
Enhanced Chosen-Ciphertext Security and Applications

Dana Dachman-Soled1 Georg Fuchsbauer2 Payman Mohassel3

Adam O’Neill4

Abstract

We introduce and study a new notion of enhanced chosen-ciphertext security (ECCA) for public-
key encryption. Loosely speaking, in ECCA, when the decryption oracle returns a plaintext to the
adversary, it also provides coins under which the returned plaintext encrypts to the queried cipher-
text (when they exist). Our results mainly concern the case where such coins can also be recovered
efficiently. We provide constructions of ECCA encryption from adaptive trapdoor functions as defined
by Kiltz et al. (EUROCRYPT 2010), resulting in ECCA encryption from standard number-theoretic
assumptions. We then give two applications of ECCA encryption: (1) We use it as a unifying con-
cept in showing equivalence of adaptive trapdoor functions and tag-based adaptive trapdoor functions
(namely, we show that both primitives are equivalent to ECCA encryption), resolving a main open
question of Kiltz et al. (2) We show that ECCA encryption can be used to securely realize an approach
to public-key encryption with non-interactive opening (PKENO) suggested by Damg̊ard and Thorbek
(EUROCRYPT 2007), resulting in new and practical PKENO schemes quite different from those in
prior work. We believe our results indicate that ECCA is an intriguing notion that may prove useful
in further work.

1Department of Computer Science, Microsoft Research New England, 1 Memorial Drive, Cambridge, MA 02142. Email:
dadachma@microsoft.com. URL: http://cs.columbia.edu/dglasner.

2 Department of Computer Science, University of Bristol, MVB, Woodland Road, Bristol BS8 1UB, United Kingdom.
Email: georg@cs.bris.ac.uk. URL: http://www.di.ens.fr/~fuchsbau.

3 Department of Computer Science, University of Calgary, 2500 University Dr. NW, Calgary, AB. Email:
pmohasse@cpsc.ucalgary.ca. URL: http://pages.cpsc.ucalgary.ca/~pmohasse.

4 Department of Computer Science, Boston University, 111 Cummington St., Boston, MA 02215. Email:
amoneill@bu.edu. URL: http://cs-people.bu.edu/amoneill. Supported in part by NSF grants 0546614, 0831281,
1012910, and 1012798.

Contents

1 Introduction 1
1.1 ECCA-Secure Constructions and Relation to Adaptive Trapdoor Functions 1
1.2 Applications to Public-Key Encryption with Non-Interactive Opening 2
1.3 Related Work . 4

2 Preliminaries 4

3 Enhanced Chosen-Ciphertext Security 5

4 Instantiations 7
4.1 Adaptivity for Trapdoor Functions . 7
4.2 ECCA Security from Adaptive Trapdoor Functions . 7

4.2.1 Enhanced DCCA Security . 8
4.2.2 EDCCA Security from ATDFs . 8
4.2.3 From EDCCA to ECCA Security . 9

4.3 ECCA Security from Tag-Based Adaptive Trapdoor Functions 14

5 Application to Adaptive Trapdoor Functions 15
5.1 From ECCA Security to Adaptivity . 16
5.2 From ECCA Security to Tag-Based Adaptivity . 16

6 Application to PKE with Non-Interactive Opening 17
6.1 PKENO-Compatible ECCA-Secure Encryption . 18
6.2 A Generic Construction using Non-Interactive Zero-Knowledge 20
6.3 Efficient CCA-secure PKENO-Compatible Tag-Based PKE using Groth-Sahai 21
6.4 PKENO-Compatible ECCA Encryption from Range-Verifiable ATDFs 22

A Standard Primitives 24

B From ATDF to ECCA via KEM/DEM 25

C From PKENO-Compatible ECCA tag-based PKE to PKENO-Com-patible ECCA
PKE 27

D Achieving Strong Proof Soundness 28

i

1 Introduction

This paper studies a new notion of security for public-key encryption we call enhanced chosen-ciphertext
security (ECCA). Recall that in the standard formulation of CCA security [34], the adversary, given a
public-key pk, must guess which of the two possible messages its challenge ciphertext c encrypts, while
being allowed to query a decryption oracle on any ciphertext c′ different from c. Very informally, our
“enhancement” is that the decryption oracle, when queried on a ciphertext c′, returns not only a decrypted
plaintext m′ but also coins r′ such that m′ encrypts to c′ under pk using coins r′ (in the case that the
ciphertext is in the range of the encryption algorithm). ECCA is largely motivated by the related concept
of randomness-recovering encryption (as highlighted in e.g. [33]), meaning the decryption procedure also
recovers such r′ efficiently. Interestingly, however, not every randomness-recovering encryption scheme
is ECCA secure, because randomness-recovery refers to the behavior of an honest sender whereas an
ECCA adversary can make malicious decryption queries. (In fact, in Section 3 we show how to design a
randomness-recovering CCA PKE scheme that is provably insecure against an ECCA adversary.1)

Besides being interesting in its own right, we find that ECCA plays a fundamental role in contexts
where randomness-recovering encryption is important, in particular the contexts of adaptive trapdoor
functions [28] and public-key encryption with non-interactive opening [13]. (We also believe ECCA will
find future applications given the importance of randomness-recovering encryption.)

Below we describe our results concerning ECCA in more detail; for a pictorial summary, see Figure 1.

1.1 ECCA-Secure Constructions and Relation to Adaptive Trapdoor Functions

Background. A foundational line of work in cryptography examines the relations between public-key
encryption (PKE) and trapdoor functions (TDFs). A specific question studied in recent works [33, 35, 28]
is: What is the minimal security assumption on a trapdoor function needed to obtain a construction of
CCA-secure PKE? Currently, the minimal assumption (in terms of black-box implications) is that of
adaptivity [28]. Intuitively, adaptivity is a form of CCA security for TDFs, asking that the TDF remain
one-way even when the adversary may query an inversion oracle on points other than its challenge.2

Results. We find that the notion of ECCA security for encryption is very natural to consider in this
context. Indeed, while [28] showed that ATDFs imply CCA secure encryption, we show that ATDFs
are equivalent to randomness-recovering ECCA-secure encryption. This helps us better understand the
power of ATDFs and gives us constructions of ECCA secure encryption from a variety of standard
number-theoretic assumptions as per [28]. We furthermore show that “tag-based” ATDFs as defined
in [28] are also equivalent to randomness-recovering ECCA-secure encryption, a corollary being ATDFs
and tag-based ATDFs are themselves equivalent, which resolves a foundational question left open by [28].
We next discuss how we obtain these results in more detail.

Technical approach. It is easy to see that from randomness-recovering ECCA-secure encryption we
can get an ATDF, simply by viewing the input to the trapdoor function as consisting of the message and
the coins for the encryption scheme. The other direction is more challenging. To see why, recall that [28]
constructs CCA-secure encryption from a ATDFs in the following manner: first, they construct, a one-
bit CCA-secure encryption scheme and then apply a transform of Myers and shelat [31] from one-bit to
many-bit CCA-secure encryption. But the one-bit scheme of [28] — which works by re-sampling a domain
point x until the hardcore bit of x equals the message — is not randomness-recovering, since decryption
does not recover the “thrown away” x’s.3 Furthermore, even if it was, the construction of many-bit

1Extending this idea into a black-box separation between the two notions is an interesting open question.
2In subsequent work, Wee [36] showed that a weaker notion of adaptivity for trapdoor relations suffices; however, as this

is not an assumption on trapdoor functions it does not yield randomness-recovering encryption and won’t be useful for our
results.

3It is randomness-recovering in a weaker sense that the decryption algorithm can re-sample coins consistent with the
message, but this will in particular not be sufficient for showing equivalence of adaptive trapdoor functions and the tag-

1

CCA-secure encryption in [31] does not seem to preserve either randomness-recovery or ECCA-security
of the one-bit scheme. (In particular, the construction of [31] uses an “inner,” “q-bounded” non-malleable
encryption scheme, and we do not know how to construct such a scheme that has analogous “enhanced”
security.)

We solve both these problems at once via a novel application of detectable CCA (DCCA) security,
introduced very recently by Hohenberger et al. [26]. Informally, DCCA is defined relative to a “detecting”
function F that determines whether two ciphertexts are related; in the DCCA experiment, the adversary
is not allowed to ask for decryptions of ciphertexts related to the challenge ciphertext according to F . The
work of [26] shows how to construct a CCA-secure encryption from a DCCA-secure one. In particular,
bit-by-bit encryption using a 1-bit CCA secure encryption scheme is easily seen to be DCCA secure, is
the main application considered in [26]. (It thus encompasses the earlier work of [31] and builds on the
techniques of the latter.) Our novelty is that we construct a DCCA secure scheme from ATDFs that
also uses bit-by-bit encryption, but where the underlying one-bit encryption scheme is not CCA secure—
namely, we use a “näıve” one-bit scheme from ATDFs that simply XOR’s the message bit with a hardcore
bit of the ATDF. The benefit is that this one-bit scheme is randomness recovering. We show that in
fact the resulting bit-by-bit scheme now satisfies a notion of DCCA with analogous “enhanced” security.
Then, we show that (in contrast to [31]) the construction of CCA from DCCA in [26] preserves both this
enhanced security as well as randomness recovery — that is, if we start with a randomness-recovering,
enhanced DCCA secure scheme, we end up with a randomness-recovering ECCA secure one. We thus get
a randomness-recovering ECCA secure scheme from ATDFs as desired. We note that a by-product of our
results is to show that, complementing [31], one-bit encryption is also complete for randomness-recovering
CCA and ECCA.

We note that it is much easier to construct a randomness-recovering ECCA-secure scheme from a tag-
based ATDFs; in fact, we show that the construction of CCA-secure encryption from tag-based ATDFs
given in [28], which uses the BCHK transform [7], already works. Indeed, the apparent extra power of
tag-based ATDFs makes it surprising that they are equivalent to (non tag-based) ATDFs.

We also point out that part of what makes the above construction challenging is that the ATDF only
has a single hardcore bit. Given a linear number of hardcore bits (see [28] for some instantiations), one
can use the KEM/DEM paradigm to obtain more efficient constructions of ECCA PKE from ATDFs.
Surprisingly, the standard assumption that the DEM component is CCA-secure (or ECCA) is no longer
sufficient, but we show that it is enough to assume that the DEM is a one-time authenticated encryption
(See Appendix B).

1.2 Applications to Public-Key Encryption with Non-Interactive Opening

Background. Public-key encryption with non-interactive opening (PKENO), introduced by Damg̊ard
an Thorbeck [14] and studied in detail by [13, 17, 18], allows a receiver to non-interactively prove to
anyone that a ciphertext c decrypts to a messagem. As discussed by the above-mentioned works, PKENO
has applications to multiparty computation (e.g., auctions and elections), secure message transmission,
group signatures, and more. But despite numerous applications, such schemes have been difficult to
realize. Secure constructions of PKENO currently exist from identity-based encryption [13] and robust
non-interactive threshold encryption [18].

An alternative approach. We show that ECCA encryption can be used to securely realize an simple
and natural approach to PKENO originally suggested by [14] but not made to work in the literature.
The basic idea is to use a randomness-recovering encryption scheme and have the receiver provide the
recovered coins as the proof. However, several issues need to be addressed for this approach to work. One
problem already discussed in [18, Section 4.1] is that there must also be a way for the receiver to prove
the claimed behavior of the decryption algorithm on ciphertexts that might not even be an output of the

based variant.

2

encryption algorithm, and for which no underlying coins necessarily exist. (Note that such ciphertexts
may or may not decrypt to ⊥ in general.) Moreover, we point out that the encryption scheme must
be ECCA secure (which was not even defined in prior work); standard chosen-ciphertext security is not
enough here, because here the adversary in the corresponding PKENO security game has the ability to
see random coins underlying ciphertexts of its choosing. We now describe our results in more detail.

PKENO-compatible ECCA encryption. First, we formalize a notion of PKENO-compatible ECCA-
secure encryption, for which we can overcome the above problems. There are two requirements for such
a scheme. The first is that it is what we call partial-randomness recovering. This means that there
is a partial-randomness recovery algorithm that, informally, given the secret key does not necessarily
recover all random coins underlying a ciphertext, but just enough to check that the ciphertext is an
encryption of a claimed message. However, this should also be true for ciphertexts outside the range of
the encryption algorithm (but which do not decrypt to ⊥).4 The second requirement is that it has what
we call ciphertext verifiability, meaning one can check without the secret key (but possibly with the help
of some partial random coins) whether the decryption of a ciphertext is ⊥. Note that ECCA security of
such schemes is defined with respect to the partial-randomness recovery algorithm. See Section 6.1 for
the formal definitions, which are rather delicate.

Given such a PKENO-compatible ECCA scheme, we can safely use the message and the partial
randomness as the non-interactive opening of the ciphertext.

PKENO-compatible ECCA encryption from NIZK. We next show a generic construction of
PKENO-compatible ECCA secure encryption from any (partial) randomness recovering ECCA encryp-
tion scheme, namely by adding a non-interactive zero-knowledge (NIZK) proof to a ciphertext that there
exist some underlying message and random coins. (Indeed, the idea of adding such a proof of well-
formedness to achieve PKENO] comes from [14, 18], although not in connection with ECCA.) We show
that in order for the proof to go through, however, the NIZK needs to be simulation-sound.

We also show that the same idea works to construct an analogous notion of PKENO-compatible ECCA
tag-based encryption scheme from a (partial) randomness recovering ECCA-secure tag-based encryption
scheme. One can then efficiently transform a PKENO-compatible tag-based scheme into a standard
PKENO using either of the two transforms from [7]. (Interestingly, for the more-efficient transform based
on symmetric-key primitives to work, we crucially exploit that ciphertext verifiability as defined above
can use partial random coins; the scheme is not “publicly verifiable.”) As explained next, our most
efficient instantiations follow the tag-based approach.

Efficient schemes from tag-based ATDFs. While it is possible to construct NIZKs efficiently in
the random-oracle model (which we prefer to avoid), the only known efficient instantiation of NIZKs
without random oracles to date are Groth-Sahai (GS) proofs [22], which allow to prove a certain class of
statements over bilinear groups. (Moreover, as shown in [30], GS proofs can be made simulation-sound
at a moderate price.) In order to take advantage of this instantiation we need a scheme for which the
statement we need to prove falls in this class. We show that this is the case for a certain tag-based
encryption scheme from the decision-linear assumption (DLIN). This scheme is built from a tag-based
ATDF, which is itself built by instantiating a construction of [28] using the DLIN-based lossy and all-but-
one TDFs of Freeman et al. [16]. A novelty of our scheme is that the statement we need to prove is that
a range point of the tag-based ATDF has a pre-image which is a fundamentally weaker statement than
one guaranteeing well-formedness of the ciphertext (as used in our generic construction), but (perhaps
surprisingly) still suffices in the PKENO construction. See Section 6.2 for details.

Although our DLIN-based instantiation avoids using generic NIZKs or random oracles, it is probably
still not efficient enough for practical use. To obtain such a scheme we consider tag-based ATDFs with an
additional property we call range verifiability. Intuitively, range verifiability allows us to check the same

4For example, consider a randomness-recovering scheme which always outputs ciphertexts whose last bit is “0,” but whose
decryption algorithm ignores this last bit. Then clearly we can still recover the randomness underlying ciphertexts whose
last bit is “1” despite the fact that such ciphertexts are outside the range of the encryption algorithm.

3

PKENO

+ ciphertext verifiability

ATDF RR-ECCA PKE TB-ATDF

CCA PKE

?

Figure 1: Relations between various primitives studied in this paper. Dashed implications are trivial. Im-
plications with question mark are unknown. “RR-CCA PKE” is randomness-recovering chosen-ciphertext
secure PKE. “ATDF” is adaptive trapdoor function. “TB-ATDF” is tag-based adaptive trapdoor func-
tion. “PKENO” is public-key encryption with non-interactive opening.

property that the Groth-Sahai statement in our above construction is intended to prove, hence eliminating
the need for any NIZK proof at all. We show that the tag-based ATDF constructed in [28] from the
instance-independent RSA assumption (II-RSA) has this property. Although the assumption is quite
strong, the resulting PKENO scheme is extremely practical: it requires only one 512-bit exponentiation
to encrypt, whereas the previous DLIN-based scheme of [18] requires several (though it is based on a more
standard assumption). We note that the resulting scheme (assuming we use the more-efficient version of
the BCHK [7] transform) is also fully randomness recovering, showing that it is in fact possible to achieve
fully (rather than partial) randomness recovering PKENO-compatible ECCA encryption.

1.3 Related Work

ECCA is similar in spirit to coin-revealing selective opening attack (SOA-C) [8, 15, 2, 6]. In the latter
setting, there are say n ciphertexts encrypting related (but unknown) messages under independent random
coins, and the adversary requests the plaintexts and random coins corresponding to some subset of them;
the question is whether the “unopened” ciphertexts remain secure. However, it seems to us that SOA-C
is neither implied by, nor implies, ECCA. On the one hand, in ECCA the adversary does not “open”
ciphertexts whose messages are sampled jointly with the challenge message, but, on the other hand, in
SOA-C the adversary does not “open” maliciously-formed ciphertexts (this is true even when considering
SOA-C in context of CCA security as in [23, 24]). It is an interesting question whether ECCA has any
applications in the domain of SOA-C.

An analogue of ECCA has been previously defined for commitment schemes by Canetti et al. [10],
which they call CCA-secure commitments, in the context of secure multiparty computation. These are
commitment schemes that remain secure when the adversary has access to an unbounded decommitment
oracle that it can call on commitments other than the challenge. They are interested in such schemes that
are interactive but in the plain model, meaning there are no public keys. Thus, our setting seems incom-
parable (as we disallow interaction but allow public keys). However, we view their work as supporting
the claim that ECCA is a natural notion of security to consider for encryption.

Other variants of CCA-security for encryption considered before include replayable CCA security [9],
constrained CCA security [25], and detectable CCA security [26]. Notably, these are all relaxations of
CCA security, whereas we consider a strengthening. Another strengthening of CCA security previously
considered is plaintext awareness [5, 1, 4].

2 Preliminaries

Notation and conventions. If A is an algorithm then y ← A(x1, . . . , xn; r) means we run A on inputs

4

x1, . . . , xn and coins r and denote the output by y. By y←$A(x1, . . . , xn) we denote the operation of
picking r at random and letting y ← A(x1, . . . , xn; r). Unless otherwise indicated, an algorithm may be
randomized. “PPT” stands for “probabilistic polynomial time” and “PT” stands for “polynomial time.”
The security parameter is denoted k ∈ N. If we say that an algorithm is efficient we mean that it is PPT
(in the security parameter). All algorithms we consider are efficient unless indicated otherwise.

Standard primitives. We recall the definitions of standard primitives such as trapdoor functions and
public-key encryption in Appendix A.

3 Enhanced Chosen-Ciphertext Security

Randomness recovery. We start with a definition of randomness recovery for public-key encryp-
tion. For any public-key encryption scheme PKE = (Kg,Enc,Dec) we specify an additional randomness
recovery algorithm that takes a secret key sk and ciphertext c to return coins r; that is, we write
PKE = (Kg,Enc,Dec,Rec). To our knowledge, this notion has been discussed informally in the literature
(e.g. in [33]) but our formalization is novel. Suppose Enc draws its coins from Coins. We require that
for all messages m ∈ MsgSp(1k)

Pr[Enc(pk,m; r′) 6= c : (pk, sk)←$Kg ; r←$Coins(1k) ; c← Enc(pk,m; r) ; r′ ← Rec(sk, c)]

is negligible. Note that we do not require r = r′; that is, the randomness recovery algorithm need not
return the same coins used for encryption; indeed, it may not be possible, information theoretically, to
determine r from sk and c. We also do not require Rec to be efficient. This means that having such
Rec is not an additional assumption; we can always assume Rec is the canonical, inefficient randomness
recovery algorithm that exhaustively searches Coins(1k) until it finds such r′. But in the special case
that Rec is PT we say that PKE is randomness recovering. If in addition the forgoing condition on Rec

holds for r = r′ we say that PKE is uniquely randomness recovering. In the general definition that follows
randomness recovering PKE is an important special case, but it is not assumed by the definition.

In the case of tag-based public-key encryption, Rec also takes a tag as input. In this case we require
that for all m ∈ MsgSp(1k) and t ∈ TagSp(1k)

Pr[Enc(pk, t,m; r′) 6= c : (pk, sk)←$Kg ; r←$Coins(1k) ; c← Enc(pk, t,m; r) ; r′ ← Rec(sk, t, c)]

is negligible.

ECCA definition. We are now ready to state our new notion of enhanced chosen-ciphertext security.
Let PKE = (Kg,Enc,Dec) be a public-key encryption scheme. We associate to PKE and an adversary
A = (A1, A2) an enhanced chosen-ciphertext attack experiment,

Experiment Expind-ecca
PKE,A (k)

b←$ {0, 1} ; (pk, sk)←$Kg(1k)

(m0,m1, St)←$A
Dec

∗(sk,·)
1 (pk)

c←$Enc(pk,mb)

d←$A
Dec

∗(sk,·)
2 (pk, c, St)

If d = b then return 1 else return 0

Oracle Dec∗(sk, c)
m← Dec(sk, c)
r′ ← Rec(sk, c)
Return (m, r′)

Above we require that the output of A1 satisfies |m0| = |m1| and that A2 does not query c to its oracle.
Define the ind-ecca advantage of A against PKE as

Advind-ecca
PKE,A (k) = 2 · Pr

[

Expind-ecca
PKE,A (k) outputs 1

]

− 1 .

We say that PKE is enhanced chosen-ciphertext secure (ECCA-secure) if Advind-ecca
PKE,A (·) is negligible for

every efficient A.
Note that when PKE is randomness recovering, the ECCA experiment is efficient. Additionally, the

case of randomness-recovering ECCA public-key encryption will be important in the applications we
consider.

5

In general, however, one can still ask whether a scheme meets the notion of ECCA even when it is
not randomness recovering. Indeed, Canetti et al. [10] did so in the context of commitments. In this
case, it may still be possible to simulate the ECCA experiment efficiently since in the proof of security we
are additionally given the code of the adversary A (and so, for example, the randomness for encryption
might be efficiently extractable from the code of A using non-black-box techniques). However, we do not
currently have any constructions of ECCA without randomness recoverability or applications of such a
scheme.

Is ECCA Stronger than CCA? A natural question to ask is whether ECCA security is a strictly
stronger requirement than CCA security or not. In fact, one can ask the same question when the CCA
scheme is also randomness-recovering. We answer this question by describing a randomness recovering
CCA encryption scheme that provably does not satisfy ECCA security. We note that our example works
in the random oracle model. It would be interesting to provide a similar construction in the standard
model. It is also an interesting open question to extend these ideas into a full-fledged separation between
the two notions of CCA and ECCA security.

Consider a randomness-recovering CCA-secure scheme PKE = (Kg,Enc,Dec), and let H : {0, 1}k →
{0, 1}|sk| be a hash function modeled as a random oracle. We transform PKE to a new scheme PKEnew =
(Kgnew,Encnew,Decnew) thats is not ECCA secure. The idea is to encrypt the sk using the randomness
of a ciphertext c and to embed c and the encryption of sk in the public key of the PKE+new. Querying c
to the decryption oracle in the ECCA game would allow the attacker to recover sk and break the scheme.
the PKEnew is constructed as follows:

Alg Kgnew(1
k)

(pk, sk)←$Kg(1k)
r←$ {0, 1}k

Return ((pk,Enc(pk, 0; r),H(r) ⊕ sk), sk)

Alg Encnew(pk,m)
Return Enc(pk,m)

Alg Decnew(sk, c)
Return Dec(sk, c)

Claim 3.1 PKEnew is a randomness-recovering CCA encryption schemes but is not ECCA secure.

Sketch. It is easy to see that PKEnew is not ECCA secure. In particular, consider the following simple
attack: the public key consists of (pk,Enc(pk, 0; r),H(r) ⊕ sk. Adversary makes a decryption query for
Enc(pk, 0; r) in the ECCA security game and receives (0, r) back. He then computes H(r), and XORs
with the third component of the public key to obtain sk.

We now need to show that PKEnew remains CCA secure. But this argument easily follows from the
CCA security of the PKE and the fact that given a ciphertext Enc(pk, 0; r),H(r) is uniformly random if
H is a random oracle. The latter is the case since the randomness used in encryption needs to remain
unpredictable given the ciphertext for the scheme to be secure. We omit the standard hybrid argument
that formalizes this intuition.

Tag-based definition. Let TB-PKE = (Kg,Enc,Dec) be a tag-based public-key encryption scheme
with tag-space TagSp. We associate to TB-PKE and an adversary A = (A1, A2, A3) a tag-based enhanced
chosen-ciphertext attack experiment,

Experiment Expind-tb-ecca
TB-PKE,A (k)

b←$ {0, 1} ; (pk, sk)←$Kg(1k)
t←$A1(1

k)

(m0,m1, St)←$A
Dec

∗(sk,·,·)
2 (pk, t)

c←$Enc(pk, t,mb)

d←$A
Dec

∗(sk,·,·)
3 (pk, t, c, St)

If d = b then return 1 else return 0

Oracle Dec∗(sk, t, c)
m← Dec(sk, t, c)
r′ ← Rec(sk, t, c)
Return (m, r′)

Above we require that the output of A2 satisfies |m0| = |m1| and that A3 does not make a query of the
form Dec∗(sk, t, ·) to its oracle. Define the ind-tb-ecca advantage of A against PKE as

Advind-tb-ecca
PKE,A (k) = 2 · Pr

[

Expind-tb-ecca
PKE,A (k) outputs 1

]

− 1 .

6

We say that TB-PKE is tag-based enhanced chosen-ciphertext secure (TB-ECCA-secure) ifAdvind-tb-ecca
PKE,A (·)

is negligible for every efficient A.

4 Instantiations

We now detail several constructions of ECCA secure encryption. They are based on notions of adaptivity
for trapdoor functions introduced in [28] so accordingly we recall those first.

4.1 Adaptivity for Trapdoor Functions

Adaptive trapdoor functions. Let TDF = (Tdg,Eval, Inv) be a trapdoor function family. We
associate to TDF and an inverter I an adaptive one-way experiment,

Experiment Expaow
TDF,I(k)

(ek, td)←$Tdg(1k) ; x←$ {0, 1}k

y ← Eval(ek, x)

x′←$ I Inv(td,·)(ek, y)
If x = x′ then return 1 else return 0

Above we require that I does not query y to its oracle. Define the aow-advantage of A against TDF as

Advaow
TDF,I(k) = Pr

[

Expaow
TDF,I(k) outputs 1

]

.

We say that TDF is adaptive one-way (or is an ATDF) if Advaow
TDF,I(·) is negligible for every efficient I.

Tag-based adaptivity. Let TB-TDF = (Tdg,Eval, Inv) be a tag-based trapdoor function family. We
associate to TDF and an inverter I = (I1, I2) a tag-based adaptive one-way experiment,

Experiment Exptb-aow
TB-TDF,I(k)

(ek, td)←$Tdg(1k)
t←$ I1(1

k) ; x←$ {0, 1}k

y ← Eval(ek, t, x)

x′←$ I Inv(td,·,·)(ek, t, y)
If x = x′ then return 1 else return 0

Above we require that I2 does not make a query of the form Inv(td, t, ·) to its oracle. Define the tb-aow-
advantage of A against TB-TDF as

Advtb-aow
TB-TDF,I(k) = Pr

[

Exptb-aow
TB-TDF,I(k) outputs 1

]

.

We say that TDF is tag-based adaptive one-way (or is a TB-ATDF) if Advtb-aow
TDF,I (·) is negligible for every

efficient I.

Realizations. In [28] it is shown that ATDFs and tag-based ATDFs can be realized from lossy TDFs [33]
and correlated-product secure TDFs [35], which can be realized from a variety of standard number-
theoretic and lattice-based assumptions. Furthermore, tag-based ATDFs were constructed from a strong
but non-decisional (i.e., search) problem on RSA in [28].

4.2 ECCA Security from Adaptive Trapdoor Functions

Here we construct ECCA-secure public-key encryption from adaptive TDFs. Our construction draws
heavily on the recent work of Hohenberger et al. [26] and their notion of detectable CCA security (DCCA).
This should be contrasted with the approach of [28] used to obtain CCA-secure encryption from ATDFs.
Our approach allows us to obtain “enhanced” security and also unique randomness recoverabilty. (See
the Introduction for further elaboration.) We note that our construction applies to general ATDFs; in
the case of ATDFs with a linear number of hardcore bits we obtain a much more efficient construction,
see Appendix B for details.

7

4.2.1 Enhanced DCCA Security

The notion of Detectable Chosen Ciphertext (DCCA) security was recently introduced by [26]. We
define here the notion of enhanced DCCA (EDCCA) security, which parallels the notion of enhanced
CCA security. In our definition, we require that the DCCA scheme be both enhanced and randomness-
recovering. This is due to the fact that our application of DCCA requires both properties. However, the
more general notion of enhanced DCCA security (with no efficient randomness-recovering property) may
also be of interest.

Detectable Encryption Schemes. A detectable encryption scheme is a tuple of probabilistic poly-
nomial time algorithms (Kg,Enc,Dec,F) such that: (1) (Kg,Enc,Dec) constitute a public-key encryption
scheme, and (2) F(pk, c′, c) → {0, 1}: the detecting function F takes as input a public key pk and two
ciphertexts c′, c and outputs a bit.

Additionally, the detecting function F must have the following property: Informally, given the de-
scription of F and a public key pk, it it should be hard to find a second ciphertext c′ that is related to
a “challenge” ciphertext c, i.e. such that F(pk, c′, c) = 1, before being given c. See [26] for the formal
definition of the unpredictability experiment.

EDCCA definition. We are now ready to define enhanced, detectable chosen ciphertext security. Let
PKE = (Kg,Enc,Dec,Rec,F) be a randomness-recovering public-key encryption scheme. We associate to
PKE and an adversary A = (A1, A2) an enhanced detectable chosen-ciphertext attack experiment,

Experiment Expind-edcca
PKE,A (k)

b←$ {0, 1} ; (pk, sk)←$Kg(1k)

(m0,m1, St)←$A
Dec

∗(sk,·)
1 (pk)

c∗←$Enc(pk,mb)

d←$A
Dec

∗(c∗,sk,·)
2 (pk, c, St)

If d = b then return 1 else return 0

Oracle Dec∗(c∗, sk, c)
If F(pk, c∗, c) = 1, Return ⊥
Else m← Dec(sk, c)
r′ ← Rec(sk, c)
Return (m, r′)

Above we require that the output of A1 satisfies |m0| = |m1| and that A2 does not query c to its oracle.
Define the ind-edcca advantage of A against PKE as

Advind-edcca
PKE,A (k) = 2 · Pr

[

Expind-edcca
PKE,A (k) outputs 1

]

− 1 .

We say that PKE is enhanced detectable chosen-ciphertext secure (EDCCA-secure) if

• Encryptions are indistinguishable: Advind-edcca
PKE,A (·) is negligible for every efficient A AND

• F is unpredictable: Every efficient adversary A has negligible probability of succeeding in the
unpredictability experiment (see [26]).

4.2.2 EDCCA Security from ATDFs

We construct an EDCCA scheme from ATDFs as follows: Let TDF = (Tdg,Eval, Inv) be a trapdoor
function with hardcore bit hc, for example the Goldreich-Levin bit [20]. Define the following multi-bit
public-key encryption scheme EDCCA[TDF] = (KgD,EncD,DecD):

Alg KgD(1
k)

(ek, td)←$Tdg(1k)
Return (ek, td)

Alg EncD(ek,m = m1, . . . ,mℓ)
Choose x1, . . . , xℓ uniformly at random
Return C = (Eval(ek, x1), hc(x1)⊕m1,

. . . ,Eval(ek, xℓ), hc(xℓ)⊕mℓ)

Alg Dec(td, C)
Parse C = (y1, β1, . . . , yℓ, βℓ)
For 1 ≤ i ≤ ℓ

Compute mi = hc(Inv(td, yi))⊕ βi
Return m1, . . . ,mℓ

8

The Detecting Function FD: On input pk, C∗ = (y∗1, β
∗
1 , . . . , y

∗
ℓ , β

∗
ℓ), C = (y1, β1, . . . , yℓ, βℓ), we

define:

FD(pk, C
∗, C) =

{

1 if for some i, j ∈ [ℓ], y∗i = yj
0 otherwise

Claim 4.1 Suppose TDF is adaptive one-way. Then EDCCA[TDF] defined above is a multi-bit EDCCA-
secure encryption scheme.

We give some intuition for why the claim holds. Assume towards contradiction that we have an
efficient adversary A = (A1, A2) breaking EDCCA[TDF]. Using a standard hybrid argument, we have
that there must be some index 1 ≤ i ≤ ℓ such that A successfully distinguishes encryptions of messages
m0,m1 which differ only in the i-th bit. Now assuming the existence of A, we construct an efficient
adversary A′ breaking adaptive one-wayness of TDF.

More specifically, A′ receives ỹ = Eval(ek, x̃) externally and uses A to learn hc(Inv(td, yi)). A′ does
this by simulating the EDCCA decryption oracle for A = (A1, A2) using its inversion oracle Inv.

First, we consider simulating responses to queries made by A1. In this case, we have that with
overwhelming probability, for every decryption query C = (y1, β1, . . . , yℓ, βℓ) made by A1, it is the case
that yj 6= ỹ for all 1 ≤ j ≤ ℓ. Thus, A′ can decrypt correctly using oracle access to Inv.

At the end of the first phase, A1 chooses two messages m0 = m0
1, . . . ,m

0
ℓ and m1 = m1

0, . . . ,m
1
ℓ which

differ only in the i-th bit. A′ prepares the challenge ciphertext C∗ by choosing x1, . . . , xi−1, xi+1, . . . xℓ
and a bit b uniformly at random and setting

C∗ = (Eval(ek, x1), hc(x1)⊕m1, . . . , ỹ, b, . . . ,Eval(ek, xℓ), hc(xℓ)⊕mℓ) .

Now, to answer EDCCA decryption queries C submitted by A2, A
′ checks whether FD(pk, C

∗, C) = 1.
If yes, A′ perfectly simulates the decryption oracle by returning ⊥. If not, then this implies in particular
that on input C = (y1, β1, . . . , yℓ, βℓ), we have that yj 6= ỹ for all 1 ≤ j ≤ ℓ. In this case, A′ can use its
access to the Inv oracle in order to respond correctly to the decryption query.

We omit the technical details of the proof, since they are standard.

Remark 4.2 Scheme EDCCA[TDF] defined above is also uniquely randomness-recovering. This will be
crucial for our application to adaptive trapdoor functions in Section 5.

We also wish to stress that it gives a novel example of a DCCA secure scheme; our scheme is
not the concatenation of ciphertexts for a 1-bit CCA-secure scheme. Indeed, a ciphertext of the form
(Eval(ek, x), hc(x)⊕m) is trivially malleable by flipping the second component.

4.2.3 From EDCCA to ECCA Security

We next show that the construction of [26] designed to build a CCA-secure scheme from a DCCA
secure one allows us to go from EDCCA to ECCA. That is, beyond what was already shown in [26]
we show that the construction preserves “enhanced” security; it also preserves (unique) randomness-
recoverabiility. Specifically, we instantiate the construction of [26] with the above randomness recovering
EDCCA scheme, a CPA-secure scheme with perfect correctness, and a 1-bounded CCA-secure5 scheme
with perfect correctness (note that all these components can be constructed in a black-box manner from
ATDFs):

The EDCCA scheme, EDCCA[TDF]: We instantiate the EDCCA scheme with the scheme given in
Section 4.2.2. We note that for simplicity, we sometimes refer to the detecting function FD as
checking for a “quoting” attack on the challenge ciphertext.

5By 1-bounded CCA security, we mean an encryption scheme that is secure under an indistinguishability attack when
the adversary may make only a single decryption query to its oracle either before or after receiving the challenge ciphertext.

9

The CPA scheme, CPA[TDF]: We instantiate the CPA scheme with the same scheme EDCCA[TDF]
as above. Note that this scheme has perfect correctness since the Inv algorithm of the ATDF is
required to invert correctly with probability 1.

The 1-bounded CCA scheme, 1-CCA[TDF]: Since we have already observed above that we can
construct a multi-bit CPA scheme with perfect correctness from ATDF, we may now use any
construction of a multi-bit 1-bounded CCA scheme with perfect correctness from a multi-bit CPA
scheme with perfect correctness. This can be done in a black-box manner via the [11] construction.
It is not hard to see that the construction of [11] preserves the perfect correctness property.

The Multi-Bit (Uniquely Randomness Recovering) ECCA Scheme. We present a multi-bit,
uniquely randomness recovering, ECCA-secure encryption scheme PKE[TDF] = (KgECCA,EncECCA,DecECCA)
using the schemes EDCCA[TDF] = (KgD,EncD,DecD), 1-CCA[TDF] = (Kg1b,Enc1b,Dec1b), and CPA[TDF] =
(KgCPA,EncCPA,DecCPA) defined above.

Alg KgECCA(1
λ)

(pkin, skin)←$KgD(1
λ)

(pkA, skA)←$Kg1b(1
λ)

(pkB, skB)←$KgCPA(1
λ)

pk ← (pkin,pkA,pkB)
sk ← (skin, skA, skB)
Return (pk, sk)

Alg EncECCA(pk,m)
(rA, rB)←$ {0, 1}λ

CTin←$EncD(pkin, (rA, rB ,m))
CTA ← Enc1b(pkA, CTin; rA)
CTB ← EncCPA(pkB , CTin; rB)
Return CT = (CTA, CTB)

Alg DecECCA(sk, CT)
CTin←$Dec1b(skA, CTA)
(rA, rB ,m)← DecD(skin, CTin)
rin ← RecD(skin, CTin)
If CTA = Enc1b(pkA, CTin; rA) and
CTB = EncCPA(pkB , CTin; rB)

return (rA, rB ,m, rin)
Else return ⊥

Theorem 4.3 PKE[TDF] is enhanced CCA-secure and uniquely randomness recovering under the as-
sumptions that EDCCA[TDF] is enhanced DCCA-secure and uniquely randomness recovering, 1-CCA[TDF]
is 1-bounded CCA secure with perfect correctness, and CPA[TDF] is CPA-secure with perfect correctness.

Note that Theorem 4.3 implies that there is a black-box construction of multi-bit, uniquely randomness
recovering, enhanced CCA-secure encryption from ATDF.

Proof: The proof is based on [26]. We begin by defining a game which is slightly different than the
regular enhanced CCA game, but will be useful in our analsysis of PKE[TDF]:

Enhanced Nested Indistinguishability Game for scheme PKE[TDF]: We associate to the scheme
PKE[TDF] and to an adversary A = (A1, A2) an enhanced nested indistinguishability under chosen ci-
phertext attack experiment,

Experiment Expnested-ind-ecca
PKE[TDF],A (k)

b, z←$ {0, 1} ; (pk, sk)←$KgECCA(1
k)

(m0,m1, St)←$A
Dec

∗

ECCA
(sk,·)

1 (pk)
rA, rB←$ {0, 1}λ

If z = 0
CT ∗

in←$EncD(pkin, (rA, rB ,mb))
Else if z = 1

CT ∗
in←$EncD(pkin, 0

|rA|+|rA|+|mb|)
CT ∗

A ← Enc1b(pkA, CT ∗
in; rA)

CT ∗
B ← EncCPA(pkB , CT ∗

in; rB)
CT ∗ ← (CT ∗

A, CT ∗
B)

z′←$A
Dec

∗

ECCA
(sk,·)

2 (pk, CT ∗, St)
If z′ = z then return 1 else return 0

Oracle Dec∗ECCA(sk, c)
m← DecECCA(sk, c)
r′ ← RecECCA(sk, c)
Return (m, r′)

10

Above we require that the output of A1 satisfies |m0| = |m1| and that A2 does not query CT ∗ to its
oracle. In the following, we refer to decryption queries made by A1 as “Phase 1 queries” and to decryption
queries made by A2 as “Phase 2 queries.”

Define the nested-ind-ecca advantage of A against PKE[TDF] as

Advnested-ind-ecca
PKE[TDF],A (k) = 2 · Pr

[

Expnested-ind-ecca
PKE[TDF],A (k) outputs 1

]

− 1 .

We say that PKE[TDF] has enhanced nested indistinguishable encryptions under a chosen ciphertext attack
if Advnested-ind-ecca

PKE[TDF],A (·) is negligible for every efficient A.

It should be clear that enhanced nested indistinguishability of PKE[TDF] under a chosen ciphertext attack
implies enhanced CCA security of PKE[TDF] (via a simple hybrid argument).

Consider the following event:

Definition 4.4 (The Bad Query Event) We say that a bad query event has occurred during an
execution of this experiment if in Phase 2, the adversary A makes a decryption query of the form
CT = (CTA, CTB) such that

• (Quoting attack on inner ciphertext:) FD(pkin, CT ∗
in,Dec1b(skA, CTA)) = 1 AND

• (Query ciphertext differs from challenge ciphertext in first half:) CT ∗
A 6= CTA.

We will show that Bad Query Event occurs with at most negligible probability when z = 1 and when
z = 0. Once we have shown this, Nested Indistinguishability of PKE[TDF] will follow in a straightforward
manner.

Lemma 4.5 Bad Query Event occurs with negligible probability when z = 1.

We prove Lemma 4.5 via a sequence of hybrids:

Hybrid H0: Proceeds exactly as the nested indistinguishability game for the case where z = 1.

Hybrid H1: Proceeds exactly like H0 except that CT ∗
B is set to be: CT ∗

B = EncCPA(pkB , 1
k; rB).

Claim 4.6 The probability of a Bad Query Event in H1 and H0 differs by a negligible amount.

Since skB is never used by the decryption oracle and since the decryption oracle can detect all Bad Query
Events, the claim follows immediately by a reduction to the semantic security of CPA[TDF].

Hybrid H2: Proceeds exactly like H1 except CT ∗
A is set to be CT ∗

A = Enc1b(pkA, 1
k; rA).

Claim 4.7 The probability of Bad Query Event in H2 is negligible.

The claim follows due to the fact that the challenge ciphertext in H2 contains no information about CT ∗
in

and since the detecting function FD is unpredictable.

Claim 4.8 The probability of a Bad Query Event in H2 and H1 differs by a negligible amount.

11

Intuitively, Claim 4.8 will reduce to the 1-bounded CCA security of 1-CCA[TDF].

Proof: Assume towards contradiction that there is some efficient adversary A which causes Bad Query
Event to occur with negligible probability in H2 and non-negligible probability in H1. We denote by q
the (polynomial) number of Phase 2 queries made by A. By standard hybrid argument, there must be
some index i ∈ [q] such that the i-th Phase 2 query made by A in H1 causes Bad Query Event to occur
with non-negligible probability. On the other hand, for every index i, the i-th Phase 2 query made by A
in H2 causes Bad Query Event to occur with at most negligible probability.

Fix such i. We construct an adversary B which breaks the security of 1-CCA[TDF]. B will receive a
challenge ciphertext that is either an encryption of CT ∗

in or of 1n. In case the challenge ciphertext was an
encryption of CT ∗

in, B will perfectly simulate the adversary’s view in H1. In case the challenge ciphertext
was an encryption of 1n, B will perfectly simulate the adversary’s view in H2.

Moreover, B will be able to detect whether Bad Query Event occurred in the i-th Phase 2 query of the
experiment. Thus, if Bad Query Event occurs in the i-th query with non-negligible probability in H1 and
negligible probability in H2, then B will be able to break security of 1-CCA[TDF].

Formally, consider the following Simulated Decryption Oracle:

Simulated Decryption Oracle:

• Decrypt CTB using skB to retreive CTin.

• Decrypt CTin using skin to retrieve (rA, rB ,m).

• Use the randomness recovering algorithm RecD and skin to retrieve rin = RecD(skin, CTin).

• Check that CTA and CTB were formed correctly with respect to (rA, rB , CTin). If not, output ⊥.
Otherwise, output (m, rA, rB , rin).

Note that for every possible string CT submitted to the oracle, the output of the Simulated Decryp-
tion Oracle and the real decryption oracle is identical since 1-CCA[TDF] and CPA[TDF] have perfect
correctness.

Now, B does the following: B receives pkA from its external 1-bounded CCA challenger and generates
(skB,pkB), (skin,pkin) honestly.

B and A interact in Phase 1 (while B uses the Simulated Decryption Oracle to respond to decryp-
tion queries). At some point A outputs m0 and m1. B computes CT ∗

in = EncD(pkin, 0
ℓ) and CT ∗

B =
EncCPA(pkB, 1

k). It outputs CT ∗
in and 1k as messages m0,m1 to its external 1-bounded CCA challenger

and receives a ciphertext CT ∗
A. B then outputs CT ∗ = (CT ∗

A, CT ∗
B) to A. B continues interacting with A

during Phase 2, while using the Simulated Decryption Oracle as above. When B receives the i-th Phase
2 query of A, denoted by (CT i

A, CT i
B), B checks for the Bad Query Event by doing the following:

• B checks if CT i
A 6= CT ∗

A.

• If so, B submits CT i
A to its external 1-bounded CCA decryption oracle and receives CT i

in in response.

• B checks whether FD(pkin, CT ∗
in, CT i

in) = 1 (i.e. whether a quoting attack occurred). If yes, B
outputs 0. Otherwise, B outputs 1.

12

Since by assumption we have that Bad Query Event occurs with non-negligible probability at the i-th
Phase 2 query inH1 and occurs with negligible probability at the i-th Phase 2 query inH2, we have that B
achieves non-negligible advantage in the external 1-bounded CCA security game. This is a contradiction
to the security of 1-CCA[TDF] and so the claim is proved.

Lemma 4.5 follows immediately from Claims 4.6, 4.7 and 4.8.

We now turn to the case where z = 0:

Lemma 4.9 Bad Query Event occurs with negligible probability when z = 0.

Intuitively, Lemma 4.9 will reduce to the enhanced detectable CCA security of EDCCA[TDF].

Proof: We have already shown that when z = 1, Bad Query Event occurs with negligible probability.
We will now show that if there is an efficient adversary A causing Bad Query Event to occur with non-
negligible probability when z = 0, then there is a ppt adversary B breaking the security of EDCCA[TDF].

Assume towards contradiction that there is an efficient adversary A which causes Bad Query Event to
occur with non-negligible probability when z = 0. Consider the following efficient adversary B which
interacts with A in a run of the nested indistinguishability experiment, while externally participating in
an enhanced DCCA indistinguishability experiment. B does the following:

Setup: B receives pkin externally from the EDCCA experiment. B honestly generates (skA,pkA), (skB,pkB).

Phase 1: B simulates the honest (enhanced) decryption oracle using skA and the decryption oracle in
the external enhanced DCCA experiment. At the end of this phase A will output m0,m1.

Challenge: Choose random β ∈ {0, 1} and rA, rB ∈ {0, 1}
λ. Send to the external enhanced DCCA

challenger M0 = (rA, rB ,mβ) and M1 = 0|M0| and obtain the ciphertext CT ∗
in. Compute CT ∗

A and
CT ∗

B honestly, given CT ∗
in, rA, rB . Return CT ∗ = (CT ∗

A, CT ∗
B) to A.

Phase 2: When A queries the decryption oracle on CT = (CTA, CTB), compute CTin = Dec1b(skA, CTA).

Case 1 (a bad query event): CTA 6= CT ∗
A and yet FD(pkin, CT ∗

in, CTin) = 1 (i.e. a quoting attack
occurred), then abort and output the bit 0.

Case 2 (partial match with challenge): CTA = CT ∗
A, then return ⊥ to A.

Otherwise, query the external EDCCA decryption oracle to decrypt CTin and return its randomness.
Check that CTA and CTB are consistent with the response. If not, return ⊥. Otherwise, return
the message and all randomness.

Output: When A outputs a bit, B outputs 0 or 1 with probability 1/2.

We argue that B correctly answers all decryption queries except when it aborts. This will follow imme-
diately once we establish that B always answers correctly by returning ⊥ when a Case 2 query occurs.
We next show that this is indeed the case.

Since a decryption query on the challenge is forbidden by the experiment, if CTA = CT ∗
A, then CTB 6=

CT ∗
B. However, in this case CT must be an invalid ciphertext. We see this as follows: Since de-

cryption is deterministic, we have that CTin = Dec1b(skA, CTA) = Dec1b(skA, CT ∗
A) and (rA, rB ,m) =

DecD(skin, CTin). But this means that there is only one possible ciphertext CTB that matches CTA =
CT ∗

A. Since the challenge CT ∗ is a valid ciphertext, CT ∗
B must be this value and so CT = (CT ∗

A, CTB)
must be invalid.

13

Now, if a Case 1 query occurs, B cannot decrypt using its EDCCA decryption oracle and must abort
the experiment. But in this case, B can already guess that z = 0 since when z = 1, Case 1 occurs with
negligible probability.

More specifically, when B aborts, it causes the external EDCCA experiment to output 1 with high
probability. Moreover, whenB does not abort, it causes the external EDCCA experiment to output 1 with
probability 1/2. Since B aborts with non-negligible probability when z = 0, B causes the experiment’s
output to be 1 with probability non-negligibly greater than 1/2. This is a contradiction to the security
of EDCCA[TDF] and so the claim is proved.

Finally, assuming that Bad Query Event occurs with negligible probability both when z = 0 and z = 1,
we show that Nested Indistinguishability under chosen ciphertext attacks holds. This is straightforward
via a reduction to the enhanced DCCA security of EDCCA[TDF].

4.3 ECCA Security from Tag-Based Adaptive Trapdoor Functions

We next give constructions of ECCA-secure public-key encryption from tag-based adaptive trapdoor
functions introduced by Kiltz et al. [28].

From tag-based ATDF to tag-based ECCA-secure PKE. It is straightforward to construct a
multi-bit tag-based ECCA-secure PKE scheme from a tag-based ATDF, as follows. Let TB-TDF =
(Tdg,Eval, Inv) be a tag-based adaptive trapdoor function family with tag-space TagSp and hardcore bit
hc. Define the following tag-based public-key encryption scheme TB-PKE[TB-TDF] = (Kg,Enc,Dec) with
tag-space TagSp and message-space {0, 1}ℓ:

Alg Kg(1k)
(ek, td)←$Tdg(1k)
Return (ek, td)

Alg Enc(ek, t,m)
For i = 1 to ℓ do:

xi←$ {0, 1}k

ci,1 ← Eval(ek, t, xi)
ci,2 ← hc(x)⊕m[i]

c← ((c1,1, c1,2), . . . , (cℓ,1, cℓ,2))
Return c

Alg Dec(td, t, c)
((c1,1, c1,2), . . . , (cℓ,1, cℓ,2))← c
For i = 1 to ℓ do:

xi ← Inv(td, ci,1)
m[i]← hc(xi)⊕ci,2

Return m

Remark 4.10 Scheme TB-PKE[TB-TDF] defined above is uniquely randomness recovering.

Proposition 4.11 Suppose TB-TDF is adaptive one-way. Then TB-PKE[TB-TDF] defined above is
ECCA-secure.

We omit the proof, which is routine.

From ECCA-secure tag-based PKE to ECCA-secure PKE. Note that Kiltz et al. [28] show a
construction of CCA-secure PKE from any CCA-secure tag-based PKE using a strongly one-time unforge-
able signature scheme. However, this construction does not preserve the randomness-recovering property
or the ECCA security of the tag-based PKE. To get around this issue, and to construct ECCA-secure
PKE from ECCA-secure tag-based PKE we employ a transformation of Boneh et al. [7], instead. Let
TB-PKE = Kgtag,Enctag ,Dectag) be a tag-based public-key encryption scheme, H, g be hash functions, and
MAC = (tag, ver) be a message-authentication code. Define PKE[TB-PKE,H, g,MAC] = (Kg,Enc,Dec):

Alg Kg(1k)
(pk, sk)←$Kgtag(1

k)
Return (pk, sk)

Alg Enc(pk,m)
x←$ {0, 1}k ; c1 ← H(x)
c2←$Enctag(pk, c1,m‖x)
c3 ← tag(g(x), c2)
Return (c1, c2, c3)

Alg Dec(sk, (c1, c2, c3))
m‖x← Dectag(sk, c1, c2)
If H(x) 6= c1 then return ⊥
If ver(g(x), c2) = 1 then return m
Else return ⊥

14

Remark 4.12 If TB-PKE is (uniquely) randomness recovering, so is PKE[TB-PKE,H, g,MAC]. In par-
ticular, this is the case when TB-PKE = TB-PKE[TB-TDF] as defined above. Thus, we obtain a uniquely
randomness-recovering ECCA-secure PKE scheme from any tag-based ATDF.

Proposition 4.13 Suppose TB-PKE is ECCA-secure, H is target collision-resistant, g is pairwise-independent,
and MAC is strongly unforgeable. Then PKE[TB-PKE,H, g,MAC] is ECCA-secure.

Proof: We prove security using a sequence of hybrids. Our proof follows that of [7], and uses a deferred
analysis technique originating from [19].

Hybrid H0: The first game is the ind-cca game for PKE[TB-PKE,H, g,MAC] as defined earlier. Let
c∗ = (c∗1, c

∗
2, c

∗
3) be the challenge ciphertext, and x∗ be random input used as input to the H when

computing the challenge ciphertext.

Hybrid H1: H1 is the same as H0 except that on decryption queries of the form (c∗1, c2, c3) we always
return ⊥. Let valid be the event that this ciphertext is indeed valid (it has a valid decryption).

Obviously we have that |AdvH1

A (k)−AdvH0

A (k)| ≤ Pr1[valid]. Let coll be the event that c2 is valid and
correctly decrypts to a message m||x and at the same time we have g(x) 6= g(x∗). Furthermore, let forge
be the event that c3 ← tag(g(x∗), c2). It is easy to see that Pr1[valid] < Pr1[coll] + Pr1[forge]. Note
that Pr1[coll] is negligible given the collision resistance of H. In particular, g(x) 6= g(x∗) implies that
x 6= x∗, which makes the pair (x, x∗) a collision for H. We note that this argument works in presence
of an ECCA oracle as well. In particular, note that decryption queries of the form (c1, c2, c3) are only
answered if c1 6= c∗1, and in this case, one can query c2 to the decryption oracle for the tag-based PKE
and recover both the underlying message and all the randomness used in generating the ciphertext (note
that c3 is deterministic given c1 and c2). Analyzing he bound on Pr1[forge] is deferred to a later hybrid.

Hybrid H2: H2 is the same as H1 except that when computing the challenge ciphertext we compute
c∗2 = Enctag(pk, c1, 0

|m0|‖0k).

Note that AdvH2

A (k) = 1/2 for any PPT adversary A. It is also straightforward to see that |AdvH2

A (k)−

AdvH1

A | < Advind-ecca
TB-PKE,A(k). For the latter, once again, decryption queries are handled as discussed

above. The same bound is true for Pr2[forge]− Pr1[forge].

Hybrid H3: H3 is the same as H2 except that the key for the MAC in the challenge ciphertext (i.e. for
computing c∗3) is generated uniformly at random as opposed being set to g(x∗).

We note that |AdvH3

A (k) −AdvH2

A | is statistically bounded since the only information available about
x∗ is H(x∗). But since H is compressing and g is pairwise-independent hash function, it operates as
an extractor of the remaining randomness in x∗ and outputs a uniformly random key for the MAC.
Distinguishing a uniformly random key from g(x∗) is therefore negligible and bounded by this statistical
bound (see [7] for a complete argument). Decryption queries are handled as before. The same argument
implies that Pr3[forge]− Pr2[forge] is also negligible.

It remains for us show that Pr3[forge] is also negligible but this automatically follows from the unforge-
ability of the MAC.

5 Application to Adaptive Trapdoor Functions

In this section, we establish that the notions of adaptive trapdoor functions and tag-based adaptive
trapdoor functions introduced by Kiltz et al. [28] are equivalent (via fully black-box reductions), resolving
a main open question of [28]. In light of Section 4, we just need to show that reverse implications hold;
namely, that from a randomness-recovering ECCA-secure PKE scheme we can get both ATDFs and
tag-based ATDFs.

15

5.1 From ECCA Security to Adaptivity

To construct an adaptive trapdoor function from a uniquely randomness-recovering ECCA-secure PKE
scheme, we use part of the input to the former as coins for the latter used to encrypt the other part.
Namely, let PKE = (Kg,Enc,Dec,Rec) be a uniquely randomness-recovering public-key encryption scheme
with message-space MsgSp and coin-space Coins. Define a trapdoor function family TDF[PKE] =
(Tdg,Eval, Inv) on domain MsgSp ×Coins as follows:

Alg Tdg(1k)
(pk, sk)←$Kg(1k)
Return (pk, sk)

Alg Eval(pk, x)
(m, r)← x
c← Enc(pk,m; r)
Return c

Alg Inv(sk, c)
m← Dec(sk, c)
r ← Rec(sk, c)
Return (m, r)

Proposition 5.1 Suppose PKE is uniquely randomness recovering and ECCA-secure. Then TDF[PKE]
defined above is adaptive one-way.

Proof: Given an AOW-adversary I against TDF[PKE], we can easily construct an ECCA-adversary
A = (A1, A2) against PKE, as follows:

Adversary A
Dec

∗(sk,·)
1 (pk)

m0,m1←$MsgSp(1k)
Return (m0,m1,m0‖m1)

Adversary A
Dec

∗(sk,·)
2 (pk, c, St)

m0‖m1 ← St
Run I on inputs pk, c:
When I makes query y do:

(m, r)← Dec∗(sk, y)
Return (m, r)

Let (m∗, r∗) be the output of I
If m0 = m∗ then return 0
Else return 1

It is clear by construction that Advaow
TDF,I(·) ≤ Advind-ecca

PKE,A (·) which proves the claim.

5.2 From ECCA Security to Tag-Based Adaptivity

To construct a tag-based adaptive trapdoor function from a uniquely randomness-recovering ECCA-
secure PKE scheme, we can use an analogous construction of [29, Section 4.4]. Namely, let PKE =
(Kg,Enc,Dec,Rec) be a uniquely randomness-recovering public-key encryption scheme. Define a tag-
based trapdoor function family TB-TDF[PKE] = (Tdg,Eval, Inv) as follows:

Alg Tdg(1k)
(pk, sk)←$Kg(1k)
Return (pk, sk)

Alg Eval(pk, t, x)
m‖r ← x
c← Enc(pk, t‖m; r)
Return c

Alg Inv(sk, t, c)
t′‖m← Dec(sk, c)
r ← Rec(sk, c)
If t = t′ then return m‖r
Else return ⊥

Proposition 5.2 Suppose PKE is uniquely randomness-recovering and ECCA-secure. Then TB-TDF[PKE]
is tag-based adaptive one-way.

Proof: Given an TB-AOW-adversary I against TB-TDF[PKE], we construct an ECCA-adversary A =
(A1, A2, A3) against PKE, as follows:

16

Adversary A1(pk)
t←$ I1(pk)

Adversary A
Dec

∗(sk,·)
1 (pk, t)

m0,m1←$MsgSp(1k)
Return (m0,m1,m0‖m1)

Adversary A
Dec

∗(sk,·)
2 (pk, t, c, St)

m0‖m1 ← St
Run I on inputs pk, t, c:
When I makes query y, t′ do:

(m, r)← Dec∗(sk, y, t′)
Return (m, r)

Let (m∗, r∗) be the output of I
If m0 = m∗ then return 0
Else return 1

We claim that Advtb-aow
TB-TDF,I(·) ≤ Advind-ecca

PKE,A (·). To see this, note that I1, I2 does make a query of the
form t′ = t, which by consistency of PKE means that A does not query its challenge ciphertext.

6 Application to PKE with Non-Interactive Opening

In this section, we show that ECCA-secure encryption is a natural building-block for public key encryption
with non-interactive opening (PKENO) [14, 13, 17, 18]. PKENO allows the receiver to non-interactively
prove that a given ciphertext decrypts to a claimed message. Our constructions yield new and practical
PKENO schemes. As discussed in the introduction, PKENO has applications to multiparty computation
(e.g., auctions and elections), secure message transmission, group signatures, and more.

PKENO. Public-key encryption with non-interactive opening (PKENO) extends a scheme PKE =
(Kg,Enc,Dec) for public-key encryption by the following algorithms: Prove takes as input a secret key sk

and a ciphertext c, and outputs a proof π. Ver takes as input a public key pk, a ciphertext c, a plaintext
m and a proof π, and outputs 0 or 1.

In addition to decryption correctness, stating that Pr[Dec(sk,Enc(pk,m)) 6= m : (pk, sk)←$Kg(1k)]
is negligible for all k ∈ N and m ∈ MsgSp(1k), we require proof correctness: i.e. for all ciphertexts
(i.e. strings) c:

Pr[Ver(pk, c,Dec(sk, c),Prove(sk, c)) 6= 1 : (pk, sk)←$Kg(1k)]

is negligible.
In [13, 17], security of PKENO is defined by indistinguishability under chosen-ciphertext and -proof

attacks (IND-CCPA) and proof soundness. The former guarantees that a ciphertext hides the plaintext
even when the adversary can see decryptions of and proofs for other ciphertexts; the latter formalizes that
no adversary should be able to produce a proof for a ciphertext and a message which is not encrypted by
that ciphertext.

Indistinguishability. Let PKENO = (Kg,Enc,Dec,Prove,Ver) be a public-key encryption scheme with
non-interactive opening. We associate to PKENO and an adversary A = (A1, A2) the chosen-ciphertext
and -proof attack experiment given on the left in Figure 2. We require that the output of A1 satisfies
|m0| = |m1| and that A2 does not query c to any of its oracles. We say that PKENO is chosen-ciphertext

and -proof-attack secure (CCPA-secure) if Advind-ccpa
PKENO,A(k) := 2 · Pr

[

Expind-ccpa
PKENO,A(k) outputs 1

]

− 1 is
negligible for every efficient A.

Proof soundness. We associate to a scheme PKENO = (Kg,Enc,Dec,Prove,Ver) and an adversary
A = (A1, A2) a proof-soundness experiment, given on the right in Figure 2. We say that PKENO is

proof-sound if Advproof-snd
PKENO,A(k) := Pr

[

Expproof-snd
PKENO,A(k) outputs 1

]

is negligible for every efficient A.
We note that as compared to [13, 17] our definition of proof soundness also considers adversarially-

produced ciphertexts, which not even be a valid output of the encryption algorithm. Note that it is
already required by proof correctness that the PKENO correctly proves decryption of such ciphertexts
(which in general may or may not decrypt to ⊥), so it would seem that constructions should achieve this
stronger notion of proof soundness anyway.

17

Experiment Expind-ccpa
PKENO,A(k)

b←$ {0, 1} ; (pk, sk)←$Kg(1k)

(m0,m1, St)←$A
Dec(sk,·),Prove(sk,·)
1 (pk)

c←$ Enc(pk,mb)

d←$A
Dec(sk,·),Prove(sk,·)
2 (pk, c, St)

If d = b then return 1 else return 0

Experiment Expproof-snd
PKENO,A(k)

(pk, sk)←$Kg(1k)
(m′, π′, c′)←$A(pk, sk)
m← Dec(sk, c′)
If Ver(pk, c′,m′, π′) = 1 and m 6= m′

then return 1 ; else return 0

Figure 2: Security experiments for PKENO.

Strong proof soundness. An even stronger notion of proof soundness is defined in [18], which also
handles maliciously chosen public key (i.e., security for senders against a malicious receiver). Such a
notion is quite challenging to achieve, and hence we mostly focus on the above formulation of proof
soundness in the paper. However, in Appendix D we define notions of strong proof soundness and discuss
how our constructions can be adapted to to meet them.

6.1 PKENO-Compatible ECCA-Secure Encryption

A natural approach to building PKENO suggested by [14] is to use a randomness-recovering encryption
scheme and have the receiver provide the recovered coins as the proof. A moment’s reflection reveals
that for this approach to work, the encryption scheme must be ECCA secure. In addition, as discussed
in [14, 13, 18], we also need a way for the receiver to prove correct decryption of ciphertexts not in the
range of the encryption algorithm, in which case such coins may not be defined. Our goal in this section
is to define a notion of PKENO-compatible ECCA-secure encryption for which we can do this.

Partial-randomness recovery. It turns out that for such schemes we do not always achieve, nor
need, the notion of full randomness recovery, so we first define a natural generalization we call partial-
randomness recovery, which (loosely) says that enough of the random coins are recovered to uniquely
identify the underlying message. (Such a notion is alluded to in [33], who note that their CCA-secure
encryption seem is not actually fully randomness-recovering because they use a one-time signature, and
is generally useful whenever we use a “publicly verifiable” but randomized component such as a one-time
signature or NIZK.) However, in order to deal with the case that some ciphertexts outside the range of the
encryption algorithm may not decrypt to ⊥, we also strengthen what we get from randomness-recovering
encryption in some respect; see the discussion following the definition.

Formally, Suppose Enc draws its coins from Coins. We say that a public-key encryption scheme PKE =
(Kg,Enc,Dec) has partial-randomness recovery if it also has a partial-randomness recovering algorithm
pRec and a message-consistency checking algorithm Cons, which with the help of partial randomness can
check whether a ciphertext c encrypts a message m. Namely:

• (Completeness) For all (pk, sk)←$Kg and all c ∈ {0, 1}∗,m ∈ MsgSp(1k) ∪ {⊥}, let s←$ pRec(sk, c).
Then

Dec(sk, c) = m ∧m 6= ⊥ ⇒ Cons(pk, c,m, s) = 1 .

• (Soundness) For all (pk, sk)←$Kg and all c ∈ {0, 1}∗,m ∈ MsgSp(1k), s ∈ {0, 1}∗:

Cons(pk, c,m, s) = 1 ⇒ Dec(sk, c) = m .

Relation to randomness recovery. It turns out that a fully randomness recovering scheme is
not necessarily partial-randomness recovering as we have defined it. This is because, the completeness
condition requires that even for invalid ciphertexts c (i.e., those that are never output by the encryption
algorithm) that do not decrypt to ⊥ but rather some m 6= ⊥, enough partial randomness can still be
recovered from c to check that it decrypts to m.

Ciphertext verifiability. We next define a notion of ciphertext verifiability, which intuitively means
a verifier can check (with the help of some partial random coins) whether the decryption algorithm

18

returns ⊥ on a given ciphertext. Let PKE = (Kg,Enc,Dec, pRec,Cons) be a public-key encryption scheme
with partial-randomness recovery. We say that PKE has ciphertext-verifiability if it also has a ciphertext-
invalidity checking algorithm Inval such that

• (Completeness) For all (pk, sk)←$Kg and all c ∈ {0, 1}∗, let s←$ pRec(sk, c). Then

Dec(sk, c) = ⊥ ⇒ Inval(pk, c, s) = 1 .

• (Soundness) For all (pk, sk)←$Kg and all c ∈ {0, 1}∗, s ∈ {0, 1}∗:

Inval(pk, c, s) = 1 ⇒ Dec(sk, c) = ⊥ .

We write PKE = (Kg,Enc,Dec, pRec,Cons, Inval).
We note that the notion of public ciphertext verifiability has been discussed informally in the literature

and formalized and studied concurrently to our work by [32]. In a publicly verifiable scheme, the Inval

algorithm ignores the input s. In fact, all our constructions except those that use the “more-efficient”
BCHK transform [7] (the one using symmetric primitives rather than one-time signatures) are publicly
verifiable.

We say that PKE is ECCA-secure if it is ECCA-secure as defined in Section 3 but where the Rec

algorithm there is replaced with pRec.

PKENO-compatible ECCA encryption and PKENO from it. We call a partial-randomness recov-
ering ECCA-secure PKE scheme with ciphertext verifiability PKENO-compatible ECCA encryption. Con-
sider a PKENO-compatible ECCA encryption scheme PKE = (Kgpke,Encpke,Decpke, pRecpke,Conspke, Invalpke)
and define the following PKENO PKENO = (Kgpke,Encpke,Decpke,Prove,Ver) with:

• Prove(sk, c): Output s←$ pRecpke(sk, c).

• Ver(pk, c,m, π = s): If m 6= ⊥ then return 1 iff Invalpke(pk, c) = 0 and Conspke(pk, c,m, s) = 1;
If m = ⊥ then return 1 iff Invalpke(pk, c) = 1.

Proposition 6.1 Suppose PKE is a PKENO-compatible ECCA-secure encryption scheme. Then the
construction PKENO[PKE] above is a PKE scheme with non-interactive opening which is CCPA-rsecure
and has proof soundness.

Proof: For the case of proof correctness, we show that for (pk, sk)←$Kg(1k) and for all strings c,

Ver(pk, c,Dec(sk, c),Prove(sk, c)) = 1 .

There are two cases to consider Dec(sk, c) = ⊥ and Dec(sk, c) 6= ⊥. If Dec(sk, c) = ⊥ then by complete-
ness of ciphertext verifiability we have Inval(pk, c, s) = 1 hence Ver(pk, c,Dec(sk, c),Prove(sk, c)) = 1.
On the other hand, if m = Dec(sk, c) 6= ⊥ then by soundness of ciphertext verifiability we know
that if Inval(pk, c, s) = 1 then Dec(sk, c) = ⊥, so Inval(pk, c, s) = 0. Now by completeness of partial-
randomness recovery if Cons(pk, c,m, s) = 0 then m = ⊥, so we know Cons(pk, c,m, s) = 1 and hence
Ver(pk, c,Dec(sk, c),Prove(sk, c)) = 1.

For the case of proof soundness, in the relevant experiment in Figure 2, we show that

m 6= m′ ⇒ Ver(pk, c′,m′, π′) = 0 .

Again we consider two cases, m = Dec(sk, c′) = ⊥ and m = Dec(sk, c′) 6= ⊥. If m = ⊥ and m′ 6= ⊥, then
if Ver(pk, c′,m′, π′) = 1 we would have Cons(pk, c′,m′, π′) = 1 which by soundness of partial-randomness
recovery means Dec(sk, c′) = m′, a contradiction. On the other hand, if m 6= ⊥, we again split into
two cases: m′ = ⊥ and m′ 6= ⊥. If m′ = ⊥ then if Inval(pk, c′, π′) = 1 then by soundness of ciphertext
verifiability we would have Dec(sk, c′) = m = ⊥, so Inval(pk, c′, π′) = 0 and thus verification fails. Finally,
if both m 6= ⊥ and m′ 6= ⊥ but m 6= m′ then if Ver(pk, c′,m′, π′) = 1 we have Cons(pk, c′,m′, π′) which
by soundness of partial-randomness recovery means Dec(sk, c′) = m′, a contradiction.

IND-CCPA follows immediately from ECCA w.r.t. pRecpke. The simulator can use its pRecpke oracle to
simulate the Prove oracle. To simulate the Dec oracle on a query c, the simulator queries pRecpke for c
to get s and outputs ⊥ if Valpke(pk, c, s) = 0 and otherwise forwards a Decpke oracle response.

19

The tag-based case. We define PKENO-compatible tag-based ECCA encryption TB-PKE = (Kg,Enc,
Dec, pRec,Cons, Inval) analogously, where all algorithms except Kg now take an additional input t called
the tag. The completeness and soundness definitions quantify over all tags t, and the scheme is required
to satisfy the tag-based ECCA definition where Rec is replaced with pRec. One can convert any PKENO-
compatible tag-based ECCA encryption scheme into a PEKNO-compatible (non-tag-based) ECCA en-
cryption scheme by using BCHK transform [7], which preserves both partial-randomness recovery and
ciphertext verifiability. Either version of the BCHK transform works, though it is interesting to that that
ciphertext verifiability when using the “more-efficient” version based on symmetric-key primitives uses
the fact that the Inval algorithm take as input partial randomness (since unlike the version using one-time
signatures the symmetric-key primitives are not publicly verifiable). Details are in Appendix C. Hence,
as per the above, PKENO-compatible tag-based ECCA encryption also yields PKENO. Looking ahead,
using tag-based constructions will lead to our most efficient PKENO schemes.

6.2 A Generic Construction using Non-Interactive Zero-Knowledge

We show how to obtain PKENO-compatible ECCA encryption by combining partially randomness-
recovering (pRR) ECCA secure encryption with a non-interactive zero-knowledge proof (NIZK) to add
ciphertext verifiability. (Indeed, the approach of adding a proof of well-formedness originates from [13, 18],
although not with respect to ECCA secure encryption.)

Construction. Consider a pRR ECCA-secure PKE scheme PKE = (Kg,Enc,Dec, pRec,Cons) and a
simulation-sound NIZK proof system NIZK = (Setup,Prv,Vrf) for the language L := {(pk, c) | ∃(m, r) :
c = Enc(pk,m; r)}. We define a partial-randomness-recovering scheme PKEprr = (Kgprr,Encprr,Decprr,
Consprr, Invalprr) as follows:

• Kgprr(1
k): Run crs←$ Setup(1k); (pk, sk)←$Kg(1k). Output pk := (crs,pk) and sk := (crs,pk, sk).

• Encprr((crs,pk),m; r): Set c := Enc(pk,m; r) and τ←$Prv(crs, (pk, c), (m, r)); output c := (c, τ).

• Decprr((crs,pk, sk), (c, τ)): If Vrf(crs, (pk, c), τ) = 0 then output ⊥; else output Dec(sk, c).

• pRecprr((crs,pk, sk), (c, τ)): If Vrf(crs, (pk, c), τ) = 0 then output ⊥; else output pRec(sk, c).

• Consprr((crs,pk), (c, τ),m, s): Return 1 iff Vrf(crs, (pk, c), τ) = 1 and Cons(pk, c,m, s) = 1.

• Invalprr((crs,pk), (c, τ), s): Return 1 iff Vrf(crs, (pk, c), τ) = 0.

Proposition 6.2 Suppose PKE is partial-randomness-recovering and ECCA-secure and NIZK is simulation-
sound and zero-knowledge. Then PKEprr[PKE,NIZK], defined above, is an ECCA-secure PKE scheme with
partial randomness-recovery and public verifiability (i.e., it is PKENO-compatible).

Proof: We first show that the scheme PKEprr is still ECCA-secure (with respect to the partial randomness
recovery function pRec). Let A be an adversary against ECCA security of PKEprr. We use A to break
ECCA security of the underlying scheme PKE. Upon receiving our challenge c∗, we simulate a NIZK
proof τ∗ to create a challenge (c∗, τ∗) for A. Consider A making an ECCA-query Dec∗ for (c, τ): if τ is
invalid on c, we return ⊥; else we forward c to our own oracle and give A the reply. Note that simulation
soundness of the NIZK implies that A cannot produce a query (c∗, τ) for a τ 6= τ∗ which is valid for c∗.
(This is formally proven analogously to the proof of full anonymity of the group signature construction
in [3], where a group signature is defined as a CCA-secure ciphertext and a simulation-sound NIZK proof
of well-formedness of the ciphertext.) This means that every query A makes can be forwarded to our
own oracle.

Finally, we need to show completeness and soundness of both partial randomness recovery and ciphertext
verifiability, as defined in Section 6.1. For all these notions, let (pk = (crs,pk), sk) be the output of Kgprr.

Completeness of partial-randomness recovery: Let c ∈ {0, 1}∗ and let s←$ pRecprr(sk, c). Suppose
Decprr(sk, c) = m with m 6= ⊥. By the definition of Decprr we get Vrf(crs, (pk, c), τ) = 1 (∗). By

20

the definition of pRecprr, this means s is the output of pRec(sk, c). By completeness of Cons, we have

Cons(pk, c,m, s) = 1, and thus together with (∗): Consprr(pk, (c, τ),m, s) = 1.

Soundness of partial-randomness recovery: Let c ∈ {0, 1}∗,m ∈ MsgSp(1k) and s ∈ {0, 1}∗. Suppose
Consprr(pk, (c, τ),m, s) = 1, that is Vrf(crs, (pk, c), τ) = 1 (∗) and Cons(pk, c,m, s) = 1. By soundness of
Cons we have Dec(sk, c) = m, which together with (∗) yields: Decprr(sk, (c, τ)) = m.

Completeness of ciphertext verifiability: Let c ∈ {0, 1}∗ and let s←$ pRecprr(sk, c). SupposeDecprr(sk, (c, τ)) =
⊥. Then we have either (1) Vrf(crs, (pk, c), τ) = 0 or (2) Dec(sk, c) = ⊥. We show (2) implies (1): If
Vrf output 1 then by soundness of NIZK there exist (m, r) : c = Enc(pk,m; r). By correctness of PKE we
have Dec(sk, c) = m which contradicts (1). In either case we have therefore Vrf(crs, (pk, c), τ) = 0 and
thus Invalprr(pk, (c, τ), s) = 1.

Soundness of ciphertext verifiability: Let c ∈ {0, 1}∗ and s ∈ {0, 1}∗ and assume Invalprr(pk, (c, τ), s) = 1,
that is, Vrf(crs, (pk, c), τ) = 0. Then by definition of Decprr, we have Decprr(sk, (c, τ)) = ⊥.

Constructing PKENO-compatible tag-based PKE using NIZK.An analogous construction works
to construct PKENO-compatible ECCA-secure tag-based PKE from partial-randomness recovering ECCA-
secure tag-based PKE. The latter can be converted into PKENO-compatible ECCA encryption using
one-time signatures or symmetric primitives as explained in Appendix C.

6.3 Efficient CCA-secure PKENO-Compatible Tag-Based PKE using Groth-Sahai

It is possible to construct NIZKs efficiently in the random-oracle model, but the only known efficient
instantiation of NIZKs without random oracles to date are Groth-Sahai (GS) proofs [22], which allow
to prove a certain class of statements over bilinear groups. Moreover, as shown in [30], GS proofs can
be made simulation-sound (SS) at a moderate price. We show how to build an efficient DLIN-based
partial-randomness recovering tag-based PKE scheme such that the statements we are proving fall in this
class.

Essentially, the idea is to build a decision-linear (DLIN) based tag-based ATDF for which proving
that a claimed image point has a preimage is GS statement. We then build from it a PKENO-compatible
tag-based PKE scheme as per Appendix C. Note that the GS statement here is weaker than a proof of
well-formedness of the ciphertext for the CCA scheme (as used in our generic construction above), so it
is somewhat surprising that it suffices for a PKENO construction. (The intuition is that, if the proof
verifies, the adversary is obliged to provide the preimage, which allows to verify the rest of the ciphertext
if needed.)

Specifically, we use the lossy trapdoor function (LTDF) and an all-but-one (ABO) TDF from DLIN
by Freeman et al. [16], which can be combined to a tag-based ATDF using the transformation of [28].
Note that we use the the DLIN-based instantiations rather than the original DDH-based ones of [33]
because Groth-Sahai proofs require bilinear groups in which DDH is false.

We first describe the ABO-TDF. In a group G of order p, generated by g ∈ G, the scheme is defined
as follows. To sample a function with a lossy branch b∗, choose a matrix A←$Z

n×n
p with rank 1 and

define M := A− b∗In, where In is the identity matrix. Define S ∈ G
n×n as the matrix with components

Sij := gmij , where mij are the components of M . The function indexed by S is evaluated on a branch b on
input ~x ∈ {0, 1}n as follows: fS,b(~x) ∈ Gn is the vector whose i-th component is defined as

∏

S
xj

ij ·g
b·xi . In

the language of Groth-Sahai proofs, interpreting fi =
∏

S
xj

ij ·g
b·xi as an equation over variables x1, . . . , xn,

this is a multi-exponentiation equation (called multi-scalar multiplication equation when using additive
notation, as in [22]). For a set of such equations over the same variables, Groth-Sahai proofs provide an
efficient proof of satisfiability; thus, a proof that a value has a preimage under fS,b.

The same holds for the LTDF, which is a special case of the above for b = 0.

In our construction we combine these into a TB-ATDF using a target-collision-resistant hash function
T as per [28] as follows. A public key is a pair of keys (ek ltf, ekabo) for LF and ABO-F, respectively. The

21

evaluation of ATDF on input x ∈ {0, 1}k and tag t under key (ek ltf, ekabo) is defined as (y1, y2) with

y1 := LF(ek ltf, x) y2 := ABO-F(T (t), ekabo, x)

Adding Groth-Sahai proofs that for both y1 and y2 there exists a preimage x (which is the same for
both), this gives us a TB-ATDF with public verifiability of preimage existence.

Finally, using the construction of ECCA PKE from tag-based ECCA PKE in Section 4.3, we get a
PKENO-compatible ECCA-secure tag-based PKE scheme.

6.4 PKENO-Compatible ECCA Encryption from Range-Verifiable ATDFs

Although our DLIN-based instantiation avoids using generic NIZKs or random oracles, it is probably
not efficient enough for practical use. Here we show that using a tag-based ATDF with an additional
property we call range verifiability, we can directly obtain a PKENO-compatible ECCA-secure tag-based
PKE scheme without using NIZK at all. Intuitively, this property allows us to check the property that the
Groth-Sahai statement in our above construciton is proving, so that there is no need for a separate proof.
We show that the tag-based ATDF constructed in [28] from the instance-independent RSA assumption
(II-RSA) has this property.

Range verifiable tag-based TDFs. We call a tag-based TDF range verifiable if it can be augmented
by an efficient algorithm RVrf such that or any key pair (ek, sk) and any tuple (t, c), RVrf(ek, t, c) returns
1 if and only if there exists x such that c = Eval(ek, t, x).

Proposition 6.3 The TB-PKE[TB-TDF] construction from Section 4.3 is PKENO-compatible if the un-
derlying TB-TDF is a range-verifiable tag-based ATDF.

Proof sketch. The proof is quite straightforward. We simply need to show that given an efficient RVrf
for the TB-TDF, it is possible to design an efficient RVrf ′ for the PKE. We define RVrf ′ such that on pk, t,
and the ciphertext ((c1,1, c1,2), . . . , (cℓ,1, cℓ,2)) as in Section 4.3, it runs RVrf on pk, t, ci,1 for 1 ≤ i ≤ ℓ and
returns 1 if and only if all invocations of RVrf return 1.

Range verifiable tag-based ATDF from II-RSA. The tag-based ATDF of [28] based on the
instance-independent RSA (II-RSA) assumption is a one example of such TDFs. The domain and range
of this tag-based ATDF (which is in fact a permutation) is Z∗

N , i.e., the group of multiplicatively invertible
elements modulo N = pq. In this case the associated range verifying function RVrf(ek, t, c) returns 1 if
and only if c < N . Note that we need to relax our definitions to allow completeness and soundness to
consider PPT generated inputs and fail with negligible probability, since the adversary may produce a c
in ZN \ Z

∗
N with negliglible probability assuming factoring N is hard. (For simplicitly, we do not make

these relaxations in our formal definitions.)

The resulting PKENO scheme based on II-RSA given by Proposition 6.3 is quite efficient, requiring
only one 512-bit exponentiation to encrypt. Indeed, it is exactly the same RSA-based CCA PKE scheme
from [28], which was already of note for its efficiency even without showing that it is also a PKENO. In
terms of efficiency this compares favorably to the previous DLIN-based construction of [18] which requires
multiple exponentiations (but is secure under a more standard assumption).

References

[1] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key
encryption schemes. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 26–45. Springer, Aug.
1998. 4

[2] M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption and commitment
secure under selective opening. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35.
Springer, Apr. 2009. 4

22

[3] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definitions, simplified
requirements, and a construction based on general assumptions. In E. Biham, editor, EUROCRYPT 2003,
volume 2656 of LNCS, pages 614–629. Springer, May 2003. 20

[4] M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without random oracles. In P. J.
Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 48–62. Springer, Dec. 2004. 4

[5] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. D. Santis, editor, EUROCRYPT’94,
volume 950 of LNCS, pages 92–111. Springer, May 1994. 4

[6] M. Bellare and S. Yilek. Encryption schemes secure under selective opening attack. Cryptology ePrint Archive,
Report 2009/101, 2009. http://eprint.iacr.org/. 4

[7] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption.
SIAM Journal on Computing, 36(5):1301–1328, 2007. 2, 3, 4, 14, 15, 19, 20, 27

[8] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation. In 28th ACM
STOC, pages 639–648. ACM Press, May 1996. 4

[9] R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In D. Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 565–582. Springer, Aug. 2003. 4

[10] R. Canetti, H. Lin, and R. Pass. Adaptive hardness and composable security in the plain model from standard
assumptions. In 51st FOCS, pages 541–550. IEEE Computer Society Press, Oct. 2010. 4, 6

[11] S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Black-box construction of a non-malleable encryption
scheme from any semantically secure one. In R. Canetti, editor, TCC 2008, volume 4948 of LNCS, pages
427–444. Springer, Mar. 2008. 10

[12] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003. 25, 26

[13] I. Damg̊ard, D. Hofheinz, E. Kiltz, and R. Thorbek. Public-key encryption with non-interactive opening. In
T. Malkin, editor, CT-RSA 2008, volume 4964 of LNCS, pages 239–255. Springer, Apr. 2008. 1, 2, 17, 18, 20

[14] I. Damg̊ard and R. Thorbek. Non-interactive proofs for integer multiplication. In M. Naor, editor, EURO-
CRYPT 2007, volume 4515 of LNCS, pages 412–429. Springer, May 2007. 2, 3, 17, 18

[15] C. Dwork, M. Naor, O. Reingold, and L. J. Stockmeyer. Magic functions. Journal of the ACM, 50(6):852–921,
2003. 4

[16] D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. More constructions of lossy and correlation-
secure trapdoor functions. In P. Q. Nguyen and D. Pointcheval, editors, PKC 2010, volume 6056 of LNCS,
pages 279–295. Springer, May 2010. 3, 21

[17] D. Galindo. Breaking and repairing Damg̊ard et al. public key encryption scheme with non-interactive opening.
In M. Fischlin, editor, CT-RSA 2009, volume 5473 of LNCS, pages 389–398. Springer, Apr. 2009. 2, 17

[18] D. Galindo, B. Libert, M. Fischlin, G. Fuchsbauer, A. Lehmann, M. Manulis, and D. Schröder. Public-key
encryption with non-interactive opening: New constructions and stronger definitions. In D. J. Bernstein and
T. Lange, editors, AFRICACRYPT 10, volume 6055 of LNCS, pages 333–350. Springer, May 2010. 2, 3, 4,
17, 18, 20, 22, 28, 29

[19] R. Gennaro and V. Shoup. A note on an encryption scheme of Kurosawa and Desmedt. Cryptology ePrint
Archive, Report 2004/194, 2004. http://eprint.iacr.org/. 15

[20] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In 21st ACM STOC, pages
25–32. ACM Press, May 1989. 8

[21] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–
299, 1984. 24

[22] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In N. P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Apr. 2008. 3, 21

[23] B. Hemenway, B. Libert, R. Ostrovsky, and D. Vergnaud. Lossy encryption: Constructions from general
assumptions and efficient selective opening chosen ciphertext security. In D. H. Lee and X. Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 70–88. Springer, Dec. 2011. 4

23

http://eprint.iacr.org/
http://eprint.iacr.org/

[24] D. Hofheinz. All-but-many lossy trapdoor functions. In EUROCRYPT, pages 209–227, 2012. 4

[25] D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsulation. In A. Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 553–571. Springer, Aug. 2007. 4, 25, 26

[26] S. Hohenberger, A. B. Lewko, and B. Waters. Detecting dangerous queries: A new approach for chosen
ciphertext security. page 663. 2, 4, 7, 8, 9, 10

[27] S. A. Kakvi, A. May, and E. Kiltz. Certifying rsa. 29

[28] E. Kiltz, P. Mohassel, and A. O’Neill. Adaptive trapdoor functions and chosen-ciphertext security. In
H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 673–692. Springer, May 2010. 1, 2,
3, 4, 7, 14, 15, 21, 22, 24, 25, 29

[29] P. D. MacKenzie, M. K. Reiter, and K. Yang. Definitions, constructions, and applications (extended abstract).
In M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 171–190. Springer, Feb. 2004. 16, 25

[30] H. K. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures. In A. Kiayias, editor, CT-RSA 2011,
volume 6558 of LNCS, pages 376–392. Springer, Feb. 2011. 3, 21

[31] S. Myers and A. Shelat. Bit encryption is complete. In 50th FOCS, pages 607–616. IEEE Computer Society
Press, Oct. 2009. 1, 2

[32] J. M. G. Nieto, M. Manulis, B. Poettering, J. Rangasamy, and D. Stebila. Publicly verifiable ciphertexts.
Cryptology ePrint Archive, Report 2012/357, 2012. http://eprint.iacr.org/. 19

[33] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In R. E. Ladner and C. Dwork,
editors, 40th ACM STOC, pages 187–196. ACM Press, May 2008. 1, 5, 7, 18, 21

[34] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack.
In J. Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 433–444. Springer, Aug. 1992. 1

[35] A. Rosen and G. Segev. Chosen-ciphertext security via correlated products. In O. Reingold, editor, TCC 2009,
volume 5444 of LNCS, pages 419–436. Springer, Mar. 2009. 1, 7

[36] H. Wee. Efficient chosen-ciphertext security via extractable hash proofs. In T. Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 314–332. Springer, Aug. 2010. 1

[37] A. C. Yao. Theory and applications of trapdoor functions. In 23rd FOCS, pages 80–91. IEEE Computer
Society Press, Nov. 1982. 24

A Standard Primitives

Trapdoor functions. A trapdoor function family [37] is a triple of algorithms TDF = (Tdg,Eval, Inv).
The key-generation algorithm Tdg returns an evaluation key ek and matching trapdoor td. The deter-
ministic evaluation algorithm Eval takes ek and x ∈ {0, 1}k to return an image y. The deterministic
inversion algorithm Inv takes td and y to return a point x. We require that for all x ∈ {0, 1}k ,

Pr[Inv(td,Eval(ek, x)) = x : (ek, td)←$Tdg(1k)]

with probability 1. We say that TDF is tag-based [28] with tag-space TagSp if Eval, Inv take an additional
input t ∈ TagSp called the tag and for all x ∈ {0, 1}k and t ∈ TagSp(1k),

Pr[Inv(td, t,Eval(ek, t, x)) = x : (ek, td)←$Tdg(1k)]

with probability 1.

Public-key encryption. A public-key encryption scheme [21] with message-space MsgSp is a triple of
algorithms PKE = (Kg,Enc,Dec). The key-generation algorithm Kg returns a public key pk and matching
secret key sk. The encryption algorithm Enc takes pk and a plaintext m to return a ciphertext. The
deterministic decryption algorithm Dec takes sk and a ciphertext c to return a plaintext. We require that
for all k ∈ N and m ∈MsgSp(1k),

Pr[Dec(sk,Enc(pk,m)) 6= m : (pk, sk)←$Kg(1k)]

24

http://eprint.iacr.org/

is negligible. We say that PKE is tag-based [29] with tag-space TagSp if Enc,Dec take an additional input
t ∈ TagSp(1k) called the tag and for all k ∈ N, m ∈MsgSp(1k), and t ∈ TagSp(1k),

Pr[Dec(sk, t,Enc(pk, t,m)) = m : (pk, sk)←$Kg(1k)]

with probability 1.

Authenticated Encryption. We use the definition of [25] for authenticated encryption. An authenti-
cated symmetric encryption (AE) scheme AE = (AE.Enc,AE.Dec) is specified by its encryption algorithm
AE.Enc (encrypting m ∈ MsgSp(k) with a key K ∈ K(k)) and decryption algorithm AE.Dec (returning
m ∈ MsgSp(k) or ⊥). Here we restrict ourselves to deterministic AE.Enc and AE.Dec. The AE scheme
needs to provide privacy (indistinguishability against one-time attacks) and authenticity (ciphertext au-
thenticity against one-time attacks). This is simultaneously captured by defining the ae-ot-advantage of
an adversary A as:

Advot-ae
A,AE(k) = 2 · Pr[b = b′ : K←$K(k) ; b←$ {0, 1} ; b′←$ALoRb(·,·),DoRb(·)(1k)]− 1 .

Here, LoRb(m0,m1) returns AE.Enc(K,mb), and A is allowed only one query to this left-or-right encryption
oracle, with a pair of equal length messages. Furthermore, the decrypt-or-reject oracle DoR0(C) returns
m ← AE.Dec(K,C) and DoR1(C) always returns ⊥ (reject). A is allowed only one query to this oracle
which must be different from the output of the left-or-right oracle. An encryption scheme is a one-time
authenticated encryption if Advot-ae

A,AE(k) is negligible for any PPT adversary A.

Key Encapsulation Mechanisms. The KEM/DEM paradigm was first formalized in [12]. We borrow
our formal definitions from [25]. A key-encapsulation mechanism KEM = (KEM.kg,KEM.enc,KEM.enc)
with key-space K(k) consists of three polynomial-time algorithms. Via (pk, sk)←$KEM.kg(1k) the ran-
domized key-generation algorithm produces public/secret keys for security parameter k; via (K,C)←$

KEM.enc(pk), the randomized encapsulation algorithm creates a uniformly distributed symmetric key
K ∈ K(k) together with a ciphertext C; via K ← KEM.dec(sk, C) the possessor of secret key sk decrypts
ciphertext C to get back a key K which is an element in K or a special rejection symbol ⊥. For consis-
tency, we require that for all all (K,C)←$KEM.enc(pk) we have Pr[KEM.dec(sk, C) = K] = 1, where the
probability is taken over the choice of (pk, sk)←$KEM.kg(1k), and the coins of all the algorithms in the
expression above. Here we only consider KEMs that produce perfectly uniformly distributed keys (i.e.,
we require that for all public keys pk that can be output by KEM.kg, the first component of KEM.enc(pk)
has uniform distribution).

Experiment Expkem-cca
KEM,A (k)

b←$ {0, 1} ; (pk, sk)←$KEM.kg(1k)
K∗

0←$K(k); (K∗
1 , C

∗)←$KEM.enc(pk)

d←$A
KEM.dec∗(sk,·)
1 (pk,K∗

b , C
∗)

If d = b then return 1 else return 0

Oracle KEM.dec∗(sk, C)
K ← KEM.dec(sk, C)
Return K

Above we require that A does not query c∗ to its oracle. Define the kem-cca advantage of A against
KEM as

Advekm-cca
KEM,A (k) = 2 · Pr

[

Expkem-cca
KEM,A (k) outputs 1

]

− 1 .

We say that KEM is chosen-ciphertext secure if Advkem-cca
KEM,A (·) is negligible for every efficient A.

B From ATDF to ECCA via KEM/DEM

The above constructions assume that the ATDF/tb-ATDF only provides us with a single hardcore bit.
But, if a linear number of hardcore bits are available (e.g. based on Lossy TDFs as discussed in [28]),
one can design significantly more efficient ECCA PKE constructions. The basic idea is simple: we use
the ATDF/tb-ATDF with linear hardcore bits to encrypt a one-time secret key k via a key encapsulation

25

mechanism (KEM), and use k to encrypt the message via a data encapsulation mechanism (DEM). The
standard KEM/DEM paradigm guarantees that the resulting hybrid PKE scheme is CCA secure if the
KEM component and the DEM component are both CCA secure6 (e.g. see [12]).

In our case, however, we need the hybrid PKE to be ECCA secure and randomness recovering as well.
One can construct a KEM based on a ATDF by simply using the hardcore bits as the one-time key. It
is easy to see that this construction is both ECCA secure and randomness recovering. The natural next
step is to use a CCA (or ECCA) DEM component to obtain a hybrid PKE with the desired properties.

CCA security of DEM is not sufficient. Surpringly, this does not work: hybrid encryption does
not preserve the ECCA security of the KEM. Roughly speaking, the subtlety in the proof arises when the
simulator needs to answer decryption queries for ciphertexts that have the same KEM component as the
challenge ciphertext but a different DEM component. In the standard proof, such decryption queries are
answered by decrypting the DEM component and returning the message (without having to decrypt the
KEM component). But, to achieve ECCA security, we need to return all the randomness to adversary,
including those used in the KEM component. To solve this we instead use a a one-time authenticated
encryption scheme as the DEM, in which case we show the resulting hybrid PKE is ECCA secure and
randomness recovering.

An ECCA KEM/DEM Construction from ATDFs. Consider the following construction based on
any ATDF with linear hardcore bits. Let TDF = (Tdg,Eval, Inv) be a trapdoor function with a hardcore
function hc, and AE = (AE.Kg,AE.Enc,AE.Dec) be a deterministic authenticated encryption scheme.
Define the following multi-bit public-key encryption scheme PKE[TDF] = (Kg,Enc,Dec):

Alg Kg(1k)
(ek, td)←$Tdg(1k)
Return (ek, td)

Alg Enc(ek,m)
x←$ {0, 1}k

y1 ← Eval(ek, x)
y2 ← AE.Enc(hc(x),m)
Return (y1, y2)

Alg Dec(td, ((y1, y2), flag))
If flag = 1 then return (y1, y2)
Else K ← hc(Inv(td, y1))
Return (x,AE.Dec(k, y2))

Proposition B.1 Suppose TDF is adaptive one-way and AE is a one-time authenticated encryption.
Then PKE[TDF] defined above is ECCA-secure and randomness-recovering.

Proof: It is easy to see that the above construction is randomness-recovering. In particular, the decryp-
tion algorithm recovers x = Inv(td, y1), computes K = hc(x) and then uses K to recover the message
encrypted in y2. Since the AE is deterministic, there is no additional randomness to recover.

Next, we show that PKE[TDF] is also ECCA. We take advantage of the deferred analysis technique in
this proof as well. Consider the following sequence of games:

Hybrid H0: The first game is the ind-cca experiment for PKE[TDF]. Denote the challenge ciphertext
by c∗ = (c∗1, c

∗
2), and the secret key used to encrypt c∗2 by k∗.

Hybrid H1: H1 is the same as H0 except that on decryption queries of the form c = (c∗1, c2) by the
adversary we return ⊥.

Note that |AdvH0

A (k) − AdvH1

A (k)| < Pr1[valid], where valid is the event that in game H1, for some
decryption query c 6= c∗ where c1 = c∗1, c is a valid ciphertext. Assuming no decryption error, this
probability is bounded by Pr1[forge] where forge is the event that c2 is valid ciphertext for the AE

scheme. We postpone the analysis of the bound on Pr1[forge] until the final hybrid.

Hybrid H2: H2 is the same as H1, except that in the challenge ciphertext, we use a uniformly random
key K ′ for the AE scheme.

6It is possible to relax the security requirement for the KEM component but the CCA security of the DEM seems
necessary in order to obtain a CCA secure PKE (see [25]).

26

Lets denote by KEM, the KEM component of the above construction. It is easy to see that |AdvH2

A (k)−

AdvH1

A (k)| ≤ Advkem-cca
B,KEM . Note that the same bound is true for |Pr2[forge]− Pr1[forge]|.

Hybrid H3: H3 is the same as H2, except that instead of encrypting mb for the challenge ciphertext (in
the DEM component), we encrypt 0|m0|.

Obviously, AdvH3

A (k) = 1/2. It is also not hard to see that |AdvH3

A (k)−AdvH2

A (k)| ≤ Advot-ae
C,AE(k). The

same bound is true for |Pr3[forge]− Pr2[forge]| as well.

The last thing we need to show is that Pr3[forge] is negligible, but now the key K ′ for the AE is generated
at random, we have that Pr3[forge] < Advot-ae

C,AE(k), hence concluding the proof.

An ECCA KEM/DEM Construction from tb-ATDFs. The above construction can also be used
to yield an ECCA tag-based PKE from any tb-ATDF with essentially an identical proof. Then we can
apply the transformation of Section 4.3 based on [7], to turn this into a standard ECCA PKE scheme
(see proposition 4.13).

C From PKENO-Compatible ECCA tag-based PKE to PKENO-Com-
patible ECCA PKE

We show that starting with a PKENO-compatible ECCA tag-based PKE, the construction of Section 4.3
based on the BCHK transformation [7] yields a PKENO-compatible ECCA encryption scheme. We focus
here on the “more-efficient” version of the BCHK transform that uses symmetric primitives; the simpler
version with one-time signatures also works, however.

Let TB-PKE = (Kgtag,Enctag,Dectag, pRectag, Invaltag) be a partially randomness-recovering ciphertext-
verifiable tag-based public-key encryption scheme, H, g be hash functions as in Section 4.3, and MAC =
(tag, ver) be a message-authentication code. We define a partial-randomness-recovering scheme PKEpce =
(Kgpce,Encpce,Decpce,Conspce, Invalpce) as follows:

• Kgpce(1
k): (pk, sk)←$Kgtag(1

k); output (pk, sk).

• Encpce(pk,m; r||x): c1 ← H(x); c2←$Enctag(pk, c1,m‖x; r); c3 ← tag(g(x), c2); output (c1, c2, c3).

• Decpce(sk, (c1, c2, c3)): m‖x ← Dectag(sk, c1, c2); if H(x) 6= c1 or ver(g(x), c2, c3) = 0 then output ⊥;
else output m.

• pRecpce((pk, sk), (c1, c2, c3)): m‖x←$Dectag(sk, c2); r←$ pRectag(sk, c1, c2); output (x, r).

• Conspce(pk, (c1, c2, c3),m, (x, r)): Return 1 iff H(x) = c1, ver(g(x), c2, c3) = 1 and Constag(pk, c1, c2,
m‖x, r) = 1.

• Invalpce(pk, (c1, c2, c3), (x, r)): Return 1 iffH(x) 6= c1 or ver(g(x), c2, c3)) 6= 1, or Invaltag(pk, c1, c2, r) =
1.

Proposition C.1 If TB-PKE is a PKENO-compatible ECCA tag-based PKE scheme then PKEpce defined
above is a PKENO-compatible ECCA encryption scheme.

Proof: We have already proven the ECCA security of the scheme in Proposition 4.13. In order to
prove that PKEpce is a PKENO-compatible ECCA encryption scheme we must show that it satisfies
partial-randomness recovery and ciphertext verifiability.

We begin with partial-randomness recovery (pRR). Recall that completeness for pRR is defined as follows:
For all (pk, sk)←$Kgpce and all c = (c1, c2, c3) ∈ {0, 1}

∗,m ∈ MsgSp(1k) ∪ {⊥}, let (x, r)←$ pRecpce(sk,
(c1, c2, c3)). Then

Decpce(sk, c) = m ∧m 6= ⊥ ⇒ Conspce(pk, c,m, s) = 1 .

27

Let m‖x←$Dectag(sk, c2). Then by definition of Decpce that when Decpce returns m 6= ⊥ we have that
H(x) = c1 and ver(g(x), c2, c3) = 1. Additionally, by pRR completeness of TB-PKE, we have that r is re-
turned by pRectag(sk, c1, c2), and thus by pRR completeness of TB-PKE that Constag(pk, c1, c2,m‖x, r) =
1. Together we have that Conspce(pk, (c1, c2, c3),m, (x, r)) outputs 1.

Next, recall that soundness for partial randomness recovery (pRR) is defined as follows: For all (pk, sk)←$Kgpce
and all c = (c1, c2, c3) ∈ {0, 1}

∗,m ∈ MsgSp(1k), s = (x, r) ∈ {0, 1}∗:

Conspce(pk, c,m, s) = 1 ⇒ Decpce(sk, c) = m .

Soundness for partial randomness recovery follows immediately from the same notion for TB-PKE by
the definitions of Conspce and Decpce.

We now move onto showing the ciphertext verifiability property. Recall that completeness for cipher-
text verifiability is defined as follows: For all (pk, sk)←$Kgpce and all c = (c1, c2, c3) ∈ {0, 1}

∗, let
(x, r)←$ pRecpce(sk, c). Then

Decpce(sk, c) = ⊥ ⇒ Invalpce(pk, c, (x, r)) = 1 .

If Decpce(sk, c) = ⊥ then we must have that H(x) 6= c1 or Vertag(pk, c1, c2) 6= 1, or Dectag(sk, c1, c2) = ⊥.
Completeness for ciphertext verifiability of TB-PKE implies that in the last case Invaltag(pk, c1, c2, r) = 1.
Together this implies that Invalpce returns 1.

Recall that soundness for ciphertext verifiability is defined as follows: For all (pk, sk)←$Kgpce and all
c = (c1, c2, c3) ∈ {0, 1}

∗, s = (x, r) ∈ {0, 1}∗:

Invalpce(pk, (c1, c2, c3), (x, r)) = 1 ⇒ Decpce(sk, (c1, c2, c3)) = ⊥ .

Note that if Invalpce(pk, c, s) = 1 we have thatH(x) 6= c1 or ver(g(x), c2, c3)) 6= 1 or Invaltag(pk, c1, c2, r) =
1. In the last case, by soundness of TB-PKE, we have Dectag(sk, c1, c2) = ⊥. Together this implies that
Decpce(sk, (c1, c2, c3)) = ⊥.

D Achieving Strong Proof Soundness

The following two notions, given in [18], strengthen proof soundness. Consider the following two games:

Experiment Exps-proof-snd
PKENO,A (k)

(pk,m, St)←$A1(1
k)

c←$Enc(pk,m)
(m′, π′)←$A2(pk, c, St)
If m ∈ MsgSp, Ver(pk, c,m′, π′) = 1 and m 6= m′

then return 1 ; else return 0

Experiment Exps-comm
PKENO,A(k)

(pk, c,m, π,m′, π′)←$A(1k)
If Ver(pk, c,m, π) = 1 and

Ver(pk, c,m′, π′) = 1 and
m 6= m′ then return 1

Else return 0

We say that PKENO is strongly proof-sound if for every efficient A = (A1, A2) the probability of

Exps-proof-snd
PKENO,A outputting 1 is negligible. Moreover, PKENO is strongly committing if for every efficient A

the probability of Exps-comm
PKENO,A outputting 1 is negligible.

These notions of proof soundness strengthen the original ones in that they let the adversary choose
the public key. We next discuss whether our constructions can achieve them/

Generic construction using NIZK. If we are to show that our generic construction satisfies these
notions, we cannot base it on correctness of decryption, as for an adversarially chosen key there might
not even exist a decryption key. We define thus the following notion, which formalizes the encryption
scheme being a binding commitment scheme when the public key is chosen by the adversary:

BACK defintion. A public-key encryption scheme is binding under adversarially chosen keys (BACK)
if no efficient adversary can output a tuple (pk,m, r,m′, r′) such that pk is in the public-key space,
m 6= m′ and Enc(pk,m; r) = Enc(pk,m′; r′).

28

We now show that if PKE is a randomness-recovering ECCA-secure scheme which satisfies BACK and
public verifiability (i.e., Inval has only inputs pk and c) then the construction PKENO[PKE] from Sec-
tion 6.1, where for RR schemes we define Cons(pk, c,m, s) :≡ (Enc(pk,m; s) = c), satisfies the two
strengthenings of proof soundness from [18].

Proposition D.1 Suppose PKE is randomness-recovering, has public verifiability, and satisfies ECCA-
security and BACK. Then PKENO[PKE], defined in Section 6.1 is a PKE scheme with non-interactive
opening which is CCPA-secure and satisfies strong proof soundness and the strong committing property.

Proof: Strong proof soundness. Let A be a successful adversary: she outputs (pk,m), the challenger
chooses randomness r, gives c = Enc(pk,m; r) to A, who outputs (m′, π′). The adversary wins if m 6= m′

and Ver(pk, c,m′, π′) = 1. We distinguish two cases: (1) If m′ 6= ⊥, thus since Ver outputs 1, we have
Cons(pk, c,m′, π′) = 1, that is Enc(pk,m′;π′) = c. The tuple (pk,m, r,m′, π′) thus breaks BACK. (2) If
m′ = ⊥, this means Inval(pk, c) = 1. But c = Enc(pk,m; r), so this contradicts completeness of Inval.

Committing property. Assume an efficient adversary that outputs (pk, c,m, π,m′, π′). We distinguish two
cases: (1) m 6= ⊥ and m′ 6= ⊥; (2) (w.l.o.g.) m 6= ⊥ and m′ = ⊥; note that since m and m′ must be
different, they cannot be both ⊥.

(1) Since both triples (c,m, π) and (c,m′, π′) satisfy Ver and by the definition of Cons we have:

Enc(pk,m, π) = c = Enc(pk,m′, π′) .

Such an adversary would thus immediately break BACK.

(2) Again we have Enc(pk,m, π) = c and by Ver(pk, c,m′, π′) = 1 we have Inval(pk, c) = 1. Together
this contradicts soundness of Inval.

Efficient scheme based on II-RSA. For our efficient PKENO scheme based on II-RSA in Section 6.4,
we can achieve strong proof soundness by having the verifier check that the RSA function defined by a
ciphertext is a permutation. Essentially, this yields a tag-based ECCA-secure encryption scheme satisfying
BACK, which can be turned into an ECCA-secure encryption scheme satisfying BACK with public
verifiability by using one-time signatures. That is, Ver(pk, c′,m′, π′) first parses pk and N = pq and c′

as (t, y, vk , σ) where t is the tag, y ∈ Z
∗
N and vk , σ are for the one-time signature. Then it checks that

(·)H(t) mod N defines a permutation where H is the hash-to-primes algorithm described in [28]. This
can be done efficiency using a recent result of Kakvi, May, and Kiltz [27] (previous methods required
e = H(t) > n, whereas theirs requires only e ≥ N1/4+ε so can be incorporated without increasing the
size of e versus the version of the scheme without strong proof soundness (it is 512 bits in either case).

29

	Introduction
	ECCA-Secure Constructions and Relation to Adaptive Trapdoor Functions
	Applications to Public-Key Encryption with Non-Interactive Opening
	Related Work

	Preliminaries
	Enhanced Chosen-Ciphertext Security
	Instantiations
	Adaptivity for Trapdoor Functions
	ECCA Security from Adaptive Trapdoor Functions
	Enhanced DCCA Security
	EDCCA Security from ATDFs
	From EDCCA to ECCA Security

	ECCA Security from Tag-Based Adaptive Trapdoor Functions

	Application to Adaptive Trapdoor Functions
	From ECCA Security to Adaptivity
	From ECCA Security to Tag-Based Adaptivity

	Application to PKE with Non-Interactive Opening
	PKENO-Compatible ECCA-Secure Encryption
	A Generic Construction using Non-Interactive Zero-Knowledge
	Efficient CCA-secure PKENO-Compatible Tag-Based PKE using Groth-Sahai
	PKENO-Compatible ECCA Encryption from Range-Verifiable ATDFs

	Standard Primitives
	From ATDF to ECCA via KEM/DEM
	From PKENO-Compatible ECCA tag-based PKE to PKENO-Com-patible ECCA PKE
	Achieving Strong Proof Soundness

