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Abstract

We give easy proofs of some recent results concerning threshold gaps in ramp schemes. We
then give a simplified and unified treatment of construction methods for ramp schemes using
error-correcting codes. Finally, as an immediate consequence of these results, we provide a
new explicit bound on the the minimum length of a code having a specified distance and dual
distance.

1 Introduction

Suppose that t1, t2 and n are positive integers such that t1 < t2 ≤ n. Informally, a (t1, t2, n)-ramp
scheme is a method whereby a dealer distributes a share to each of n players such that the following
two properties are satisfied:

reconstruction Any subset of t2 players can compute a unique secret from the shares that they
collectively hold

secrecy No subset of t1 players can determine any information about the secret.

When t2 = t1 + 1, the ramp scheme is known as a (t2, n)-threshold scheme. Ramp schemes were
introduced by Blakley and Meadows [2] and much basic information about ramp schemes can be
found in [3, 10, 19]. Ramp schemes have found numerous applications over the years, including
broadcast encryption [20], secure multiparty computation [5] and error decodable secret sharing
[15].

Cascudo, Cramer and Xing [4] proved the interesting result that n− t1 + 1 ≤ q(t2 − t1) in any
(t1, t2, n)-ramp scheme having a share space of cardinality q. This inequality (the “threshold gap
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bound”) provides an upper bound on the number of participants in a ramp scheme having given
thresholds and a share space of a given size. The proof in [4] is rather complex, and builds on a
related unpublished result due to Kilian and Nisan concerning threshold schemes. In this paper, we
give an easy combinatorial proof of this bound and we also discuss connections with some classical
bounds for orthogonal arrays. Then, we provide a simplified, general treatment of construction
methods for ramp schemes using both linear and nonlinear codes. We also construct some new
ramp schemes that are optimal with respect to the threshold gap bound. Finally, as an immediate
consequence of these results, we provide a new explicit bound on the the minimum length of a code
having a specified distance and dual distance. We also show that there are infinite classes of codes
that are optimal with respect to this bound.

2 The Threshold Gap Bound

Suppose we have a (1, t, n)-ramp scheme where the share space S = {1, . . . , q}. A distribution rule
r is written as an n-tuple with entries from S, i.e., r = (r1, . . . , rn), where ri is the share given to
player Pi. Let the secret space be K = {1, . . . , q′} where q′ > 1. For any K ∈ K, let FK denote the
collection of distribution rules corresponding to the secret having the value K. We do not require
that all the n-tuples in FK are distinct. Denote F = ∪K∈KFK .

Given any share S, the secrecy condition of a (1, t, n)-ramp scheme requires that Pr[K|S] =
Pr[K] for all K ∈ K. By Bayes’ Theorem, this is equivalent to Pr[S|K] = Pr[S], so Pr[S|K] is
independent of K. Note that taking multiple copies of each distribution rule in any FK does not
change Pr[S|K]. Suppose that |FK1 | = L1 and |FK2 | = L2 where L2 6= L1. Let L = lcm(L1, L2).
If we take L/L1 copies of every distribution rule in FK1 and L/L2 copies of every rule in FK2 , then
we have |FK1 | = |FK2 | = L.

Now we can rephrase the secrecy condition in a combinatorial form: there exist non-negative
integers λi,j for 1 ≤ i ≤ n, 1 ≤ j ≤ q, such that

|{r ∈ FK : ri = j}| = λi,j

for K = K1,K2. Observe that
q∑
j=1

λi,j = L

for any i, 1 ≤ i ≤ n.
Suppose we define

µ(r, s) = |{i : ri = si}|

for any r, s ∈ F . By the reconstruction condition, it is required that t shares determine a unique
value of the secret. Therefore, it follows that µ(r, s) ≤ t− 1 if r ∈ FK1 and s ∈ FK2 .

For any r ∈ F , define

f(r) =
n∑
i=1

λi,ri .

Lemma 2.1. If r ∈ F , then f(r) ≤ L(t− 1).
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Proof. Suppose r ∈ FK1 . We have that

∑
s∈FK2

µ(r, s) =

n∑
i=1

|{s ∈ FK2 : ri = si}|

=

n∑
i=1

λi,ri

= f(r).

However, µ(r, s) ≤ t− 1 for all s ∈ FK2 , so we have that f(r) ≤ |FK2 |(t− 1) = L(t− 1).

Theorem 2.2. If a (1, t, n)-ramp scheme has a share space of cardinality q, then n ≤ q(t− 1).

Proof. We compute upper and lower bounds on the sum
∑

r∈FK1
f(r). First, we have

∑
r∈FK1

f(r) =
∑

r∈FK1

n∑
i=1

λi,ri

=
n∑
i=1

q∑
j=1

∑
r∈FK1

:ri=j

λi,j

=
n∑
i=1

q∑
j=1

(λi,j)
2

≥

∑n
i=1

(∑q
j=1 λi,j

)2
q

=
nL2

q
.

Second, from Lemma 2.1, we have that∑
r∈FK1

f(r) ≤ L2(t− 1).

Combining the upper and lower bounds, we have

nL2

q
≤ L2(t− 1),

which simplifies to yield the desired result.

Before proving the main theorem, we need a preliminary lemma.

Lemma 2.3. If there exists a (t1, t2, n)-ramp scheme having a share space of cardinality q, then
there exists a (t1 − 1, t2 − 1, n− 1)-ramp scheme having a share space of cardinality q.
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Proof. Let Fx consist of all the distribution rules r ∈ F for which rn = x for some fixed share x
where λn,x > 0. Then define

G = {(r1, . . . , rn−1) : r = (r1, . . . , rn) ∈ Fx}.

It is easy to see that G comprises a set of distribution rules for a (t1− 1, t2− 1, n− 1)-ramp scheme
having a share space of cardinality q.

We can now prove the main result from [4].

Theorem 2.4. If a (t1, t2, n)-ramp scheme has a share space of cardinality q, then n − t1 + 1 ≤
q(t2 − t1).

Proof. The proof is by induction on t1, applying Lemma 2.3 and Theorem 2.2.

A ramp scheme that meets the bound of Theorem 2.4 with equality will be termed gap-optimal.
We observe that it is easy to find examples of gap-optimal ramp schemes with t1 = 1.

Theorem 2.5. For all integers t, q ≥ 2, there exists a gap-optimal (1, t, n)-ramp scheme having a
share space of cardinality q.

Proof. Let n = q(t− 1), S = Zq and K = {K1,K2}. For any integer m, define v(i,m) ∈ Sm to be
the m-tuple all of whose entries are equal to i. Now let

F1 = {v(i, n) : i ∈ S}

and let

F2 = {v(i, t− 1) ‖ v(i+ 1 mod q, t− 1) ‖ · · · ‖ v(i− 1 mod q, t− 1) : i ∈ S}.

For example, if q = t = 3, then

FK1 = {(1, 1, 1, 1, 1, 1), (2, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 0)}

and
FK2 = {(1, 1, 2, 2, 0, 0), (2, 2, 0, 0, 1, 1), (0, 0, 1, 1, 2, 2)}.

It can be verified that FK1 and FK2 comprise distribution rules for a (1, t, q(t−1))-ramp scheme
having a share space of cardinality q and a secret space of cardinality two.

It is more difficult to find examples of gap-optimal ramp schemes when t1 ≥ 2; however, we will
give some examples with t1 = 2 in Section 3.

2.1 Orthogonal Array Bounds

An orthogonal array OAλ(t,m, q) is a λqt×m array A of symbols chosen from a set X of cardinality
q, such that, within any t columns of A, every ordered t-tuple of symbols occurs in exactly λ rows
of A. The parameter t is often called the strength of the orthogonal array. Orthogonal arrays have
been studied extensively for over 60 years; for an extensive treatment of these objects, see Hedayat,
Sloane and Stufken [9].
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An ideal threshold scheme is one in which the share space and secret space have the same
cardinality. It is well-known (see, for example, [6]) that an ideal (t, n)-threshold scheme with a
share space of cardinality q is equivalent to an OA1(t, n+ 1, q). In this case, Theorem 2.4 tells us
that n ≤ q + t− 1. It may be of interest to note that this special case of Theorem 2.4 is a classical
orthogonal array bound (from 1952) known as the “Bush Bound”. The standard proof of the Bush
bound consists of two parts:

1. A proof that an OA1(2, n, q) exists only if n ≤ q + 1.

2. A proof that an OA1(t, n, q) implies the existence of an OA1(t− 1, n− 1, q).

The proof of 1. is in fact similar to, but even simpler than the proof of Theorem 2.2. It is interesting
to note that the bound in 1. also follows immediately from the more complicated “Rao Bound”,
which was first proven in 1947. Finally, the proof of 2. is basically identical to that of Lemma 2.3.
For details of the proofs of these and related bounds, see [9].

3 Codes and Ramp Schemes

We give a simple construction for ramp schemes from codes having specified distance and dual
distance. This idea is not new: Chen and Cramer observed in [5, p. 529] that it is possible to
“study privacy and reconstruction in terms of properties of the underlying linear codes and their
duals . . . their respective minimum distances imply bounds on the parameters of a ramp scheme”.
Here, we explicitly state how a code with specified distance and dual distance immediately yields
a ramp scheme; this generalises a similar theorem given in [17]. We note that our generalisation
does not require the use of linear codes: it works equally well for nonlinear codes by utilising the
concept of dual distance as introduced by Delsarte [7, 8].

Here are some basic definitions relating to codes: A code C of length n over an alphabet Γ of
cardinality q is a subset of Γn. The n-tuples in C are termed codewords. The distance of C, denoted
by d, is the minimum hamming distance between any two distinct codewords. The code C is a
linear code if Γ is a finite field and C is a vector subspace of Γn. The code is a binary code if q = 2.
Much information about codes can be found in standard textbooks, such as [1, 13, 18]. All the
codes we require in this paper can be found in one or more of these textbooks, unless otherwise
noted.

Here is the definition of dual distance of a code: suppose A(C) is the distance distribution of a
code C and A′(C) is the MacWilliams transform of A(C) (for more details, see [8]). Then the dual
distance of C is the smallest positive integer d′ such that A′d′(C) 6= 0. This definition applies to
nonlinear as well as linear codes. It is well-known that the dual distance of a linear code is in fact
equal to the distance of the dual code. Delsarte proved the following fundamental result:

Lemma 3.1. [7, 8] Suppose C is a code of length n, on an alphabet of size q, having dual distance
d∗. Then the |C| × n array consisting of all the codewords in C is an OAλ(t, n, q), where t = d∗ − 1
and λ = |C|/qt.

Our next theorem was explicitly stated and proven for linear codes in the case s = 1 by
Mirandola [17]. The proof we provide holds for nonlinear as well as linear codes; it is simplified by
making use of the concept of dual distance.
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Theorem 3.2. Suppose C is a code of length n having distance d and dual distance d∗. Let
1 ≤ s ≤ d∗ − 2. Then there is a (t1, t2, n − s)-ramp scheme having information rate s, where
t1 = d∗ − s− 1 and t2 = n− d+ 1.

Proof. By Lemma 3.1, it follows that the |C| × n array consisting of all the codewords in C is an
orthogonal array of strength t = d∗ − 1. Suppose the last s co-ordinates of each codeword define
the secret and the remaining n− s coordinates specify shares for n− s participants. Therefore, we
define

F(rn−s+1,...,rn) = {(r1, . . . , rn−s) : (r1, . . . , rn) ∈ C}

for all (rn−s+1, . . . , rn) ∈ Ss. Given any t − s shares and any K, there are exactly λ = |C|/qt
distribution rules in FK having the specified t− s shares; this follows immediately because C is an
orthogonal array of strength t. On the other hand, given any n − d + 1 shares, it is easy to show
that there is at most one distribution rule containing the specified shares. For, if there existed two
distribution rules containing n − d + 1 given shares, then the distance between the corresponding
codewords would be at most d− 1, which is a contradiction.

The above construction will serve to unify several constructions that can be found in the liter-
ature. It also allows us to easily find ramp schemes for a wide variety of parameter situations by
using “off-the-shelf” codes. First we give a “classic” construction using Reed-Solomon codes (see,
for example [10]).

Theorem 3.3. Suppose that q is a prime power and 1 ≤ s < t ≤ n ≤ q + 1. Then there exists a
(t1, t2, n− s)-ramp scheme over Fq having information rate s, where t1 = t− s and t2 = t.

Proof. If q is a prime power and 1 ≤ t ≤ n ≤ q + 1, then there is a Reed-Solomon code defined
over Fq, having length n, dimension t, distance n− t+ 1 and dual distance t+ 1. Let s ≤ t− 1 and
apply Theorem 3.2. We obtain a (t1, t2, n− s)-ramp scheme, where t1 = t− s and t2 = t.

Remark. In the above-constructed ramp scheme, the share space has cardinality qs, which yields
the optimal information rate (e.g., see [10]). When s = 1, we obtain the Shamir threshold scheme.

Another way that Theorem 3.2 can be applied makes use of algebraic geometry codes (AG
codes); this approach was first described in [5]. We base our presentation on the simplified treatment
of AG codes given in [14]. The starting point is an irreducible nonsingular projective curve of genus
g having n + 1 rational points (i.e., points whose coordinates are in Fq). Take m to be an integer
such that 2g − 2 < m < n. Under these assumptions, there is an AG code of length n, dimension
m− g+ 1, distance d ≥ n−m and dual distance d∗ ≥ m− 2g+ 2. Then an application of Theorem
3.2 immediately yields the ramp schemes constructed in [5].1

Next, we give a new construction for ramp schemes that makes use of Reed-Muller codes. For
0 ≤ r ≤ m, an r-th order Reed-Muller code, denoted R(r,m), is a binary linear code having length
n = 2m and distance d = 2m−r. For 0 ≤ r < m, the dual code of R(r,m) is R(m−r−1,m), and so
the dual distance of R(r,m) is d∗ = 2r+1. Setting s = 1 in Theorem 3.2, we obtain the following.

Theorem 3.4. For 0 ≤ r < m, there exists a (2r+1 − 2, 2m − 2m−r + 1, 2m − 1)-ramp scheme over
a binary alphabet, having information rate 1.

1However, we should note that [5] requires additional “multiplicative” properties of the constructed ramp schemes,
which necessitate a more detailed examination of the algebraic structure of the underlying AG codes.
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The above construction is of particular interest because it yields an infinite class of gap-optimal
ramp schemes with t1 = 2.

Corollary 3.5. For m ≥ 2, there exists a gap-optimal (2, 2m−1 + 1, 2m − 1)-ramp scheme over a
binary alphabet, having information rate 1.

Proof. Setting r = 1 in Theorem 3.4, the result is a (t1, t2, n)-ramp scheme over a binary alphabet,
where t1 = 2, t2 = 2m−1 + 1 and n = 2m − 1. Since

q(t2 − t1) = 2m − 2 = n− t1 + 1,

the scheme is gap-optimal.

We finish this section by presenting a simple application of Theorem 3.2 that makes use of
nonlinear codes. Let r ≥ 3 be odd. The Kerdock code K(r+ 1) is a nonlinear binary code of length
n = 2r+1 having distance d = 2r − 2(r−1)/2 and dual distance d∗ = 6.

Theorem 3.6. Suppose r ≥ 3 is odd and 1 ≤ s ≤ 4. Then there exists a (t1, t2, n−s)-ramp scheme
over a binary alphabet, having information rate s, where t1 = 5− s and t2 = 2r + 2(r−1)/2.

4 A New Bound on Codes with Specified Distance and Dual Dis-
tance

We combine two previously discussed results in order to obtain a new bound on codes having
specified distance and dual distance:

Theorem 4.1. Suppose C is a code of length n, on an alphabet of size q, having distance d and
dual distance d∗ Then

d ≤ q − 1

q
(n− d∗ + 2) + 1. (1)

Proof. From the hypothesized code, we get a (t1, t2, n − 1)-ramp scheme having a share space of
cardinality q, where t1 = d∗ − 2 and t2 = n − d + 1, by applying Theorem 3.2. Now we apply
Theorem 2.4, which yields

(n− 1)− (d∗ − 2) + 1 ≤ q((n− 1− d+ 2)− (d∗ − 2)),

or
n− d∗ + 2 ≤ q(n− d− d∗ + 3).

This simplifies to give the desired result.

We also note that a bound having a similar flavour was proven much earlier (in 1973) by Delsarte
[8], namely,

d ≤ n− d∗ + 2. (2)

Matsumoto et al. [16] studied the function N(d, d∗), which denotes the minimum length n of a
linear binary code having distance d and dual distance d∗. (Their motivation was an application
to the construction of certain boolean functions; see [12].) Several lower bounds for N(d, d∗)
were proven in [16], and constructions for small codes meeting some of these bounds were given.
Additional work along this line can be found in [11].

If we set q = 2 in (1), then we obtain the following new bound on N(d, d∗):
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Corollary 4.2.
N(d, d∗) ≥ 2d+ d∗ − 4. (3)

The bound (3) is apparently unrelated to the bounds proven in [16]. The strongest bounds in
[16] are linear programming bounds. As such, they cannot be considered to be explicit bounds,
becuase a different LP has to be solved for every new parameter case in order to evaluate the
bound. The bound (3) is, in general, not as strong as the linear programming bounds, but it is a
very simple explicit bound which is often fairly close to the LP bounds.

We also note that the bound (3) holds for nonlinear as well as linear codes. The work in
[16, 11] only considers linear codes, though some of the bounds proven in those papers also hold
for nonlinear codes.

4.1 Examples

In this section, we give some examples of infinite classes of codes for which the bounds we proved
above are tight. The allows the exact determination of N(d, 3) and N(d, 4) for infinitely many
values of d.

A simplex code is a linear code of dimension k over the alphabet Fq (it is in fact the dual of the
hamming code). Its length is n = (qk − 1)/(q − 1), it has distance d = qk−1 and its dual distance
d∗ = 3. It is easy to verify that a simplex code meets the bound (1) with equality, because

q − 1

q
(n− d∗ + 2) + 1 =

q − 1

q

(
qk − 1

q − 1
− 3 + 2

)
+ 1 = qk−1.

Setting q = 2, we immediately obtain the following theorem.

Theorem 4.3. N(2m, 3) = 2m+1 − 1 for all integers m ≥ 1.

Analogously, from a first-order Reed-Muller code (see Section 3), we obtain the following.

Theorem 4.4. N(2m, 4) = 2m+1 for all integers m ≥ 1.

We refer again to the Kerdock codes as an interesting example involving nonlinear codes. As
mentioned in Section 3, the Kerdock code K(r+ 1) has length n = 2r+1, distance d = 2r − 2(r−1)/2

and dual distance d∗ = 6, where r is odd. Here we have

2d+ d∗ − 4 = 2r+1 − 2(r+1)/2 + 2 = n−
√
n+ 2,

so the parameters of these codes are fairly close to the bound given in (3).

5 Summary

The main contributions of this paper are:

• a simplified proof of the threshold gap bound for ramp schemes,

• a simple, general construction of ramp schemes from nonlinear as well as linear codes, and

• a new bound on the length of codes having specified distance and dual distance.

One main topic for additional research is to find additional examples of ramp schemes and codes
that meet the proven bounds with equality.
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