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Abstract—This article describes the design of an 8-bit copro-
cessor for the AES (encryption, decryption, and key expansion)
and the cryptographic hash function Grøstl on several Xilinx
FPGAs. Our Arithmetic and Logic Unit performs a single
instruction that allows for implementing AES encryption, AES
decryption, AES key expansion, and Grøstl at all levels of
security. Thanks to a careful organization of AES and Grøstl
internal states in the register file, we manage to generate all
read and write addresses by means of a modulo-128 counter
and a modulo-256 counter. A fully autonomous implementation
of Grøstl and AES on a Virtex-6 FPGA requires 169 slices and a
single 36k memory block, and achieves a competitive throughput.
Assuming that the security guarantees of Grøstl are at least
as good as the ones of the other SHA-3 finalists, our results
show that Grøstl is the best candidate for low-area cryptographic
coprocessors.

I. INTRODUCTION

In response to the successful cryptanalysis of the MD4,
MD5, and SHA-0 hash functions, the National Institute of
Standards and Technology (NIST) has decided to develop a
new algorithm to augment the Secure Hash Standard (FIPS
180-2). The public SHA-3 competition was announced in
November 2007. After two rounds of internal reviews and
feedback from the cryptographic community, the NIST se-
lected 5 candidates out of 64 to advance to the final round. If
security remains the main criterion, computational efficiency,
memory requirement, flexibility, and simplicity are also of
great significance.

Since the SHA-3 finalist Grøstl [13] is strongly inspired
by the Advanced Encryption Standard (AES) [11], it is
tempting to design a compact unified hardware architecture
which supports both algorithms. Such an implementation is
valuable for constrained environments, where some security
protocols mainly rely on cryptographic hash functions (see
for instance [29]). Furthermore, as emphasized by Kerckhof et
al., “fully unrolled and pipelined architectures may sometimes
hide a part of the algorithms’ complexity that is better re-
vealed in compact implementations” [19]. In order to have
a deeper understanding of the computational efficiency of
several SHA-3 candidates (resource sharing, memory access
scheme, scheduling, etc.), we already designed five low-area
coprocessors [1], [7]–[9], [24]. In particular, we proposed a
compact unified architecture for the SHA-3 round 2 candidate
ECHO [4] and the AES. The main originality of our work
was to describe the AES by means of a single instruction [9].

Since ECHO is built around the round function of the AES, it
is rather straightforward to design a unified Arithmetic and
Logic Unit (ALU) for both algorithms. In the conclusion
of our article, we stated that our design strategy could be
applied to Grøstl and AES. However, even if Grøstl borrows
the the S-box of the AES, the construction of the diffusion
layers is only based on the design philosophy of the AES.
Contrary to ECHO, Grøstl can not be implemented with the
AES instruction set of Intel Westmere processors [5], and
it seems much more challenging to build a compact unified
coprocessor. We bring a solution to this problem in this work.

The rest of the article is organized as follows: Section II
provides the reader with a short description of the AES and a
summary of the design strategy we proposed in [9]. In Sec-
tion III, we give an alternative description of Grøstl showing
how to implement the algorithm with our single instruction set
architecture. Then, we describe our unified 8-bit coprocessor,
focusing on its control unit (Section IV). We discuss our
implementation results on several Xilinx Field-Programmable
Gate Arrays (FPGAs) in Section V and conclude in Section VI.

II. THE ADVANCED ENCRYPTION STANDARD

The round transformation of the AES operates on a 128-
bit intermediate result, called state. The state is internally
represented as a Nl ×Nc array of bytes A, where Nl and Nc
denotes the number of lines and columns, respectively. In the
case of the AES, Nl = Nc = 4. Each byte ai,j , 0 ≤ i, j ≤ 3,
is considered as an element of F28

∼= F2[x]/(m(x)), where the
irreducible polynomial is given by m(x) = x8+x4+x3+x+1.
In the following, we encode an element of F28 by two hexadec-
imal digits: for instance, 95 is equivalent to x7+x4+x2+1 in
the polynomial basis representation. We denote the jth column
of A by Aj . The number of rounds Nr as well as the number
of 32-bit blocks in the cipher key Nk of the AES depend on
the desired security level (Table I).

The AES involves four byte-oriented transformations and
their inverses for encryption and decryption, respectively [11]:

• The SubBytes step updates each byte of the state using
an 8-bit S-box, denoted by SRD. The inverse transforma-
tion is called InvSubBytes and denoted by S−1RD .

• The ShiftRows step simply consists of a cyclical left shift
of the three bottom rows of the state by 1, 2, and 3 bytes,
respectively.



Table I
BLOCK LENGTH, KEY LENGTH, NUMBER OF 32-BIT BLOCKS OF THE KEY

(Nk ), AND NUMBER OF ROUNDS (Nr ) OF AES-128, AES-192, AND
AES-256.

Algorithm
Block length Key length

Nk Nr[bits] [bits]
AES-128 128 128 4 10
AES-192 128 192 6 12
AES-256 128 256 8 14

• The MixColumns step is a permutation operating on
the AES state column by column. Each column of the
AES state is considered as a polynomial over F28 , and is
multiplied modulo y4 + 01 by the constant polynomial
c(y) = 03·y3+01·y2+01·y+02 [11]. This operation is
performed by multiplying each column of the state A by a
circulant matrixME = circ(02,03,01,01). During the
inverse operation, called InvMixColumns, each column
of the state is multiplied byMD = circ(0E,0B,0D,09).

• The AddRoundKey step combines the state A with a
128-bit round key. Let r denote the round index. Each
byte ki,4r+j of the round key and its corresponding byte
ai,j are added in F28 by a simple bitwise XOR operation.
AddRoundKey is therefore its own inverse.

After an initial AddRoundKey step, an AES encryption
involves Nr − 1 repetitions of a round composed of the four
byte-oriented transformations described above. Eventually, a
final encryption round, in which the MixColumns step is
omitted, produces the ciphertext (Figure 1). We consider here
the equivalent decryption algorithm described in [11, Section
3.7.3]. Its main advantage over the straightforward decryption
process is that encryption and decryption rounds share the
same datapath (Figure 1). Nevertheless, the round keys are
introduced in reverse order for decryption. A key expansion
algorithm allows one to derive the round keys involved in the
AddRoundKey steps from the cipher key. Let us consider an
array consisting of 4 rows and 4 · (Nr + 1) columns. The
cipher key is copied in the first Nk columns of the array, and
the next columns are defined recursively (see [11, Section 3.6]
for details).

If an AES coprocessor is built around an 8-bit datapath,
the ShiftRows and InvShiftRows steps are implemented by
accordingly addressing the register file organized into bytes.
As a result, these operations are virtually for free and do not
require dedicated hardware in the ALU. It is then possible
to describe encryption, decryption, and key expansion with a
single instruction [9]:

Rk ← A · g(Ri)⊕ B ·Rj , (1)

where
• Ri, Rj , and Rk are vectors of Nl bytes.
• A and B are matrices of Nl × Nl bytes. Let us define

the identity matrix IAES = circ(01,00,00,00) and
the permutation matrix PAES = circ(00,01,00,00).
The latter matrix is essential to the key schedule. We

showed in [9] that A can be any of the four matrices we
introduced so far, whereas B is eitherMD or the identity
matrix IAES.

• g is a function applied to each byte of Ri. In addition to
SRD and S−1RD , we need the identity function to implement
the key expansion and the first AddRoundKey step of
AES encryption or decryption. The first instruction of
the decryption process (Figure 1) is for instance

A0 ← IAES ·A0 ⊕ IAES ·K4Nr
.

Since the ALU processes the operands byte by byte, the
computation of Equation (1) involves at least Nl cycles. In
order to achieve a high clock frequency on FPGA, it is
however necessary to make the pipeline deeper. The main
challenge is to schedule the instructions to avoid pipeline
bubbles as much as possible.

III. THE HASH FUNCTION GRØSTL

Grøstl is a family of cryptographic hash functions able to
compute message digests from 8 to 512 bits [13]. We denote
by Grøstl-n the algorithm with a n-bit output and focus on
the digest sizes specified for the SHA-3 competition (224,
256, 384, and 512 bits). The original message is padded, split
into t message blocks of ` bits, and organized as an array
of Nl × Nc bytes, where ` and Nc depend on the desired
level of security (Table II). The number of lines Nl is always
equal to 8. In this work, we assume that our coprocessor
is provided with a padded message and refer the reader
to [13, Section 3.6] for a description of the padding algorithm.
A hardware wrapper interface for Grøstl (and several other
hash functions) comprising communication and padding is for
instance described in [3]. Starting from an initial chaining
input H(0) = IVn, the message blocks M (1), . . . , M (t) are
processed by a compression function f as:

H(i) ← f(H(i−1),M (i)),

where 1 ≤ i ≤ t. Figure 2 describes the datapath of the
compression function f that consists of a key schedule, and
two permutations P` and Q` operating on two 8 × Nc array
of bytes P and Q. Each byte is considered as an element of
F28
∼= F2[x]/(m(x)), where m(x) = x8 + x4 + x3 + x+ 1 is

the irreducible polynomial of the AES.

Table II
BLOCK LENGTH, NUMBER OF COLUMN OF THE INTERNAL STATE, AND

NUMBER OF ROUNDS OF GRØSTL-n.

Digest size n Block length ` # columns # rounds
[bits] [bits] Nc Nr

8 to 256 512 8 10
264 to 512 1024 16 14

Each permutation involves a first key injection followed by
Nr rounds consisting of four byte-oriented transformations
similar to those of the AES (Nr depends on the digest size
and is defined in Table II):
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Figure 1. AES encryption and decryption flowcharts (reprinted from [9]).
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Figure 2. Flowchart of the compression function f of Grøstl.

• The ShiftBytes step cyclically rotates the ith row of P
and Q to the left by σP (i) and σQ(i) bytes, respectively.
Let T = ShiftBytes(P ) and U = ShiftBytes(Q). We
have:

ti,j ← pi,(j+σP (i)) mod Nc
,

ui,j ← qi,(j+σQ(i)) mod Nc
,

where 0 ≤ i ≤ 7 and 0 ≤ j ≤ Nc − 1. The offsets σP (i)
and σQ(i) depend on the row index i and the number of
columns Nc, and are defined in Table III.

• The SubBytes step updates each byte of P and Q using
the AES S-box, denoted by SRD.

Table III
OFFSETS OF THE SHIFTBYTES TRANSFORMATION ACCORDING TO THE

ROW INDEX i AND THE NUMBER OF COLUMNS Nc .

i 0 1 2 3 4 5 6 7

σP (i) 0 1 2 3 4 5 6 Nc
2

+ 3

σQ(i) 1 3 5 Nc
2

+ 3 0 2 4 6

• The MixBytes step is performed by multiplying each
column of P and Q by the circulant matrix MGrøstl =
circ(02,02,03,04,05,03,05,07).



• The AddRoundKey step combines P and Q with two
`-bit round keys. The key expansion requires Nr ·Nc 64-
bit constants that can be computed on-the-fly according
to Algorithm 1. Since the round counter r and the loop
index j are 4-bit numbers (Nr ≤ 14 and Nc − 1 ≤ 15),
each ki,r·Nc+j can be seen as an element of F28 .

Algorithm 1 Computation of the round constants.
Input: Nr (number of rounds of the permutation P ) and Nc

(number of columns of the internal state).
Output: The Nr ·Nc round constants required to compute the

permutation P .
1. for r ← 0 to Nr − 1 do
2. for j ← 0 to Nc − 1 do
3. k0,r·Nc+j ← j ‖ r;
4. for i← 1 to 7 do
5. ki,r·Nc+j ← 00;
6. end for
7. end for
8. end for
9. Return K0, K1, . . . , KNr·Nc−1;

Besides the round constants, the key expansion involves
the chaining input H and a permutation matrix PGrøstl =
circ(00,01,00,00,00,00,00,00) (Figure 2). Finally,
note that the output of P` serves as the key of the last
round of Q`.

Algorithm 2 describes how we implement Grøstl using the
instruction defined by Equation (1). The ShiftBytes step (i.e.
computation of Tj and Uj on lines 10, 17, 25, and 32) is
performed by accordingly addressing the register file organized
into bytes. As a result, these operations are virtually for free
and do not require dedicated hardware in the ALU. Since the
ShiftBytes transformations performs cyclical left shifts of the
rows of the state, we have to be careful not to overwrite bytes
that are still involved in the forthcoming MixBytes steps (p1,0
is for instance needed to update the eighth column of P , and
should not be overwritten when updating the first column).
We solve this problem by introducing two 8 × Nc arrays of
bytes P ′ and Q′ to store intermediate results. The coprocessor
we will describe in Section IV embeds a number of pipeline
stages, and several clock cycles are required to process a byte
of the state. In order to avoid data dependency issues between
two consecutive rounds of a given permutation, we interleave
the computation of P` and Q`.

After the last message block has been processed, an output
transformation based on P` generates the n-bit digest D
(Algorithm 3). The function truncn(P ′) (line 19) discards all
but the n trailing bits of P ′. Table IV provides the reader with
a summary of the instructions involved in the compression
function and the output transformation.

IV. A COMPACT UNIFIED COPROCESSOR FOR THE AES
AND THE GRØSTL FAMILY OF HASH FUNCTIONS

Figure 3 describes how we modified the 8-bit coprocessor
proposed by Beuchat et al. [9] in order to share the same

Algorithm 2 Compression function f of Grøstl.
Input: A `-bit message block M and a chaining value H .
Output: A new chaining value H ′.

1. for j ← 0 to Nc − 1 do
2. Pj ← IGrøstl ·Mj ⊕ IGrøstl · (Kj ⊕Hj);
3. end for
4. for j ← 0 to Nc − 1 do
5. Qj ← IGrøstl ·Mj ⊕ PGrøstl · ¬Kj ;
6. end for
7. for r ← 1 to Nr − 1 do
8. for j ← 0 to Nc − 1 do
9. for i← 0 to 7 do

10. ti,j ← pi,(j+σP (i)) mod Nc
;

11. end for
12. P ′j ←MGrøstl · SRD(Tj)⊕ IGrøstl ·Kr·Nc+j ;
13. end for
14. P ← P ′;
15. for j ← 0 to Nc − 1 do
16. for i← 0 to 7 do
17. ui,j ← qi,(j+σQ(i)) mod Nc

;
18. end for
19. Q′j ←MGrøstl · SRD(Uj)⊕ PGrøstl · ¬Kr·Nc+j ;
20. end for
21. Q← Q′;
22. end for
23. for j ← 0 to Nc − 1 do
24. for i← 0 to 7 do
25. ti,j ← pi,(j+σP (i)) mod Nc

;
26. end for
27. P ′j ←MGrøstl · SRD(Tj)⊕ IGrøstl ·Hj ;
28. end for
29. P ← P ′;
30. for j ← 0 to Nc − 1 do
31. for i← 0 to 7 do
32. ui,j ← qi,(j+σQ(i)) mod Nc

;
33. end for
34. H ′j ←MGrøstl · SRD(Uj)⊕ IGrøstl · Pj ;
35. end for
36. Return H ′0, . . . , H ′Nc−1;

datapath between Grøstl and the AES. The architecture is
built around an 8-bit datapath and consists of three main
components:

• a register file and a key memory implemented by means
of a single dual-ported memory block; address bits and
write enable signals are denoted by a39:0 and we3:0,
respectively;

• a control unit responsible for the address generation and
the selection of the parameters A, B, and g (Table IV);

• an ALU implementing the instruction defined by Equa-
tion (1), the key expansion mechanism of the AES, and
the computation of the round constants of Grøstl.



Table IV
IMPLEMENTATION OF GRØSTL WITH A SINGLE INSTRUCTION.

Operation Rk A g Ri B Rj

Algorithm 2, line 2 Pj IGrøstl Identity Mj IGrøstl Kj ⊕Hj

Algorithm 2, line 5 Qj IGrøstl Identity Mj IGrøstl ¬Kj

Algorithm 2, line 12 and Algorithm 3, line 9 P ′j MGrøstl SRD Tj IGrøstl Kr·Nc+j

Algorithm 2, line 19 Q′j MGrøstl SRD Uj PGrøstl ¬Kr·Nc+j

Algorithm 2, line 27 and Algorithm 3, line 17 P ′j MGrøstl SRD Tj IGrøstl Hj

Algorithm 2, line 34 Q′j MGrøstl SRD Uj IGrøstl Pj

Algorithm 3, line 2 Pj IGrøstl Identity Hj IGrøstl Kj

Algorithm 3 Output transformation.
Input: An intermediate hash value H
Output: A n-bit digest D

1. for j ← 0 to Nc − 1 do
2. Pj ← IGrøstl ·Hj ⊕ IGrøstl ·Kj ;
3. end for
4. for r ← 1 to Nr − 1 do
5. for j ← 0 to Nc − 1 do
6. for i← 0 to 7 do
7. ti,j ← pi,(j+σP (i)) mod Nc

;
8. end for
9. P ′j ←MGrøstl · SRD(Tj)⊕ IGrøstl ·Kr·Nc+j ;

10. end for
11. P ← P ′;
12. end for
13. for j ← 0 to Nc − 1 do
14. for i← 0 to 7 do
15. ti,j ← pi,(j+σP (i)) mod Nc

;
16. end for
17. P ′j ←MGrøstl · SRD(Tj)⊕ IGrøstl ·Hj ;
18. end for
19. D ← truncn(P ′);
20. Return D;

A. Memory Organization

Since we consider an 8-bit datapath, the memory of our
coprocessor is organized into bytes. We will show below that
ten address bits are needed to access message blocks and
intermediate data, thus allowing us to implement the register
file and the key memory by means of a single Virtex-6 block
RAM configured as two independent 18 Kb RAMs (Figure 3).

Recall that each variable of Grøstl-n is an array of 8×Nc
bytes and that the compression function of Grøstl requires six
variables: a chaining value H , a message block M , P , P ′, Q,
and Q′ (Algorithm 2). Since Nc ≤ 16 (Table II), we define six
chunks of 128 bytes in the register file (Figure 4), and address
each byte with 10 bits:

• the three most significant bits select the desired variable;
• the next four bits encode the column index j;
• the three least significant bits define the row index i.

The addresses of hi,j and pi,j are for instance given by 8j+ i
and 256 + 8j + i, respectively. The key memory stores:

• a copy of the chaining value H required to implement the
key schedule (lines 2 and 27 of Algorithm 2, and line 17
of Algorithm 3);

• the initial chaining values IV224, IV256, IV384, and IV512;
• a copy of P needed to perform the AddRoundKey step

of the last round of Q` (line 34 of Algorithm 2).
We keep the memory organization proposed in [9] for the

AES. Note that the execution of Grøstl-n does not overwrite
the round keys of the AES. As long as the AES master key
is not modified, it is therefore possible to switch between
the hash function and the block cipher with no need for the
AES KeyExpansion step. In the following, we show that our
careful organization of the data in the register file and in the
key memory allows one to design a control unit based on a
256-bit counter, a 128-bit counter, and a simple Finite State
Machine (FSM).

B. Control Unit

The control bits of the ALU, the read and write addresses
of the register file and the key memory, and the write enable
signals are computed by a control unit that mainly consists
of an address generator and an instruction memory. At first
glance, it seems that each algorithm (AES key expansion,
AES encryption, AES decryption, P`, and Q`) requires a
different addressing scheme. However, we described a way to
generate all read and write addresses of the AES and the hash
function ECHO [4] by means of a modulo-16 counter and a
modulo-256 counter in our previous work [9]. The same design
philosophy allows us to generate the addresses of Grøstl. Since
the internal state contains up to 128 bytes, we have to replace
the modulo-16 counter by a modulo-128 counter. Our control
unit generates a read address and its corresponding write
address at each clock cycle. Since our coprocessor embeds
several pipeline stages, it is mandatory to delay write addresses
and write enable signals accordingly. Furthermore, the latency
depends on the algorithm being executed (Figure 3). On Xilinx
devices, an efficient solution consists in synchronizing control
signals by means of SRL16 primitives, whose depth can be
dynamically adjusted.

The three most significant bits of read and write addresses
select a block of 128 bytes in the memory, and their generation
is quite straightforward. We refer the reader to our open source
VHDL code and to [9] for further details. Therefore, we focus
only on the generation of the seven least significant bits (i.e.
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Figure 3. General architecture of our unified 8-bit coprocessor for AES and Grøstl.

the location of a byte in the internal state) in the following.
Note that we
• interleave the computation of P` and Q` in order to avoid

data dependencies between two consecutive rounds and
• implement the ShiftBytes step by accordingly addressing

the register file.
Figures 5 and 6 summarize the address generation process of
Grøstl-256 and Grøstl-512, respectively. At each clock cycle,
a new read address is generated by adding a 7-bit offset to the
current read address. The rules summarized in Table V allow

one to compute the offset according to the permutation being
executed. They involve the following signals:

• depending on the value of `, Counter is a modulo-64
counter or a modulo-128 counter used to enumerate the
bytes of the internal state (it simply consists of the six
or seven least significant bits of the modulo-256 counter,
and defines the write address of the register file);

• Switch is a 1-bit signal equal to one if and only if we are
performing the last step of P` or Q`;

• Ω is a 1-bit flag indicating that the output transformation
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Figure 4. Memory organization.

is carried out.
Consider for instance Q1024 and assume that Counter =

(0010001)2 = 17. We compute the offset according to Table V
and obtain:

Offset = 0 ∧ 0 ∧ 1 ‖ (¬0) ∧ 0 ‖ 0 ∨ (¬0) ∨ (¬1) ‖
0 ∧ 1 ∧ (¬0) ‖ 0 ‖ 0 ‖ 1

= (0010001)2 = 17.

Since the current read address is equal to 41, the next read
address is given by (41 + Offset) mod 128 = 58. Counter is
now equal to (0010010)2 = 18 and the new offset is given
by:

Offset = 0 ∧ 1 ∧ 0 ‖ (¬0) ∧ 1 ‖ 0 ∨ (¬1) ∨ (¬0) ‖
1 ∧ 0 ∧ (¬0) ‖ 0 ‖ 0 ‖ 1

= (0110001)2 = 49.

The computation of Offset4 involves seven inputs: Ω, Switch,
the three least significant bits of Counter, and two bits
to define the permutation (P512, Q512, P512 or Q512). On
modern Xilinx devices, it is implemented by means of two
6-input Look-Up Tables (LUTs) and a dedicated multiplexer
(F7AMUX or F7BMUX). Since Offset5 and Offset6 share the
same five inputs, they are generated thanks to a LUT with
two independent outputs (LUT6 2 primitive). A fourth LUT
allows us to compute Offset3. Thus, we defined an extremely
lightweight address generation process for Grøstl. It can easily
be combined with the addressing scheme of the AES described
in [9].

The output transformation requires special attention: since
it involves only P`, five idle clock cycles between two consec-
utive rounds are mandatory to avoid memory collisions. Let us

consider the ith round of Grøstl-256 to describe the problem
(Figure 7). The control unit generates the address of p7,6 (read
operation) and p7,7 (write operation) at time t. However, our
coprocessor includes D = 12 pipeline stages and we write the
new value of p7,7 in the register file at time t + D. In order
to update the first column of the internal state P , we have to
read p0,0, p1,1, p2,2, p3,3, p4,4, p5,5, p6,6, and p7,7. The latter
is available on port A of the register file at time t + D + 1,
which means that p0,0 can be read at time t+D− 6 = t+ 6.
It is therefore necessary to introduce five idle clock cycles
between two rounds.

Table VI summarizes the number of clock cycles required
for the AES and Grøstl. In the case of the AES, we obtain
exactly the same results as in [9]. Thanks to our careful
organization of the memory, we achieve a perfectly tight
scheduling (no idle cycle) for the compression function of
Grøstl.

Table VI
NUMBER OF CLOCK CYCLES REQUIRED FOR THE AES AND GRØSTL.

Algorithm # cycles

AES-128
Key expansion 365
Encryption/decryption 231

AES-192
Key expansion 421
Encryption/decryption 273

AES-256
Key expansion 476
Encryption/decryption 315

Grøstl-256
Compression function 1411
Output transformation 757

Grøstl-512
Compression function 3843
Output transformation 1993
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Table V
COMPUTATION OF THE OFFSET ACCORDING TO THE PERMUTATION BEING EXECUTED.

P512 P1024 Q512 Q1024

Offset6 0 0 0 Counter2 ∧ Counter1 ∧ Counter0
Offset5 0 Counter2 ∧ Counter1 0 (¬Counter2) ∧ Counter1
Offset4 (¬Ω) ∧ Switch Counter2 ∨ ¬Counter1 ∨ (¬Counter0)
Offset3 Ω ∨ (¬Switch) Counter1 ∧ Counter0 ∧ (¬Switch)

Offset2:0 0 ‖ 0 ‖ 1

C. Arithmetic and Logic Unit

The SubBytes and InvSubBytes steps are often considered
as the most critical part of the AES, and several architec-
tures for SRD and S−1RD have already been described in the
open literature (see for instance [12] for a comprehensive
bibliography). On Xilinx Virtex-6 FPGAs, the best design
strategy consists in implementing the AES S-boxes as 8-
input tables [10]. Two control bits ctrl1:0 allow us to perform
SubBytes, InvSubBytes, or to bypass this stage when g is
the identity function.

In the case of the AES, the first matrix multiplication of
Equation (1) can involve any of the four circulant matrices
defined in Section II. Grøstl requires only IGrøstl and MGrøstl.
Let us define the control signal AES/Grøstl whose role is
to identify the algorithm being executed. Together with two
control bits ctrl3:2, this signal allows us to select matrix A.
The choice of matrix B turns out to be simpler and requires
a single extra control bit ctrl6 (Figure 3).

Since we emphasize reducing the usage of FPGA resources,
we adopt the multiply-and-accumulate approach proposed by
Hämäläinen et al. [14], and need Nl clock cycles to multiply
one column of the state or the round key array by a circulant
matrix (Figures 8 and 9). We compute a first partial product
and store the result in registers r0 to rNl

. Then, at each clock
cycle, the intermediate result is rotated and accumulated with
a new partial product. This process involves a Shift control
signal to distinguish between the first step and the subsequent
ones. Such a signal can be generated by computing the bitwise
OR of the bits of a modulo-Nl counter. Let us consider the
three bits c2:0 of a modulo 8 counter. Since Nl = 4 and Nl = 8
for AES and Grøstl, respectively, we define

Shift←

{
c1 ∨ c0 if AES/Grøstl = 0,
c2 ∨ c1 ∨ c0 if AES/Grøstl = 1

= (c2 ∧ AES/Grøstl) ∨ c1 ∨ c0.
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Note that the rotation mechanism depends on the algorithm
being executed: the AES involves registers r0, r1, r2, and r3,
whereas Grøstl requires eight registers to store intermediate
results. Therefore, the feedback mechanism is implemented by
means of a multiplexer controlled by AES/Grøstl. We describe
in Appendix how to optimize the MixColumns and MixBytes
steps on the latest Xilinx FPGAs.

Figure 10 describes the component we designed to per-
form the AddRoundKey and KeyExpansion steps. Since our
matrix multiplication units output Nl bytes, we perform Nl
additions over F28 in parallel and store the result in a shift
register. Then, we write data byte by byte in the register
file, and a modulo-Nl counter controls the process. Therefore,
it suffices to delay our Shift signal by a total of Nl clock
cycles, which is the latency of a matrix-vector multiplication.
Additional hardware resources allow us to deal with the round
constant RC involved in the key expansion of the AES (see [9]
for details).

The last operation we have to consider is the AddRound-
Key step of Grøstl. In order to compute p′i,j (Algorithm 2,
line 12), we generate ki,r·Nc+j on-the-fly. Recall that:
• i is a 3-bit row index;
• j is a 4-bit column index;
• r is a 4-bit round index.

The indices i and j are given by the control signal a26:20 =
j ‖ i = 8j+ i (Figure 3). According to Algorithm 1, we have:

ki,r·Nc+j ←

{
j ‖ r when i = 0,
00 otherwise.

Since i = a22:20 and j = a26:23, we can rewrite the above
equation as follows:

ki,r·Nc+j ←

{
a26:23 ‖ r when a20 ∨ a21 ∨ a22 = 0,
00 otherwise,

and compute ki,r·Nc+j by means of a 3-input NOR gate and
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eight 2-input AND gates. A multiplexer controlled by ctrl5:4
allows us to inject ki,r·Nc+j , ¬ki,r·Nc+j , ki,j ⊕ hi,j (first key
injection of P`), or a variable stored in the key memory.

V. RESULTS AND COMPARISONS

We captured our architecture in the VHDL language and
prototyped our coprocessor on several Xilinx FPGAs with
average speedgrade. Table VII summarizes our place-and-
route results measured with ISE 14.2. In order to evaluate
the hardware overhead introduced by the AES, we designed
a second coprocessor that implements only Grøstl-256 and
Grostl-512 (Table VIII). It is possible to reduce the number
of slices by implementing a subset of the functionalities (e.g.
a single level of security, AES without key expansion, etc.).

Our coprocessor requires a similar number of slices and
achieves the same clock frequency as the architecture we de-
signed for ECHO and AES [9]. However, the implementation
of Grøstl on our architecture involves a smaller number of
instructions and the throughput turns out to be slightly higher
than the one of ECHO. Therefore, two conclusions we drew
in our previous work can be transposed here:
• Helion Technology [26] is selling a tiny AES core that

implements encryption, decryption, and key expansion at

all levels of security. The coprocessor occupies only 88
Virtex-6 slices and achieves a throughput of 83 Mbps
in the case of AES-128. Our unified coprocessor is
almost twice as big, but we achieve a better encryp-
tion/decryption rate and improve the area–time product
compared to the tiny AES core designed by Helion
Technology. Thus, combining the hash function Grøstl
with the AES does not impact the overall performance of
the latter.

• The unified core for SHA-1, SHA-224/256, and SHA-
384/512 designed by Helion Technology [25] turns out
to be larger and slightly slower than our coprocessor.
Furthermore, the Helion commercial core must be sup-
plemented with an AES core to provide the same func-
tionalities as our architecture. Assuming that the security
of Grøstl is at least as good as the one of SHA-2, Grøstl
is a clear winner for resource-constrained devices.

Järvinen [15] proposed the first unified coprocessor for
AES-128 (encryption and key expansion) and Grøstl-256. Re-
cently, Rogawski & Gaj [23] designed a parallel coprocessor
for Grøstl-based HMAC and AES in the counter mode. Both
architectures are optimized for high-speed implementations,
and it is therefore difficult to make a comparison with our
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Table VII
PLACE-AND-ROUTE RESULTS FOR OUR UNIFIED COPROCESSOR ON VIRTEX-6, ARTIX-7, KINTEX-7, AND VIRTEX-7 FPGAS. THE THROUGHPUT OF

GRØSTL IS COMPUTED FOR A ONE-BLOCK MESSAGE.

FPGA
Area Frequency Throughput [Mbits/s]

[slices] [MHz] AES-128 AES-192 AES-256 Grøstl-256 Grøstl-512
Virtex-6 (xc6vlx75t-2) 169 393 217 184 159 92 69
Artix-7 (xc7a100t-2) 188 265 146 124 107 62 46
Kintex-7 (xc7k70t-2) 172 438 242 205 177 103 76
Virtex-7 (7vx330t-2) 185 415 229 194 168 98 72

unified coprocessor.
We report in Table IX the latest FPGA implementation

results of the five SHA-3 finalists (see for instance [20], [21]
for a survey of parallel architectures). We consider here the
least favorable case for Grøstl, in which a single block is
processed. The throughput of Grøstl-256 is for instance given
by:

throughput =
512 · #blocks

(1411 · #blocks + 757) · T
,

where T denotes the clock period. When the number of blocks
increases, one can neglect the cost of the output transformation
and the throughput tends asymptotically to 512/(1411 · T ).

Most of the architectures described in the open literature
focus on a single level of security. In this context, BLAKE [2]
is obviously the best choice for low-area implementations on
FPGA. However, as soon as a circuit must support several
levels of security, Grøstl will offer the most compact solution.

VI. CONCLUSION

The design philosophy we proposed in [9] allowed us
to develop a low-area coprocessor for the AES (encryption,
decryption, and key expansion) and the cryptographic hash
function Grøstl at all levels of security. Our architecture
is built around an 8-bit datapath and the ALU performs a



Table VIII
PLACE-AND-ROUTE RESULTS FOR OUR GRØSTL COPROCESSOR ON VIRTEX-6, ARTIX-7, KINTEX-7, AND VIRTEX-7 FPGAS. THE THROUGHPUT IS

COMPUTED FOR A ONE-BLOCK MESSAGE.

FPGA
Area Frequency Throughput [Mbits/s]

[slices] [MHz] Grøstl-256 Grøstl-512
Virtex-6 (xc6vlx75t-2) 102 413 97 72
Artix-7 (xc7a100t-2) 131 331 78 58
Kintex-7 (xc7k70t-2) 111 450 106 78
Virtex-7 (7vx330t-2) 108 480 113 84

single instruction that allows for implementing both algo-
rithms. Despite the various addressing schemes required for
the different steps of Grøstl and the AES, our control unit
remains compact: all addresses are generated by means of a
modulo-128 counter and a modulo-256 counter. Thanks to an
alternative description of Grøstl and a meticulous organization
of the memory, we manage to implement the compression
function f (Algorithm 2) without any pipeline stall. The key
element of our approach is to take advantage of the parallelism
of Grøstl to
• deeply pipeline the ALU to achieve a high clock fre-

quency;
• avoid data dependencies by interleaving independent

tasks.
At the cost of 67 Virtex-6 slices, one can add the AES

functionalities to a Grøstl coprocessor. Despite of the dif-
ferences between the two algorithms (size of the internal
state, coefficients of the circulant matrices, key schedule,
etc.), resource sharing is possible. Assuming that the security
guarantees of Grøstl are at least as good as the ones of the
other SHA-3 finalists, Grøstl is the best candidate for low-area
cryptographic coprocessors.

Our architecture is mainly designed for embedded systems.
Thus, it would be interesting to conduct side-channel and fault
injection attacks in future work. Since the ALU executes the
same instruction at each clock cycle, our design strategy could
offer a protection against some attacks.
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APPENDIX

Figure 11 describes how we take advantage of the LUT6 2
primitive in order to optimize MixColumns and MixBytes
steps on the latest Xilinx FPGAs. The first step of a multipli-
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Figure 11. Implementation of MixColumns and MixBytes on the latest Xilinx FPGAs.

cation by MGrøstl is for instanced performed as follows:

r0 ← 09 · a0,
r1 ← 0C · a0 + 01 · a0 = 0D · a0,
r2 ← 09 · a0 + 02 · a0 = 0B · a0,
r3 ← 0C · a0 + 02 · a0 = 0E · a0,
r4 ← 04 · a0,
r5 ← 03 · a0,
r6 ← 02 · a0,
r7 ← 02 · a0.


