hits ST or or not. We can assume w.l.o.g that the input density dT of T is equal to 1/2 and
directly work with Boolean functions, where the output of the Boolean function indicates whether
we have hit a point in ST or not. We prove the following Chernoff-type concentration bound for
partially-defined random functions, which we find of independent interest, and then will use it over
[m] = [n2] to conclude the hitting property of OS .

Theorem 2.13. let g be a partially-defined random function with domain D = [m] and range
R = {0, 1}, and let Q(g) be the set of queries answered in g. Then for every k ∈ [m] and
ω(
√
m) < δ ·m < o(m) it holds that

Pr
g

$←g

[|Q(g)| ≥ k and
∑

x∈Q(g)

g(x) ≤ (1
2 − δ) · k] ≤ e−(2+o(1))δ2k.

Employing Theorem 2.13 to Show that OS is Hitting. By choosing m = n2 and, δ = n−1/10

and k = n2/2, Theorem 2.13 asserts that either of the partially-defined random oracles (f0, f
′),

(f1, f
′) who answers at least n2/2 queries of the domain [n2] hits every fixed circuit T at least at

ω(n) points with probability at least 1−2−ω(n). Suppose w.l.o.g that it is the partial function (f0, f
′)

which hits ST at ω(n) points. The only way that these hitting points are “lost” in the process of
combining (f0, f

′) and (f1, f
′) to get OS is that all these queries are also answered by (f1, f

′) and
for all of these ω(n) points during the (randomized) combination process the answer of (f1, f

′) is
chosen over the answer of (f0, f

′). But, this would happen only with probability 2−ω(n). The error
probability 2−ω(n) is small enough to allow us to take union bound over all circuits of size n and
conclude that OS is hitting with overwhelming probability.

3 Preliminaries

3.1 Notation

By |x| we denote the length of any Boolean string x. For m ≤ |x|, by x|m we refer to the first
m bits of x. By [k] we denote the set {1, . . . , k}. We use bold letters (e.g., x) when referring to

random variables. By x
$←x we mean that x is sampled according to the distribution of the random

variable x. We use calligraphic letters (e.g., S) to denote sets (e.g., events over random variables)
and cryptographic primitives. We use sans-serif letters (e.g., NP) to denote complexity classes. For

a set S, by US we mean the random variable with uniform distribution over S, and by x
$←S we

mean x
$←US . By Un we denote U[n].

The support of the random variable y, represented by Supp(y), is the set of values y such that
Pr[y = y] > 0. For an event B, by B we denote the complement of B (i.e., for B defined over
x, it holds that B = Supp(x) \ B). For jointly distributed random variables (x,y), and for any
y ∈ Supp(y), the conditional distribution (x | y) is the random variable x conditioned on y = y.
We say that an event parameterized by n occurs with negligible probability, denoted by negl(n), if it
occurs with probability n−ω(1), and we say it happens with overwhelming probability if it happens
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with probability 1−negl(n). We call two discrete random variables x,y (or their corresponding dis-
tributions) ε-close if their statistical distance, defined as ∆(x,y) = 1

2 ·
∑

s∈S |Pr[x = s]− Pr[y = s]|,
is at most ε. We call the algorithm D an ε-distinguisher between the random variables x and y if
|Pr[D(x) = 1] − Pr[D(y) = 1]| ≥ ε. It is easy to see that if some algorithm D can ε-distinguish
between x and y, then ∆(x,y) ≥ ε.

We denote identically distributed random variables x and y by x ≡ y. We call {xi}I an
ensemble of random variables indexed by I if for every i ∈ I xi is a random variable defined over
{0, 1}poly(|i|). When it is clear from the context, we might simply use x (rather than {xi}I) to
denote an ensemble of random variables. We call two ensembles of random variables {xi}I , {yi}I
(with the same index set I) statistically close if there is a negligible function ε(n) = negl(n) such
that for every i ∈ I it holds that xi and yi are ε(|i|)-close. We call {xi}I and {yi}I computationally
indistinguishable, denoted by {xi}I ≈c {yi}I , if for every polynomial p(n) = poly(n), there exists
a negligible function ε(n) = negl(n) such that for every circuit D of size at most p(n) and for every
i ∈ I, D can distinguish between xi and yi by at most ε(n) advantage.

For a function f and a set S, by f(S) we denote the set f(S) = {y | ∃ x ∈ S, y = f(x)}. By
the view of an interactive algorithm A we refer to the the transcript of the messages exchanged
between A and others as well as the output and the random coins of A and the oracle answers
returned to A’s queries. We use sans-serif letters (e.g., S) to denote the views of the parties. We
always use the operation Q(V) to “extract” the queries inside V for a view V or even if V is a set
of query-answer pairs.

We use the term efficient for any probabilistic algorithm that runs in polynomial time over its
input. We usually denote the malicious algorithms (also called the adversary) with hatted letters,
e.g., Ŝ refers to an adversary who participates in a game that the honest party is called S (e.g., S
is the honest sender and Ŝ is some malicious sender).

For every two Boolean strings v, u of the same length, by u+ v we mean their componentwise
addition modulo 2. For a list of oracle query-answer pairs L (which can be thought of as some
partial function), and an oracle query q, we abuse the notation and let q ∈ L denote that (q, a) ∈ L
for some oracle answer a.

For any circuit T , by |T | we denote the size of T which counts the number of wires in T . It is
easy to see that the number circuits of size n is at most 2O(n logn).

3.2 (Partially-Fixed) Random oracles

In this work, the random oracles are length preserving.

Definition 3.1 (Random Oracle). The random oracle, denoted by RO, is a randomized oracle

which given a query x ∈ {0, 1}n returns a random answer of the same length RO(x)
$←{0, 1}|x|.

Note that here we choose to work with randomized oracles (similar to [BR93]) as opposed to
previous works on black-box separations (e.g., [IR89]) which sample a random oracle and fix it
forever. That is because we only aim for refuting black-box constructions rather than relativizing
constructions.

Definition 3.2 (Partially-Fixed Random Oracles). We call a randomized function f a k(n)-
partially-fixed random oracle if it is fixed over some sub-domain S and chooses its answers similarly
to the random oracle RO at any point q out of S and it holds that S ∩ {0, 1}n ≤ k(n) for every n.
We simply call f partially-fixed random if it is 2o(n)-partially-fixed random.
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3.3 Commitment Schemes

Definition 3.3. A (computationally secure) non-interactive commitment scheme Com = (S,R)
for a message space Wn is composed of an efficient sender S and an efficient receiver R such that:

• Both parties receive 1n, where n is the security parameter. The sender uses the randomness
rS and the receiver uses the randomness rR.

• Commitment Phase: The sender receives a private input w ∈ Wn, and outputs a commit-
ment string C = C(1n, w, rS). Thus C(1n, w) is a random variable whose randomness comes
from rS . By abusing the notation we might simply denote the commitment string as C(w).

• Decommitment/Verification Phase: The sender sends a decommitment value (w,D) to
the receiver and the receiver uses the randomness rR to verify (C,w,D) to accept or reject.

We desire the following properties to hold.

1. Completeness: When both parties follow the protocol honestly, the receiver accepts (C(w), w,D)
with probability 1− negl(n) (over rS and rR).

2. Hiding: For every two sequence of inputs (w1, w2, . . . ), (w
′
1, w

′
2, . . . ) where {wi, w′i} ⊆ Wi,

the two ensembles {C(1i, wi)} and {C(1i, w′i)} are computationally indistinguishable.

3. Binding: Suppose Ŝ is an efficient malicious sender who first sends some commitment string
C, then receives some input w, and then tries to decommit into (w,Dw) successfully. Roughly
speaking, the binding property asserts that any such sender after sending C is able to decom-
mit successfully into at most one string w. More formally we call the scheme (α, β)-binding
if the following holds: With probability at least α over the generation of C, there exists some
value w ∈ Wn such that for every other value w′ 6= w we have Pr[R(C,w′, Dw′) rejects] ≥ β
where the probability is over rR and the randomness of Ŝ in generating Dw′ . We simply call
the scheme binding if it is (α, β)-binding for α, β ≥ 1− negl(n), and call it weakly-binding if
it is (α, β)-binding for some α, β ≥ 1/ poly(n).

Perfect Binding. Note that if we want a non-interactive commitment scheme to be binding
against non-uniform cheating senders, then any (α, β)-binding scheme according to Definition 3.3
is already (1, β)-binding (and it is in fact perfectly binding, if the verification is deterministic). The
reason is that, if for any commitment string C there exist (w,Dw) and (w′, Dw′) for w 6= w′ such
that the receiver would accept both of (C,w,Dw) and (C,w′, Dw′) with probability at leat 1 − β,
then a non-uniform cheating sender Ŝ can “know” these values through its non-uniform advice.
Again, since we are proving in an impossibility result, we will to work with the more general setting
where the binding is not perfect and it is proved by a computational reduction to the security of
the primitive used (e.g., the one-way function).

Definition 3.4 ([BMO90, IOS97]). A (computationally secure) instance-based non-interactive com-
mitment scheme for the language L is a two-party protocol (S,R) between an efficient sender S
and an efficient receiver R such that:

• Both parties receive some x as input, where |x| = n is the security parameter.

• The commitment and decommitment phases are the same as in Definition 3.3.
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• If x ∈ L, then the completeness and hiding properties hold the same as in Definition 3.3.

• If x 6∈ L then the binding property holds the same as in Definition 3.3.

Even though we only gave a formal definition for non-interactive commitments, we shall review
the two-message commitment scheme of Naor for proving Theorem 1.2.

Construction 3.5 (Naor’s Two-Message Commitment [Nao91]). Let f : {0, 1}n 7→ {0, 1}n be a
one-way function. First we the black-box construction [HILL99] over f to get a pseudorandom
generator g : {0, 1}m 7→ {0, 1}3m for some m = poly(n). Now suppose the sender holds a bit b. The
commitment phase has two messages as follows, and the decommitment phase is canonical.

1. The receiver R chooses r
$←{0, 1}3m and sends r to the sender.

2. The sender S chooses s
$←{0, 1}m. If b = 0, it takes c = f(x), and if b = 1, it takes c = f(x)+r

(where the addition is componentwise modulo 2) and sends c to the receiver.

The hiding property of Construction 3.5 is implied by the pseudorandomness of f for every first
message of the verifier. The (statistical) binding property holds with overwhelming probability over
the randomness of r. Namely, by a union bound, with probability at least 1−2m ·2m ·2−3m = 1−2−m

over the choice of r, the two sets f({0, 1}m) and f({0, 1}m)+r are disjoint, in which case the scheme
is perfectly binding.

3.4 Black-Box Constructions and Separations

We refer the reader to [RTV04] for a comprehensive discussion on black-box constructions and their
variants. In the following we define black-box constructions14 in a general way, and then will tailor
them specifically for our specific primitives of interest.

Definition 3.6 (Black-Box Constructions). A black-box implementation QP of a primitive Q from
another primitive P is an oracle algorithm Q (called the implementation reduction) such that QP

is an implementation of Q for any oracle P that implements P. We say that QP has a black-
box proof of security, if there exists an efficient oracle algorithm Sec such that for any oracle P
implementing P and for any (computationally unbounded) adversary Adv who breaks the security
of QP (as an implementation of Q) with non-negligible advantage for some security parameter
n, the oracle algorithm SecP,Adv breaks the security of P over a polynomially related security
parameter n′ = nΘ(1). We say that Q has a black-box construction from P if there is a black-box
implementation Q and a black-box proof of security Sec as above.

Remark 3.7 (Why using the adversary only over one security parameter n?). If a black-box
reduction wants to convert any infinite sequence of successful adversaries {An1 , An2 , . . .} breaking
the security of the implementation QP over the security parameters {n1, n2, . . .} into another infinite
sequence of successful adversaries {A′n′1 , A

′
n′2
, . . .} breaking the implementation P over the security

parameters {n′1, n′2, . . .}, we can always assume w.l.o.g that the security reduction Sec does not
call the adversary Am over different values of m. The reason is that if the set {n1, n2, . . .} is
extremely sparse (whose sparsity can be chosen after the security reduction is fixed) an execution
of SecP,A might be able to only use A = An over a single “good” index n ∈ {n1, n2, . . .} and the

14What we call black-box here is denoted as fully black-box in the terminology of [RTV04].
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oracle Am could be completely useless on other parameters of m called by SecP,A, and since there
is no guarantee over the quality of such adversaries used, it can completely void the promise of
the security reduction to break the used implementation P . Based on this explanation, it is of no
surprise that all the black-box constructions in the literature fall into the category of Definition 3.6.

However, we note that there are some black-box constructions that transform any adversary A
who is successful almost everywhere (i.e., over all security parameters n larger than some n0) into
another adversary A′ who breaks the implementation P also almost everywhere. In this case it
makes perfect sense to allow the security reduction Sec to call Am over many security parameters
m. Such constructions are particularly known in the context of proving that some closely-related
variants of “one-way functions” are necessary for the existence of other primitives (e.g., [IL89]).
However, we choose to work with Definition 3.6 since here we are interested in “almost-everywhere
security” which is the standard definition used in the theory of cryptography for the security of the
primitives.

Remark 3.8 (Security Parameters). The reason for n′ ∈ nΘ(1) in Definition 3.6 is that we are
using super-polynomial timed (or sized) adversaries. If the used primitive is, say, exponentially
secure, it is possible for the security reduction to work with much smaller values of n′. On a
different note, in general, it is possible to design a black-box construction of a primitive Q (e.g.,
non-interactive commitments) based on another primitive P in which the security reduction Sec
breaks the implementation P over some security parameter n′ = nΘ(1) given oracle access to any
adversary that breaks the implementation QP over the security parameter n while the reduction
itself does not know explicitly for what n′ it will be the case. However, since n′ ∈ nΘ(1) and since
we only aim to break the security with 1/ poly(n′) probability, by pigeonhole principle there is
always some fixed n′ ∈ nΘ(1) over which the security reduction performs well, and we can think of
a well-defined mapping n′ = n′(n) with respect to the security reduction S.

3.4.1 Black-Box Constructions of Commitments

Now we give a formal definition for the case of black-box constructions of non-interactive commit-
ments from one-way functions.

Definition 3.9. A black-box construction of non-interactive commitments from one-way functions
is a pair of efficient oracle algorithms (S,R) such that: The parties receive the common input 1n

as the security parameter and access an oracle f = {fm : {0, 1}m 7→ {0, 1}m}. The commitment
and decommitment phases are the same as in Definition 3.3, and we require the completeness
conditions to hold for every oracle f . The security of the scheme is guaranteed through reductions
to the one-way feature of f as follows.

• Proving the Hiding: There is an efficient security reduction H that proves the hiding
property based on the one-way property of f . Namely, for every oracle f and every malicious
receiver R̂ (who could arbitrarily depend on f) given as an oracle, every ε ≥ 1/poly(n),
and every pair of messages w0 6= w1 from the space of messages {w0, w1} ⊆ W such that R̂
distinguishes between C(w0) and C(w1) with non-negligible advantage ε, the oracle algorithm

Hf,R̂ breaks the one-way property of f with probability at least poly(ε/n) = poly(ε/n′) over
a polynomially-related n′ = nΘ(1) input length; namely:

Pr
y

$←f(Un′ )

[Hf,Ŝ(y) ∈ f−1(y)] ≥
( ε
n′

)O(1)
.
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• Proving the Binding: It is defined similarly to the definition of Hiding using another
reduction B that inverts f with non-negligible probability given oracle address to f and any
adversary who breaks the binding of the constructed commitment scheme.

Perfect Binding. It is true that when the adversary is non-uniform, w.l.o.g one can work with
perfectly binding non-interactive commitment schemes. However, as we said before, in this work
we want to rule out even constructions with uniform proofs of security that start with uniformly
secure primitives (e.g., , when one uses uniform hitting OWFs in Theorem 1.2). Therefore, we
choose to work with the definition of binding according to Definition 3.9 as opposed to a possible
simpler definition tailored for perfect binding. In particular we note that Theorem 1.2 can only
rely on uniform hitting one-way functions, and as another examle: by assuming the existence of
uniformly-secure collision-resistant hash functions (which do not have an index and can be though
of as a stronger primitive than families of collision-resistant hash functions), one can obtain non-
interactive commitment schemes which are only computationally binding.

Black-Box Constructions from Other Primitives. A black-box construction of non-interactive
commitments from a primitive P other than one-way functions (e.g., FCRH) can be defined sim-
ilarly to Definition 3.9. For example, for the case of FCRH, the parties get access to an oracle
h = {hi : {0, 1}i × {0, 1}i 7→ {0, 1}i/2}i∈N, (where h(d, ·) is supposedly collision-resistant for a ran-
domly chosen index d). Again the completeness property should hold for every oracle h, and there
will be two security reductions that both break the collision-resistance of h over a random index
d ∈ {0, 1}n′ for n′ = nΘ(1) given oracle access to any adversary who breaks the hiding or binding
property of the scheme over security parameter n.

Instance-Based Commitments. A black-box construction of an instance-based non-interactive
commitments (from one-way functions or other primitives) is also defined similarly to Definition 3.9
by adopting the hiding and binding properties to the instance-based setting of Definition 3.4.
Namely, a successful cheating sender Ŝ (which is given as an oracle to the reduction B) should
break the binding over some input x 6∈ L, and the successful cheating receiver R̂ (given as oracle
to the reduction H) should break the hiding property of the commitment scheme over some x ∈ L.

3.4.2 Randomized Implementation of Primitives

Definition 3.10 (Security Threshold and Security-Transparent Primitives). We say a primitive P
has a security threshold P if any adversary who breaks P has to “output” some special string in
its security game with probability τP + ε for some non-negligible probability ε. We call a primitive
security-transparent if its security-threshold is zero.

Examples. One-way functions and FCRH are security transparent because it is enough to find
an inverse or a collision with a non-negligible probability to break the primitive. and the security
threshold of pseudorandom-generators and block-ciphers (and other natural “indistinguishability-
based” primitives) is 1/2. For some other primitives such as fair coin-tossing, the adversary tries
to make the other party output some string by an advantage over τP (which in case of coin-tossing
it is τP = 1/2).
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Security Threshold of Commitment. The security definition of commitment schemes uses two
security thresholds (and in general for multi-party primitives every party could have its own security
threshold). The binding property has security threshold 0 (because the cheating sender wants to
win with non-negligible probability), but the hiding property has security threshold 1/2 (because
the cheating receiver wants to distinguish between the commitments of two different messages).
But in this work we deal with security transparent primitive that are used in a construction of
commitments (e.g., one-way functions and FCRH).

Definition 3.11. Let O be a set of randomized oracles (e.g., the set of all partially-fixed random
oracles). We say that a primitive P (e.g., one-way functions or FCRH) has a secure black-box
implementation using O, if there is a poly(n)-time implementation algorithm PO for P such that
for every randomized oracle O ∈ O, any computationally-unbounded adversary A who (only) knows
the distribution of O and asks poly(n) queries to O can break PO with advantage at most negl(n)
(above the security threshold τP).

An important primitive that can be securely realized (even with exponential security) from the
set of partially-fixed random oracles is FCRH. We emphasize that having an index for the hash
function (and thus making it a family of hash functions) is necessary for deriving this primitive
from partially-fixed random oracles. That is because for any k-query construction of hash functions
hf : {0, 1}i 7→ {0, 1}i/2 from the oracle f , one can always fix 2k points of f to guarantee a collision
which could be known to the adversary attacking the collision resistance of hf since the adversary
knows the distribution of the function f used (and the fixed part is part of the description of the
distribution).

Lemma 3.12. FCRH can be black-box securely realized from all partially-fixed random oracles.

Proof. Let f : {0, 1}n 7→ {0, 1}n be a partially-fixed random oracle which is randomly chosen on
any point out of a fixed set S which Sn = S ∩ {0, 1}n ≤ 2o(n). Consider the following construction
of FCRH h | h : {0, 1}n/2 × {0, 1}n/2 7→ {0, 1}n/4 from f : For every d, x ∈ {0, 1}n/2, h(d, x) is equal
to the first n/4 bits of f(d, x). We prove that the construction above is black-box secure according
to Definition 3.11. Call d a bad index if there exist some x such that (d, x) ∈ S, and call it a

good index otherwise. Since |Sn| = 2o(n), a random index d
$← {0, 1}n/2 is a bad index only with

probability at most 2o(n)/2n/2.
Now suppose a computationally unbounded adversary A is given some good index d and tries

to find collision in the function hd(·). Since d is a good index, hd(·) will be a random function
from {0, 1}n/2 to {0, 1}n/4. It is easy to see that a q-query attacker can find a collision in a
random function to a domain of size N only with probability O(q2/N). Therefore, for a good
index d, a poly(n)-query adversary A is able to find a collision only with probability poly(n)/2n/4.
Therefore by a union bound the chance of A to find a collision (over the randomness of h) is at
most 2o(n)/2n/2 + poly(n)/2n/4 < negl(n).

3.4.3 Refuting Black-Box Constructions

A similar argument to that of Lemma 3.13 below for the special case of O = RO is implicit in [BM07]
and [DSLMM11]. Here we need this lemma for the case that O is a partially-fixed random oracle. A
more general lemma (also incorporating the case that P is not security-transparent) has appeared
in [MP].
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Lemma 3.13. Let P and Q be two cryptographic primitives and P is security transparent. For a
randomized oracle O, suppose one can break the black-box security of any implementation QO of
Q with non-negligible probability and asking poly(n) oracle queries to O. Suppose also that there
exists a black-box secure implementation P of P from O. Then there is no black-box construction
of Q from P.

Proof. Suppose on the contrary that (Q,S) is a black-box construction of Q from P. By feeding

the randomized implementation PO of P to the implementation Q of Q we get QP
O

= (QP )
O

as
a randomized implementation of Q using O. Since we assumed that any such implementation is
insecure, therefore there is some (computationally unbounded) adversary A who breaks the security

of (QP )
O

with non-negligible advantaging ε(n) > 1/poly(n) (above τQ) for security parameter n
by asking only m = poly(n) number of oracle queries to O.

Call an oracle O
$←O a good oracle if A breaks (QP )

O
(as an implementation of Q for) with

advantage at least ε(n)/2 . An averaging argument shows that a random O
$← O is good with

probability at least ε(n)/2. For every good oracle O
$← O, since it holds that A breaks (QP )

O

with advantage at least ε(n)/2, therefore the security reduction SP
O,AO would break PO over some

security parameter n′ = nΘ(1) with probability at least δ = poly(ε(n)/n′) > 1/ poly(n′).
Note that we can combine the algorithms S, P , and A to get an algorithm SP,A who queries at

most poly(n) ·m ≤ poly(n′) oracle queries and breaks the security of PO with probability δ(n′) >

1/poly(n′) whenever O is a good oracle. Thus if we choose O
$←O the attacker SP,A still succeeds in

breaking PO with a non-negligible probability at least δ′(n′) = (ε(n)/2) · δ(n′) > 1/ poly(n′). Since
we assumed P to be security transparent the success probability δ′(n) is already non-negligibly
above the security threshold τP = 0. Therefore SP,A breaks the black-box security of PO (over the
security parameter n′) which is a contradiction.

4 Separation from Partially-Fixed Random Oracles

In this section we will prove the following theorem.

Theorem 4.1. Suppose there exists a secure implementation of some primitive P from partially-
fixed random oracles (see Definition 3.2) where P is security-transparent (see Definition 3.10).
Then there exists no black-box construction of non-interactive commitments from P even for the
message space W = {0, 1}.

Partially-fixed random oracles imply (security-transparent) primitives such as one-way functions
and FCRHs and Theorem 4.1 implies Theorem 1.1 as a corollary. In the rest of this section we
prove Theorem 4.1.

The intuition behind the proof is to find a poly(n)-query attacker to the scheme from some
partially-fixed random oracle and apply Lemma 3.13. More specifically, we first design a natural
cheating strategy R̂ for the receiver which is computationally unbounded, but asks only poly(n)
number of queries to its (potentially randomized) oracle f . Then, we show that either the algorithm
R̂ would succeed in guessing the bit b with probability 1/2+1/poly(n) in the random oracle model
f ≡ RO, or that there exists a cheating strategy Ŝ who breaks the binding property in a model
where the randomized oracle f̃ used is partially-fixed random.
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Comparing the Notation with Section 2.1. In section 2.1 we denoted the first randomized
oracle suitable for R̂ by OR and the second randomized oracle suitable for Ŝ by OS . Here we no
longer use those names.

Lemma 4.2 below carries the heart of the proof. In this section we will use Lemma 4.2 only
for the simple case of W = {0, 1}, but we state and prove this lemma for the more general case of
|W| = poly(n) because of its application to the proof of Theorem 1.4.

Lemma 4.2. For any black-box implementation (S,R) of non-interactive commitment from the
oracle f (regardless of whether the scheme is secure or not) and the message space W of size
|W| ≤ poly(n) in which the parties ask m oracle queries, and for any given parameter δ < 1/100,
there are two cheating strategies: Ŝ for the sender and R̂ for the receiver such that at least one of
the following cases holds.

1. R̂ asks O(m/δ2) oracle queries, and there are two messages {w0, w1} ⊆ W such that: if
the oracle is a random function f ≡ RO, then R̂ can distinguish between w0 and w1 with
advantage at least δ. We call such a receiver R̂ a δ-successful (cheating) receiver w.r.t. the
random oracle (and messages (w0, w1)).

2. There is a O(m
δ2

+m|W|)-partially-fixed random oracle f̃ such that whenever it is used in the

commitment scheme, Ŝ can send a commitment C and then open it successfully into every
w ∈ W with probability at least 1 − δ′ for δ′ = (m · |W|)O(1) · δΩ(1) + negl(n). We call Ŝ a
(1− δ′)-successful (cheating) sender w.r.t. the partially-fixed random oracle f̃ .

Note that if |W| ≤ poly(n) and m = poly(n), we can always take δ = 1/ poly(n) to be small
enough so that δ′ < 1/100. In both cases of Lemma 4.2 we get an adversary (either a cheating
sender or a cheating receiver) that breaks the security of the commitment scheme w.r.t. a partially-
fixed random oracle by asking only poly(n) oracle queries (a random oracle RO can also be thought
of as a partially-fixed random oracle which is fixed over zero elements of its domain). Therefore,
Theorem 4.1 follows directly from Lemma 3.13.

Now we prove Lemma 4.2.

Proof of Lemma 4.2. In the following we will assume that (Sf , Rf ) is a black-box implementation
of non-interactive commitments from the oracle f , and we assume that the oracle f is sampled

from f
$← f where f is the random oracle f ≡ RO. We first present the cheating receiver strategy

R̂, and then assuming that it is not δ-successful w.r.t. RO we derive the needed (cheating) sender
strategy Ŝ and its partially-fixed random oracle f̃ such that R̃ is (1− δ′)-successful w.r.t. f̃ .

Before describing the cheating algorithms R̂ and Ŝ, we need to borrow a tool from [BM07].
Barak and Mahmoody [BM07] proved the following lemma in a more general interactive setting,
but here we only specify it in a special case which is sufficient for us.

Lemma 4.3 (Learning Heavy Queries Efficiently [BM07]). Let A be a randomized algorithm which
asks up to m oracle queries to the random oracle RO, denoted by the set Q(A) and outputs some
message C. Let 0 < ε < 1 be a given parameter. There is a learning algorithm G in BPPNP which
(given an NP oracle run in polynomial time and) learns a list L of query-answer pairs from the
oracle RO and the following two conditions hold.

1. Efficiency of the learner: |L| ≤ 10m/ε2.
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2. Learning heavy queries: With probability at least 1− ε over the choice of RO and the random
coins of A and G, for every q 6∈ L it holds that Pr[q ∈ Q(A) | (C,L)] < ε where the latter
probability is over the remaining randomness of RO and A conditioned on (C,L).

We employ the BPPNP complexity of the learner in Section 6. Now we describe our cheating
receiver R̂.

Construction 4.4 (The Cheating Receiver R̂ with Parameter δ). Let m be the total number of
oracle queries asked by the sender and the receiver (during the verification).

1. The cheating receiver R̂ first runs the learning algorithm of Lemma 4.3 with parameter ε = δ
over the algorithm A which is composed of both the sender’s algorithm when committing to

a random message w
$←W continued with the execution of the verification algorithm. Even

though the verification is not executed yet, the learner R̂ can simply “imagine” that it is
already executed. Thus, the randomness of A will be (rS , rR,w) and its output will be the
commitment C.

2. Let X be the random variable that includes the view of R̂ at the end of the learning phase.
The content of X includes the commitment C and the learned oracle query-answer pairs L.
If there exists any pair (w0, w1) ∈ W2 such that ∆((X | w = w0), (X | w = w1)) ≥ δ, then R̂,
when the messages are restricted to {w0, w1}, can always output the more likely input among
{w0, w1} conditioned on its view X, and because ∆((X | w = w0), (X | w = w1)) ≥ δ, this
will make a δ-successful receiver strategy w.r.t. the inputs {w0, w1} and the random oracle.

Note that by the efficiency property of Lemma 4.3, R̂ asks at most 10(m/δ2) number of queries.
Thus, as we also mentioned in the description of R̂, if there are two inputs (w0, w1) ∈ W2 such that
∆((X | w = w0), (X | w = w1)) ≥ δ we are done with the proof of Lemma 4.2. So in the following
we assume that no such pair exists. The description of the cheating sender Ŝ is as follows.

Construction 4.5 (The Cheating Sender Ŝ and the Partially-Fixed Random Oracle f̃).

1. First sample (C,L) according to the first step of the cheating receiver R̂ in Construction 4.4
(by internally simulating a random oracle f and throwing it away at the end). Recall that C

is the commitment to a randomly chosen message w
$←W.

2. Then for every w ∈ W sample a view Sw for the sender from the distribution of sender’s view
conditioned on w = w (and if Pr[w = w | (C,L)] = 0, let Sw = ⊥).

3. The partially-fixed random oracle f̃ will be fixed over the set F =
⋃
wQ(Sw), and is random

at any other point. Below we describe how f̃ is defined over the sub-domain F . Once this
part is fixed, the distribution of f will be random at any other point.

• If x ∈ Q(L) (i.e., x is learned in the first step), use the answer of L.

• Otherwise, let Ux = {w | x ∈ Q(Sw)} be the set of messages whose corresponding

sampled views have an answer defined for the query x. Then choose ux
$←Ux at random

once and for all, and set f̃(x) equal to the answer specified for x in the view Sux .15

15We emphasize that even though for the purpose of proving Theorem 1.1 we can define the oracle answers in this
case arbitrarily, but we used this randomized version of the definition of F to facilitate the proof of Theorem 1.3.

24



As usual (following our abuse of notation), we might use F both to denote the set of fixed
queries and also the set of fixed queries together with their answers.

4. The cheating sender Ŝ sends C as its commitment. Then in order to decommit to any message
w, Ŝ uses the sample view Sw to derive the required decommitment string Dw.

The fixed set F above describes the distribution of the partially-fixed random oracle f̃ , and the
values of C and {Dw}w∈W describe the behavior of the cheating sender Ŝ in its decommitment
phase.

Claim 4.6. Assuming that ∆((X | w = w0), (X | w = w1)) ≤ δ for every pair (w0, w1) ∈ W2 (i.e.,
that R̂ fails), if we run Ŝ, and ask it to decommit to every w ∈ W, with probability at least 1−δ′′, the
verifications of (C,w,Dw) will be accepted for all w ∈ W, where δ′′ = (m · |W|)O(1) · δΩ(1) +negl(n).

Proof. The proof is through a hybrid argument based on two experiments. The first experiment is
just the real experiment that we deal with during the cheating sender’s attack.

Experiment Real. Sample (L, C, {Sw}w∈W ,F) through the process of Construction 4.5 (which
would determine {Dw}w∈W), then choose the random coins rw for the receiver for each w ∈ W
independently at random, and choose a single f̃

$← (RO | F). Finally, for every w ∈ W, let Rw be
the view of the receiver’s verification when executed over (C,w,Dw) using the randomness rw and
the oracle f̃ .

Experiment Imag. The difference between Imag and Real is that in Imag to verify (C,w,Dw) we
ignore the sampled views Sw′ for any other w′ 6= w and will use a random oracle which is chosen by
only conditioning on (L, Sw). More formally, we first sample (L, C, {Sw}w∈W) through the process
of Construction 4.5 and then will choose the random coins {rw}w∈W independently at random for
the receiver. After that, for each w ∈ W, we execute the commitment verification over (C,w,Dw)
using the randomness rw, and for each new query q 6∈ Q(Sw) ∪ Q(L) we choose a fresh random
answer (even though this answer might be inconsistent with the answers chosen in Q(Sw′) for some
w′ 6= w). Finally we let Rw to be the view of such verification.

We emphasize that in Experiment Imag we do not sample a full instance of any partially-fixed
random oracle f̃ , and we only sample the answers to the queries that are required for verifications
“on demand” (which in fact as we mentioned might not be sampled all consistently).

Output of the Experiments. The output of both experiments is a random variable containing
the tuple (C,L, {Rw}w∈W) from that experiment which includes also the decision of the receivers
(to accept or reject). We use OutR to denote the output of Real and use OutI to denote the output
of Imag.

Claim 4.7. PrImag[∀ w ∈ W,Rw accepts] ≥ 1−|W|·(δ+negl(n)) which is least 1−O(|W|·δ)−negl(n)
for |W| = poly(n).

Proof. We only prove PrImag[Rw accepts] ≥ 1−(δ+negl(n)) for a fixed w ∈ W, and the claims follows
by a union bound. For a moment suppose C was generated as the commitment to this particular
w rather than the commitment to a random message. In this case the sampled (Rw, C,L) in Imag
will have the same marginal distribution to that of the following Experiment in the random oracle
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model, called Ideal, in which there is no adversary and the sender honestly commits to w and the
receiver R̂ runs its learning algorithm to learn L. It is clear that in Ideal we can go ahead and
execute the verification of (C,w,Dw) using a lazy evaluation of the random oracle (i.e., answering
any new query at random) and thus by the completeness of the commitment scheme the verification
should accept by probability 1− negl(n) (i.e., PrIdeal[Rw accepts] ≥ 1− negl(n)).

The verification in both of Ideal and Imag uses the same lazy evaluation; their only difference is
the way X = (C,L) is sampled. But recall that here we are assuming that ∆((X | w = w0), (X |
w = w1)) ≤ δ for every pair (w0, w1) ∈ W2, and thus we will have ∆((X | w = w0),X ≤ δ as well
(because X can be thought of sampling X conditioned on a random w). Therefore the statistical
distance between (C,L) in Imag compared to (C,L) in Ideal is at most δ. Since the statistical
distance can not be increased by applying any function we conclude that PrImag[Rw accepts] ≥
1− (δ + negl(n)) .

For every (C,F, {Sw}, {Rw}) (of Real or Imag) we define the “bad” event B to hold if and only
if there exists some w′ 6= w such that (Q(Sw) ∪ Q(Rw)) ∩ (Q(Sw′) ∪ Q(Rw′)) 6⊆ Q(L) (we define
Q(⊥) = ∅ in case Pr[w = w | L, C] = 0 for some values of L, C, w ∈ W).

Claim 4.8. Conditioned on B, the output of the Experiments Real and Imag are identically dis-
tributed.

Proof. Fix a pair (w,w′) ∈ W2. One possibility because of which Real and Imag might deviate is
when it happens that Q(Sw) ∩ Q(Sw′) 6⊆ Q(L) (in which case we need random choices to choose
answers from either of Sw or Sw′). Note that the latter is guaranteed not to happen when con-
ditioning on B. Now suppose we have sampled the same (L, C,Sw, Sw′) in both experiments, and
then we will see how the experiments continue in generating Rw and Rw′ . In Experiment Real, we

sample the random oracle f̃
$←(RO | F) first, then execute the receiver’s verification Rf̃

rw(C,w,Dw),

and then execute Rf̃
rw′

(C,w′, Dw′). By lazy evaluation in the sampling of f̃
$← (RO | F), it can

be seen that the distribution of the view of Rf̃
rw(C,w,Dw) in Experiment Real is exactly the same

as the distribution of Rw in Experiment Imag. After this step, the value of Rw′ (i.e., the view of

Rf̃
rw′

(C,w′, Dw′)) between the Experiments Real and Imag might deviate from each other only if

Rf̃
rw′

(C,w′, Dw′) asks a query that is already answered in Rf̃
rw(C,w,Dw) or is used in Sw. But,

again this event does not happen if we condition on B.

Now we bound the probability of the bad event B.

Claim 4.9. Pr[B] ≤ δ + 2|W|2δ + 2|W|2(m · 2|W|δ) in all experiments.

Before proving Claim 4.9 we need to prove the following intuitive technical lemma.

Lemma 4.10. Let x1, . . . ,xk be k random variables such that for every pair {i, j} ⊆ [k], we have

∆(xi,xj) ≤ δ. Suppose x
$← {x1, . . . ,xk} be a random choice among them and let Ei be the event

that x is selecting xi (therefore Pr[Ei] = 1/k). Then with probability at least 1 − 2k2δ over the

choice of x
$← x, for all i ∈ [k] it holds that Pr[Bi | x] ≥ 1

2k .

Proof. Suppose on the contrary that with probability at least 2k3δ over x
$← x, there exists an

i ∈ [k] such that Pr[Bi | x] < 1
2k . Since for every choice of x

$← x there is some j ∈ [k] such that
Pr[Bj | x] ≥ 1

k , by the pigeonhole principle, there exists a fixed pair (i, j) ∈ [k]2 such that with
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probability at least 2k2δ/k2 = 2δ over the choice of x
$← x, it holds that Pr[Bj | x] > 1/k and

Pr[Bi | x] < 1/(2k). Let E be the set of all such x. For every x ∈ E we have 1
k ≤ Pr[Bj | x] =

Pr[xj=x]∑
`∈[k] Pr[x`=x] =

Pr[xj=x]
k·Pr[x=x] . Therefore Pr[xj ∈ E ] ≥ Pr[x ∈ E ] ≥ 2δ. On the other hand, for every

x ∈ E , it holds that Pr[xj = x] ≥ 2 ·Pr[xi = x]. Therefore we get that Pr[xi ∈ E ] ≤ δ which implies
that ∆(xj ,xi) ≥ 2δ − δ = δ, but the latter is a contradiction.

Proof of Claim 4.9. By the discussion in the proof of Claim 4.7 it should be clear that after getting
(C,L) in Real the pair (Sw,Rw) is sampled from the distribution of the view of a full execution of
the commitment scheme (i.e., the commitment phase followed by the decommitment phase) in the
random oracle model conditioned on C being the commitment of w and L being part of the oracle.
By the definition of the learning algorithm of Lemma 4.3, with probability at least 1− δ, for every
q 6∈ L it holds that Pr[q ∈ Q(Sw) ∪ Q(Rw) | L, C] ≤ ε where w is the random message that the
sender has used to generate the commitment C. In the following we assume that this is the case
(and it will cost us an error of δ in bounding the probability Pr[B]). Also recall that we are assuming
that for every pair (w0, w1) ∈ W2 it holds that ∆((X | w = w0), (X | w = w1)) ≤ δ (otherwise
R̂ would have been δ-successful). Thus by Lemma 4.10, with probability at least 1 − 2|W|2δ over

the choice of (C,L)
$← X, for every w ∈ W it holds that Pr[w = w | C,L] ≥ 1

2·|W| . Again we

assume that this is the case and it will cost us another additive error of 2|W|2δ in bounding Pr[B].
Now for every w ∈ W it holds that Pr[q ∈ Q(Sw) ∪ Q(Rw) | L, C] ≤ δ

1/(2|W|) < 2|W|δ. Since

in Experiment Imag2 we can sample and fix (Sw′ ,Rw′) for any w′ 6= w before sampling (Sw,Rw),
and since |Q(Sw′) ∪ Q(Rw′)| ≤ m, by a union bound the probability that at least of the queries in
Q(Sw′) ∪ Q(Rw′) is selected in Q(Sw) ∪ Q(Rw) is at most m · (2|W|δ). By a union bound over all
pairs w 6= w′, we get that Pr[B] ≤ δ + 2|W|2δ + 2|W|2(m · 2|W|δ).

Putting Claims 4.7–4.9 together, we get that:

Pr
OutR

[∀ w ∈ W,Rw accepts] ≥ Pr
OutI

[∀ w ∈ W,Rw accepts]− Pr[B] ≥ 1− δ′′

for δ′′ = (m · |W|)O(1) · δΩ(1) + negl(n).

By using Claim 4.6 and an averaging argument, we conclude that for δ′ =
√
δ′′ ∈ (m · |W|)O(1) ·

δΩ(1)+negl(n), with probability at least 1−δ′ the sampled (F , C, {Dw}) makes Ŝ a (1−δ′)-successful
cheating sender w.r.t. the randomized oracle f̃ , and this finishes the proof of Lemma 4.2. In fact we
only needed to show that such (F , C, {Dw}) can be selected with nonzero probability, yet Claim 4.6
shows that this indeed happens with probability close to one.

5 Separation from Hitting One-Way Functions

Building upon the proof of Theorem 1.1, in this section we extend the black-box separation of
non-interactive commitments to prove Theorem 1.3

5.1 Black-Box Constructions from Hitting One-Way Functions

In this subsection we provide formal definitions of black-box and non-black-box constructions of
commitments using hitting one-way functions.
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Definition 5.1. A black-box construction Com of commitments from hitting one-way functions
is defined similarly to Definition 3.9 with the difference that the security reductions H and B will
either invert f over some security parameter n′ = nΘ(1) or output a circuit T of size n′′ = nΘ(1)

and input density dT ≥ 1/2 which is not hit by f . More formally, suppose J ∈ {H,B} is one of
the security reductions and is given oracle access to some adversary Adv (supposedly breaking the
hiding or binding of Comf over the security parameter n) and is given some input y = f(Un′) to
invert. We say that J “wins” if either of the following happens:

• Refuting the one-way property of f : J outputs some x′ such that f(x′) = y.

• Refuting the hitting property of f : J outputs some co-nondeterministic circuit T of size
n′′ = nΘ(1), and input density dT ≥ 1/2 which is not hit by f .

The security reduction H (resp. B) will get oracle access to f and an adversary Adv who with
(non-negligible) probability ε breaks the hiding (resp. binding) of Comf , gets as input a random

y
$← f(Un′), and outputs some x together with some circuit T , and wins (as defined above) with

probability at least (ε/n)O(1).

Demanding the witness that f is not hitting? Note that in the definition above, we did not
require the security proof to also provide the witness that f is not hitting, in case it claims so (and
we only require it to be true). This only makes our negative result stronger.

Why not f gates in T . We do not allow the circuit T output by the security reduction of
Definition 5.1 to have f gates, even though proving an impossibility result that allows such f gates
is a stronger statement. The reason is that we want the black-box construction to be secure if it
uses any oracle f (of unknown running-time) that is one-way and hits all the circuits of polynomial
size. But the size of a circuit with f gates is not well-defined (and will not be poly(n) if f is not
polynomial-time computable). Thus given circuit T with f gates and having oracle access to f one
can not verify whether T is hit by f or not. In fact, if one allows such gates in T (without counting
the complexity of f in the running time of T ) it is easy to see that the non-black-box construction of
Theorem 1.2 can be made black-box in this model. Recall, however, that any black-box separation
that is obtained though breaking the primitive in the presence of a random oracle still extends to
this stronger regime, since a random oracle is a strong hitting set generator that even hits circuits
with its own gates.

Definition 5.2. A non-black-box construction of non-interactive commitments from hitting one-
way functions is defined similarly to Definition 5.1 with the difference that the parties (S,R) and the
security reductions (H,B) are given the circuit of an efficiently computable f as input (rather than
just an oracle access to it). We shall allow also all of these algorithms to run in time poly(n, t(n))
where t is the circuit size of f since they are receiving a circuit of size t(n) as part of their input.

We showed how to prove Theorem 1.2 in Section 2.2.1. In the rest of this section we prove
Theorem 1.3.

5.2 Proof of Theorem 1.3

When the used primitive is a hitting one-way function f , instead of inverting the “one-way” function
f (with the help of an adversary breaking the security of the commitment) the security reduction
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might simply output a (co-nondeterministic) circuit T 16of size s = nΘ(1) which is not hit by the
oracle f used in the scheme.

Similarly to the case of separation from one-way functions, here we assume that a black-box
implementation (Sf , Rf ) of the black-box non-interactive commitment scheme Com from an oracle
f exists, and then we will show that it can not be black-box secure. Note that Lemma 4.2 still holds
since it did not depend on how the security of the construction (S,R) is proved. Again we will show
that the existence of a δ = ( 1

poly(n))-successful R̂ contradicts the existence of the security reduction

H (that proves the hiding), and the existence of or a δ′ = ( 1
poly(n))-successful Ŝ contradicts the

existence of the security reduction B (that proves the binding). But as we mentioned in Section ??
we need to slightly modify the definition of the randomized oracle relative to which the cheating
sender Ŝ performs. The change was to sample the views of the sender S0, S1 without conditioning
on the bit b to be zero or one. As it was discussed in Section ??, the cheating sender Ŝ can still
succeeds with probability ≈ 1/4.

We will start by the easier case that the malicious R̂ of Construction 4.4 succeeds.

Case 1: R̂ is successful. In this case we show that whenever R̂ (of Lemma 4.2) is δ-successful,

if we use f = RO in the scheme, the security reduction Hf ,R̂ can not output any circuit T of size
nΘ(1) (and input density dT > 1/2) that is not hit by f (unless with negligible probability). Proving
so shows that (if R̂ succeeds), the security reduction H might as well just try to invert f with a
non-negligible probability. The latter would again lead to a contradiction by Lemma 3.13. The
reason that f will hit all the circuits of size and input length nΘ(1) with overwhelming probability
is that here we are using the random oracle f = RO and Lemma 2.7 shows that a random oracle
hits all the circuits of size nΘ(1) with overwhelming probability!

Case 2: Ŝ is successful. To simplify the notation, in the following we will use n to denote the
size of the circuit T output by the security reduction B that proves the binding (even though, in
general this input length could be some n′′ = nΘ(1)). We wish to show that again, the reduction
B might as well simply try to invert f rather than trying to find a circuit T not hit by f (simply
because such circuit won’t exist). Proving so is harder in this case than the previous case that R̂
was δ-successful. The reason is that now Ŝ does not perform w.r.t. a totally random oracle RO
and is only successful w.r.t. a partially-fixed random oracle f̃ which is fixed over some part F of
its domain, and the fixed part F might include all the first n2 points in {0, 1}n and prevent the

function f
$← f̃ from hitting a particular circuit T with input length n. Despite that, a closer look at

the distribution of F shows that the function f̃ is a “combination” of two partially-defined random
functions (see Definition 5.5), because the marginal distribution of the query-answers in (L,S0) and
(L,S1) are both sampled assuming that the scheme is in the random oracle model. So, intuitively,
for every circuit T of size s, input length n, and input density dT > 1/2 (i.e., |ST | > 2n−1), it still
holds that at least half of the values f(1), . . . f(n2) are chosen at random, and thus one of them will
hit ST with probability at least 1 − 2−n

2/2−n (which is still sufficiently large to let us do a union
bound over the number of circuits). However, we need to study carefully why this “partitioning” of
the set [n2] ⊆ {0, 1}n into two parts is not going to be adversarially chosen against any particular
input set ST . The following claim finishes the proof of Theorem 1.3.

16Here we use the name T for the circuit not to be confused with the commitment string.
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Claim 5.3. With probability at least 1−O(2−n), the oracle f̃ of Construction 4.5 hits all the circuits
of size n.

Recall that during the sampling of the oracle f̃ in Construction 4.5, we first sample (C,L),
then sample (S0,S1), and then sample the rest of f̃ (while making random choices between the
answer of S0 and S1 when they disagree on a query). Because of the way we do our samplings
in Construction 4.5, the marginal distribution of query-answer pairs in (L,S0) is the “partially-
defined” part of a random oracle (and the same holds for (L,S1)).

We first formalize the notion of a partially-defined random oracle, and then will show that when
one “combines” two partially random oracles and then “randomly extend” to the full domain, the
result randomized function has a strong hitting property.

5.2.1 Partially-Defined Random Functions—Definitions

Definition 5.4 (Random Extensions). Let D and R be arbitrary finite sets denoting a domain
and a range and let f be a random variable whose values are partial functions from the domain D
to the range R. A random extension of f is a randomized total function f̃ distributed as follows:

1. First sample f
$← f (where f is defined only over Q(f) ⊆ D) and also define f̃(x) = f(x) for

every x ∈ Q(f).

2. Then for every a ∈ D \ Q(f) choose a random answer f̃(a) = b
$←R.

Definition 5.5 (Partially-Defined Random Functions). Let D be a finite domain and R be a finite
range. By the random function U(D,R) from D to R we mean the random variable whose value
is a random choice among all possible functions from D to R. Let f be a random variable whose
value is a partial function f defined over the domain set Q(f) ⊆ D. We call f a partially-defined
random function (from D to R) if and only if the random extension of f is identical to the random
function from D to R (i.e., f̃ ≡ U(D,R)).17

Definition 5.5 can be generalized to functions with a sequence of domains D1,D2, . . . and a
sequence of ranges R1,R2, . . . with the restriction that f(Dn) ⊆ Rn (e.g., by using Dn = Rn =
{0, 1}n we can consider length preserving functions and the random oracle RO as special cases).
We will, however, only use the simpler definition above.

Definition 5.6 (Randomized Combination of Partial Functions). For every two partial functions
f0 and f1 we define a randomized procedure that combines them into a new randomized function
f , denoted by f ← Comb(f0, f1), as follows:

• For every a ∈ Q(f0) \ Q(f1) use f(a) = f0(a).

• For every x ∈ Q(f1) \ Q(f0) use f(a) = f1(a).

• For every a ∈ Q(f0) \ Q(f1) choose a random answer f(a)
$←{f0(a), f1(a)}.

17Using the notation of Definition 5.5 the partially-fixed random oracle f̃ with a fixed part F can be thought of as
f̃ ≡ F̃ where F is a random variable whose value is fixed as F = F .
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5.2.2 Proving Claim 5.3

Now we show how to prove Claim 5.3 which finishes the proof of Theorem 1.3.

Lemma 5.7. Let A be a set of interactive algorithms with each algorithm described in A having
their own private randomness. Suppose AU is the system of oracle algorithms that interact with
each other while they have access to the random oracle U : D 7→ R. Let V be the random variable
that describes the view of all the parties in an execution of the system AU where this view only
includes their oracle queries Q(V) and their answers. It holds that V is a partially-defined random
function (with domain D and range R).

Proof. We can choose the answers of the oracle U through the so called “lazy evaluation” method
and choose its answers at random only when a query is asked. This way, the view V will include
the sampled part of U by the end of the protocol, and we can sample the rest of U after sampling
V first. But the latter sampling procedure is the same as sampling U directly (which is a uniformly
random function from D to R) by definition.

We emphasize that Lemma 5.7 does not extend (in general) to the case that V includes only a
part of the views of the parties, because by knowing the partial view one might be able to conclude
some information about the other oracle queries. Also recall that we are only interested in what
happens over the sampled function f̃ for the domain {0, 1}n since we assumed in the beginning that
n is going to be the size of the circuit T output by the security reduction B proving the binding
(and thus the input lengths of f other than n are irrelevant for that purpose).

Claim 5.8. Both of (L, S0) and (L, S1) when restricted to the range and domain {0, 1}n are
partially-defined random functions (see Definition 5.5) with range and domain {0, 1}n.

Proof. To show that (L, S0) is a partially-defined random function we employ Lemma 5.7 as follows.
Consider a system in which there is only a sender S who generates the commitment C based on
the bit b = 0 and another party who receives C and learns the set L (according to the algorithm
of Construction 4.4). This way, the distribution of (L,S0) is the same as V of Lemma 5.7, and
so is a partially-defined random function. A similar argument holds for (L, S1). Note that even
though the parties are allowed to ask oracle queries of length other than n we can “restrict” our
attention only to {0, 1}n and other queries asked to not harm the analysis of the distribution of the
query-answer pairs over {0, 1}n.

For simplicity, in the following we will assume that the query-answer pairs appearing in (L, S0)
and (L,S1) are all of length n (even though this is not the case, the other input-output queries are
relevant to our claims). The following lemma can be easily verified by inspection.

Lemma 5.9 (Projecting Partially-Defined Random Functions). Suppose S ⊆ D, and let R =⋃
i∈[k]Ri be a partition of R such that |Ri| = |R|

k for every i ∈ [k]. Let f be a partially-defined
random function from the domain D to the range R. Then the random variable g defined as follows
is a partially-defined random random variable with domain S and range [k]. To sample from g first

sample f
$← f , let g(a) = j iff a ∈ S and f(a) ∈ Ri.

Let f0 be the partial (randomized) function defined by (L, S0) and f1 be that of (L, S1). Let
f ← Comb(f0, f1) be the randomized combination of f0 and f1. It is easy to see that f̃ as defined
in Construction 4.5 is the same as the random extension of f which we (intentionally) also chose
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to denote as f̃ . Here we are interested in the behavior of f̃ over the [n2] ⊆ {0, 1}n and would like
to see if there is any x ∈ [n2] such that f̃(x) ∈ ST . If there is any such mapping, then f̃ hits T .
Fix any (co-nondeterministic) circuit T of size n with a corresponding input set ST of density at
least 1/2 (which we can remove elements from ST to make its density equal to 1/2). For i ∈ {0, 1},
let gi be the randomized boolean function defined defined only over the domain [n2] according to:
gi(x) = 1 iff fi(x) ∈ ST . By Lemma 5.9 g0 and g1 are partially-defined Boolean random functions
defined over [n2]. It is also easy to see that g← Comb(g0,g1) is the projection of f ← Comb(f0, f1)
and that the random extension g̃ of g is identical to the projection of the random extension f̃ of
f to the domain [n2] and range {0, 1}. Claim 5.3 follows from the following claim (whose proof
appears in the following section).

Claim 5.10. For i ∈ {0, 1}, let gi be the randomized boolean function defined defined only over the
domain [n2]. Let g ← Comb(g0,g1) be their randomized combination and let g̃ be the (Boolean)
random extension of g to the domain [n2]. Then with probability at least 1 − O(2−2n) over the

choice of ĝ
$← g̃ it holds that

∑
x∈[n2] ĝ(x) > 0.

Lemma 5.10 shows that the probability that g̃ does not hit a fixed circuit T of size s is at most
O(2−2s) and therefore by a union bound, with overwhelming probability 1−O(2s · 2−2s), g̃ hits all
the circuits of size s = nΘ(1). This finishes the proof of Claim 5.3 and Theorem 1.3.

5.2.3 Proving Lemma 5.10—Concentrations Bounds for Partially-Defined Random
Functions

In this section we prove Lemma 5.10. For that purpose we need to develop some concentration
bounds for partially-defined random functions.

Lemma 5.11 (Restating Lemma ??). Let pδ(k) denote the probability that k independent unbiased
Boolean random variables have summation at most (1/2 − δ) · k. Also let g be a partially-defined
random function with domain D = [m] and range R = {0, 1}. Then for every k ∈ [m] and
0 ≤ δ ≤ 1/2 it holds that

Pr
g

$←g

[|Q(g)| ≥ k and
∑

x∈Q(g)

g(x) ≤ (1
2 − δ) · k] ≤ pδ(m)

pδ(m− k)
.

Proof. Let g̃ be the random extension of g to the whole domain [m]. We suppose on the contrary

that when we sample g
$← g, with probability more than pδ(m)

pδ(m−k) it holds that |Q(g)| ≥ k and∑
x∈Q(g) g(x) ≤ (1/2−δ) ·k. Now, after sampling g

$←g, we also sample the rest of g̃ which involves
sampling m − |Q(g)| more random unbiased Boolean random variables. Let ḡ be the partial
function that we sample when extending g to g̃. Since |Q(ḡ)| ≤ m−k, even condition on any fixed

g such that |Q(g)| ≥ k, with probability at least pδ(m− k) over the choice of ḡ
$← ḡ, it holds that∑

x∈Q(ḡ) ḡ(x) ≤ (1/2−δ)·(m−k). Therefore, with probability more than pδ(m)
pδ(m−k) ·pδ(m−k) = pδ(m)

over the choice of g̃
$←g̃ it would hold that

∑
x∈Q(g̃) g̃(x) ≤ (1/2−δ)k+(1/2−δ)(m−k) = (1/2−δ)·m

which contradict the definition of pδ(m).

Lemma 5.12 (Implied by Lemma A.2.2 in [AS08]). Suppose x1, . . . ,xm are m independent unbiased
Boolean random variables with summation x =

∑
i xi and let δ be such that ω(

√
m) ≤ δ ·m ≤ o(m).

Then it holds that Pr[X > (1/2 + δ)m] = Pr[X < (1/2− δ)m] = e−(2+o(1))δ2m.
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The upper-bound of Pr[X < (1/2 − δ)m] < e−2δ2m follows by the Chernoff bound, and
Lemma 5.12 specifies that for certain range of parameters there exists an anti-concentration bound
showing that the Chernoff is almost tight.

Corollary 5.13 (Restating Theorem 2.13). let g be a partially-defined random function with do-
main D = [m] and range R = {0, 1}. Then for every k ∈ [m] and ω(

√
m) < δ ·m < o(m) it holds

that
Pr
g

$←g

[|Q(g)| ≥ k and
∑

x∈Q(g)

g(x) ≤ (1
2 − δ) · k] ≤ e−(2+o(1))δ2k.

Proof. By Lemma 5.11 we get the upper-bound of pδ(m)
pδ(m−k) . By Lemma 5.12 it holds that pδ(t) =

e−(2+o(1))δ2t, and thus we get the upper-bound of

pδ(m)

pδ(m− k)
=

e−(2+o(1))δ2m

e−(2+o(1))δ2(m−k)
= e−(2+o(1))δ2k.

As is clear from the proof of Corollary 5.13, any anti-concentration bound that lower-bounds
pδ(m− k) for an arbitrary δ (out of the range specified in Lemma 5.11) leads to some upper-bound
over Pr

g
$←g

[|Q(g)| ≥ k and
∑

x∈Q(g) g(x) ≤ (1
2 − δ) · k].

In the following lemma one can use the domain size to be as small as ω(s), but we will prove it
only for the more relaxed case of [n2] which is sufficient for us.

Lemma 5.14. Let g0 and g1 be two (possibly correlated) partially-defined random functions with
domain [n2] and range {0, 1}, and let g ← Comb(g0,g1) be their (randomized) combination. Sup-

pose that for all instances g0
$←g0 and g1

$←g1 it holds that Q(g0)∪Q(g1) = [n2] (i.e., the combination
g is always a total function). Then it holds that Pr

g
$←g

[
∑

x∈[n2] g(x) = 0] < 2−2n.

Concluding Lemma 5.10. Before proving Lemma 5.14 we show how to conclude Lemma 5.10
from Lemma 5.14. The difference between the two lemmas is that in Lemma 5.14 the combination
of two functions g0 and g1 is a total function whereas in Lemma 5.10 we need to take a random
extension at the end to make the function total. In Lemma 5.10 let g′0 be a “partial” random
extension of g0 as follows. The partial function g′0 is a sub-function of ĝ (where ĝ is the random
extension of the combinations of g0 and g1) which does not include Q(g1) \ Q(g0). Namely, g′0 is
the maximal extension of g0 that is consistent with ĝ but does not intersect with the queries whose
answers are determined by g1 (alone). Similarly define g′1 based on g0, g1 and g̃. It is easy to see
that (1) both of g′0 and g′0 are partially-defined random oracles, and (2) Q(g′0) ∪ Q(g′1) = [n2],
and (3) the combination of g′0 and g′0 is identically distributed as the random extension of the
combination of g0 and g1. Therefore Lemma 5.10 implies Lemma 5.10.

Proof of Lemma 5.14. Let B be the event that
∑

x g(x) = 0, and for i ∈ {0, 1} let Ei be the event
that

∑
x∈Q(gi)

gi(x) ≥ n2/3.

First we note that Pr[B |
∑

x∈Q(g0) g0(x) > t] < 2−t. That is because, whenever there are t
samples {x1, . . . , xt} in g0 that are mapped to 1, then in order to get

∑
x g(x) = 0, for all i ∈ [t]

we shall have: (1) xi ∈ Q(g1) and (2) g1(xi) = 0 and (3) choose g(x1) = g1(x1) when combining
g0 and g1. For each i ∈ [i], we will choose g(xi) = g1(xi) only with probability 1/2, and so we will
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choose g(xi) = g1(xi) for all i ∈ [t] only with probability at most 2−t. A similar argument shows
that Pr[B |

∑
x∈Q(g1) g1(x) > t] < 2−t, and therefore Pr[B | E0 ∨ E1] ≤ 21−n2/3.

In the following we will show that Pr[E0 ∨ E1] ≤ 2−(1+o(1))n3/2
, which will imply that

Pr[B] ≤ Pr[E0 ∨ E1] + Pr[B | E0 ∨ E1] ≤ 2−(1+o(1))n3/2
+ 21−n2/3 = 2−(1+o(1))n3/2

.

By using the parameters m = n2, k = n2/2 and δ = n−1/10 in Corollary 5.13 (which satisfy the
condition ω(n) < δ · n2 < o(n2)) for i ∈ {0, 1} we get that

Pr
gi

$←gi

[|Q(gi)| ≥ n2/2 and
∑

x∈Q(gi)

gi(x) ≤ (1
2 − n

−1/10) · n2] ≤ e−(2+o(1))δ2n2
< 2−(1+o(1))n3/2

.

On the other hand since Q(g) = [n2], we know that Pr[|Q(g0)| ≥ n2/2 or |Q(g1)| ≥ n2/2] = 1, and

therefore Pr[∀ i ∈ {0, 1},
∑

x∈Q(gi)
gi(x) < (1

2 − n
−1/10) · n2] < 2 · e−(2+o(1))δ2n2

< 2−(1+o(1))n3/2
.

Finally, since (1
2 − n

−1/10) · n2 > n2/3, we get that Pr[E0 ∧ E1] ≤ 2−(1+o(1))n3/2
.

6 The Checkability Barrier

In this section we prove Theorems ?? and 1.4.

6.1 Proof Systems and Program Checkers

Definition 6.1 (Interactive Proofs [GMR89]). A proof system (P, V ) for a language L is a pair of
interactive algorithms such that V runs in time poly(|x|) where x is the common input, and the
following holds:

• c-Completeness: V accepts the interaction with P over any x ∈ L with probability ≥ c(|x|).

• (1− s)-Soundness: No matter what strategy a cheating prover employs, the verifier accepts
the interaction over any x 6∈ L with probability at most s(|x|) (which is called the soundness
error).

• Non-negligible Gap: It holds that c(n)− s(n) > 1/ poly(n).

An argument system is defined similarly, but the soundness is guaranteed only against poly(n)-sized
circuits cheating provers.18

Definition 6.2 (Honest-Verifier Zero-Knowledge). Let View〈P, V 〉(x) be the view of a verifier V
in an interaction interaction with a prover P over the input x. A proof (or argument) system
(P, V ) for a language L is called honest-verifier zero-knowledge HVZK, if there exists an efficient
simulator Sim such that the ensembles {Sim(x)}x∈L and {View〈P, V 〉(x)}x∈L are computationally
indistinguishable.

18A k-prover proof system is defined similarly with the restriction that the provers can not communicate with each
other during the interaction (and only talk to the verifier). The completeness is defined the same as before while
the soundness should only hold when considering cheating prover strategies that do not communicate during the
interaction with the verifier.
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Definition 6.3 (Checkability). A language L is (black-box) checkable if there exists an efficient
algorithm A (called the program checker) such that given any oracle π, the following holds.

• Completeness: Whenever π(x) = L(x) for every x, then for every x it also holds that
Pr[Aπ(x) = L(x)] = 1− negl(n).

• Soundness: For every x (regardless of whether π solves L always correctly or not), it holds
that Pr[Aπ(x) ∈ {L(x),⊥}] = 1− negl(n). (⊥ denotes “finding a bug” in the “program” π.)

Lemma 6.4 ([BK95]). If there are a (single prover) proof system for both of the languages L and L
in which the provers can be implemented efficiently given access to an L-oracle (i.e., implemented
in BPPNP), then L has a black-box program checker.19

Remark 6.5. Since all languages in NP are trivially provable with a prover of complexity PNP,
the (black-box) checkability of NP is equivalent to the existence of a proof system for coNP with
provers in BPPNP.20

6.2 Lower-Bounds on Instance-Based Commitments

In this section we prove Theorem ??.
In fact we prove something stronger than Theorem ??:

Theorem 6.6. If there exists a construction of instance-based non-interactive commitments for the
language L through a black-box construction based on one-way functions, then there exists a single
prover proof system for L whose prover complexity is in BPPNP.

For the case of L = SAT, the theorem above implies a proof system for coNP with prover
complexity BPPNP. By Lemma 6.4 and Remark 6.5, the latter implies the checkability of SAT (and
all of NP).

We will prove Theorem 6.6 for the case of one-way functions, and the generalization to FCRHs
is straightforward. In the following we will assume that a black-box construction of instance-based
commitments based on one-way function f exists, and we feed the construction with a random
oracle f ≡ RO.

The formal description of the protocol to prove L is as follows.

Construction 6.7. This protocol is based on a black-box construction (S,R) of non-interactive
commitments for W = {0, 1} from one-way functions. For this assumed construction, let δ =
1/poly(n) be chosen small enough so that δ′ < 1/2 in Lemma 4.2. The prover P and the verifier
V both get access to x (which P claims to be x 6∈ L). The length of the input |x| = n serves as the
security parameter (i.e., both parties run in poly(n) time). The prover has access to an NP oracle
and its goal is to prove that x 6∈ L.

1. The verifier V chooses a random seed rS and a random bit b
$← {0, 1}. Then it executes the

sender’s algorithm S (of the commitment scheme) to generates the commitment string C(b).
During this execution the verifier chooses the answers to the oracle queries of the sender S
at random (and saves the answers to use them in case of asking the same query again). The
verifier sends C(b) to the prover.

19The statement would be “if and only if” in case of using a k-prover proof system for any k ≥ 2.
20The existence of a proof system for coNP with a single prover of complexity BPPNP is potentially stronger than

just the checkability of NP (since the checkability is equivalent to the existence of multi-prover proof systems).
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2. Then the parties engage in 10m/δ2 rounds of interaction. In each round the prover sends
an oracle query q to the verifier. The verifier looks up the query q and if the answer f(q) is
already chosen, it sends the answer to the prover. In case f(q) is not chosen yet, the verifier V

chooses f(q)
$←{0, 1}|q| at random and returns the answer to the prover. The way the prover

chooses his queries is by executing the cheating receiver algorithm R̂ of Lemma 4.2 with the
parameter δ (and prover’s NP oracle is used to execute the learning algorithm efficiently).
Note that, the learning algorithm of R̂ will ask at most 10m/δ2 oracle queries. Thus there is
enough number of rounds so that the prover can ask its queries from the verifier.

3. In the last round of the protocol, the prover sends his guess about the bit b by outputting
the bit which is more likely to be used by the sender conditioned on (C(b),L).

4. The verifier accepts if and only if the prover’s last message is equal to the bit she used in the
commitment.

Claim 6.8. Suppose Construction 6.7 uses a black-box construction of instance based non-interactive
commitment scheme (S,R) for the language L based on one-way functions with a black-box proof
of security, then:

• Completeness: If x ∈ L, then the verifier accepts with probability at least (1 + δ)/2.

• Soundness: If x 6∈ L, then no matter what an unbounded cheating prover P̂ does, it can not
make the verifier accept with probability more than 1/2 + negl(n).

Proof of Claim 6.8.

Soundness. This property follows from the black-box proof of hiding for the commitment scheme
(in case x ∈ L) and Lemma 3.13. Note that the prover has no way to ask more than 10m/δ2 ≤
poly(n) oracle queries from the oracle f , simply because it is the verifier who is simulating f and
answers only 10m/δ2 many queries in 10m/δ2 many rounds. By Lemma 3.13 no cheating receiver
who asks up to poly(n) oracle queries is able to guess the committed bit by more than 1/2+negl(n)
(otherwise the black-box proof of hiding cannot exist).

Completeness. Similarly to the case of soundness, but by this time by by the black-box proof
of security for the binding property of the commitment scheme, and due to Lemma 3.13, we
conclude that there is no (efficient query) cheating sender Ŝ (together with a partially-fixed random
oracle fixed over a poly(n)-sized domain) who is 1/poly(n)-successful according to the definition of
Lemma 4.2. But this is exactly what we want here, because Lemma 4.2 implies that either such a
1/poly(n)-successful cheating sender exists, or that R̂ will be a δ-successful cheating receiver who
is able to δ-distinguish between the commitments 0 and 1. But the black-box proof of security
for binding asserts that such Ŝ can not exist, therefore it is the δ-successful R̂ which exists. In
particular, the prover can use this successful cheating receiver’s strategy R̂ to guess the random
bit b correctly with probability at least (1 + δ)/2. Also note that the prover has enough number of
rounds to ask all of its oracle queries (to emulate R̂) from the verifier who controls the access to
the oracle f .
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6.3 Lower-Bounds on Honest-Verifier Zero-Knowledge

In the rest of this section we prove Theorem 1.4.

Definition 6.9 (k-Bit Verifiers). In the following by a “k-bit verifier” we denote a verifier V in
a 3-message public-coin protocol who sends k random bits in the second message of the protocol.
The verifier V is also allowed to toss one more round of coins after receiving the second message of
the prover and use them in her final decision.

We first prove Theorem 1.4 for the easier case of 1-bit verifiers. This simple case, even without
the ending coin tosses by the verifier, includes protocols such as Blum’s zero-knowledge protocol for
Hamiltonicity of graphs [Blu87] as special case. After that we show how to extend the proof to the
more general case of O(log n)-bit verifiers which includes the zero-knowledge protocol of [GMW87]
for 3-coloring of graphs as special case. In both cases we essentially reduce the problem to the case
of instance-based commitments which is already handled by Theorem ??. Our reduction, however,
starting from a zero-knowledge protocol, constructs a weakly binding scheme (in which the scheme
is only (1/ poly(n), 1/poly(n))-binding, but the proof of Theorem ?? in fact handles the weakly-
binding case directly (because the cheating sender Ŝ succeeds with probability 1− δ′ which can be
chosen to be 1− δ′ > 1− 1/ poly(n)).

6.3.1 1-bit Verifiers

Here we describe reduction due to [KMS07] from instance-based non-interactive bit-commitment
schemes for the language L to any 3-message public-coin honest-verifier zero-knowledge argument
system for L with a 1-bit verifier as defined in Definition 6.9. This would prove Theorem 1.4 for the
case of 1-bit verifiers, since this new black-box construction for commitment can be used to get a
program checker for NP by Construction 6.7. We present a more general construction starting from
poly(n)-bit verifiers, and prove its properties formally later because the more general construction
will be used in the proof of log n-bit verifiers as well.

Construction 6.10 (Commitment from k-Bit Verifiers). Let (P, V ) be zero-knowledge argument
system for the language L with a k-bit verifier V (as defined in Definition 6.9) and simulator Sim.
A non-interactive instance-based commitment (S,R) for the same language L can be constructed
as follows: (the construction might not be secure in general).

• Commitment: Suppose x ∈ L and w ∈ [2k] is the sender’s private input. The sender S runs
the simulator over the input x to get (a1, v, a2, r)← Sim(x) where (a1, a2) are the simulated
prover messages, v is the verifier’s k-bit message, and r is the verifier’s final coin tosses. The
sender S sends the commitment C(w) = (a1, v + w = v′) to the receiver.

• Decommitment: The sender sends (b, a2) as the decommitment value. The receiver chooses
r′ at random and runs the verifier over the transcript (a1, v

′ + w, a2, r
′) and rejects the

decommitment if this verification fails.

The following lemma specifies the properties of of Construction 6.10 when the verifier is 1-bit,
and might be of independent interest. The work of Ong and Vadhan [OV07] has already proved
this lemma without the non-interactive feature.
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Lemma 6.11 (Bit-Commitment from 1-Bit Verifiers). If one uses an argument system (P, V ) with
completeness 1−negl(n), soundness δ, and a 1-bit verifier in Construction 6.10 (i.e., |v| = k = 1),
then the result will be a non-interactive

√
δ-binding bit-commitment scheme.

We postpone the proof of Lemma 6.11 to the proof of Lemma 6.13 which includes Lemma 6.11
as a special case.

6.3.2 O(log n)-Bit Verifiers

Now we go over the general case of O(log n)-bit verifiers. Unfortunately, we do not know how to con-
struct standard commitment schemes from 3-message zero-knowledge protocols with k-bit verifiers
for k > 1), so we will take another tour. We will define a new primitive, called a “somewhere-
binding” commitment: a commitment scheme that the sender is not able to decommit to all the
possible values. We show that 3-message zero-knowledge protocols with a k-verifier will imply
a somewhere-binding commitment scheme with message space of size 2k. We then show how to
extend Theorem ?? to somewhere-binding commitments schemes of message space |W| = poly(n).

Definition 6.12 (Somewhere-Binding Commitments). A somewhere-binding commitment scheme
for message space W =Wn (where n is the security parameter) is a two party protocol between a
sender S and a receiver R defined similarly to Definition 3.3 with the following difference:

• Sender’s Input: The sender receives a private input vector w ∈ Wn.

• α-Binding: For every malicious efficient sender Ŝ who plays the role of S in the commitment
phase, receives w ∈ W, and outputs a decommitment Dw, with probability at least α over the
choice of C, there exists at least one value w ∈ {0, 1} such that Pr[R(C,w,Dw) accepts] ≤
1− α where the probability is over the randomness of the verification rV and the remaining
randomness of Ŝ in generating Dw based on w. We simply call the (somewhere-binding)
commitment scheme binding if it is α-binding for α = 1− negl(n), and call it weakly-binding
if it is α-binding for α = 1/ poly(n).

Note that for the case of W = {0, 1}, the somewhere-binding and regular commitments become
the same objects. The following lemma shows that if we feed an argument system with a k-bit
verifier to Construction 6.10, it gives us a somewhere-binding commitment for message space [2k].

Lemma 6.13 (Somewhere-Binding Commitment from k-Bit Verifiers). If one uses an argument
system (P, V ) with completeness 1−negl(n), soundness δ, and a k-bit verifier in Construction 6.10
(i.e., |v| = k), then the result will be a non-interactive

√
δ-binding somewhere-binding commitment

scheme for message space W = [2k].

Proof of Lemma 6.13.

Completeness. The completeness of the commitment scheme (S,R) is inherited from that of the
proof system (P, V ) and the quality of its simulator Sim. More formally, we define the following
random variables.

• T1: denoting the transcript (a1, v, a2, r) of an actual execution of (P, V ) over x.

• T2: (a1, v, a2, r
′) where the last component of T1 is substituted with a fresh randomness.
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• T3: denoting the output of the simulator (a1, v, a2, r)← Sim(x).

• T4: (a1, v, a2, r
′) where the last component of T3 is substituted with a fresh randomness.

By the completeness of the argument system Pr[V (T1) = accept] = 1 − negl(n). In the
following that T1 and T4 are computationally indistinguishable T1 ≈c T4 which will show that
Pr[V (T4) = accept] = 1 − negl(n) as well, proving the completeness of the commitment scheme.
The reason is that by the quality of the simulation we have T1 ≈c T3, and so if we substitute
the last message of T1 and T3 with a fresh randomness they remain indistinguishable T2 ≈c T4

(because it is an efficient transformation). But T1 and T2 are simply the same distributions, and
thus T1 ≡ T2 ≈c T4.

Hiding. The hiding property of the commitment scheme relies on the quality of the simulation
and the randomness of the verifier’s second message. We will show that commitments to every two
messages are computationally indistinguishable. We will prove it only for messages 0k and 1k, but
the same arguments for every two messages w,w′ ∈ [2k]. Now we consider the following random
variables:

• C1: denoting the partial transcript (a1, v) of an actual execution of (P, V ) over x.

• C2: (a1, v + 1k) where the second component of C1 is flipped.

• C3: denoting the first two messages (a1, v) simulated by the simulator Sim(x).

• C4: (a1, v + 1k) where the second component of C3 is flipped.

We have that (1) C1 ≡ C2 because v is a random message and that (2) C1 ≈c C3,C2 ≈c C4 both
due to the quality of the simulator. Thus we get C3 ≈c C1 ≡ C2 ≈c C4 proving the hiding.

Binding. The binding property follows from the soundness of the proof system (P, V ) and the
quality of the simulation. More formally let Ŝ be a cheating sender that with probability at least
1 −
√
δ can generate a commitment C = (a1, v

′) such that for every w ∈ [k], it can generate Dw

such that with probability more than
√
δ, (C,w,Dw) passes the verification of the receiver. Then

we show a closely related P̂ that is able to convince the verifier (at least) with probability δ about
the claim x ∈ L (which is not possible if x 6∈ L). The cheating prover P̂ simply runs Ŝ to get the
commitment C = (a1, v

′) and sends a1 as the first message. Then given the verifier’s message v,
the cheating prover asks R̂ to generate the decommitment Dw for w = v+ v′, and sends the second
message a2 = Dw. Note that if the verifier accepts the decommitment (a1, v

′ + w,Dw = a2) for
w = v + v′, it is in fact accepting the transcript (a1, v, a2).

In the following we show how to extend Theorem ?? to the case of somewhere-binding commit-
ments of message length O(log n).

Theorem 6.14. If there exists a black-box construction of instance-based non-interactive somewhere-
binding commitment for an NP-complete language and message spaceW of size |W| = poly(n) from
one-way functions then NP is checkable.
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Proof. We employ a similar approach to the proof Theorem ?? by giving a proof system for the
language L assuming the black-box somewhere-binding commitment for the message space |W| =
poly(n).

This time we will use Lemma 4.2 in its full-fledged proven form in a slightly modified version
of Construction 6.7. This time, whenever the prover clams x 6∈ L, then by Lemma 4.2 and by
the black-box proof of binding, there should be a pair of messages (w0, w1) ∈ W2 such that the
malicious receiver R̂ is able to δ distinguish commitments to w0 and w1. In this extended version
of the protocol, we simply let the honest prover to send (w0, w1) to the verifier, and the verifier
commits to a random message from the space {w0, w1} rather than {0, 1}. The analysis of the
soundness and the completeness remains exactly the same.

The only remaining point is the complexity of the prover in how to find (w0, w1). But, since
|W| = poly(n), the honest prover can simply try all possible pairs (w0, w1), and simulate the
commitment to a random message among them and run R̂ to see whether it guesses the message
correctly or not. The prover does this simulation n times for each pair, and for any pair (w0, w1),
at least 1/2 + δ/3 fraction of the guesses were correct, the prover chooses this pair. It is easy to
see that by Chernoff bound, unless with negligible probability negl(n), the prover chooses a pair
over(w0, w1) which it can be (δ/6)-successful (and note that δ/6 > 1/ poly(n) is a still sufficiently
large gap for the protocol).

Theorem 6.14 together with Lemma 6.13 prove Theorem ??.

7 A Note on Non-Interactive Somewhere-Binding Commitments

Recall that the proof of Theorem 4.1 was heavily based on Lemma 4.2. Also recall that Lemma 4.2
was proved in a general form that handles not only standard commitments, but also somewhere-
binding commitments. Therefore we get the following stronger separation.

Theorem 7.1. Suppose there exists a secure implementation of some primitive P from partially-
fixed random oracles (see Definition 3.2) where P is security-transparent. Then there exists no
black-box construction of non-interactive somewhere-binding commitments with a message space W
of polynomial size |W| = poly(n) from P.

It is easy to to see that partially-fixed random oracles, not only imply (super-polynomially)
secure one-way functions, but also exponentially (i.e., 2Ω(n))-hard one-way functions. This means
that Theorem 7.1 separates non-interactive somewhere-binding commitments for O(log n)-bit mes-
sage from 2Ω(n)-hard one-way functions. In the following we show that this result is almost opti-
mal by presenting a black-box construction of non-interactive somewhere-binding commitments for
ω(log n)2-bit messages based on the existence of 2Ω(n)-hard one-way functions, and discuss how it
could potentially be improved to the optimal case of ω(log n)-bit messages.

Theorem 7.2. Suppose there exists a 2Ω(n)-hard one-way function, then there exists a non-interactive
somewhere-binding commitment scheme for ω(log n)2-bit messages.

Proof. Haitner et al. [HHR06] showed (through a black-box construction) that if there exists a
2c·m-hard one-way function f : {0, 1}m 7→ {0, 1}m, then there exists a pseudorandom generator
g : {0, 1}k 7→ {0, 1}k+1 for k = O(m2) which is secure against 2c

′·m-time adversaries where c′ is a
constant depending on the constant c.
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By setting m = ω(log n) we get a pseudorandom generator g : {0, 1}k 7→ {0, 1}k+1 of seed length
k = O(m2) = ω(log n)2 which is secure against nω(1)-time distinguishers. Our non-interactive
somewhere-binding commitment scheme is as follows: Given the message w ∈ [2k+1], the sender

chooses r
$← [2k] at random and sends the commitment C(w) = w+ f(r). To decommit, the sender

simply reveals (w, r). The hiding of the scheme is due to the pseudorandomness of g(Uk). The
somewhere-binding binding property also holds because there are at most 2k preimages to any
image of g, and so the sender is not able to decommit any commitment value to more than half of
the possible messages.

It is clear from the proof of Theorem 7.2 that any improvement on the seed length of pseudoran-
dom generators from one-way functions would improve the message length of our somewhere-binding
commitment scheme. In fact, any “security preserving” construction of pseudorandom generators
from one-way functions and with a linear seed length (which also preserves the exponential hard-
ness) would imply a non-interactive somewhere-binding commitment with an optimal ω(log n)-bit
message length. Whether such security preserving pseudorandom generators exist or not is in fact
a major open question.

8 Open Questions

In this work we proved a black-box separation of non-interactive commitments from one-way func-
tions. Thus non-interactive commitments are shown to be a natural cryptographic primitive that
can be constructed from one-way permutations (or one-to-one one-way functions) but not from
general one-way functions. We extended our separation to include one-way functions that are also
hitting set generators against co-nondeterministic circuits. We observed that the work of [BOV03]
can be interpreted as a non-black-box construction of non-interactive commitments from hitting
one-way functions. Thus our separation of non-interactive commitments from hitting one-way func-
tions settles the first pair of cryptographic primitives between which a black-box separation holds
while there is a non-black-box construction. To prove the above results we employed the notion
of partially-fixed random oracles as a key concept and introduced the notion of partially-defined
random oracles and proved some basic concentration bounds for these basic probabilistic objects
which we believe to be of independent interest.

Finally we studied the type of non-interactive commitments that can be used in three-message
zero-knowledge proofs or arguments (i.e., instance-based non-interactive commitments). We proved
that constructing such non-interactive commitments for NP-complete languages based on a black-
box use of one-way functions requires finding program checkers for SAT. We also studied three-
message honest-verifier zero-knowledge proofs for NP-complete languages directly, and we prove
that such proof systems with O(log n)-bit public-coin verifiers (which already include the existing
protocols such as the scheme of Goldreich, Micali, and Wigderson [GMW91] and the scheme of
Blum [Blu87]) based on a black-box use of one-way functions also requires constructing program
checkers for SAT. Whether SAT (i.e., the whole class NP) is checkable or not has been open for
more than two decades.

The following are some of the interesting questions remaining open for further research.

1. Are there other natural cryptographic primitives that establish a separation between the
power of one-way permutations and one-way functions?

41



2. Are there more natural pairs of cryptographic primitives where the power of black-box versus
non-black-box constructions are different?

3. Are there stronger implausibility consequences, such as the collapse of the polynomial-time
hierarchy, assuming that there is a black-box construction of instance-based non-interactive
commitments from one-way functions? Recall that complexity assumptions are necessary for
refuting such constructions. Using a round-efficient learning algorithm of [MMV11] it can be
shown that as long as the sender asks only a constant number of queries, it is possible to get
a constant-round protocol in Theorem 6.6 which implies the collapse of the polynomial-time
hierarchy, but going beyond this case seems challenging.

4. Can one construct private-coin three-message zero-knowledge proofs for NP based on a black-
box construction from one-way functions? Using our techniques one can extend our result
about the public-coin case to where the verifier’s message is no(1) bits, assuming the (non-
standard) assumption that SAT does not have a program checker of sub-exponential time.
However, going beyond the case of no(1)-bit verifiers seems to require new ideas (or assump-
tions).
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knowledge, Journal of Computer and System Sciences 37 (1988), no. 2, 156–189. 1

[BCKT94] Bshouty, Cleve, Kannan, and Tamon, Oracles and queries that are sufficient for exact
learning, COLT: Proceedings of the Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1994. 12
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[BFL90] László Babai, Lance Fortnow, and Carsten Lund, Non-deterministic exponential time
has two-prover interactive protocols, FOCS, 1990, pp. 16–25. 5

[BI87] Blum and Impagliazzo, Generic oracles and oracle classes, FOCS: IEEE Symposium
on Foundations of Computer Science (FOCS), 1987. 1

[BK95] Manuel Blum and Sampath Kannan, Designing programs that check their work, J.
ACM 42 (1995), no. 1, 269–291. 4, 5, 35

[Blu81] Manuel Blum, Coin flipping by telephone, CRYPTO, 1981, pp. 11–15. 2, 6

[Blu87] Manuel Blum, How to prove a theorem so no one else can claim it, Proceedings of
the International Congress of Mathematicians, 1987, pp. 1444–1451. 4, 37, 41

[BM82] Manuel Blum and Silvio Micali, How to generate cryptographically strong sequences
of pseudo random bits, 1982, pp. 112–117. 1

[BM07] Boaz Barak and Mohammad Mahmoody, Lower bounds on signatures from symmetric
primitives, FOCS: IEEE Symposium on Foundations of Computer Science (FOCS),
2007. 1, 6, 8, 21, 23

[BMO90] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky, Perfect zero-knowledge in constant
rounds, Proceedings of the 22nd Annual ACM Symposium on Theory of Computing
(STOC), ACM Press, 1990, pp. 482–493. 17

[BOV03] Boaz Barak, Shien Jin Ong, and Salil Vadhan, Derandomization in cryptography.,
Advances in Cryptology – CRYPTO 2003, Lecture Notes in Computer Science, vol.
2729, Springer, 2003, pp. 299–315. 3, 4, 9, 11, 41

[BPR+08] Boneh, Papakonstantinou, Rackoff, Vahlis, and Waters, On the impossibility of bas-
ing identity based encryption on trapdoor permutations, FOCS: IEEE Symposium on
Foundations of Computer Science (FOCS), 2008. 1

[BR93] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing
efficient protocols, ACM Conference on Computer and Communications Security,
November 1993, pp. 62–73. 16

[CDSMW08] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee, Black-box
construction of a non-malleable encryption scheme from any semantically secure one,
TCC (Ran Canetti, ed.), Lecture Notes in Computer Science, vol. 4948, Springer,
2008, pp. 427–444. 2

43



[CDSMW09] , Simple, black-box constructions of adaptively secure protocols, TCC (Omer
Reingold, ed.), Lecture Notes in Computer Science, vol. 5444, Springer, 2009, pp. 387–
402. 2

[DPP98] Ivan B. Damg̊ard, Torben P. Pedersen, and Birgit Pfitzmann, Statistical secrecy and
multibit commitments, IEEE Transactions on Information Theory 44 (1998), no. 3,
1143–1151. 1

[DSLMM11] Dana Dachman-Soled, Yehuda Lindell, Mohammad Mahmoody, and Tal Malkin, On
black-box complexity of optimally-fair coin-tossing, Theory of Cryptography Confer-
ence - TCC 2011, 2011. 1, 6, 21

[FRS88] Lance Fortnow, John Rompel, and Michael Sipser, On the power of multi-prover
interactive protocols, Theoretical Computer Science, 1988, pp. 156–161. 5

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan, Bounds on the
efficiency of generic cryptographic constructions, SIAM Journal on Computing 35
(2005), no. 1, 217–246. 1

[GK92] Oded Goldreich and Hugo Krawczyk, Sparse pseudorandom distributions, Random
Structures & Algorithms 3 (1992), no. 2, 163–174. 4

[GK96] Oded Goldreich and Ariel Kahan, How to construct constant-round zero-knowledge
proof systems for NP, Journal of Cryptology 9 (1996), no. 3, 167–190. 1

[GKL93] Oded Goldreich, Hugo Krawczyk, and Michael Luby, On the existence of pseudoran-
dom generators, SIAM Journal on Computing 22 (1993), no. 6, 1163–1175. 1

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan, The relationship between public key encryption and oblivious trans-
fer, Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science, 2000. 1

[GL89] Oded Goldreich and Leonid A. Levin, A hard-core predicate for all one-way functions,
Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC),
1989, pp. 25–32. 1, 2

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest, A digital signature scheme
secure against adaptive chosen-message attacks, SIAM Journal on Computing 17
(1988), no. 2, 281–308, Preliminary version in FOCS’84. 1

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff, The knowledge complexity of
interactive proof systems, no. 1, 186–208, Preliminary version in STOC’85. 2, 34

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold, On the impossibility of basing trapdoor
functions on trapdoor predicates, FOCS, 2001, pp. 126–135. 1, 7

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson, How to play any mental game or
a completeness theorem for protocols with honest majority, 1987, pp. 218–229. 2, 4,
37

44



[GMW91] , Proofs that yield nothing but their validity or all languages in NP have zero-
knowledge proof systems, Journal of the ACM 38 (1991), no. 1, 691–729, Preliminary
version in FOCS’86. 2, 41

[Goy11] Vipul Goyal, Constant round non-malleable protocols using one way functions, 2011.
2

[GT00] Rosario Gennaro and Luca Trevisan, Lower bounds on the efficiency of generic cryp-
tographic constructions, Proceedings of the 41st Annual Symposium on Foundations
of Computer Science, 2000, pp. 305–313. 12

[GTS07] Dan Gutfreund and Amnon Ta-Shma, Worst-case to average-case reductions revisited,
APPROX-RANDOM (Moses Charikar, Klaus Jansen, Omer Reingold, and José D. P.
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