
A Low-Area Unified Hardware Architecture for the
AES and the Cryptographic Hash Function Grøstl

Nuray At∗, Jean-Luc Beuchat†, Eiji Okamoto†, İsmail San∗, and Teppei Yamazaki†
∗Department of Electrical and Electronics Engineering, Anadolu University, Eskişehir, Turkey

†Faculty of Engineering, Information and Systems,
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan

Abstract—This article describes the design of an 8-bit copro-
cessor for the AES (encryption, decryption, and key expansion)
and the cryptographic hash function Grøstl on several Xilinx
FPGAs. Our Arithmetic and Logic Unit performs a single
instruction that allows for implementing AES encryption, AES
decryption, AES key expansion, and Grøstl at all levels of
security. Thanks to a careful organization of AES and Grøstl
internal states in the register file, we manage to generate all
read and write addresses by means of a modulo-128 counter
and a modulo-256 counter. A fully autonomous implementation
of Grøstl and AES on a Virtex-6 FPGA requires 169 slices and a
single 36k memory block, and achieves a competitive throughput.
Assuming that the security guarantees of Grøstl are at least
as good as the ones of the other SHA-3 finalists, our results
show that Grøstl is the best candidate for low-area cryptographic
coprocessors.

I. INTRODUCTION

In response to the successful cryptanalysis of the MD4,
MD5, and SHA-0 hash functions, the National Institute of
Standards and Technology (NIST) has decided to develop a
new algorithm to augment the Secure Hash Standard (FIPS
180-2). The public SHA-3 competition was announced in
November 2007. After two rounds of internal reviews and
feedback from the cryptographic community, the NIST se-
lected 5 candidates out of 64 to advance to the final round. If
security remains the main criterion, computational efficiency,
memory requirement, flexibility, and simplicity are also of
great significance.

Since the SHA-3 finalist Grøstl [13] is strongly inspired
by the Advanced Encryption Standard (AES) [11], it is
tempting to design a compact unified hardware architecture
which supports both algorithms. Such an implementation is
valuable for constrained environments, where some security
protocols mainly rely on cryptographic hash functions (see
for instance [29]). Furthermore, as emphasized by Kerckhof et
al., “fully unrolled and pipelined architectures may sometimes
hide a part of the algorithms’ complexity that is better re-
vealed in compact implementations” [19]. In order to have
a deeper understanding of the computational efficiency of
several SHA-3 candidates (resource sharing, memory access
scheme, scheduling, etc.), we already designed five low-area
coprocessors [1], [7]–[9], [24]. In particular, we proposed a
compact unified architecture for the SHA-3 round 2 candidate
ECHO [4] and the AES. The main originality of our work
was to describe the AES by means of a single instruction [9].

Since ECHO is built around the round function of the AES, it
is rather straightforward to design a unified Arithmetic and
Logic Unit (ALU) for both algorithms. In the conclusion
of our article, we stated that our design strategy could be
applied to Grøstl and AES. However, even if Grøstl borrows
the the S-box of the AES, the construction of the diffusion
layers is only based on the design philosophy of the AES.
Contrary to ECHO, Grøstl can not be implemented with the
AES instruction set of Intel Westmere processors [5], and
it seems much more challenging to build a compact unified
coprocessor. We bring a solution to this problem in this work.

The rest of the article is organized as follows: Section II
provides the reader with a short description of the AES and a
summary of the design strategy we proposed in [9]. In Sec-
tion III, we give an alternative description of Grøstl showing
how to implement the algorithm with our single instruction set
architecture. Then, we describe our unified 8-bit coprocessor,
focusing on its control unit (Section IV). We discuss our
implementation results on several Xilinx Field-Programmable
Gate Arrays (FPGAs) in Section V and conclude in Section VI.

II. THE ADVANCED ENCRYPTION STANDARD

The round transformation of the AES operates on a 128-
bit intermediate result, called state. The state is internally
represented as a Nl ×Nc array of bytes A, where Nl and Nc
denotes the number of lines and columns, respectively. In the
case of the AES, Nl = Nc = 4. Each byte ai,j , 0 ≤ i, j ≤ 3,
is considered as an element of F28

∼= F2[x]/(m(x)), where the
irreducible polynomial is given by m(x) = x8+x4+x3+x+1.
In the following, we encode an element of F28 by two hexadec-
imal digits: for instance, 95 is equivalent to x7+x4+x2+1 in
the polynomial basis representation. We denote the jth column
of A by Aj . The number of rounds Nr as well as the number
of 32-bit blocks in the cipher key Nk of the AES depend on
the desired security level (Table I).

The AES involves four byte-oriented transformations and
their inverses for encryption and decryption, respectively [11]:

• The SubBytes step updates each byte of the state using
an 8-bit S-box, denoted by SRD. The inverse transforma-
tion is called InvSubBytes and denoted by S−1RD .

• The ShiftRows step simply consists of a cyclical left shift
of the three bottom rows of the state by 1, 2, and 3 bytes,
respectively.

Table I
BLOCK LENGTH, KEY LENGTH, NUMBER OF 32-BIT BLOCKS OF THE KEY

(Nk), AND NUMBER OF ROUNDS (Nr) OF AES-128, AES-192, AND
AES-256.

Algorithm
Block length Key length

Nk Nr[bits] [bits]
AES-128 128 128 4 10
AES-192 128 192 6 12
AES-256 128 256 8 14

• The MixColumns step is a permutation operating on
the AES state column by column. Each column of the
AES state is considered as a polynomial over F28 , and is
multiplied modulo y4 + 01 by the constant polynomial
c(y) = 03·y3+01·y2+01·y+02 [11]. This operation is
performed by multiplying each column of the state A by a
circulant matrixME = circ(02,03,01,01). During the
inverse operation, called InvMixColumns, each column
of the state is multiplied byMD = circ(0E,0B,0D,09).

• The AddRoundKey step combines the state A with a
128-bit round key. Let r denote the round index. Each
byte ki,4r+j of the round key and its corresponding byte
ai,j are added in F28 by a simple bitwise XOR operation.
AddRoundKey is therefore its own inverse.

After an initial AddRoundKey step, an AES encryption
involves Nr − 1 repetitions of a round composed of the four
byte-oriented transformations described above. Eventually, a
final encryption round, in which the MixColumns step is
omitted, produces the ciphertext (Figure 1). We consider here
the equivalent decryption algorithm described in [11, Section
3.7.3]. Its main advantage over the straightforward decryption
process is that encryption and decryption rounds share the
same datapath (Figure 1). Nevertheless, the round keys are
introduced in reverse order for decryption. A key expansion
algorithm allows one to derive the round keys involved in the
AddRoundKey steps from the cipher key. Let us consider an
array consisting of 4 rows and 4 · (Nr + 1) columns. The
cipher key is copied in the first Nk columns of the array, and
the next columns are defined recursively (see [11, Section 3.6]
for details).

If an AES coprocessor is built around an 8-bit datapath,
the ShiftRows and InvShiftRows steps are implemented by
accordingly addressing the register file organized into bytes.
As a result, these operations are virtually for free and do not
require dedicated hardware in the ALU. It is then possible
to describe encryption, decryption, and key expansion with a
single instruction [9]:

Rk ← A · g(Ri)⊕ B ·Rj , (1)

where
• Ri, Rj , and Rk are vectors of Nl bytes.
• A and B are matrices of Nl × Nl bytes. Let us define

the identity matrix IAES = circ(01,00,00,00) and
the permutation matrix PAES = circ(00,01,00,00).
The latter matrix is essential to the key schedule. We

showed in [9] that A can be any of the four matrices we
introduced so far, whereas B is eitherMD or the identity
matrix IAES.

• g is a function applied to each byte of Ri. In addition to
SRD and S−1RD , we need the identity function to implement
the key expansion and the first AddRoundKey step of
AES encryption or decryption. The first instruction of
the decryption process (Figure 1) is for instance

A0 ← IAES ·A0 ⊕ IAES ·K4Nr
.

Since the ALU processes the operands byte by byte, the
computation of Equation (1) involves at least Nl cycles. In
order to achieve a high clock frequency on FPGA, it is
however necessary to make the pipeline deeper. The main
challenge is to schedule the instructions to avoid pipeline
bubbles as much as possible.

III. THE HASH FUNCTION GRØSTL

Grøstl is a family of cryptographic hash functions able to
compute message digests from 8 to 512 bits [13]. We denote
by Grøstl-n the algorithm with a n-bit output and focus on
the digest sizes specified for the SHA-3 competition (224,
256, 384, and 512 bits). The original message is padded, split
into t message blocks of ` bits, and organized as an array
of Nl × Nc bytes, where ` and Nc depend on the desired
level of security (Table II). The number of lines Nl is always
equal to 8. In this work, we assume that our coprocessor
is provided with a padded message and refer the reader
to [13, Section 3.6] for a description of the padding algorithm.
A hardware wrapper interface for Grøstl (and several other
hash functions) comprising communication and padding is for
instance described in [3]. Starting from an initial chaining
input H(0) = IVn, the message blocks M (1), . . . , M (t) are
processed by a compression function f as:

H(i) ← f(H(i−1),M (i)),

where 1 ≤ i ≤ t. Figure 2 describes the datapath of the
compression function f that consists of a key schedule, and
two permutations P` and Q` operating on two 8 × Nc array
of bytes P and Q. Each byte is considered as an element of
F28
∼= F2[x]/(m(x)), where m(x) = x8 + x4 + x3 + x+ 1 is

the irreducible polynomial of the AES.

Table II
BLOCK LENGTH, NUMBER OF COLUMN OF THE INTERNAL STATE, AND

NUMBER OF ROUNDS OF GRØSTL-n.

Digest size n Block length ` # columns # rounds
[bits] [bits] Nc Nr

8 to 256 512 8 10
264 to 512 1024 16 14

Each permutation involves a first key injection followed by
Nr rounds consisting of four byte-oriented transformations
similar to those of the AES (Nr depends on the digest size
and is defined in Table II):

K4Nr
, K4Nr+1,

K4Nr+2, and K4Nr+3K4Nr−2, and K4Nr−1

K4Nr−4, K4Nr−3,K4, K5, K6, and K7K0, K1, K2, and K3

A
dd

R
ou

nd
K

ey

A
dd

R
ou

nd
K

ey

A
dd

R
ou

nd
K

ey

C
ip

he
rt

ex
t

Pl
ai

nt
ex

t

Encryption round

S
ub

B
yt

es

S
hi

ftR
ow

s

M
ix

C
ol

um
ns

Encryption round

S
ub

B
yt

es

S
hi

tfR
ow

s

M
ix

C
ol

um
ns

Last encryption round

A
dd

R
ou

nd
K

ey

S
ub

B
yt

es

S
hi

ftR
ow

s

K4Nr
, K4Nr+1,

K4Nr+2, and K4Nr+3

K0, K1, K2, and K3

A
dd

R
ou

nd
K

ey

K4, K5, K6, and K7K4Nr−4, K4Nr−3,
K4Nr−2, and K4Nr−1

In
vS

hi
ftR

ow
s

In
vS

ub
B

yt
es

Last decryption round

In
vM

ix
C

ol
um

ns

In
vS

hi
ftR

ow
s

In
vS

ub
B

yt
es

Decryption round

In
vM

ix
C

ol
um

ns

In
vS

hi
ftR

ow
s

In
vS

ub
B

yt
es

Decryption round

C
ip

he
rt

ex
t

Pl
ai

nt
ex

t

InvMixColumnsInvMixColumns

A
dd

R
ou

nd
K

ey

A
dd

R
ou

nd
K

ey

A
dd

R
ou

nd
K

ey

Figure 1. AES encryption and decryption flowcharts (reprinted from [9]).

PGrøstl

S
hi

ftB
yt

es

Round of Q`

A
dd

R
ou

nd
K

ey

KNc
, . . . , K2Nc−1

A
dd

R
ou

nd
K

ey

PGrøstlPGrøstl

M
0,

..
.,
M

N
c−

1
H

0,
..

.,
H

N
c−

1

H
′ 0,

..
.,
H
′ N
c−

1

M
ix

B
yt

es

S
hi

ftB
yt

es

S
ub

B
yt

es

Round of P`

M
ix

B
yt

es

S
hi

ftB
yt

es

S
ub

B
yt

es

Round of P`

M
ix

B
yt

es

S
ub

B
yt

es

Round of P`

K(Nr−1)·Nc
, . . . , KNr·Nc−1

A
dd

R
ou

nd
K

ey

K0, . . . , KNc−1

M
ix

B
yt

es

S
hi

ftB
yt

es

S
ub

B
yt

es

M
ix

B
yt

es

S
hi

ftB
yt

es

S
ub

B
yt

es

Round of Q` Round of Q`

A
dd

R
ou

nd
K

ey

A
dd

R
ou

nd
K

ey

A
dd

R
ou

nd
K

ey
A

dd
R

ou
nd

K
ey

M
ix

B
yt

es

S
hi

ftB
yt

es

S
ub

B
yt

es

A
dd

R
ou

nd
K

ey

Figure 2. Flowchart of the compression function f of Grøstl.

• The ShiftBytes step cyclically rotates the ith row of P
and Q to the left by σP (i) and σQ(i) bytes, respectively.
Let T = ShiftBytes(P) and U = ShiftBytes(Q). We
have:

ti,j ← pi,(j+σP (i)) mod Nc
,

ui,j ← qi,(j+σQ(i)) mod Nc
,

where 0 ≤ i ≤ 7 and 0 ≤ j ≤ Nc − 1. The offsets σP (i)
and σQ(i) depend on the row index i and the number of
columns Nc, and are defined in Table III.

• The SubBytes step updates each byte of P and Q using
the AES S-box, denoted by SRD.

Table III
OFFSETS OF THE SHIFTBYTES TRANSFORMATION ACCORDING TO THE

ROW INDEX i AND THE NUMBER OF COLUMNS Nc .

i 0 1 2 3 4 5 6 7

σP (i) 0 1 2 3 4 5 6 Nc
2

+ 3

σQ(i) 1 3 5 Nc
2

+ 3 0 2 4 6

• The MixBytes step is performed by multiplying each
column of P and Q by the circulant matrix MGrøstl =
circ(02,02,03,04,05,03,05,07).

• The AddRoundKey step combines P and Q with two
`-bit round keys. The key expansion requires Nr ·Nc 64-
bit constants that can be computed on-the-fly according
to Algorithm 1. Since the round counter r and the loop
index j are 4-bit numbers (Nr ≤ 14 and Nc − 1 ≤ 15),
each ki,r·Nc+j can be seen as an element of F28 .

Algorithm 1 Computation of the round constants.
Input: Nr (number of rounds of the permutation P) and Nc

(number of columns of the internal state).
Output: The Nr ·Nc round constants required to compute the

permutation P .
1. for r ← 0 to Nr − 1 do
2. for j ← 0 to Nc − 1 do
3. k0,r·Nc+j ← j ‖ r;
4. for i← 1 to 7 do
5. ki,r·Nc+j ← 00;
6. end for
7. end for
8. end for
9. Return K0, K1, . . . , KNr·Nc−1;

Besides the round constants, the key expansion involves
the chaining input H and a permutation matrix PGrøstl =
circ(00,01,00,00,00,00,00,00) (Figure 2). Finally,
note that the output of P` serves as the key of the last
round of Q`.

Algorithm 2 describes how we implement Grøstl using the
instruction defined by Equation (1). The ShiftBytes step (i.e.
computation of Tj and Uj on lines 10, 17, 25, and 32) is
performed by accordingly addressing the register file organized
into bytes. As a result, these operations are virtually for free
and do not require dedicated hardware in the ALU. Since the
ShiftBytes transformations performs cyclical left shifts of the
rows of the state, we have to be careful not to overwrite bytes
that are still involved in the forthcoming MixBytes steps (p1,0
is for instance needed to update the eighth column of P , and
should not be overwritten when updating the first column).
We solve this problem by introducing two 8 × Nc arrays of
bytes P ′ and Q′ to store intermediate results. The coprocessor
we will describe in Section IV embeds a number of pipeline
stages, and several clock cycles are required to process a byte
of the state. In order to avoid data dependency issues between
two consecutive rounds of a given permutation, we interleave
the computation of P` and Q`.

After the last message block has been processed, an output
transformation based on P` generates the n-bit digest D
(Algorithm 3). The function truncn(P ′) (line 19) discards all
but the n trailing bits of P ′. Table IV provides the reader with
a summary of the instructions involved in the compression
function and the output transformation.

IV. A COMPACT UNIFIED COPROCESSOR FOR THE AES
AND THE GRØSTL FAMILY OF HASH FUNCTIONS

Figure 3 describes how we modified the 8-bit coprocessor
proposed by Beuchat et al. [9] in order to share the same

Algorithm 2 Compression function f of Grøstl.
Input: A `-bit message block M and a chaining value H .
Output: A new chaining value H ′.

1. for j ← 0 to Nc − 1 do
2. Pj ← IGrøstl ·Mj ⊕ IGrøstl · (Kj ⊕Hj);
3. end for
4. for j ← 0 to Nc − 1 do
5. Qj ← IGrøstl ·Mj ⊕ PGrøstl · ¬Kj ;
6. end for
7. for r ← 1 to Nr − 1 do
8. for j ← 0 to Nc − 1 do
9. for i← 0 to 7 do

10. ti,j ← pi,(j+σP (i)) mod Nc
;

11. end for
12. P ′j ←MGrøstl · SRD(Tj)⊕ IGrøstl ·Kr·Nc+j ;
13. end for
14. P ← P ′;
15. for j ← 0 to Nc − 1 do
16. for i← 0 to 7 do
17. ui,j ← qi,(j+σQ(i)) mod Nc

;
18. end for
19. Q′j ←MGrøstl · SRD(Uj)⊕ PGrøstl · ¬Kr·Nc+j ;
20. end for
21. Q← Q′;
22. end for
23. for j ← 0 to Nc − 1 do
24. for i← 0 to 7 do
25. ti,j ← pi,(j+σP (i)) mod Nc

;
26. end for
27. P ′j ←MGrøstl · SRD(Tj)⊕ IGrøstl ·Hj ;
28. end for
29. P ← P ′;
30. for j ← 0 to Nc − 1 do
31. for i← 0 to 7 do
32. ui,j ← qi,(j+σQ(i)) mod Nc

;
33. end for
34. H ′j ←MGrøstl · SRD(Uj)⊕ IGrøstl · Pj ;
35. end for
36. Return H ′0, . . . , H ′Nc−1;

datapath between Grøstl and the AES. The architecture is
built around an 8-bit datapath and consists of three main
components:

• a register file and a key memory implemented by means
of a single dual-ported memory block; address bits and
write enable signals are denoted by a39:0 and we3:0,
respectively;

• a control unit responsible for the address generation and
the selection of the parameters A, B, and g (Table IV);

• an ALU implementing the instruction defined by Equa-
tion (1), the key expansion mechanism of the AES, and
the computation of the round constants of Grøstl.

Table IV
IMPLEMENTATION OF GRØSTL WITH A SINGLE INSTRUCTION.

Operation Rk A g Ri B Rj

Algorithm 2, line 2 Pj IGrøstl Identity Mj IGrøstl Kj ⊕Hj

Algorithm 2, line 5 Qj IGrøstl Identity Mj IGrøstl ¬Kj

Algorithm 2, line 12 and Algorithm 3, line 9 P ′j MGrøstl SRD Tj IGrøstl Kr·Nc+j

Algorithm 2, line 19 Q′j MGrøstl SRD Uj PGrøstl ¬Kr·Nc+j

Algorithm 2, line 27 and Algorithm 3, line 17 P ′j MGrøstl SRD Tj IGrøstl Hj

Algorithm 2, line 34 Q′j MGrøstl SRD Uj IGrøstl Pj

Algorithm 3, line 2 Pj IGrøstl Identity Hj IGrøstl Kj

Algorithm 3 Output transformation.
Input: An intermediate hash value H
Output: A n-bit digest D

1. for j ← 0 to Nc − 1 do
2. Pj ← IGrøstl ·Hj ⊕ IGrøstl ·Kj ;
3. end for
4. for r ← 1 to Nr − 1 do
5. for j ← 0 to Nc − 1 do
6. for i← 0 to 7 do
7. ti,j ← pi,(j+σP (i)) mod Nc

;
8. end for
9. P ′j ←MGrøstl · SRD(Tj)⊕ IGrøstl ·Kr·Nc+j ;

10. end for
11. P ← P ′;
12. end for
13. for j ← 0 to Nc − 1 do
14. for i← 0 to 7 do
15. ti,j ← pi,(j+σP (i)) mod Nc

;
16. end for
17. P ′j ←MGrøstl · SRD(Tj)⊕ IGrøstl ·Hj ;
18. end for
19. D ← truncn(P ′);
20. Return D;

A. Memory Organization

Since we consider an 8-bit datapath, the memory of our
coprocessor is organized into bytes. We will show below that
ten address bits are needed to access message blocks and
intermediate data, thus allowing us to implement the register
file and the key memory by means of a single Virtex-6 block
RAM configured as two independent 18 Kb RAMs (Figure 3).

Recall that each variable of Grøstl-n is an array of 8×Nc
bytes and that the compression function of Grøstl requires six
variables: a chaining value H , a message block M , P , P ′, Q,
and Q′ (Algorithm 2). Since Nc ≤ 16 (Table II), we define six
chunks of 128 bytes in the register file (Figure 4), and address
each byte with 10 bits:

• the three most significant bits select the desired variable;
• the next four bits encode the column index j;
• the three least significant bits define the row index i.

The addresses of hi,j and pi,j are for instance given by 8j+ i
and 256 + 8j + i, respectively. The key memory stores:

• a copy of the chaining value H required to implement the
key schedule (lines 2 and 27 of Algorithm 2, and line 17
of Algorithm 3);

• the initial chaining values IV224, IV256, IV384, and IV512;
• a copy of P needed to perform the AddRoundKey step

of the last round of Q` (line 34 of Algorithm 2).
We keep the memory organization proposed in [9] for the

AES. Note that the execution of Grøstl-n does not overwrite
the round keys of the AES. As long as the AES master key
is not modified, it is therefore possible to switch between
the hash function and the block cipher with no need for the
AES KeyExpansion step. In the following, we show that our
careful organization of the data in the register file and in the
key memory allows one to design a control unit based on a
256-bit counter, a 128-bit counter, and a simple Finite State
Machine (FSM).

B. Control Unit

The control bits of the ALU, the read and write addresses
of the register file and the key memory, and the write enable
signals are computed by a control unit that mainly consists
of an address generator and an instruction memory. At first
glance, it seems that each algorithm (AES key expansion,
AES encryption, AES decryption, P`, and Q`) requires a
different addressing scheme. However, we described a way to
generate all read and write addresses of the AES and the hash
function ECHO [4] by means of a modulo-16 counter and a
modulo-256 counter in our previous work [9]. The same design
philosophy allows us to generate the addresses of Grøstl. Since
the internal state contains up to 128 bytes, we have to replace
the modulo-16 counter by a modulo-128 counter. Our control
unit generates a read address and its corresponding write
address at each clock cycle. Since our coprocessor embeds
several pipeline stages, it is mandatory to delay write addresses
and write enable signals accordingly. Furthermore, the latency
depends on the algorithm being executed (Figure 3). On Xilinx
devices, an efficient solution consists in synchronizing control
signals by means of SRL16 primitives, whose depth can be
dynamically adjusted.

The three most significant bits of read and write addresses
select a block of 128 bytes in the memory, and their generation
is quite straightforward. We refer the reader to our open source
VHDL code and to [9] for further details. Therefore, we focus
only on the generation of the seven least significant bits (i.e.

Po
rt

B

IGrøstl = circ(01,00,00,00,00,00,00,00)
MD = circ(0E,0B,0D,09)

On-the-fly computation of round constants

IAES = circ(01,00,00,00)
AES/Grøstl ctrl6

Po
rt

A
Po

rt
B

(dual-ported memory block)

0

Register file and key memory

0

0

Po
rt

A

InvSubBytes

0

1

0

1

0

0

g(Ri)

1

18
k

B
lo

ck
R

A
M

S−1RD

SRD

18
k

B
lo

ck
R

A
M

Multiplication by B

Identity function
ctrl1:0

Multiplication by A

01

11

10

00

10

00

11

0

1

7-bit address a26:20 (port A of the key memory)

Column index j Round index r

ki,r·Nc+j

Row index i

4-stage FIFO

8 bits

4-stage FIFO

Control signals

0 1

• Identity (IGrøstl)

User interface

Control unit Instruction ROMAddress generation

• Cyclic rotation (PGrøstl)

• MixBytes (MGrøstl)

• InvMixColumns (MD)

• Identity (IGrøstl)

• Identity (IAES)

• MixColumns (ME)

ct
rl

5:
4

• Identity (IAES)

ct
rl

1

• Cyclic rotation (PAES)
• InvMixColumns (MD)

counter c2:0
Modulo-8

ct
rl

3:
2

A
E

S/
G

rø
st

l

sk1
sk2
sk3
sk4
sk5
sk6
sk7

sk0

ct
rl

6

ct
rl

9:
7

Latency: 2 clock cycles Latency:
• AES: 6 clock cycles
• Grøstl: 10 clock cycles

A
E

S/
G

rø
st

l

A
dd

R
ou

nd
K

ey
an

d
K

ey
E

xp
an

si
on

a
26
:2
0

in
de

x
r

r7

r6

r5

R
ou

nd

r4

r3

r2

ct
rl

0

r1

r0

Ri

Rj

Rk

Rk ← A · g(Ri)⊕ B ·Rj

a39:30

we3

a29:20

we2

a9:0

we0

Data

we1

a19:0

ki,r·Nc+j

On-the-fly computation

SubBytes

PAES = circ(00,01,00,00)

ME = circ(02,03,01,01)

IGrøstl = circ(01,00,00,00,00,00,00,00)
MGrøstl = circ(02,02,03,04,05,03,05,07)

IAES = circ(01,00,00,00)

MD = circ(0E,0B,0D,09)

00

01

10

11

00

01

0

0

0

0

1

1

ctrl3:2AES/Grøstl

PGrøstl = circ(00,01,00,00,00,00,00,00)

of round constants

a24 a23 a22 a21 a20

c0
c1
c2

Shift

a26 a25

Figure 3. General architecture of our unified 8-bit coprocessor for AES and Grøstl.

the location of a byte in the internal state) in the following.
Note that we
• interleave the computation of P` and Q` in order to avoid

data dependencies between two consecutive rounds and
• implement the ShiftBytes step by accordingly addressing

the register file.
Figures 5 and 6 summarize the address generation process of
Grøstl-256 and Grøstl-512, respectively. At each clock cycle,
a new read address is generated by adding a 7-bit offset to the
current read address. The rules summarized in Table V allow

one to compute the offset according to the permutation being
executed. They involve the following signals:

• depending on the value of `, Counter is a modulo-64
counter or a modulo-128 counter used to enumerate the
bytes of the internal state (it simply consists of the six
or seven least significant bits of the modulo-256 counter,
and defines the write address of the register file);

• Switch is a 1-bit signal equal to one if and only if we are
performing the last step of P` or Q`;

• Ω is a 1-bit flag indicating that the output transformation

768768

1007

AES round keys

1023

(b) Register file (Grøstl)

Unused

768

1007

AES round keys

(c) Key memory (AES and Grøstl)

Unused
1023

10081008

(a) Register file (AES)
1023

Unused

527

512
128-bit block B

Unused

IV256 = 00 . . . 00 01 00

IV384 = 00 . . . 00 01 80

IV512 = 00 . . . 00 02 00

IV224 = 00 . . . 00 00 E0

Chaining input H

271
128-bit block A

256

Chaining input H

Message block M

Grøstl state P

Grøstl state Q

Grøstl state P ′

Grøstl state Q′

15

0
128-bit plaintext or ciphertext

16

255

272

511

528

767

0

127

128

255

256

383

384

511

512

639

640

767

Grøstl state P

Unused

Unused

0

127

128

255

256

383

384

511

512

639

640

767

Figure 4. Memory organization.

is carried out.
Consider for instance Q1024 and assume that Counter =

(0010001)2 = 17. We compute the offset according to Table V
and obtain:

Offset = 0 ∧ 0 ∧ 1 ‖ (¬0) ∧ 0 ‖ 0 ∨ (¬0) ∨ (¬1) ‖
0 ∧ 1 ∧ (¬0) ‖ 0 ‖ 0 ‖ 1

= (0010001)2 = 17.

Since the current read address is equal to 41, the next read
address is given by (41 + Offset) mod 128 = 58. Counter is
now equal to (0010010)2 = 18 and the new offset is given
by:

Offset = 0 ∧ 1 ∧ 0 ‖ (¬0) ∧ 1 ‖ 0 ∨ (¬1) ∨ (¬0) ‖
1 ∧ 0 ∧ (¬0) ‖ 0 ‖ 0 ‖ 1

= (0110001)2 = 49.

The computation of Offset4 involves seven inputs: Ω, Switch,
the three least significant bits of Counter, and two bits
to define the permutation (P512, Q512, P512 or Q512). On
modern Xilinx devices, it is implemented by means of two
6-input Look-Up Tables (LUTs) and a dedicated multiplexer
(F7AMUX or F7BMUX). Since Offset5 and Offset6 share the
same five inputs, they are generated thanks to a LUT with
two independent outputs (LUT6 2 primitive). A fourth LUT
allows us to compute Offset3. Thus, we defined an extremely
lightweight address generation process for Grøstl. It can easily
be combined with the addressing scheme of the AES described
in [9].

The output transformation requires special attention: since
it involves only P`, five idle clock cycles between two consec-
utive rounds are mandatory to avoid memory collisions. Let us

consider the ith round of Grøstl-256 to describe the problem
(Figure 7). The control unit generates the address of p7,6 (read
operation) and p7,7 (write operation) at time t. However, our
coprocessor includes D = 12 pipeline stages and we write the
new value of p7,7 in the register file at time t + D. In order
to update the first column of the internal state P , we have to
read p0,0, p1,1, p2,2, p3,3, p4,4, p5,5, p6,6, and p7,7. The latter
is available on port A of the register file at time t + D + 1,
which means that p0,0 can be read at time t+D− 6 = t+ 6.
It is therefore necessary to introduce five idle clock cycles
between two rounds.

Table VI summarizes the number of clock cycles required
for the AES and Grøstl. In the case of the AES, we obtain
exactly the same results as in [9]. Thanks to our careful
organization of the memory, we achieve a perfectly tight
scheduling (no idle cycle) for the compression function of
Grøstl.

Table VI
NUMBER OF CLOCK CYCLES REQUIRED FOR THE AES AND GRØSTL.

Algorithm # cycles

AES-128
Key expansion 365
Encryption/decryption 231

AES-192
Key expansion 421
Encryption/decryption 273

AES-256
Key expansion 476
Encryption/decryption 315

Grøstl-256
Compression function 1411
Output transformation 757

Grøstl-512
Compression function 3843
Output transformation 1993

16 17 18 19 20 21 22 230 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 63 0

0

47

16 17 18 19 20 21 22 230 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 63 0

0

60 61 62

8

56 57 58 59 60 61 62 63

Modulo-64 counter:

Read addresses (register file):

Write addresses (register file):

ith round of P512 ith round of Q512

¬ ¬ ¬ ¬ ¬ ¬ ¬

 ¬

® addr← (addr + 25) mod 64

 addr← (addr + 17) mod 64

¬ addr← (addr + 9) mod 64

0 9 18 27 36 45 6354 8 17 26 35 44 53 62 7

¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬

16 25 34 43 52 61 6 15

¬ ¬ ¬ ¬ ¬ ¬ ¬

56 1 10 19 28 37 46 55

 ¬ ®

8 25 42 59 4 21 5538 16 33 50 3 12 29 46 63

 ¬ ®

24 41 58 11 20 37 54 7

 ¬

0 17 34 51 60 13 30

56 57 58 59 60 61 62

0

56 57 58 59 60 61 62 63

Modulo-64 counter:

Read addresses (register file):

Write addresses (register file):

ith round of Q512 (i + 1)th round of P512

56 57 58 59

Figure 5. Address generation of P512 and Q512.

Table V
COMPUTATION OF THE OFFSET ACCORDING TO THE PERMUTATION BEING EXECUTED.

P512 P1024 Q512 Q1024

Offset6 0 0 0 Counter2 ∧ Counter1 ∧ Counter0
Offset5 0 Counter2 ∧ Counter1 0 (¬Counter2) ∧ Counter1
Offset4 (¬Ω) ∧ Switch Counter2 ∨ ¬Counter1 ∨ (¬Counter0)
Offset3 Ω ∨ (¬Switch) Counter1 ∧ Counter0 ∧ (¬Switch)

Offset2:0 0 ‖ 0 ‖ 1

C. Arithmetic and Logic Unit

The SubBytes and InvSubBytes steps are often considered
as the most critical part of the AES, and several architec-
tures for SRD and S−1RD have already been described in the
open literature (see for instance [12] for a comprehensive
bibliography). On Xilinx Virtex-6 FPGAs, the best design
strategy consists in implementing the AES S-boxes as 8-
input tables [10]. Two control bits ctrl1:0 allow us to perform
SubBytes, InvSubBytes, or to bypass this stage when g is
the identity function.

In the case of the AES, the first matrix multiplication of
Equation (1) can involve any of the four circulant matrices
defined in Section II. Grøstl requires only IGrøstl and MGrøstl.
Let us define the control signal AES/Grøstl whose role is
to identify the algorithm being executed. Together with two
control bits ctrl3:2, this signal allows us to select matrix A.
The choice of matrix B turns out to be simpler and requires
a single extra control bit ctrl6 (Figure 3).

Since we emphasize reducing the usage of FPGA resources,
we adopt the multiply-and-accumulate approach proposed by
Hämäläinen et al. [14], and need Nl clock cycles to multiply
one column of the state or the round key array by a circulant
matrix (Figures 8 and 9). We compute a first partial product
and store the result in registers r0 to rNl

. Then, at each clock
cycle, the intermediate result is rotated and accumulated with
a new partial product. This process involves a Shift control
signal to distinguish between the first step and the subsequent
ones. Such a signal can be generated by computing the bitwise
OR of the bits of a modulo-Nl counter. Let us consider the
three bits c2:0 of a modulo 8 counter. Since Nl = 4 and Nl = 8
for AES and Grøstl, respectively, we define

Shift←

{
c1 ∨ c0 if AES/Grøstl = 0,
c2 ∨ c1 ∨ c0 if AES/Grøstl = 1

= (c2 ∧ AES/Grøstl) ∨ c1 ∨ c0.

120 121 122 123 124 125 126 127

120 121 122 123 124 125 126 127

 addr← (addr + 41) mod 128

¬ addr← (addr + 9) mod 128

® addr← (addr + 49) mod 128

¯ addr← (addr + 17) mod 128

° addr← (addr + 89) mod 128

± addr← (addr + 81) mod 128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

16 17 18 19 20 21 22 23 0

0

16 17 18 19 20 21 22 230 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0120 121 122 123 124 125 126 127

120 121 122 123 124 125 126 127

Write addresses (register file):

ith round of Q1024 (i + 1)th round of P1024

8

Modulo-128 counter:

Read addresses (register file):

Write addresses (register file):

ith round of Q1024

16 25 34 43 52 61 70 111

¬

127 1 10 19 28 37 46 87

¯ ¯ ® ¯ ¯ ¯

¬ ¬

¯ ¯ ® ¯ ¯ ¯ ±

ith round of P1024

¬ ¬ ¬ ¬ ¬ ¬ ¬

0 9 18 27 36 45 9554 8 17 26 35 44 53 62 103

¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬

16 17 18 19 20 21 22 23

¬ ¬ ¬ ¬ ¬ ¬ ®

8 25 42 91 4 21 5538

¯ ¯ ® ¯ ¯ ¯ ° ¯ ¯ ® ¯ ¯ ¯ °

16 33 50 99 12 29 46 63 24 41 58 107 20 37 54 71 0 17 34 83 124 13 30 47

0

0 1

0

Modulo-128 counter:

Read addresses (register file):

Figure 6. Address generation of P1024 and Q1024.

Note that the rotation mechanism depends on the algorithm
being executed: the AES involves registers r0, r1, r2, and r3,
whereas Grøstl requires eight registers to store intermediate
results. Therefore, the feedback mechanism is implemented by
means of a multiplexer controlled by AES/Grøstl. We describe
in Appendix how to optimize the MixColumns and MixBytes
steps on the latest Xilinx FPGAs.

Figure 10 describes the component we designed to per-
form the AddRoundKey and KeyExpansion steps. Since our
matrix multiplication units output Nl bytes, we perform Nl
additions over F28 in parallel and store the result in a shift
register. Then, we write data byte by byte in the register
file, and a modulo-Nl counter controls the process. Therefore,
it suffices to delay our Shift signal by a total of Nl clock
cycles, which is the latency of a matrix-vector multiplication.
Additional hardware resources allow us to deal with the round
constant RC involved in the key expansion of the AES (see [9]
for details).

The last operation we have to consider is the AddRound-
Key step of Grøstl. In order to compute p′i,j (Algorithm 2,
line 12), we generate ki,r·Nc+j on-the-fly. Recall that:
• i is a 3-bit row index;
• j is a 4-bit column index;
• r is a 4-bit round index.

The indices i and j are given by the control signal a26:20 =
j ‖ i = 8j+ i (Figure 3). According to Algorithm 1, we have:

ki,r·Nc+j ←

{
j ‖ r when i = 0,
00 otherwise.

Since i = a22:20 and j = a26:23, we can rewrite the above
equation as follows:

ki,r·Nc+j ←

{
a26:23 ‖ r when a20 ∨ a21 ∨ a22 = 0,
00 otherwise,

and compute ki,r·Nc+j by means of a 3-input NOR gate and

35 53 62 7 16 25 34 43

0 9 18 27 36 45 6354 8 17 26 35 44 53 62 7 16 25 34 43

Address generator
Read addresses (register file): p7,6

p7,7

p6,6p5,5p4,4

59 60 61 62 63

p3,3p2,2p1,1 p7,7p0,0

Idle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

56 1 10 19 28 37 46 55

0

Idle

1

Idle

2

Idle

3 4 5 6 7

Register file
D = 12 clock cycles

Port A (read operations):

Port B (write operations):

Write addresses (register file):

56 1 10 19 28 37 46 55

44 45 46 47 48 49

585756

50 51 52 53 54 55 56 57 58 59 60 61 62 63

(i + 1)th round of P512ith round of P512

0 9 18 27 36 45 6354 8 17 26 44

Figure 7. Latency between two consecutive rounds of P512 during the output transformation.

1 bit

ctrl2

Shift

AES/Grøstl ‖ ctrl3:2

AES/Grøstl

3 bits 8 bits

07

r3

00

r4r1 r2

001

000

101

011

010

100

001

000

101

011

010

100

01

0D

00

00

05

00

001

000

101

011

010

100

03

0B

01

00

03

00

001

000

101

011

010

100

0E

00

00

05

0 1

010

021

0

031

000

021

000

041

00

r0 r7

02

01

01

09

00

00

r6r5

Figure 8. Implementation of MixColumns and MixBytes.

eight 2-input AND gates. A multiplexer controlled by ctrl5:4
allows us to inject ki,r·Nc+j , ¬ki,r·Nc+j , ki,j ⊕ hi,j (first key
injection of P`), or a variable stored in the key memory.

V. RESULTS AND COMPARISONS

We captured our architecture in the VHDL language and
prototyped our coprocessor on several Xilinx FPGAs with
average speedgrade. Table VII summarizes our place-and-
route results measured with ISE 14.2. In order to evaluate
the hardware overhead introduced by the AES, we designed
a second coprocessor that implements only Grøstl-256 and
Grostl-512 (Table VIII). It is possible to reduce the number
of slices by implementing a subset of the functionalities (e.g.
a single level of security, AES without key expansion, etc.).

Our coprocessor requires a similar number of slices and
achieves the same clock frequency as the architecture we de-
signed for ECHO and AES [9]. However, the implementation
of Grøstl on our architecture involves a smaller number of
instructions and the throughput turns out to be slightly higher
than the one of ECHO. Therefore, two conclusions we drew
in our previous work can be transposed here:
• Helion Technology [26] is selling a tiny AES core that

implements encryption, decryption, and key expansion at

all levels of security. The coprocessor occupies only 88
Virtex-6 slices and achieves a throughput of 83 Mbps
in the case of AES-128. Our unified coprocessor is
almost twice as big, but we achieve a better encryp-
tion/decryption rate and improve the area–time product
compared to the tiny AES core designed by Helion
Technology. Thus, combining the hash function Grøstl
with the AES does not impact the overall performance of
the latter.

• The unified core for SHA-1, SHA-224/256, and SHA-
384/512 designed by Helion Technology [25] turns out
to be larger and slightly slower than our coprocessor.
Furthermore, the Helion commercial core must be sup-
plemented with an AES core to provide the same func-
tionalities as our architecture. Assuming that the security
of Grøstl is at least as good as the one of SHA-2, Grøstl
is a clear winner for resource-constrained devices.

Järvinen [15] proposed the first unified coprocessor for
AES-128 (encryption and key expansion) and Grøstl-256. Re-
cently, Rogawski & Gaj [23] designed a parallel coprocessor
for Grøstl-based HMAC and AES in the counter mode. Both
architectures are optimized for high-speed implementations,
and it is therefore difficult to make a comparison with our

Shift

AES/Grøstl ‖ ctrl6

AES/Grøstl

ctrl6

2 bits 8 bits1 bit

10

09

00

sk7

01

sk4

0

1 00

sk1

00

00

01

00

11

10

0D

00

1

01

00

11

10 01 100

00

0E

01

sk2

01

00

11

10

sk0

00

sk3 sk5

0

0 sk6

00 00

00

0B

00

00

01

00

11

Figure 9. Multiplication by IAES, MD , IGrøstl, and PGrøstl.

0 1 0 1 0 1

1 bit
8 bits

×x

1 0

1

00

RC or 00

(AES key expansion)
Computation of RC

ctrl8

ctrl7

ctrl9

Shift

r1 sk1sk0r0 r2 sk2 r3 sk3

To register file

0 10 1 0 1 0 1

sk7r7sk6r6sk5r5sk4r4
01

0

Figure 10. Implementation of AddRoundKey and KeyExpansion.

Table VII
PLACE-AND-ROUTE RESULTS FOR OUR UNIFIED COPROCESSOR ON VIRTEX-6, ARTIX-7, KINTEX-7, AND VIRTEX-7 FPGAS. THE THROUGHPUT OF

GRØSTL IS COMPUTED FOR A ONE-BLOCK MESSAGE.

FPGA
Area Frequency Throughput [Mbits/s]

[slices] [MHz] AES-128 AES-192 AES-256 Grøstl-256 Grøstl-512
Virtex-6 (xc6vlx75t-2) 169 393 217 184 159 92 69
Artix-7 (xc7a100t-2) 188 265 146 124 107 62 46
Kintex-7 (xc7k70t-2) 172 438 242 205 177 103 76
Virtex-7 (7vx330t-2) 185 415 229 194 168 98 72

unified coprocessor.
We report in Table IX the latest FPGA implementation

results of the five SHA-3 finalists (see for instance [20], [21]
for a survey of parallel architectures). We consider here the
least favorable case for Grøstl, in which a single block is
processed. The throughput of Grøstl-256 is for instance given
by:

throughput =
512 · #blocks

(1411 · #blocks + 757) · T
,

where T denotes the clock period. When the number of blocks
increases, one can neglect the cost of the output transformation
and the throughput tends asymptotically to 512/(1411 · T).

Most of the architectures described in the open literature
focus on a single level of security. In this context, BLAKE [2]
is obviously the best choice for low-area implementations on
FPGA. However, as soon as a circuit must support several
levels of security, Grøstl will offer the most compact solution.

VI. CONCLUSION

The design philosophy we proposed in [9] allowed us
to develop a low-area coprocessor for the AES (encryption,
decryption, and key expansion) and the cryptographic hash
function Grøstl at all levels of security. Our architecture
is built around an 8-bit datapath and the ALU performs a

Table VIII
PLACE-AND-ROUTE RESULTS FOR OUR GRØSTL COPROCESSOR ON VIRTEX-6, ARTIX-7, KINTEX-7, AND VIRTEX-7 FPGAS. THE THROUGHPUT IS

COMPUTED FOR A ONE-BLOCK MESSAGE.

FPGA
Area Frequency Throughput [Mbits/s]

[slices] [MHz] Grøstl-256 Grøstl-512
Virtex-6 (xc6vlx75t-2) 102 413 97 72
Artix-7 (xc7a100t-2) 131 331 78 58
Kintex-7 (xc7k70t-2) 111 450 106 78
Virtex-7 (7vx330t-2) 108 480 113 84

single instruction that allows for implementing both algo-
rithms. Despite the various addressing schemes required for
the different steps of Grøstl and the AES, our control unit
remains compact: all addresses are generated by means of a
modulo-128 counter and a modulo-256 counter. Thanks to an
alternative description of Grøstl and a meticulous organization
of the memory, we manage to implement the compression
function f (Algorithm 2) without any pipeline stall. The key
element of our approach is to take advantage of the parallelism
of Grøstl to
• deeply pipeline the ALU to achieve a high clock fre-

quency;
• avoid data dependencies by interleaving independent

tasks.
At the cost of 67 Virtex-6 slices, one can add the AES

functionalities to a Grøstl coprocessor. Despite of the dif-
ferences between the two algorithms (size of the internal
state, coefficients of the circulant matrices, key schedule,
etc.), resource sharing is possible. Assuming that the security
guarantees of Grøstl are at least as good as the ones of the
other SHA-3 finalists, Grøstl is the best candidate for low-area
cryptographic coprocessors.

Our architecture is mainly designed for embedded systems.
Thus, it would be interesting to conduct side-channel and fault
injection attacks in future work. Since the ALU executes the
same instruction at each clock cycle, our design strategy could
offer a protection against some attacks.

ACKNOWLEDGEMENTS

The authors would like to thank Ray Cheung for his valuable
comments. This work was partially supported by the Japanese
Society of Promotion of Science (JSPS) through the A3
Foresight Program (Research on Next Generation Internet and
Network Security). Additionally the authors would like to
acknowledge Xilinx and the Xilinx University Program for
its generous donation of materials in terms of design tools.

REFERENCES

[1] N. At, J.-L. Beuchat, and İ. San. Compact implementation of Threefish
and Skein on FPGA. In A. Levi, M. Badra, M. Cesana, M. Ghas-
semian, Ö. Gürbüz, N. Jabeur, M. Klonowski, A. Maña, S. Sargento,
and S.Zeadally, editors, Proceedings of the Fifth IFIP International
Conference on New Technologies, Mobility and Security–NTMS 2012.
IEEE eXpress Conference Publishing, 2012.

[2] J.-P. Aumasson, L. Henzen, W. Meier, and R.C.-W. Phan. SHA-3 pro-
posal BLAKE (version 1.4). Available at http://www.131002.net/blake,
January 2011.

[3] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and
W.P. Marnane. A hardware wrapper for the SHA-3 hash algorithms.
Cryptology ePrint Archive, Report 2010/124, 2010.

[4] R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Rob-
shaw, and Y. Seurin. SHA-3 proposal: ECHO. Available at http:
//crypto.rd.francetelecom.com/echo, 2009.

[5] R. Benadjila, O. Billet, S. Gueron, and M.J.B. Robshaw. The Intel
AES instructions set and the SHA-3 candidates. In M. Matsui, editor,
Advances in Cryptology–ASIACRYPT 2009, number 5912 in Lecture
Notes in Computer Science, pages 162–178. Springer, 2009.

[6] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer.
Keccak implementation overview (version 3.1). September 2011.

[7] J.-L. Beuchat, E. Okamoto, and T. Yamazaki. A compact FPGA
implementation of the SHA-3 candidate ECHO. Cryptology ePrint
Archive, Report 2010/364, 2010.

[8] J.-L. Beuchat, E. Okamoto, and T. Yamazaki. Compact implementations
of BLAKE-32 and BLAKE-64 on FPGA. In J. Bian, Q. Zhou, and
K. Zhao, editors, Proceedings of the 2010 International Conference
on Field-Programmable Technology–FPT 2010, pages 170–177. IEEE
Press, 2010.

[9] J.-L. Beuchat, E. Okamoto, and T. Yamazaki. A low-area unified
hardware architecture for the AES and the cryptographic hash function
ECHO. Journal of Cryptographic Engineering, 1(2):101–121, 2011.

[10] P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, and G. Rouvroy.
Implementation of the AES-128 on Virtex-5 FPGAs. In S. Vaudenay,
editor, Progress in Cryptology–AFRICACRYPT 2008, number 5023 in
Lecture Notes in Computer Science, pages 16–26. Springer, 2008.

[11] J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2002.
[12] K. Gaj and P. Chodowiec. FPGA and ASIC implementations of the

AES. In Ç.K. Koç, editor, Cryptographic Engineering, pages 235–294.
Springer, 2009.

[13] P. Gauravaram, L.R. Knudsen, K. Matusiewicz, F. Mendel, C. Rech-
berger, M. Schläffer, and S.S. Thomsen. Grøstl – a SHA-3 candidate.
Available at http://www.groestl.info, 2011.

[14] P. Hämäläinen, T. Alho, M. Hännikäinen, and T.D. Hämäläinen. De-
sign and implementation of low-area and low-power AES encryption
hardware core. In Ninth Euromicro Conference on Digital System
Design: Architectures, Methods and Tools–DSD’06, pages 577–583.
IEEE Computer Society, 2006.

[15] K. Järvinen. Sharing resources between AES and the SHA-3 second
round candidates Fugue and Grøstl. In The Second SHA-3 Candidate
Conference, August 2010.

[16] B. Jungk. Compact implementations of Grøstl, JH and Skein for FPGAs.
In Proceedings of the ECRYPT II Hash Workshop, 2011.

[17] B. Jungk. Evaluation of compact FPGA implementations for all SHA-3
finalists. In The Third SHA-3 Candidate Conference, March 2012.

[18] J.-P. Kaps, P. Yalla, K.K. Surapathi, B. Habib, S. Vadlamudi, and
S. Gurung. Lightweight implementations of SHA-3 finalists on FPGAs.
In The Third SHA-3 Candidate Conference, March 2012.

[19] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni,
G. Meurice de Dormale, and F.-X. Standaert. Compact FPGA imple-
mentations of the five SHA-3 finalists. In Proceedings of the ECRYPT
II Hash Workshop, 2011.

[20] M. Knežević, K. Kobayashi, J. Ikegami, S. Matsuo, A. Satoh, Ü.
Kocabaş, J. Fan, T. Katashita, T. Sugawara, K. Sakiyama, I. Ver-
bauwhede, K. Ohta, N. Homma, and T. Aoki. Fair and consis-
tent hardware evaluation of fourteen round two SHA-3 candidates.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
20(5):827–840, May 2012.

Table IX
COMPACT IMPLEMENTATIONS OF THE FIVE SHA-3 FINALISTS ON VIRTEX-5 AND VIRTEX-6 FPGAS. THE THROUGHPUT IS COMPUTED FOR A

ONE-BLOCK MESSAGE.

Supported algorithm(s) FPGA
Area 36k memory Frequency Throughput

[slices] blocks [MHz] [Mbits/s]
Aumasson et al. [2] BLAKE-256 xc5vlx110 390 – 91 412
Beuchat et al. [8]∗ BLAKE-256 xc6vlx75t-2 52 2 456 194
Jungk [17] BLAKE-256 xc6v 235 – 231 518
Jungk [17] BLAKE-256 xc6v 404 – 185 823
Kaps et al. [18] BLAKE-256 xc6vlx75t-1 163 1 197 327
Kaps et al. [18] BLAKE-256 xc6vlx75t-1 166 – 268 445
Aumasson et al. [2] BLAKE-512 xc5vlx110 939 – 59 468
Beuchat et al. [8]∗ BLAKE-512 xc6vlx75t-2 81 3 374 280
Kerckhof et al. [19] BLAKE-512 xc6vlx75t-1 192 – 240 183

Yamazaki et al. [28] BLAKE-256 and BLAKE-512 xc5vlx50-2 138 3 342
2× 150 (BLAKE-256)

264 (BLAKE-512)

Jungk [16]† Grøstl-256 xc5v 470 – 354 1132

Jungk [17]† Grøstl-256 xc6v 328 – 365 1168
Kaps et al. [18] Grøstl-256 xc6vlx75t-1 241 1 244 115
Kaps et al. [18] Grøstl-256 xc6vlx75t-1 263 – 359 240

Yamazaki [27]† Grøstl-256 xc6vlx75t-2 82 1 410 154

Kerckhof et al. [19]† Grøstl-512 xc6vlx75t-1 260 – 280 640

This work Grøstl-256 and Grøstl-512 xc6vlx75t-2 102 1 413
97 (Grøstl-256)
72 (Grøstl-512)

This work
Grøstl-256, Grøstl-512, AES-128,

xc6vlx75t-2 169 1 393
92 (Grøstl-256)

AES-192, and AES-256 69 (Grøstl-512)
Jungk [16] JH-256 xc5v 205 – 341 27
Jungk [17] JH-256 xc6v 193 – 385 29
Jungk [17] JH-256 xc6v 424 – 365 1112
Kaps et al. [18] JH-256 xc6vlx75t-1 196 1 243 148
Kaps et al. [18] JH-256 xc6vlx75t-1 171 – 252 154
Kerckhof et al. [19] JH-512 xc6vlx75t-1 240 – 288 214

Jungk [17] Keccak[r = 1088, c = 512] xc6v 397 – 197 1071
Kaps et al. [18] Keccak[r = 1088, c = 512] xc6vlx75t-1 129 1 260 74
Kaps et al. [18] Keccak[r = 1088, c = 512] xc6vlx75t-1 106 – 299 135
Bertoni et al. [6] Keccak[r = 576, c = 1024] xc5vlx50-3 448 – 265 52
Kerckhof et al. [19] Keccak[r = 576, c = 1024] xc6vlx75t-1 144 – 250 68
San & At [24] Keccak[r = 576, c = 1024] xc5vlx50-2 151 3 520 501

Latif et al. [22]‡ Skein-256-256 xc5vlx110-3 821 Not specified 119 1610

Jungk [16]‡ Skein-512-256 xc5v 555 – 271 237

Jungk [17]‡ Skein-512-256 xc6v 406 – 318 277
Kaps et al. [18] Skein-512-256 xc6vlx75t-1 207 1 166 17
Kaps et al. [18] Skein-512-256 xc6vlx75t-1 193 – 193 21
At et al. [1] Skein-512-512 xc6vlx75t-1 132 2 276 80

Kerckhof et al. [19]‡ Skein-512-512 xc6vlx75t-1 240 – 160 179
∗Modified to implement the tweaked version submitted for the final round of the SHA-3 competition.

†Without output transformation.
‡Single call to Threefish-512.

[21] K. Latif, M.M. Rao, A. Aziz, and A. Mahboob. Efficient hardware im-
plementations and hardware performance evaluation of SHA-3 finalists.
In The Third SHA-3 Candidate Conference, March 2012.

[22] K. Latif, M. Tariq, A. Aziz, and A. Mahboob. Efficient hardware
implementation of secure hash algorithm (SHA-3) finalist – Skein. In
Proceedings of the International Conference on Computer, Communica-
tion, Control and Automation–3CA2011, 2011.

[23] M. Rogawski and K. Gaj. A high-speed unified hardware architecture
for AES and the SHA-3 candidate Grøstl. In Proceedings of the 15th
Euromicro Conference on Digital System Design, September 2012.

[24] İ. San and N. At. Compact Keccak hardware architecture for data
integrity and authentication on FPGAs. Information Security Journal:
A Global Perspective, 21(5):231–242, 2012.

[25] Helion Technology. FULL DATASHEET–Tiny hash core family for
Xilinx FPGA. Revision 2.0 (11/06/2010).

[26] Helion Technology. OVERVIEW DATASHEET–Ultra-low resource
AES (Rijndael) cores for Xilinx FPGA. Revision 1.3.0.

[27] T. Yamazaki. Compact implementation of hash functions on FPGA.
Master’s thesis, Graduate School of Systems and Information Engineer-
ing, University of Tsukuba, 2012.

[28] T. Yamazaki, J.-L. Beuchat, and E. Okamoto. BLAKE-256, BLAKE-
512のコンパクトな統合実装. IEICE暗号と情報セキュリティ実装
技術小特集号, J-95A(5):416–424, 2012.

[29] J. Zhai, C.M. Park, and G.-N. Wang. Hash-based RFID security protocol
using randomly key-changed identification procedure. In Computational
Science and Its Applications–ICCSA 2006, number 3983 in Lecture
Notes in Computer Science, pages 296–305. Springer, 2006.

APPENDIX

Figure 11 describes how we take advantage of the LUT6 2
primitive in order to optimize MixColumns and MixBytes
steps on the latest Xilinx FPGAs. The first step of a multipli-

8 bits

01

11

01

00

10

00

0

0

1

1

0

0

10

00

11

01

10

00AES/Grøstl

11 1001 0011 10

00

0011 10 01

8 LUT6

8 LUT6 8 LUT6 8 LUT6 8 LUT6 8 LUT68 LUT6 8 LUT68 LUT6

AES/Grøstl

Shift

dec ctrl

mux4 ctrl

OutputsInputs

2 LUT6 2

dec ctrlctrl3:2 mux4 ctrl

01

11

10

00

10

00

AES/Grøstl

ctrl2

ctrl2

8 LUT68 LUT6

0011 10 01

8 LUT6 2

1 bit 2 bits

00

01 0011 10

00 00 00

01 0011 1001 00

00

0

00

1

r1

×04

0 10 1

×02×0C

0

r5 r6

×02×02

10

×09

×03

×02

1

0

0

00
×06

r2 r3

1

00

r4

1

r7

0

00

1r0

00 00

Figure 11. Implementation of MixColumns and MixBytes on the latest Xilinx FPGAs.

cation by MGrøstl is for instanced performed as follows:

r0 ← 09 · a0,
r1 ← 0C · a0 + 01 · a0 = 0D · a0,
r2 ← 09 · a0 + 02 · a0 = 0B · a0,
r3 ← 0C · a0 + 02 · a0 = 0E · a0,
r4 ← 04 · a0,
r5 ← 03 · a0,
r6 ← 02 · a0,
r7 ← 02 · a0.

