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Abstract. In this paper, we present a security analysis of the lightweight
block cipher LED proposed by Guo et al. at CHES 2011. Since the design
of LED is very similar to the Even-Mansour scheme, we first review exist-
ing attacks on this scheme and extend them to related-key and related-
key-cipher settings before we apply them to LED. We obtain results for
12 and 16 rounds (out of 32) for LED-64 and 16 and 24 rounds (out of
48) for LED-128. Furthermore, we present an observation on LED in the
related-key-cipher setting. For all these attacks we need to find good dif-
ferentials for one step (4 rounds) of LED. Therefore, we extend the study
of plateau characteristics for AES-like structures from two rounds to four
rounds when the key addition is replaced with a constant addition. We
introduce an algorithm that can be used to find good differentials and
right pairs for one step of LED. To be more precise, we can find more than
210 right pairs for one step of LED with complexity of 216 and memory
requirement of 5 × 217. Moreover, a similar algorithm can also be used
to find iterative characteristics for LED.

1 Introduction

Security in embedded systems, such as RFID and sensor networks, where the area
is restricted is getting more and more important since people started interacting
with them in daily life more often. Improving the efficiency while preserving the
security is one of the main challenges in this area and it has been an ongoing
research problem. Recently, many algorithms have been developed to address
this problem: hash functions like Quark [1], photon [13], spongent [3] as well
as block ciphers like Piccolo [22], LED [14], TWINE [23] and Klein [12]. Each of
them uses the advantage of the improved knowledge on the design and analysis
of symmetric key components.

LED [14] is a lightweight block cipher proposed by Guo et al. at CHES 2011.
While being dedicated to compact hardware implementation with one of the
smallest area consumptions (among block ciphers with comparable parameters),
LED also offers reasonable performance in software. The design bears some resem-
blance with the (generalized) Even-Mansour construction [4] with the difference
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that the same key is used in each step for LED-64 or every second step in the
case of the larger variant LED-128. The step function is based on AES-like design
principles that provide good bounds against large classes of attacks including
differential and linear cryptanalysis. Additionally, LED offers strong security ar-
guments against attacks even in the related-key model.

To the best of our knowledge, no external analysis of LED with respect to
differential cryptanalysis has been published so far. The best existing differential
attacks are distinguishers for 15 (out of 32) rounds of LED-64 and 27 (out of
48) rounds of LED-128 in a hash setting, where the key is known to (or even
chosen by) the attacker, described by the designers. Moreover, the security of
LED against meet-in-the-middle attack has been investigated recently by Isobe
et al. [16]. They describe attacks for 8 (out of 32) and 16 (out of 48) rounds for
LED-64 and LED-128, respectively.

Our contribution. In this paper, we present the first external cryptanalysis of
LED with respect to differential cryptanalysis. First, we show attacks for LED-64
reduced to 12 and 16 rounds. Furthermore, we present an observation on LED in
the related-cipher setting [24]. All our attacks are based on the attack of Dae-
men [5] on Even-Mansour construction [11] that is extended in a straightforward
way to the related-key setting.

Secondly, we show how to improve the bound for the maximum expected
differential probability (MEDP) for four rounds (one step) of LED from 2−32 to
2−41.75 using mega-boxes and the result of Park et al. [19].

Furthermore, we present algorithms to find differential characteristics with
high probability that can be used in our attacks. By using the ideas of plateau
characteristics [9] and extending the work with mega boxes [6], we are able to
obtain characteristics for four rounds of LED. We find more than 210 right pairs
for a differential with a complexity less than 216 time and 5× 217 memory and
an iterative characteristic with six right pairs with the same complexities. We
emphasize that our method is not specific to the block cipher LED and it can
be used in the analysis of any AES-like construction where the key addition is
replaced with a constant addition.

Outline. This paper is organized as follows. In Section 2 we give a brief descrip-
tion of LED and introduce the required definitions for our analysis. In Section 3,
we describe the attacks on Even-Mansour construction and show how they can
be extended to attack LED. We continue with differential analysis and give an
algorithm to find the number of right pairs in a plateau characteristic in Sec-
tion 4. We generalize this algorithm to find characteristics for four rounds of LED
in Section 5 and we provide the results for characteristics with high probability
and iterative characteristics that can be used in our attacks in Section 6.
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2 Description of LED

LED [14] is a conservative lightweight block cipher whose design can be seen as a
special case of the generalized Even and Mansour construction [11] depicted in
Figure 1.
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Fig. 1. Even-Mansour Construction with (a) t = 1 and (b) t = 2

LED accepts a 64-bit plaintext P, represented by a 4 × 4 array, and a 64-
bit (or 128-bit) user key as inputs, and is composed of 8 (or 12) STEP func-
tions preceded by a key addition. The STEP function is an AES-like design com-
posed of four rounds. Each round is combination of Constant addition, S-boxes,
ShiftRows, and (a variant of) MixColumns. LED uses the present S-box. In
MixColumnsSerial, each column vector is multiplied by a matrix and replaced
with the resulting vector. Note that the round constants for the second col-
umn are obtained from a linear shift register while the round constants for the
remaining three columns do not change.

Key Schedule: LED has a simple key schedule where the 64-bit user key K is
used as it is in each round whereas the 128-bit key is divided into two parts,
K = K0||K1, and used alternately. For the remainder of this paper, we refer
to these two versions as LED-64 and LED-128. For more detail, please check the
specification of LED [14].

One observation is that the S-boxes and linear transformations in the round
function of the cipher can be described by structure of a super box :

Definition 1 (Super box [9]). A super box maps an array a of m elements
ai to an array e of m elements ei. Each of the elements has size n. A super
box takes a key k of size m × n = nb where nb is the block size. It consists of
the sequence of four transformations (layers): Substitution, Mixing, Round Key
Addition, Substitution.

Similar to AES [7], two rounds of LED can also be described alternatively as
four parallel instances of the LED super box where the key addition is replaced by
the constant addition. So, instead of dealing with the classical 4-bit S-boxes, one
can consider 16-bit super boxes each composed of two S-box layers surrounding
one MixColumnsSerial (MC) and one AddConstants (AC) function.

Four rounds of LED can be described as a mega-box, where the elements are
16-bit words and the LED super boxes defined above are seen as S-boxes. The lin-
ear transformation in the middle is a combination of ShiftRows, MixColumnsSerial
and ShiftRows respectively. We will refer to this linear transformation as SMS.
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3 Attacks on the Even-Mansour Construction and
Application to LED

The Even-Mansour construction is a simple and yet provably secure block ci-
pher construction. The designers have shown that the number of queries needed
to break the scheme is bounded by 2n/2, where n is the blocklength (n = 64
for LED). A generic key recovery attack with chosen plaintexts showing that
this bound is tight was introduced by Daemen [5]. Twenty years later, the con-
struction was revisited. It was shown that the same bound applies to the known
plaintext setting by using the slidex attack, an extended version of the slide
attack [10].

Simultaneously, Bogdanov et al. generalized the construction in [4] to more
steps and discussed its security. They even provided a security proof for the
construction in the single-key setting. However, as pointed out by the authors,
the scheme is insecure in the related-key setting. In this section, we focus on the
attack of Daemen on the Even-Mansour construction, since it is the basis for all
our attacks on LED. First we show how it can be extended to a related key attack
on the generalized Even-Mansour construction. Then, we will use it to attack
reduced versions of the LED block cipher.

3.1 Daemen’s Attack

At Asiacrypt 1991 Daemen presented a generic key-recovery attack with com-
plexity of 2n/2 [5]. It can be summarized as follows.

1. Choose a difference ∆.
2. For ` values of a compute ∆F0 = F0(a) ⊕ F0(a ⊕ ∆) and save the pair

(∆F0, a) in a list L.
3. Choose an arbitrary plaintext P with P ′ = P⊕∆ and ask for the ciphertexts
C and C ′

4. Compute ∆C = C ⊕ C ′ and check if ∆C is in the list L to get a.
– If ∆C is in the list L then a candidate for the key is found. Compute
K0 = a⊕ P and K1 = F0(a)⊕ C.

– Else go back to Step 3.

After repeating steps 3− 4 about 2n/` times one expects to find the correct key
with complexity of about 2n/`+`. Obviously the attack has the best complexity
by choosing ` = 2n/2 resulting in a final attack complexity of about 2n/2 and
similar memory requirements.

Note that, the attack can be applied in an iterative way to attack the Even-
Mansour construction with t > 1 with complexity of 2t·n/2 and similar memory
requirements. For instance, if t = 2 then we get a complexity of 2n.

3.2 Using Daemen’s Attack in a Related-Key Setting

In certain scenarios one considers also related-key attacks where the adversary is
allowed to get encryptions under several related keys. In this setting Daemen’s
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attack can be adapted to attack t steps of the Even-Mansour construction with
complexity of t·2n/2 and similar memory requirements. For the sake of simplicity
we first describe the attack for t = 2.

Related Key Attack with t = 2. Let K,K ′ be two related keys, where
K = K0‖K1‖K2 and K ′ = K0 ⊕ ∆0‖K1 ⊕ ∆1‖K2 ⊕ ∆2, with arbitrary (but
known) ∆0, ∆1, ∆2 and ∆1 6= 0. Then we can do a key recovery attack on
the Even-Mansour construction with t = 2 with complexity of roughly 2n/2

and similar memory requirements using the attack of Daemen [5]. It can be
summarized as follows.

1. For ` values of a compute ∆F1 = F1(a) ⊕ F1(a ⊕ ∆1) and save the pair
(∆F1, a) in a list L.

2. Choose an arbitrary P and P ′ = P ⊕∆0 and ask for the ciphertexts C and
C ′

3. Compute ∆C = C ⊕ (C ′ ⊕∆2) and check if ∆C is in the list L to get a.
– If ∆C is in the list L then a candidate for K2 is found, K2 = F1(a)⊕C.
– Else go back to Step 2.

After repeating steps 2−3 about 2n/` times, the expected number of matches in
the list L (i.e., candidates for K2) is at least one. Note that, if we have more than
one candidate for K2 then we have to repeat the attack to get new candidates
for K2. The intersection of both sets of candidates gives us the correct key. Note
that it is very unlikely that this intersection will have more than one solution.

Once K2 is known one can apply the attack of Daemen to find K0 and
K1. This results in a final attack complexity of about 2 · 2n/`+ 2` and memory
requirements of `. Again, the attack has the best complexity by choosing ` ≈ 2n/2

resulting in a final attack complexity of about 2 ·2n/2 and memory requirements
of 2n/2.

Related Key Attack with t > 2. The related key attack can be extended
to more steps by applying the attack for t = 2 iteratively using more related
keys with certain properties. Assume t = 3 and there are two related keys K =
K0‖K1‖K2‖K3 and K ′ = K0 ⊕∆0‖K1‖K2 ⊕∆2‖K3 ⊕∆3, with arbitrary (but
known) ∆0, ∆2, ∆3 and ∆2 6= 0. Then one can find K3 similar as in the attack
on the Even-Mansour construction with t = 2 with a complexity of roughly 2n/2.
Once K3 is found one can apply the attack for t = 2 with another pair of related
keys to recover K0, K1 and K2. In general, one can find the key for t = i using
i related keys with certain properties.

3.3 Attacks on Reduced LED

In this section, we will discuss the application of the attacks described in the
previous section to the LED block cipher. Due to the fact that in LED the same key
is used more than once the number of steps that can be attacked is significantly
reduced. However, the attack can still be used in a straightforward way to break
one and two steps of LED-64 in a single-key and related-key setting, respectively.
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Both attacks have a complexity of about 2n/2 and similar memory requirements.
Note that a similar related-attack was described recently in [4].

However, both attacks can be extended to more steps in the case of LED-128.
In more detail, we can attack four and six steps of LED-128 in the single-key and
related-key setting, respectively. First, we describe an attack on four steps of LED-
128 based on Daemen’s attack. It is based on the following simple observation
(cf. Figure 2).

P x
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K0 K1

F1

K0
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K1

F ∗

CF3

K0

Fig. 2. Structure of LED-128 with t = 4.

Assume K0 is known, then one can peel off the first and last key addition.
Thus, the attacker can remove one iteration at each side of the cipher with a
complexity of about 264 tries on K0. Moreover, assuming that K0 is known two
steps of LED-128 can be viewed as one big iteration using only K1. In other
words, we get a ‘new’ Even-Mansour construction with t = 1 and one key K1

where we can apply Daemen’s attack to recover the key. Using this, one can find
K0 and K1 for four steps of LED-128 with a complexity of about 23n/2. It can be
summarized as follows.

1. Guess the key K0.
2. For 2n/2 values a and a fixed ∆ compute ∆F ∗ = F ∗(a) ⊕ F ∗(a ⊕ ∆) with
F ∗(a) = F2(F1(a)⊕K0) and save the pair (∆F ∗, a) in a list L.

3. Choose an arbitrary P and compute P ′ = F−10 (x ⊕ ∆) ⊕ K0 with x =
F0(P ⊕K0). Ask for the ciphertexts C and C ′.

4. Compute ∆y = y⊕y′ with y = F−13 (C⊕K0) and y′ = F−13 (C ′⊕K0). Check
if ∆y is in the list L to get a.
– If ∆y is in the list L then a candidate for the key is found. Compute
K1 = a⊕ x.

– Else go back to Step 3.
5. Once K1 is found check if the key K = K0‖K1 is correct.

Since the expected number of K0 guesses that we need to make to find the
correct key is 2n, we need to repeat the attack 2n times. Since for each guess of
K0 we need about 2n/2 computations to find K1, the complexity of the attack is
roughly 23n/2. Note that the above attack needs the whole codebook. However,
at the cost of a higher attack complexity, the data complexity of the attack can
be reduced. To be more precise, in step 3 of the attack we can always choose P
from a predefined subset and when computing P ′ we check if it is also in this
subset, if not then we repeat this step. Thus, the data complexity of the attack
can be reduced by simultaneously increasing the time complexity.
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The attack can be extended to six steps of LED-128 using related keys as in the
attack on the Even-Mansour construction with t = 2. The attack is very similar
as the attack on four steps. Basically only steps 2 − 4 (Daemen’s attack) are
replaced by the related key attack described in the previous section. The result
is a key-recovery attack on six steps (24 rounds) of LED-128 with complexity of
about 23n/2. Again, as in the attack on 4 steps the data complexity of the attack
can be reduced on the cost of a higher attack complexity.

3.4 Extending the Attack to more Steps

In this section, we discuss how the attacks can be extended to more steps of LED.
First, we show that by exploiting differential properties of the STEP-function
F , it might be possible to extend the attacks on LED-64 by one or two steps.
Moreover, the attack on 4 steps can also be used in related-cipher attack [24]
with related key setting on full LED-128. We call this a related-key-cipher attack.
It is described in Appendix B.

∆⊕∆∗ F0

∆∗ → ∆

∆ ∆

F1

∆

∆CF2

∆→?

∆

Fig. 3. Attack on LED-64 with t = 3.

In the following, we show how the attack can be extended to t steps of LED-
64. The attack is based on the assumption that one can find a good related-key
differential for the first t − 2 steps such that one gets a zero difference after
the key addition of step t− 2. Then one can use Daemen’s attack on the last 2
steps to recover the key. For In the attack on 3 steps we a differential with good
probability in F0 is used, see Figure 3. The attack can be summarized as follows.

1. Assume we have given two related keysK0 andK ′0 = K0⊕∆ and furthermore
the differential ∆∗ → ∆ for F0 holds with probability p� 2−64.

2. For 2(n+
1
p )/2 values a compute ∆F2 = F2(a)⊕ F2(a⊕∆) and save the pair

(∆F2, a) in a list L.
3. Choose an arbitrary P and P ′ = P ⊕∆∗ ⊕∆ and ask for the ciphertexts C

and C ′

4. Compute ∆C = C ⊕ (C ′ ⊕∆) and check if ∆C is in the list L to get a.
– If ∆C is in the list L then a candidate for K0 is found, K0 = F2(a)⊕C.
– Else go back to step 3.

After repeating steps 3 − 4 about 2(n+
1
p )/2 times, the expected number of

matches in the list L (and hence candidates for the key K0) is 1/p. Since the
differential in F0 will hold with probability p, for one of these matches we will
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Table 1. Summary of the attacks on LED

algorithm # step time memory attack type reference
functions complexity complexity

LED-64 3 2
(n+ 1

p
)/2

2
(n+ 1

p
)/2

related-key Section 3.4

4 2
(n+ 1

p
)/2

2
(n+ 1

p
)/2

related-key Section 3.4

LED-128 4 23n/2 2n/2 single-key Section 3.3

6 23n/2 2n/2 related-key Section 3.3

12 2
(n+ 1

p
)/2

2
(n+ 1

p
)/2

related-key-cipher Appendix B

have ∆F1 = 0. Hence, one will find the right key after testing all candidates for
K0 resulting from the 1/p matches in the list L. The complexity and memory

requirements of the attack depends on p, i.e. 2(n+
1
p )/2.

The attack on three steps can be extended to four steps of LED-64. Assume
we can find a good iterative differential for F1 that holds with probability p.
Then this differential can be easily extended to a differential for the first 2 steps
with the same probability (see Figure 4), resulting in an attack on 4 steps of

LED-64 with complexity of 2(n+
1
p )/2 and similar memory requirements.

∆ F0

∆ ∆

F1

∆→ ∆

∆

F2

∆

∆CF3

∆→?

∆

Fig. 4. Attack on LED-64 with t = 4.

In the Table 1, we summarize the attacks on LED that are given in Section 3
and Appendix B. We will discuss in the following sections how to find good
(iterative) differential characteristics for one step of LED that can be used in the
attacks on three and four steps.

4 Differential Analysis and Plateau Characteristics

In this section, we start with some definitions that will be helpful to under-
stand the rest of the paper. We then give an introduction of the previous work
on AES [9] and describe how we can use this method to find two/four round
characteristics efficiently (and the corresponding right pairs).

4.1 Characteristics and Differentials

Differential cryptanalysis [2] is one of the most powerful techniques used in
analysis of block ciphers, hash functions, stream ciphers, etc. It investigates how
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an input difference (generally XOR) propagates through the target function.
The concept of differential cryptanalysis starts with analyzing the components
of the function, mostly focusing on S-boxes since they are the smallest nonlinear
building block. In the analysis, we call an S-box active if it has a non-zero input
difference, otherwise we call it passive.

A differential characteristic Q = (∆0, ∆1, · · · , ∆m) is a sequence of differ-
ences through various stages of the encryption. The sequence consists of an input
difference∆0, followed by the output differences of all the steps (∆1, ∆2, · · · , ∆m).

A differential [17] over a map is denoted by (∆0, ∆m) where ∆0 is the
input difference and ∆m is the output difference. The differential probability
DP(∆0, ∆m) of a differential over a map f is the fraction of pairs with input
difference ∆0 that have output difference ∆m.

For a keyed map, we can define differential probabilities DP[k](∆0, ∆m) and
DP[k](Q) for each value k of the key. Then, the expected differential probability
(EDP) is the average of the differential probability over all keys. The weight
of a differential or a characteristic is minus the binary logarithm of their EDP.
Moreover, we define the height of a possible differential or a characteristic as
the binary logarithm of the number of their right pairs satisfying (∆0, ∆m) for
a fixed key.

A differential characteristic through the AES-like (including LED) super boxes
consist of a sequence of four differences: the input difference a, the difference af-
ter the first substitution b, the difference after the mixing step which is equal
to the difference after the round (key) constant addition d, and the output dif-
ference after the second substitution e. These characteristics are denoted by
Q = (a, b, d, e).

It can be shown that SMS is a map whose branch number is 5. Therefore, a
characteristic over a mega-box consists of 5 to 8 sub-characteristics, each over
an LED super box. We denote the characteristics over the first and the second
layer of super boxes by (a, b, d, e) and (f, g, i, j), respectively.

4.2 The Maximum Expected Differential Probability of LED

Differential cryptanalysis plays a crucial role in the analysis of symmetric key
components since most of the cryptanalysis techniques are based on it. Therefore,
giving bounds for resistance against differential cryptanalysis is one of the first
steps in the evaluation of a design. In LED, the AES-like structure in the STEP

function makes it possible to apply the previous work of [19] to bound the MEDP.
By a straightforward computation of the formula stated in [19, Theorem 4],
the designers compute the bound for the MEDP as 2−32. This bound can be
improved by considering the STEP function as a mega-box and then using [19,
Theorem 1] to bound the MEDP of LED as

max

 max
1≤i≤8

1≤x≤216−1

216−1∑
y=1

{
DPsbi(x, y)

}5

, max
1≤i≤8

1≤x≤216−1

216−1∑
y=1

{
DPsbi(y, x)

}5

 = 2−41.75.

9



Here DPsbi(x, y) is the probability of the characteristic (x, y) for the i-th super
box obtained from the Difference Distribution Table (DDT). This result improves
the approximations used in [14, Table 1]. We provided the bound for the first
STEP function; the results for the other super boxes are similar.

4.3 Planar differentials

Let γ be a map and let F(a,b), G(a,b) be the sets that contain the input values,
respectively the output values, for the right pairs of the differential (a, b). i.e.,
F(a,b) = {x|γ(x) + γ(x + a) = b} and G(a,b) = γ(F(a,b)). A differential (a, b) is
called a planar differential, if F(a,b) and G(a,b) form affine subspaces [9]. In that
case, we can write:

F(a,b) = p+ U(a,b)

G(a,b) = q + V(a,b),

where U(a,b) and V(a,b) are uniquely defined vector spaces, p any element in F(a,b)

and q any element in G(a,b). Note that, if a differential (a, b) has exactly two or
four right pairs, then it is always planar [9].

Plateau characteristics [9] are a special type of characteristics whose proba-
bility for each value k of the key, DP [k](Q), depends on the key and can have
only two values. For a fraction 2nb−(weight(Q)+height(Q)) of the keys DP [k](Q) =
2height(Q)−nb and for all other keys the it is zero. Note that the height is inde-
pendent of the key.

Two-Round Plateau Characteristic Theorem states that a characteristic Q =
(a, b, c) over a map consisting of two steps with a key addition in between, in
which the differentials (a, b) and (b, c) are planar, is a plateau characteristic with
height(Q) = dim(V(a,b) ∩ U(b,c)).

4.4 Algorithm for number of right pairs in a plateau characteristic

Here, we describe the algorithm to find the number of right pairs of a given
characteristic Q = (a, b, d, e) through a super box. If the sub-characteristics (a, d)
and (d, e) are planar then we can use the Two-Round Plateau Characteristic
Theorem to compute the right pairs. Our aim in the algorithm is to build the
matrix B containing the basis vectors of (M(V(a,b))) and U(d,e) where M is the
mixing operation and M(V ) = {M(v)|v ∈ V }. We denote vectors by rows of nb
bits.

The first step of our algorithm is to determine V(a,b) and U(d,e). Since, the
super box is a set of m parallel maps, V(a,b) and U(d,e) can be written as:

V(a,b) = V(a1,b1) × V(a2,b2) × · · · × V(am,bm)

U(d,e) = U(d1,e1) × U(d2,e2) × · · · × U(dm,em)

by using the Lemma 4 in [9]. Now, if |G(ai,bi)| > 0, we are interested in the
output values of the right pairs.
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– If |G(ai,bi)| = 2, then the right pairs have input values in the set {q+{0, bi}}
for some q in G(ai,bi) , the basis vector for V(ai,bi) being bi.

– If |G(ai,bi)| = 2k where 2 ≤ k < n, then V(ai,bi) =< bi, β
1
i , . . . , β

k
i > and

hence V(ai,bi) is said to be spanned by bi and βj
i ’s.

– If (ai, bi) = (0, 0) then G(ai,bi) covers the whole space and V(ai,bi) =<
w0, w1, · · · , wn−1 > where wj is a coordinate vector (i.e. a vector with 1
at position j and zero at all other positions) and V is the standard basis.

Similarly, if |F(di,ei)| > 0, we are interested in the input values of the right
pairs. When we find the right pairs for each parallel map we can compute
the height by using Algorithm 1. The number of dependent rows in B gives
dim(M(V(a,b)) ∩ U(d,e)) which is equal to the height.

Algorithm 1 calls the following subroutines. Add(v) adds the vector v as a
new row to the matrix B. RowReduce is the Gaussian Elimination and RowCount

gives the number of nonzero rows of a matrix.

Algorithm 1 Algorithm to compute the height of a given plateau characteristic

Input: Characteristic Q = (a, b, d, e) with EDP (Q) > 0
Output: height(Q)

1: procedure precompute
2: for i = 1→ m do
3: Compute V(ai,bi) =< bi, β

1
i , . . . , β

kv
i

i > and U(di,ei) =< di, δ
1
i , . . . , δ

ku
i

i >
4: end for
5: end procedure

6: procedure height

7: //at the input of Mixing
8: for i = 0→ m do
9: if bi = 0 then

10: for j = 0→ n do
11: Add(M(w4i+j))
12: end for
13: else if bi > 0 then
14: Add(M(bi))
15: if |V(ai,bi)| > 2 then
16: for j = 1→ kvi do
17: Add(M(βj

i ))
18: end for
19: end if
20: end if
21: end for

22: //at the output of Mixing
23: for i = 0→ m do
24: if di = 0 then
25: for j = 0→ n do
26: Add(w4i+j)
27: end for
28: else if di > 0 then
29: Add(di)
30: if |U(di,ei)| > 2 then
31: for j = 1→ kui do
32: Add(δji )
33: end for
34: end if
35: end if
36: end for

37: B’ = RowReduce (B).
38: return height(Q) = RowCount(B) - RowCount(B’)
39: end procedure
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The algorithm also gives us an insight on how to find the right pairs which
can be determined by intersecting the affine spaces F(a,b) ∩ (G(b,c) ⊕ k). This
can be efficiently done by preparing the set of linear equations to solve. We
would like to emphasize that, for a fraction of the keys the right pairs exists
and their values differ depending on the key. On the other hand, if the constant
operation is used instead of the key addition operation in the cipher, then it is
not guaranteed always to have a solution.

5 Non-plateau Characteristics: LED Mega-box

As we mentioned in Section 2, two rounds of LED can be considered as a super
box and four rounds is defined as a mega-box. Let (a, b, d, e) and (f, g, i, j) denote
the characteristic through the super boxes at the input and the output of SMS

respectively. Since the super boxes are key independent, we consider them as
16-bit S-boxes. This allows us to omit the middle values (b, d) and (g, i) and use
the differentials (a, e) and (f, j) in our analysis.

In order to use the two-round plateau characteristic theorem, it is required
that the set of output values G(a,e) and the set of input values F(f,j) for the right
pairs must be affine spaces/planar. However, this is not always guaranteed when
the number of right pairs is greater than 4. Although the difference between the
values of each pair is known and constant, some extra conditions between the
pairs are also required for a set to become affine/planar. Therefore, we have to
work with a union of affine spaces in order to compute the number of right pairs
of a given characteristic. In the following, we will denote by height∗ the binary
logarithm of the maximum number of right pairs of a given characteristic, over
all values of the key. For a plateau characteristic, height∗ equals the height.

The details of our algorithm are given below. An algorithmic description can
be found in Algorithm 2.

Precomputation: The first step of our algorithm is finding G(a,e) and F(f,j)

for the given path, and the next step is obtaining the subspace decompositions
of V(a,e) and U(f,j). If V(ai,ei) is affine then V(ai,ei) =< e, ε1, . . . , εn >, otherwise
it is a union of smaller vector spaces, i.e. V(ai,ei) = V 1

(ai,ei)
∪ V 2

(ai,ei)
∪ . . . V m

(ai,ei)

where m ≥ 2. Therefore, we have to find the corresponding basis vectors (εi’s)
for each subspace. The results are then stored in a list, Li, for each active super
box.

Analysis: We then use the Two-Round Plateau Characteristic Theorem to com-
pute the height using the basis vectors obtained in the precomputation phase.
Since the solution exist only for a fraction of the constant values, we check
whether the given round constant is in the solution set or not. This step can also
be done by solving a system of linear equations as in two-rounds, but this time
the equations are obtained from the SMS layer and the basis vectors of the super
boxes.

Here, we would like to emphasize that the solution does not always exist
for the round constant of LED. Denote by Kq, the set of values, k, such that
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Algorithm 2 Algorithm to compute the height∗ of a four-round characteristic

Input: Characteristic Q = (a, e, f, j)
Output: Upper bound for height∗(Q)

1: procedure precompute
2: L0 = L1 = . . . = L7 = Ø
3: for i = 0→ 3 do
4: Compute G(ai,ei) and F(fi,ji)⋃

m

V m
(ai,ei) = Decompose(V(ai,ei)) and < εm1 , ε

m
2 , . . . ε

m
dm >= V m

(ai,ei), dm = |V m
(ai,ei)|⋃

n

Un
(fi,ji) = Decompose(U(fi,ji)) and < εn1 , ε

n
2 , . . . ε

n
dn >= V n

(fi,ji), dn = |V n
(fi,ji)|

5: Store(Li, {(ai, ei), εm1 , εm2 , . . . εmdm}) and Store(L4+i, {(fi, ji), εn1 , εn2 , . . . εndn})
6: end for
7: end procedure

8: procedure analyze
9: count = 0

10: for all q ∈ L0 × L1 × . . .× L7 do
11: h = height(q);
12: count = count + 2h

13: end for
14: return log2(count)
15: end procedure

DP[k](q) > 0. Since constants are used in the round function of LED, it is not
guaranteed that the round constant, cr ∈ Kq for all q. Therefore, the algorithm
gives an upper bound for height∗(Q). If the key addition was used in the round
function rather than constant addition, it could be possible to find a key value
k ∈ Kq for all q satisfying the upper bound.

On the other hand, if the key addition was used, the Algorithm 2 could not
be applied immediately, since the lists Li would depend on the key values and
would not be unique. This would require recomputation of the lists for each key
value increasing the complexity of the algorithm.

Note that, since height∗ for four rounds is the summation over all possible
decompositions q ∈ L0×L1× . . .×L7 of the characteristic Q, height∗(Q) is not
guaranteed to be an integer, although height(q) is integer for all q.

In Algorithm 2, Store adds input/output differences and the basis vectors
{ε1, ε2, . . .} to the list L. height is given in Algorithm 1 used with parameters
m = 4 and n = 16.

6 Application of the Algorithms 1 and 2

In this section, we give two examples to demonstrate how Algorithm 1 and
Algorithm 2 work. These examples can directly be used with attacks described
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Fig. 5. (a)Path for iterative characteristics of the LED cipher (b)Mega-box rep-
resentation of the same path

in Section 3.4. We do not claim that these are the best characteristics in terms of
probability for the STEP function of LED that one can find. For both examples,
we fix the number of active S-boxes to 25 for four rounds of LED. Since, we
know from previous work [9] that all the characteristics with high probability
are expected to have a low weight and a low number of active S-boxes. This
also allows us to reduce the time and memory complexities of our algorithm and
make the computation feasible.

6.1 Iterative Characteristics

Our aim is to find iterative characteristics (i.e., characteristics that have the same
input and output difference) for the STEP function of the LED block cipher. We
show that it is possible to obtain multiple iterative characteristics by using the
16-bit boxes and the two round plateau characteristic theorem in 216 time and
around 5×217 memory. In terms of efficiency, this computation can be compared
with the inbound technique of the rebound attack [18]. The main advantage of
our computation is that many characteristics can be found whereas with the
rebound attack, the expected number of characteristics that we find, equals one,
using the same time complexity and slightly less data complexity.

In our analysis we used the differential path given in Figure 5. It is possible
to adopt the algorithm for the other possible differential paths. The algorithm
is summarized as follows:

Precomputation: For each of the active super boxes, obtain the differentials
(ai, ei) (or (fi, ji)) for the given path and find the corresponding right pairs
G(ai,ei) (or F(fi,ji)). Then compute their affine subspace decomposition and the
corresponding basis vectors. Store the input/output differences together with
the basis vectors in a list. We denote these lists as L0, L1, L2, L3 for the super
boxes at the input and L4 for the super box at the output of the SMS layer. Note
that this calculation is done for all possible differentials. Each list has around
217 elements, therefore the total memory requirement of this step is 5× 217.
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Algorithm 3 Compute iterative characteristics

Input: Precomputed tables Li where i ∈ {1, · · · , 5}
Output: All the iterative characteristics with their height∗

1: for all (e, f) ∈ S do
2: if (f0, j0) ∈ L4 then
3: ∆ = MC ◦ SR ◦AC(j)
4: a = SR ◦AC(∆)
5: if (ai, ei) ∈ Li for 1 ≤ i ≤ 4 then
6: h =height∗(Q)
7: Output Q = (a, e, f, j) and h
8: end if
9: end if

10: end for

Analysis: We start from the four MixColumnsSerial operations in the SMS

layer. Each of them has only one 4-bit word active at the output, hence we have
154 ≈ 216 possibilities for the differences at f (call the set of possibilities S).
For each of these differences, we obtain the possible differences at j by using
the precomputed list L4. Then, we compute (MC ◦ SR ◦ AC)(j) = ∆ which is
the output difference after four rounds of the STEP function and is also equal
to the input difference of the STEP function since we are interested in iterative
characteristics. We make one more computation (SR ◦ AC)(∆) to obtain the
difference at a. Note that by choosing a difference for f , we have already fixed
the difference at e. We then check whether (ai, ei) is in the list Li for 0 ≤ i ≤ 3.
If it does for all i, we use the Algorithm 2 to compute the height∗ and find the
right pairs.

Results: In our analysis we found 240 iterative characteristics for the pattern
given in Figure 5 but not all of them have a solution for the round constants of
the LED block cipher. One of these characteristics is given below. It has 6 right
pairs and the corresponding right pairs are given in Appendix A.

a 0x6000 0x0003 0x0070 0x0C00

e 0x6962 0x5848 0x46A3 0x5CBF

f 0x943C 0x0000 0x0000 0x0000

j 0x8000 0x0000 0x0000 0x0000

6.2 Characteristics with high height∗

In this section, our aim is to find characteristics with high height∗ for the STEP

function of the LED block cipher. We show that it is possible to obtain such char-
acteristics by using a similar algorithm to Algorithm 3 with 216 time complexity
and 5 × 217 memory complexity. In our analysis we focused on the differential
path given in Figure 6 and searched for characteristics whose height∗ is greater
than 5.
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Fig. 6. (a)Characteristics of the LED cipher with high height∗ (b)Mega-box rep-
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Precomputation: All possible differentials together with the basis vectors of
their affine space decomposition are stored in the lists L1, L2, L3 for each of the
the super boxes at the input and in the lists L4, L7 for the super boxes at the
output of the SMS layer. Again, each list has around 217 elements, and the total
the memory requirement of this step is 5× 217.

Analysis: We start from the two active MixColumnsSerial operations in the
SMS layer. Each of them has two 4-bit words active at the output, hence we have
(152)2 ≈ 216 possibilities for the differences at f . For each of these possibilities,
we obtain the possible differences at a by using the precomputed lists L1, L2 and
L3. Similarly, the possible differences at j are obtained by using the lists L4 and
L7. We then use Algorithm 2 to compute the height and find the right pairs.

Results: Assume that dim(V(a,e)) > 0 and dim(U(f,j)) > 0, then we can write
V(a,e) =

⋃
m V m

(a,e) and U(f,j) =
⋃

n U
n
(f,j). We define a partition by Qmn where

Qmn = SMS(V m
(a,e))∩U

n
(f,j). Then we know that height∗(Q) ≤ log2(

∑
m,n

2dim(Qmn))

(see Algorithm 2). In our analysis we observed that it is not easy to find a par-
tition whose height is greater than six, but by combining all partitions, we were
able to find characteristics which have height∗ greater than eleven or twelve. One
example of such characteristics is provided below.

a 0x0000 0x0F91 0x2F0B 0x2803

e 0x0000 0xC00D 0x8F00 0x0F50

f 0x0CD0 0x0000 0x0000 0x00C8

j 0x8C07 0x0000 0x0000 0x50BF

The upper bound for height∗ is computed as 12.16 by using the formula.
However, not all partitions have a solution for the given round constant, and
we obtain only 1026 right pairs for the round constants used in LED. We also
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computed the number of right pairs by changing the round constant used in
round three of the STEP function. The number of right pairs is computed as
1024± ε where ε ≤ 116 for all constants.

To sum up, we introduced not only a new method that can be useful in the
security evaluation of AES-like structures but we also showed that by using this
method it is possible to obtain characteristics that can be used to attack LED

(see Section 3.4).

7 Future Work and Open Problems

The analysis of super boxes and mega-boxes play an important role in the crypt-
analysis of AES-like ciphers. In this paper, we focused on characteristics for the
block cipher LED with 25 active S-boxes. Since it is not feasible to compute the
whole distribution of the characteristics for four rounds of LED, we focus only
on characteristics that may have many right pairs. Therefore, our results cover
characteristics with high height∗ and iterative characteristics with a fixed pat-
tern. The examples given in this paper are the best ones that we computed. But
still, it is possible to cover other patterns with 25 active S-boxes and they might
give better results and at the same time result in improvements of our attacks.

We want to note that the algorithms given in this paper can also be used to
compute the differentials for constructions using four rounds of AES as internal
building block such as Pelican [8] giving new insights on these designs. Moreover,
these algorithms might also be used in the computation of the inbound phase of
the rebound attack.
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A Right pairs for iterative characteristic of the first step
function

{0x2CD65C01406D989B, 0x4CD69C01306DA89B}, {0x4CD69C01306DA89B, 0x2CD65C01406D989B}
{0x2DD65F71428EA8EF, 0x4DD69F71328E98EF}, {0x4DD69F71328E98EF, 0x2DD65F71428EA8EF}
{0x2FDE5CF1406098FB, 0x4FDE9CF13060A8FB}, {0x4FDE9CF13060A8FB, 0x2FDE5CF1406098FB}

B An Observation on the LED-128

In this section, we discuss the extension of attack on four steps for LED-64 to
LED-128. We observe that if the key value for LED-128 is of the form K = k || k
for some k, then the first 8 STEPs of LED-128 is identical to LED-64 with the key
value k and two ciphers differ only in four STEP functions. Therefore, in addition
to previous attack settings, we need two additional assumptions to perform an
attack. First, we assume that we have access to LED-64 decryption oracle under
a key value k. Secondly, the key value for LED-128 must be set to K = k || k as
described above.

Attack on LED-128 in the related-cipher model. The attack can be sum-
marized as follows:

1. Find an iterative differential in F9 with high probability.
2. Assume we have given two related keys k, k′ = k ⊕∆ and furthermore the

differential ∆→ ∆ for F9 holds with probability p� 2−64.

3. For 2(n+
1
p )/2 values a compute ∆F11 = F11(a) ⊕ F11(a ⊕ ∆) and save the

pair (∆F11, a) in a list L.
4. Choose an arbitrary C64, set C ′64 = C64 and ask for the plaintexts P and
P ′ by using LED-64. Then, ask for corresponding ciphertexts C128, C ′128 by
using LED-128.

5. Compute ∆C128 = C128 ⊕ (C ′128 ⊕∆) and check if ∆C128 is in the list L to
get a.
– If ∆C128 is in the list L then a candidate for k is found, k = F11(a)⊕C128.
– Else go back to Step 3.

The expected number of matches in the list L is 1/p and hence candidates for the

key K = k || k after repeating steps 3− 4 about 2(n+
1
p )/2 times. The complexity

and memory requirements of the attack only depend on p and equal to 2(n+
1
p )/2.

∆

F9

∆ ∆

∆

10F 11F

∆ ?

P∆ LED−64
C∆ 64

C∆ 1288F

∆ ∆

=0

Fig. 7. Attack on LED-128 in the related-cipher model
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